texlive[63306] Master/texmf-dist: polexpr (15may22)
commits+karl at tug.org
commits+karl at tug.org
Sun May 15 22:41:35 CEST 2022
Revision: 63306
http://tug.org/svn/texlive?view=revision&revision=63306
Author: karl
Date: 2022-05-15 22:41:35 +0200 (Sun, 15 May 2022)
Log Message:
-----------
polexpr (15may22)
Modified Paths:
--------------
trunk/Master/texmf-dist/doc/generic/polexpr/README.md
trunk/Master/texmf-dist/doc/generic/polexpr/polexpr-examples.pdf
trunk/Master/texmf-dist/doc/generic/polexpr/polexpr.html
trunk/Master/texmf-dist/tex/generic/polexpr/polexpr-examples.tex
trunk/Master/texmf-dist/tex/generic/polexpr/polexpr.sty
trunk/Master/texmf-dist/tex/generic/polexpr/polexprcore.tex
trunk/Master/texmf-dist/tex/generic/polexpr/polexprexpr.tex
trunk/Master/texmf-dist/tex/generic/polexpr/polexprsturm.tex
Added Paths:
-----------
trunk/Master/texmf-dist/doc/generic/polexpr/polexpr-changes.html
trunk/Master/texmf-dist/doc/generic/polexpr/polexpr-changes.rst.txt
trunk/Master/texmf-dist/doc/generic/polexpr/polexpr-ref.html
trunk/Master/texmf-dist/doc/generic/polexpr/polexpr-ref.rst.txt
trunk/Master/texmf-dist/doc/generic/polexpr/polexpr.css
trunk/Master/texmf-dist/doc/generic/polexpr/polexpr.rst.txt
Modified: trunk/Master/texmf-dist/doc/generic/polexpr/README.md
===================================================================
--- trunk/Master/texmf-dist/doc/generic/polexpr/README.md 2022-05-15 11:23:40 UTC (rev 63305)
+++ trunk/Master/texmf-dist/doc/generic/polexpr/README.md 2022-05-15 20:41:35 UTC (rev 63306)
@@ -1,88 +1,65 @@
Package polexpr README
======================
-Usage
------
+Version ``0.8.7`` of ``2022/05/14``.
-The package can be used with TeX based formats incorporating the
-e-TeX primitives. The `\expanded` primitive available generally
-since TeXLive 2019 is required.
+Abstract
+--------
+
+The package provides a parser `\poldef` of algebraic expressions.
+As it is based on [xintexpr](http://www.ctan.org/pkg/xintexpr) the
+polynomial coefficients are allowed to be arbitrary rational
+numbers. Operations on declared polynomials, such as computing
+G.C.D.'s or evaluating definite and indefinite integrals are
+available directly inside the parser via a functional syntax, or
+also via dedicated package macros.
- \input polexpr.sty
+Root localization is available via package macros. All real roots
+can be obtained with arbitrarily long decimal expansions, and all
+rational rounds found exactly.
-with Plain or other non-LaTeX macro formats, or:
+In memoriam: Jürgen Gilg
+------------------------
- \usepackage{polexpr}
+`polexpr` is dedicated to the memory of Jürgen Gilg (1967-2022).
-with the LaTeX macro format.
+His question in January 2018 about using
+[xintexpr](http://www.ctan.org/pkg/xintexpr) to compute derivatives
+of polynomials was the original motivation for the creation of this
+package. Jointly with Thomas Söll, he used it and kept expressing
+his interest in it throughout the subsequent years, and provided
+motivation and encouragements for time-consuming tasks such as (as
+was done finally in 2021) re-enacting full interoperability with
+[xintexpr](http://www.ctan.org/pkg/xintexpr) after its `1.4` update
+from 2020.
-The package currently requires xintexpr.sty `1.4d` or later.
+I will remember with gratitude his generous and unassuming
+character, which I witnessed during our numerous exchanges on a wide
+range of topics.
-Abstract
---------
+Usage
+-----
-The package provides a parser `\poldef` of algebraic polynomial
-expressions. As it is based on
-[xintexpr](http://www.ctan.org/pkg/xint)
-the coefficients are allowed to be arbitrary rational numbers.
+The package can be used with eTeX based formats via
-Once defined, a polynomial is usable by its name either as a numerical
-function in `\xintexpr/\xinteval`, or for additional polynomial
-definitions, or as argument to the package macros. The localization of
-real roots to arbitrary precision as well as the determination of all
-rational roots is implemented via such macros.
+ \input polexpr.sty
-Since release `0.8`, polexpr extends the
-[xintexpr](http://www.ctan.org/pkg/xint) syntax to recognize
-polynomials as a new variable type (and not only as functions).
-Functionality which previously was implemented via macros such as the
-computation of a greatest common divisor is now available directly in
-`\xintexpr`, `\xinteval` or `\poldef` via infix or functional syntax.
+or with LaTeX via
-Releases
---------
+ \usepackage{polexpr}
-- 0.1 (2018/01/11)
- Initial release (files README, polexpr.sty).
-- 0.2 (2018/01/14)
- Documentation moved to polexpr.{txt,html}.
-- 0.3 (2018/01/17)
- Make polynomials known to `\xintfloatexpr` and improve
- documentation.
-- 0.3.1 (2018/01/18)
- Fix two typos in documentation.
-- 0.4 (2018/02/16)
- - Revert 0.3 automatic generation of floating point variants.
- - Move CHANGE LOG from README.md to HTML documentation.
- - A few bug fixes and breaking changes. Please refer to
- `polexpr.html`.
- - Main new feature: root localization via [Sturm
- Theorem](https://en.wikipedia.org/wiki/Sturm%27s_theorem).
-- 0.4.1 (2018/03/01)
- Synced with xintexpr 1.3.
-- 0.4.2 (2018/03/03)
- Documentation fix.
