# [pstricks] Points of Intersection

Juergen Gilg gilg at acrotex.net
Wed Mar 18 21:17:02 CET 2009

Dear David,

something like that could bring you on course:

\documentclass{article}
\usepackage{pstricks,pst-eucl}
\begin{document}
\psset{unit=1cm}
\begin{pspicture}(0,-3)(6,3)
\pstGeonode[PosAngle={180,0}](0,0){A}(6,0){B}
\pstLineAB{A}{B}
\pstLineAB{A}{C1}
\pstLineAB{B}{C1}
\end{pspicture}
\end{document}

Regards,

Juergen

David Arnold wrote:
> My trigonometric solution requires a little law of cosines and a
> calculator.
>
> \documentclass{article}
> \usepackage{pstricks}
>
> \begin{document}
>
> \begin{center}
> \psset{unit=0.12,linecolor=blue}
> \begin{pspicture}(0,-3)(25,20)
> \pnode(0,0){A}
> \pnode(25,0){B}
> \pnode(24;55.9){C}
> \ncline{A}{B}
> \nbput{$k+2$}
> \ncline{B}{C}
> \nbput{$k$}
> \ncline{C}{A}
> \nbput{$k+1$}
> \end{pspicture}
> \end{center}
>
> \end{document}
>
>
> On Mar 18, 2009, at 11:50 AM, David Arnold wrote:
>
> All,
>
> Suppose that I want a triangle having sides measuring 4, 5, and 6
> units. Using Geometer's Sketchpad, or Geogebra, I could draw a
> segment AB of length 6, then add circles of radius 4 and 5 with
> centers at A and B, respectively. I then could choose on of the
> points of intersection of the two circles, call it C, and I would
> have the needed triangle ABC.
>
> Now, in pstricks I could do some trig, come up with some angles, and
> use a polar coordinate representation of the point C.
>
> What I am wondering is this: Is there a slicker way of accomplishing
> this goal of drawing a triangle with sides 4, 5, and 6 units?
>
> Suggestions are most welcome.
>
> Thanks.
>
> D.
> _______________________________________________
> PSTricks mailing list
> PSTricks at tug.org
> http://tug.org/mailman/listinfo/pstricks
>
> _______________________________________________
> PSTricks mailing list
> PSTricks at tug.org
> http://tug.org/mailman/listinfo/pstricks
>
>
>

--
Jürgen Gilg
Austr. 59
70376 Stuttgart
-------------------------------------
Tel       0711.59 27 88
e-Mail    gilg at acrotex.net
Websites  www.acrotex.net
www.brueckenkurs-physik.de
www.gilligan-online.de

-------------- next part --------------
An HTML attachment was scrubbed...
URL: http://tug.org/pipermail/pstricks/attachments/20090318/4c7da871/attachment.html