-- 0.5 (2018/04/08)
- - new macros `\PolMakePrimitive` and `\PolIContent`.
- - main (breaking) change: `\PolToSturm` creates a chain of primitive
- integer coefficients polynomials.
-- 0.5.1 (2018/04/22)
- The `'` character can be used in polynomial names.
-- 0.6 (2018/11/20)
- New feature: multiplicity of roots.
-- 0.7 (2018/12/08), 0.7.1 (bugfix), 0.7.2 (bugfix) (2018/12/09)
- New feature: finding all rational roots.
-- 0.7.3 (2019/02/04)
- Bugfix: polynomial names ending in digits caused errors. Thanks to
- Thomas Söll for report.
-- 0.7.4 (2019/02/12)
- Bugfix: 20000000000 is too big for \numexpr, shouldn't I know that?
- Thanks to Jürgen Gilg for report.
-- 0.7.5 (2020/01/31)
- Synced with xintexpr 1.4. Requires it.
+[xintexpr](http://www.ctan.org/pkg/xintexpr) `1.4h` or later is
+required.
+
+Recent changes
+--------------
+
- 0.8 (2021/03/29)
- Complete refactoring of the package core for better integration with
- and enhancement of xintexpr 1.4.
+ Complete refactoring of the package core for better interoperability
+ with `xintexpr` internal changes at its release `1.4 (2020/01/31)`.
+ Extension of the functional syntax to cover operations such as
+ G.C.D.'s, derivatives or indefinite integrals previously available
+ via macros.
- 0.8.1 (2021/04/12)
Bugfix: a typo broke the 0.8 ``diff1()`` and related functions.
- 0.8.2 (2021/05/05)
@@ -96,22 +73,14 @@
Bugfix: `intfrom()` was documented at `0.8` but not declared to parser.
Track (belatedly) `xintexpr` 1.4g changes
- 0.8.6 (2022/01/09)
- Separate `polexpr-examples.{tex,pdf}` from the `polexpr.html` reference
+ Separate `polexpr-examples.{tex,pdf}` from the `polexpr.html` reference.
+- 0.8.7 (2022/05/14)
+ CSS styling of the `html` documentation, which is now split over
+ three files. Catcode protection for `\poldef` now matches
+ long-standing behaviour of `\xintdefvar`. This fixes issues
+ with ``babel+french``.
-Files of the 0.8.6 release:
-- polexpr.sty, polexprcore.tex, polexprexpr.tex, polexprsturm.tex,
-- README.md,
-- polexpr.html (reference documentation),
-- polexpr-examples.pdf, polexpr-examples.tex (pdf doc and its source).
-Acknowledgments
----------------
-
-Thanks to Jürgen Gilg whose question about
-[xintexpr](http://www.ctan.org/pkg/xint) usage for differentiating
-polynomials was the initial trigger leading to this package, and to
-Jürgen Gilg and Thomas Söll for testing it on some concrete problems.
-
License
-------
@@ -133,6 +102,14 @@
The Author of this Work is Jean-François Burnol.
-This Work consists of the package files polexpr.sty, polexprcore.tex,
-polexprexpr.tex, polexprsturm.tex, this README.md and documentation
-polexpr.html, polexpr-examples.tex, polexpr-examples.pdf
+This Work consists of:
+
+- the package files: polexpr.sty, polexprcore.tex,
+ polexprexpr.tex, polexprsturm.tex,
+- this README.md,
+- the documentation files:
+ polexpr.html, polexpr-ref.html, polexpr-changes.html,
+ polexpr.css, polexpr-examples.pdf,
+ polexpr.rst.txt, polexpr-ref.rst.txt, polexpr-changes.rst.txt,
+ polexpr-examples.tex
+
Added: trunk/Master/texmf-dist/doc/generic/polexpr/polexpr-changes.html
===================================================================
--- trunk/Master/texmf-dist/doc/generic/polexpr/polexpr-changes.html (rev 0)
+++ trunk/Master/texmf-dist/doc/generic/polexpr/polexpr-changes.html 2022-05-15 20:41:35 UTC (rev 63306)
@@ -0,0 +1,629 @@
+
+<!DOCTYPE html>
+
+<html lang="en">
+ <head>
+ <meta charset="utf-8" />
+ <meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="generator" content="Docutils 0.18.1: http://docutils.sourceforge.net/" />
+
+ <title>CHANGES — polexpr 0.8.7 documentation</title>
+ <link rel="stylesheet" type="text/css" href="polexpr.css" />
+ <link rel="prev" title="polexpr reference" href="polexpr-ref.html" />
+ </head><body>
+ <div class="related" role="navigation" aria-label="related navigation">
+ <h3>Navigation</h3>
+ <ul>
+ <li class="right" style="margin-right: 10px">
+ <a href="polexpr-ref.html" title="polexpr reference"
+ accesskey="P">previous</a></li>
+ <li class="nav-item nav-item-0"><a href="polexpr.html">polexpr 0.8.7 documentation</a> »</li>
+ <li class="nav-item nav-item-this"><a href="">CHANGES</a></li>
+ </ul>
+ </div>
+
+ <div class="document">
+ <div class="documentwrapper">
+ <div class="bodywrapper">
+ <div class="body" role="main">
+
+ <section id="changes">
+<h1>CHANGES</h1>
+<section id="v0-1-2018-01-11-initial-release-features">
+<span id="firstrelease"></span><h2>v0.1 (2018/01/11): initial release. Features:</h2>
+<ul class="simple">
+<li><p>The <a class="reference internal" href="polexpr-ref.html#poldef"><span class="std std-ref">\poldef</span></a> parser itself,</p></li>
+<li><p>Differentiation and anti-differentiation,</p></li>
+<li><p>Euclidean division and GCDs,</p></li>
+<li><p>Various utilities such as <a class="reference internal" href="polexpr-ref.html#polfromcsv"><span class="std std-ref">\PolFromCSV</span></a>,
+<a class="reference internal" href="polexpr-ref.html#polmapcoeffs"><span class="std std-ref">\PolMapCoeffs</span></a>,
+<a class="reference internal" href="polexpr-ref.html#poltocsv"><span class="std std-ref">\PolToCSV</span></a>, <a class="reference internal" href="polexpr-ref.html#poltoexpr"><span class="std std-ref">\PolToExpr</span></a>, …</p></li>
+</ul>
+<p>Only one-variable polynomials so far.</p>
+</section>
+<section id="v0-2-2018-01-14">
+<h2>v0.2 (2018/01/14)</h2>
+<ul class="simple">
+<li><p>Fix: <code class="docutils literal notranslate"><span class="pre">"README</span> <span class="pre">thinks</span> <span class="pre">\numexpr</span> <span class="pre">recognizes</span> <span class="pre">^</span> <span class="pre">operator"</span></code>.</p></li>
+<li><p>Convert README to reStructuredText markup.</p></li>
+<li><p>Move main documentation from README to separate <code class="docutils literal notranslate"><span class="pre">polexpr.txt</span></code> file.</p></li>
+<li><p>Provide <code class="docutils literal notranslate"><span class="pre">polexpr.html</span></code> as obtained via <a class="reference external" href="http://docutils.sourceforge.net/docs/index.html">DocUtils</a> <code class="docutils literal notranslate"><span class="pre">rst2html.py</span></code>.</p></li>
+<li><p>Convert README to (CTAN compatible) Markdown markup.</p></li>
+</ul>
+<p>Due to lack of available time the test suite might not be extensive
+enough. Bug reports are very welcome!</p>
+</section>
+<section id="v0-3-2018-01-17">
+<h2>v0.3 (2018/01/17)</h2>
+<ul>
+<li><p>bug fixes:</p>
+<ul>
+<li><p>the <code class="docutils literal notranslate"><span class="pre">0.1</span></code> <a class="reference internal" href="polexpr-ref.html#polevalat"><span class="std std-ref">\PolEval</span></a> accepted expressions for its
+second argument, but this was removed by mistake at <code class="docutils literal notranslate"><span class="pre">0.2</span></code>. Restored.</p>
+<p><strong>Attention</strong>: at <code class="docutils literal notranslate"><span class="pre">0.4</span></code> this has been reverted again, and
+<a class="reference internal" href="polexpr-ref.html#polevalatexpr"><span class="std std-ref">\PolEval{P}\AtExpr{foo}</span></a> syntax is needed for
+using expressions in the second argument.</p>
+</li>
+</ul>
+</li>
+<li><p>incompatible or breaking changes:</p>
+<ul class="simple">
+<li><p><a class="reference internal" href="polexpr-ref.html#poltoexpr"><span class="std std-ref">\PolToExpr</span></a> now by default uses <em>descending</em>
+powers (it also treats differently coefficients equal to 1 or -1.)
+Use <a class="reference internal" href="polexpr-ref.html#id78"><span class="std std-ref">\PolToExpr*</span></a> for <em>ascending</em> powers.</p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#polevalat"><span class="std std-ref">\PolEval</span></a> reduced the output to smallest terms,
+but as this is costly with big fractions and not needed if e.g.
+wrapped in an <code class="docutils literal notranslate"><span class="pre">\xintRound</span></code> or <code class="docutils literal notranslate"><span class="pre">\xintFloat</span></code>, this step has been
+removed; the former meaning is available as
+<a class="reference internal" href="polexpr-ref.html#polevalreducedat"><span class="std std-ref">\PolEvalReduced</span></a>.</p></li>
+</ul>
+</li>
+<li><p>new (or newly documented) macros:</p>
+<ul class="simple">
+<li><p><a class="reference internal" href="polexpr-ref.html#poltypesetcmd"><span class="std std-ref">\PolTypesetCmd</span></a></p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#poltypesetcmdprefix"><span class="std std-ref">\PolTypesetCmdPrefix</span></a></p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#poltypesetmonomialcmd"><span class="std std-ref">\PolTypesetMonomialCmd</span></a></p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#polevalreducedat"><span class="std std-ref">\PolEvalReducedAt</span></a></p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#poltofloatexpr"><span class="std std-ref">\PolToFloatExpr</span></a></p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#poltoexproneterm"><span class="std std-ref">\PolToExprOneTerm</span></a></p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#poltofloatexproneterm"><span class="std std-ref">\PolToFloatExprOneTerm</span></a></p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#poltoexprcmd"><span class="std std-ref">\PolToExprCmd</span></a></p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#poltofloatexprcmd"><span class="std std-ref">\PolToFloatExprCmd</span></a></p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#poltoexprtermprefix"><span class="std std-ref">\PolToExprTermPrefix</span></a></p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#poltoexprvar"><span class="std std-ref">\PolToExprVar</span></a></p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#poltoexprtimes"><span class="std std-ref">\PolToExprTimes</span></a></p></li>
+</ul>
+</li>
+<li><p>improvements:</p>
+<ul>
+<li><p>documentation has a table of contents, internal hyperlinks,
+standardized signature notations and added explanations.</p></li>
+<li><p>one can do <code class="docutils literal notranslate"><span class="pre">\PolLet{g}={f}</span></code> or <code class="docutils literal notranslate"><span class="pre">\PolLet{g}{f}</span></code>.</p></li>
+<li><p><code class="docutils literal notranslate"><span class="pre">\PolToExpr{f}</span></code> is highly customizable.</p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#poldef"><span class="std std-ref">\poldef</span></a> and other defining macros prepare the
+polynomial functions for usage within <code class="docutils literal notranslate"><span class="pre">\xintthefloatexpr</span></code> (or
+<code class="docutils literal notranslate"><span class="pre">\xintdeffloatvar</span></code>). Coefficients are pre-rounded to the floating
+point precision. Indispensible for numerical algorithms, as exact
+fractions, even reduced, quickly become very big. See the documentation
+about how to use the exact polynomials also in floating point context.</p>
+<p><strong>Attention</strong>: this has been reverted at <code class="docutils literal notranslate"><span class="pre">0.4</span></code>. The macro
+<a class="reference internal" href="polexpr-ref.html#polgenfloatvariant"><span class="std std-ref">\PolGenFloatVariant</span></a> must be used for
+generation floating point polynomial functions.</p>
+</li>
+</ul>
+</li>
+</ul>
+</section>
+<section id="v0-3-1-2018-01-18">
+<h2>v0.3.1 (2018/01/18)</h2>
+<p>Fixes two typos in example code included in the documentation.</p>
+</section>
+<section id="v0-4-2018-02-16">
+<h2>v0.4 (2018/02/16)</h2>
+<ul>
+<li><p>bug fixes:</p>
+<ul class="simple">
+<li><p>when Euclidean division gave a zero remainder, the internal
+representation of this zero polynomial could be faulty; this
+could cause mysterious bugs in conjunction with other package
+macros such as <a class="reference internal" href="polexpr-ref.html#polmapcoeffs"><span class="std std-ref">\PolMapCoeffs</span></a>.</p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#polgcd"><span class="std std-ref">\PolGCD</span></a> was buggy in case of first polynomial being
+of lesser degree than the second one.</p></li>
+</ul>
+</li>
+<li><p>breaking changes:</p>
+<ul>
+<li><p>formerly <a class="reference internal" href="polexpr-ref.html#polevalat"><span class="std std-ref">\PolEval{P}\At{foo}</span></a> allowed <code class="docutils literal notranslate"><span class="pre">foo</span></code> to
+be an expression, which was transparently handled via
+<code class="docutils literal notranslate"><span class="pre">\xinttheexpr</span></code>. Now, <code class="docutils literal notranslate"><span class="pre">foo</span></code> must be a fraction (or a macro
+expanding to such) in the format acceptable by <code class="docutils literal notranslate"><span class="pre">xintfrac.sty</span></code>
+macros. Use <a class="reference internal" href="polexpr-ref.html#polevalatexpr"><span class="std std-ref">\PolEval{P}\AtExpr{foo}</span></a> for more
+general arguments using expression syntax. E.g., if <code class="docutils literal notranslate"><span class="pre">foo</span></code> is the
+name of a variable known to <code class="docutils literal notranslate"><span class="pre">\xintexpr</span></code>.</p>
+<p>The same holds for <a class="reference internal" href="polexpr-ref.html#polevalreducedat"><span class="std std-ref">\PolEvalReduced</span></a>
+and <a class="reference internal" href="polexpr-ref.html#polfloatevalat"><span class="std std-ref">\PolFloatEval</span></a>.</p>
+</li>
+<li><p>the <code class="docutils literal notranslate"><span class="pre">3.0</span></code> automatic generation of floating point variants has
+been reverted. Not only do <em>not</em> the package macros automatically
+generate floating point variants of newly created polynomials,
+they actually make pre-existing such variant undefined.</p>
+<p>See <a class="reference internal" href="polexpr-ref.html#polgenfloatvariant"><span class="std std-ref">\PolGenFloatVariant</span></a>.</p>
+</li>
+</ul>
+</li>
+<li><p>new non-expandable macros:</p>
+<ul class="simple">
+<li><p><a class="reference internal" href="polexpr-ref.html#polgenfloatvariant"><span class="std std-ref">\PolGenFloatVariant</span></a></p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#polgloballet"><span class="std std-ref">\PolGlobalLet</span></a></p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#poltypesetone"><span class="std std-ref">\PolTypesetOne</span></a></p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#polquo"><span class="std std-ref">\PolQuo</span></a></p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#polrem"><span class="std std-ref">\PolRem</span></a></p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#poltosturm"><span class="std std-ref">\PolToSturm</span></a></p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#id35"><span class="std std-ref">\PolToSturm*</span></a></p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#polsettosturmchainsignchangesat"><span class="std std-ref">\PolSetToSturmChainSignChangesAt</span></a></p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#polsettonbofzeroswithin"><span class="std std-ref">\PolSetToNbOfZerosWithin</span></a></p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#polsturmisolatezeros"><span class="std std-ref">\PolSturmIsolateZeros</span></a></p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#polrefineinterval"><span class="std std-ref">\PolRefineInterval*</span></a></p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#id46"><span class="std std-ref">\PolRefineInterval[N]</span></a></p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#polensureintervallength"><span class="std std-ref">\PolEnsureIntervalLength</span></a></p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#polensureintervallengths"><span class="std std-ref">\PolEnsureIntervalLengths</span></a></p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#polprintintervals"><span class="std std-ref">\PolPrintIntervals</span></a></p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#polprintintervalsprintexactzero"><span class="std std-ref">\PolPrintIntervalsPrintExactZero</span></a></p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#polprintintervalsprintleftendpoint"><span class="std std-ref">\PolPrintIntervalsPrintLeftEndPoint</span></a></p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#polprintintervalsprintrightendpoint"><span class="std std-ref">\PolPrintIntervalsPrintRightEndPoint</span></a></p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#id20"><span class="std std-ref">\PolReduceCoeffs*</span></a></p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#polmakemonic"><span class="std std-ref">\PolMakeMonic</span></a></p></li>
+</ul>
+</li>
+<li><p>new expandable macros:</p>
+<ul class="simple">
+<li><p><a class="reference internal" href="polexpr-ref.html#poltoexpronetermstylea"><span class="std std-ref">\PolToExprOneTermStyleA</span></a></p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#polifcoeffisplusorminusone"><span class="std std-ref">\PolIfCoeffIsPlusOrMinusOne</span></a></p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#polleadingcoeff"><span class="std std-ref">\PolLeadingCoeff</span></a></p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#polsturmchainlength"><span class="std std-ref">\PolSturmChainLength</span></a></p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#polsturmnbofisolatedzeros"><span class="std std-ref">\PolSturmNbOfIsolatedZeros</span></a></p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#polsturmifzeroexactlyknown"><span class="std std-ref">\PolSturmIfZeroExactlyKnown</span></a></p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#polsturmisolatedzeroleft"><span class="std std-ref">\PolSturmIsolatedZeroLeft</span></a></p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#polsturmisolatedzeroright"><span class="std std-ref">\PolSturmIsolatedZeroRight</span></a></p></li>
+<li><p><code class="docutils literal notranslate"><span class="pre">\PolPrintIntervalsTheEndPoint</span></code> (removed at 0.7)</p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#polprintintervalstheindex"><span class="std std-ref">\PolPrintIntervalsTheIndex</span></a></p></li>
+<li><p><code class="docutils literal notranslate"><span class="pre">\PolIfEndPointIsPositive</span></code> (removed at 0.7)</p></li>
+<li><p><code class="docutils literal notranslate"><span class="pre">\PolIfEndPointIsNegative</span></code> (removed at 0.7)</p></li>
+<li><p><code class="docutils literal notranslate"><span class="pre">\PolIfEndPointIsZero</span></code> (removed at 0.7)</p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#polintervalwidth"><span class="std std-ref">\PolIntervalWidth</span></a></p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#poldectostring"><span class="std std-ref">\PolDecToString</span></a></p></li>
+</ul>
+</li>
+<li><p>improvements:</p>
+<p>The main new feature is implementation of the <a class="reference external" href="https://en.wikipedia.org/wiki/Sturm%27s_theorem">Sturm algorithm</a>
+for localization of the real roots of polynomials.</p>
+</li>
+</ul>
+</section>
+<section id="v0-4-1-2018-03-01">
+<h2>v0.4.1 (2018/03/01)</h2>
+<p>Synced with xint 1.3.</p>
+</section>
+<section id="v0-4-2-2018-03-03">
+<h2>v0.4.2 (2018/03/03)</h2>
+<p>Documentation fix.</p>
+</section>
+<section id="v0-5-2018-04-08">
+<h2>v0.5 (2018/04/08)</h2>
+<ul class="simple">
+<li><p>bug fixes:</p>
+<ul>
+<li><p><a class="reference internal" href="polexpr-ref.html#polget"><span class="std std-ref">\PolGet{polname}\fromarray\macro</span></a>
+crashed when <code class="docutils literal notranslate"><span class="pre">\macro</span></code> was
+an <a class="reference external" href="https://www.ctan.org/pkg/xint">xinttools</a> array macro with no items. It now produces the zero
+polynomial.</p></li>
+</ul>
+</li>
+<li><p>breaking changes:</p>
+<ul>
+<li><p><a class="reference internal" href="polexpr-ref.html#poltosturm"><span class="std std-ref">\PolToSturm</span></a> creates primitive integer coefficients
+polynomials. This speeds up localization of roots via
+<a class="reference internal" href="polexpr-ref.html#polsturmisolatezeros"><span class="std std-ref">\PolSturmIsolateZeros</span></a>. In case of user
+protests the author will make available again the code producing the
+bona fide Sturm polynomials as used formerly.</p></li>
+<li><p>polynomials created from <a class="reference internal" href="polexpr-ref.html#polfromcsv"><span class="std std-ref">\PolFromCSV</span></a> or
+<a class="reference internal" href="polexpr-ref.html#polget"><span class="std std-ref">\PolGet</span></a>
+get their coefficients normalized via <a class="reference external" href="https://www.ctan.org/pkg/xint">xintfrac</a>‘s <code class="docutils literal notranslate"><span class="pre">\xintRaw</span></code>.</p></li>
+</ul>
+</li>
+<li><p>experimental change:</p>
+<ul>
+<li><p>optional argument to <a class="reference internal" href="polexpr-ref.html#polsturmisolatezeros"><span class="std std-ref">\PolSturmIsolateZeros</span></a>
+(see <code class="docutils literal notranslate"><span class="pre">The</span> <span class="pre">degree</span> <span class="pre">41</span> <span class="pre">polynomial</span> <span class="pre">with</span> <span class="pre">-2,</span> <span class="pre">-1.9,</span> <span class="pre">-1.8,</span> <span class="pre">...,</span> <span class="pre">0,</span> <span class="pre">0.1,</span> <span class="pre">...,</span>
+<span class="pre">1.9,</span> <span class="pre">2</span> <span class="pre">as</span> <span class="pre">roots</span></code> in <code class="docutils literal notranslate"><span class="pre">polexpr-examples.pdf</span></code>). It will presumably be
+replaced in future by an interval specification.</p></li>
+</ul>
+</li>
+<li><p>new non-expandable macro:</p>
+<ul>
+<li><p><a class="reference internal" href="polexpr-ref.html#polmakeprimitive"><span class="std std-ref">\PolMakePrimitive</span></a></p></li>
+</ul>
+</li>
+<li><p>new expandable macro:</p>
+<ul>
+<li><p><a class="reference internal" href="polexpr-ref.html#policontent"><span class="std std-ref">\PolIContent</span></a></p></li>
+</ul>
+</li>
+</ul>
+</section>
+<section id="v0-5-1-2018-04-22">
+<h2>v0.5.1 (2018/04/22)</h2>
+<ul class="simple">
+<li><p>new feature:</p>
+<ul>
+<li><p>the character <code class="docutils literal notranslate"><span class="pre">'</span></code> can be used in polynomial names.</p></li>
+</ul>
+</li>
+</ul>
+</section>
+<section id="v0-6-2018-11-20">
+<h2>v0.6 (2018/11/20)</h2>
+<ul class="simple">
+<li><p>bugfix:</p>
+<ul>
+<li><p>the starred variant
+<a class="reference internal" href="polexpr-ref.html#id35"><span class="std std-ref">\PolToSturm*{<polname>}{<sturmname>}</span></a>
+was broken. On the occasion of the fix, its meaning has
+been modified, see its documentation.</p></li>
+<li><p>using <a class="reference internal" href="polexpr-ref.html#poltosturm"><span class="std std-ref">\PolToSturm</span></a> with a constant polynomial
+caused a division by zero error.</p></li>
+</ul>
+</li>
+<li><p>new macro:</p>
+<ul>
+<li><p><a class="reference internal" href="polexpr-ref.html#id38"><span class="std std-ref">\PolSturmIsolateZeros*</span></a>
+acts like the <a class="reference internal" href="polexpr-ref.html#polsturmisolatezeros"><span class="std std-ref">non-starred variant</span></a> then computes all the multiplicities.</p></li>
+</ul>
+</li>
+<li><p>new expandable macros:</p>
+<ul>
+<li><p><a class="reference internal" href="polexpr-ref.html#polsturmisolatedzeromultiplicity"><span class="std std-ref">\PolSturmIsolatedZeroMultiplicity{<sturmname>}{<index>}</span></a></p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#polsturmnbofrootsoflessthanorequalto"><span class="std std-ref">\PolSturmNbOfRootsOf{<sturmname>}\LessThanOrEqualTo{<value>}</span></a></p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#polsturmnbofrootsoflessthanorequaltoexpr"><span class="std std-ref">\PolSturmNbOfRootsOf{<sturmname>}\LessThanOrEqualToExpr{<num. expr.>}</span></a></p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#polsturmnbwithmultofrootsoflessthanorequalto"><span class="std std-ref">\PolSturmNbWithMultOfRootsOf{<sturmname>}\LessThanOrEqualTo{<value>}</span></a></p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#polsturmnbwithmultofrootsoflessthanorequaltoexpr"><span class="std std-ref">\PolSturmNbWithMultOfRootsOf{<sturmname>}\LessThanOrEqualToExpr{<num. expr.>}</span></a></p></li>
+</ul>
+</li>
+</ul>
+</section>
+<section id="v0-7-2018-12-08-v0-7-1-bugfix-v0-7-2-2nd-bugfix-2018-12-09">
+<h2>v0.7 (2018/12/08), v0.7.1 (bugfix), v0.7.2 (2nd bugfix) (2018/12/09)</h2>
+<ul class="simple">
+<li><p>breaking changes:</p>
+<ul>
+<li><p>although <a class="reference internal" href="polexpr-ref.html#polprintintervals"><span class="std std-ref">\PolPrintIntervals[<varname>]{<sturmname>}</span></a> default output
+remains the same, some auxiliary macros for user-customization
+have been removed: <code class="docutils literal notranslate"><span class="pre">\PolPrintIntervalsTheEndPoint</span></code>,
+<code class="docutils literal notranslate"><span class="pre">\PolIfEndPointIsPositive{T}{F}</span></code>,
+<code class="docutils literal notranslate"><span class="pre">\PolIfEndPointIsNegative{T}{F}</span></code>, and
+<code class="docutils literal notranslate"><span class="pre">\PolIfEndPointIsZero{T}{F}</span></code>.</p></li>
+</ul>
+</li>
+<li><p>bugfix:</p>
+<ul>
+<li><p>it could happen that, contrarily to documentation, an interval computed
+by <a class="reference internal" href="polexpr-ref.html#polsturmisolatezeros"><span class="std std-ref">\PolSturmIsolateZeros{<sturmname>}</span></a> had
+zero as an endpoint,</p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#polensureintervallength"><span class="std std-ref">\PolEnsureIntervalLength{<sturmname>}{<index>}{<exponent>}</span></a> could under certain circumstances erroneously
+replace a non-zero root by zero,</p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#polensureintervallengths"><span class="std std-ref">\PolEnsureIntervalLengths{<sturmname>}{<exponent>}</span></a> crashed when used with a polynomial with no
+real roots, hence for which no isolation intervals existed (thanks to
+Thomas Söll for report).</p></li>
+</ul>
+</li>
+<li><p>new macros:</p>
+<ul>
+<li><p><a class="reference internal" href="polexpr-ref.html#id41"><span class="std std-ref">\PolSturmIsolateZeros**{<sturmname>}</span></a></p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#polsturmisolatezerosgetmultiplicitiesandrationalroots"><span class="std std-ref">\PolSturmIsolateZerosGetMultiplicitiesAndRationalRoots{<sturmname>}</span></a></p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#polsturmisolatezerosandfindrationalroots"><span class="std std-ref">\PolSturmIsolateZerosAndFindRationalRoots{<sturmname>}</span></a></p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#polexprsetup"><span class="std std-ref">\polexprsetup</span></a></p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#id61"><span class="std std-ref">\PolPrintIntervals*</span></a></p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#polprintintervalsnorealroots"><span class="std std-ref">\PolPrintIntervalsNoRealRoots</span></a></p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#polprintintervalsbeginenv"><span class="std std-ref">\PolPrintIntervalsBeginEnv</span></a></p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#polprintintervalsendenv"><span class="std std-ref">\PolPrintIntervalsEndEnv</span></a></p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#polprintintervalsknownroot"><span class="std std-ref">\PolPrintIntervalsKnownRoot</span></a></p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#polprintintervalsunknownroot"><span class="std std-ref">\PolPrintIntervalsUnknownRoot</span></a></p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#polprintintervalsprintmultiplicity"><span class="std std-ref">\PolPrintIntervalsPrintMultiplicity</span></a></p></li>
+</ul>
+</li>
+<li><p>new expandable macros:</p>
+<ul>
+<li><p><a class="reference internal" href="polexpr-ref.html#polsturmnbofrationalroots"><span class="std std-ref">\PolSturmNbOfRationalRoots{<sturmname>}</span></a></p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#polsturmnbofrationalrootswithmultiplicities"><span class="std std-ref">\PolSturmNbOfRationalRootsWithMultiplicities{<sturmname>}</span></a></p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#polsturmrationalroot"><span class="std std-ref">\PolSturmRationalRoot{<sturmname>}{<k>}</span></a></p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#polsturmrationalrootindex"><span class="std std-ref">\PolSturmRationalRootIndex{<sturmname>}{<k>}</span></a></p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#polsturmrationalrootmultiplicity"><span class="std std-ref">\PolSturmRationalRootMultiplicity{<sturmname>}{<k>}</span></a></p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#polprintintervalsthevar"><span class="std std-ref">\PolPrintIntervalsTheVar</span></a></p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#polprintintervalsthesturmname"><span class="std std-ref">\PolPrintIntervalsTheSturmName</span></a></p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#polprintintervalsthemultiplicity"><span class="std std-ref">\PolPrintIntervalsTheMultiplicity</span></a></p></li>
+</ul>
+</li>
+</ul>
+</section>
+<section id="v0-7-3-2019-02-04">
+<h2>v0.7.3 (2019/02/04)</h2>
+<ul class="simple">
+<li><p>bugfix:</p>
+<ul>
+<li><p>Debugging information not destined to user showed in log if root
+finding was done under <code class="docutils literal notranslate"><span class="pre">\xintverbosetrue</span></code> regime.</p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#polprintintervalsthevar"><span class="std std-ref">\PolPrintIntervalsTheVar</span></a> remained
+defined after <a class="reference internal" href="polexpr-ref.html#polprintintervals"><span class="std std-ref">\PolPrintIntervals</span></a> but was
+left undefined after <a class="reference internal" href="polexpr-ref.html#id61"><span class="std std-ref">\PolPrintIntervals*</span></a>
+(reported by Jürgen Gilg). Now remains defined in both cases, and
+<a class="reference internal" href="polexpr-ref.html#polprintintervalsthesturmname"><span class="std std-ref">\PolPrintIntervalsTheSturmName</span></a>
+also.</p></li>
+<li><p>Polynomial names ending in digits caused errors (reported by Thomas
+Söll).</p></li>
+</ul>
+</li>
+</ul>
+</section>
+<section id="v0-7-4-2019-02-12">
+<h2>v0.7.4 (2019/02/12)</h2>
+<ul class="simple">
+<li><p>bugfix:</p>
+<ul>
+<li><p>20000000000 is too big for <code class="docutils literal notranslate"><span class="pre">\numexpr</span></code>, shouldn’t I know that?
+Thanks to Jürgen Gilg for report.</p></li>
+</ul>
+</li>
+</ul>
+</section>
+<section id="v0-7-5-2020-01-31">
+<h2>v0.7.5 (2020/01/31)</h2>
+<p>Synced with xintexpr 1.4. Requires it.</p>
+</section>
+<section id="v0-8-2021-03-29">
+<span id="polexpr08release"></span><h2>v0.8 (2021/03/29)</h2>
+<p>Synced with xintexpr 1.4d. Requires it.</p>
+<ul class="simple">
+<li><p>breaking changes:</p>
+<ul>
+<li><p>As the usability of character <code class="docutils literal notranslate"><span class="pre">'</span></code> in names has been extended
+from <code class="docutils literal notranslate"><span class="pre">\poldef</span></code> to also generally <code class="docutils literal notranslate"><span class="pre">\xintexpr</span></code>, <code class="docutils literal notranslate"><span class="pre">\xintdefvar</span></code>,
+and <code class="docutils literal notranslate"><span class="pre">\xintdeffunc</span></code>, it means that the infix operators
+<code class="docutils literal notranslate"><span class="pre">'and'</span></code>, <code class="docutils literal notranslate"><span class="pre">'or'</span></code>, and <code class="docutils literal notranslate"><span class="pre">'mod'</span></code> must be replaced
+by <code class="docutils literal notranslate"><span class="pre">&&</span></code>, <code class="docutils literal notranslate"><span class="pre">||</span></code>, and <code class="docutils literal notranslate"><span class="pre">/:</span></code> if they
+follow immediately a variable name (similarly <code class="docutils literal notranslate"><span class="pre">'xor'</span></code> must
+be replaced by the <code class="docutils literal notranslate"><span class="pre">xor()</span></code> function in such case).</p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#poltoexpr"><span class="std std-ref">\PolToExpr</span></a> by default uses a catcode 12
+<code class="docutils literal notranslate"><span class="pre">^</span></code>. See its documentation and the new configuration
+<a class="reference internal" href="polexpr-ref.html#poltoexprcaret"><span class="std std-ref">\PolToExprCaret</span></a>.</p></li>
+</ul>
+</li>
+<li><p>deprecated:</p>
+<ul>
+<li><p>Usage of <code class="docutils literal notranslate"><span class="pre">P/Q</span></code> for the euclidean quotient of two polynomials is
+deprecated. Start using <code class="docutils literal notranslate"><span class="pre">quo(P,Q)</span></code> in its place.</p></li>
+</ul>
+</li>
+<li><p>bugfix:</p>
+<ul>
+<li><p>The <code class="docutils literal notranslate"><span class="pre">\xintglobaldefstrue</span></code> setting was obeyed only partially
+by the polexpr macros defining polynomials.</p></li>
+<li><p>The <code class="docutils literal notranslate"><span class="pre">\xintexpr</span></code> variables storing the values of the extremities of the
+intervals as found by <a class="reference internal" href="polexpr-ref.html#polsturmisolatezeros"><span class="std std-ref">\PolSturmIsolateZeros</span></a> were not updated at 0.7.5 to the xintexpr 1.4
+format and thus caused low-level TeX errors if used.</p></li>
+<li><p>Attempting to use in <code class="docutils literal notranslate"><span class="pre">\poldef</span></code> a function previously declared
+via <code class="docutils literal notranslate"><span class="pre">\xintdeffunc</span></code> which made usage of the indexing or slicing
+“ople” syntax typically caused <code class="docutils literal notranslate"><span class="pre">TeX</span> <span class="pre">capacity</span> <span class="pre">exceeded</span></code> error.
+Indeed 0.7.5 only partially made polexpr able to cope with the
+extended possibilities for xintexpr 1.4 user-declared functions.
+Hopefully <code class="docutils literal notranslate"><span class="pre">0.8</span></code> achieves full functionality in this context.</p></li>
+</ul>
+</li>
+<li><p>new macros:</p>
+<ul>
+<li><p><a class="reference internal" href="polexpr-ref.html#polnewpolverbosefalse"><span class="std std-ref">\polnewpolverbosefalse</span></a></p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#poltoexprcaret"><span class="std std-ref">\PolToExprCaret</span></a></p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#poltoexprinvar"><span class="std std-ref">\PolToExprInVar</span></a></p></li>
+<li><p>alongside the major new functionalities described in the next item
+<a class="reference internal" href="polexpr-ref.html#poltypeset"><span class="std std-ref">\PolTypeset</span></a> and <a class="reference internal" href="polexpr-ref.html#poltoexpr"><span class="std std-ref">\PolToExpr</span></a> have
+been enhanced to accept as argument a general expression and not
+only a pre-declared polynomial name.</p></li>
+</ul>
+</li>
+<li><p>new features:</p>
+<ul>
+<li><p>The package is usable under Plain and probably most any TeX format,
+and not only under LaTeX.</p></li>
+<li><p>The core of the package has been rewritten entirely in order to
+start letting <code class="docutils literal notranslate"><span class="pre">\xintexpr</span></code> recognize a polynomial type as a genuine
+variable. This has allowed:</p>
+<ul>
+<li><p>to solve the reduced inter-operability problems between polexpr
+and <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a> which arose as consequences to the deep <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a> <code class="docutils literal notranslate"><span class="pre">1.4</span></code>
+evolution,</p></li>
+<li><p>to make available most of the functionality associated to
+expandable macros directly in the <code class="docutils literal notranslate"><span class="pre">\xinteval</span></code> syntax as
+operators or functions,</p></li>
+<li><p>to provide (expandable) functional interface in <code class="docutils literal notranslate"><span class="pre">\xinteval</span></code> to
+features previously available only via (for some, non-expandable)
+macro interface such as gcd computations.</p></li>
+</ul>
+</li>
+</ul>
+</li>
+</ul>
+<p>See the updated <a class="reference internal" href="polexpr-ref.html#quick"><span class="std std-ref">Quick syntax overview</span></a> and then
+<a class="reference internal" href="polexpr-ref.html#polexpr08"><span class="std std-ref">the extended syntax description</span></a>.</p>
+</section>
+<section id="v0-8-1-2021-04-12">
+<h2>v0.8.1 (2021/04/12)</h2>
+<ul class="simple">
+<li><p>breaking changes:</p>
+<ul>
+<li><p>renamed v0.8’s <code class="docutils literal notranslate"><span class="pre">icontent()</span></code> to <a class="reference internal" href="polexpr-ref.html#cont"><span class="std std-ref">cont()</span></a>.</p></li>
+<li><p>renamed v0.8’s <code class="docutils literal notranslate"><span class="pre">lcoeff()</span></code> to <a class="reference internal" href="polexpr-ref.html#lc"><span class="std std-ref">lc()</span></a>.</p></li>
+</ul>
+</li>
+<li><p>bugfix:</p>
+<ul>
+<li><p>Sadly, <code class="docutils literal notranslate"><span class="pre">diff1()</span></code>, <code class="docutils literal notranslate"><span class="pre">diff2()</span></code>, <code class="docutils literal notranslate"><span class="pre">diffn()</span></code> were broken
+for polynomials of degrees 8 or more, due to a typo and
+insufficient testing.</p></li>
+<li><p>The package should have (as documented) required <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a> 1.4d
+but in practice it accepted to work with <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a> 1.4c, whose
+<code class="docutils literal notranslate"><span class="pre">\xinteval</span></code> does not know how to “output” a polynomial.</p></li>
+<li><p>The definition of one of the two variants of
+<a class="reference internal" href="polexpr-ref.html#polsturmnbofrootsoflessthanorequalto"><span class="std std-ref">\PolSturmNbOfRootsOf…</span></a>
+was broken by an end-of-line space, left-over
+from mass conversion from LaTeX to TeX syntax.</p></li>
+</ul>
+</li>
+<li><p>added:</p>
+<ul>
+<li><p><a class="reference internal" href="polexpr-ref.html#lpol"><span class="std std-ref">lpol()</span></a></p></li>
+<li><p><a class="reference internal" href="polexpr-ref.html#lcoeffs"><span class="std std-ref">lcoeffs()</span></a></p></li>
+</ul>
+</li>
+</ul>
+</section>
+<section id="v0-8-2-2021-05-05">
+<h2>v0.8.2 (2021/05/05)</h2>
+<ul class="simple">
+<li><p>breaking change:</p>
+<ul>
+<li><p>usage of <code class="docutils literal notranslate"><span class="pre">\xintPFloat</span></code> in place of <code class="docutils literal notranslate"><span class="pre">\xintFloat</span></code> for
+<a class="reference internal" href="polexpr-ref.html#poltofloatexprcmd"><span class="std std-ref">\PolToFloatExprCmd</span></a>.</p></li>
+</ul>
+</li>
+<li><p>improved:</p>
+<ul>
+<li><p>Some <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a> functions such as <code class="docutils literal notranslate"><span class="pre">rseq()</span></code> use the semi-colon,
+and it was mentioned in the documentation that <a class="reference internal" href="polexpr-ref.html#poldef"><span class="std std-ref">\poldef</span></a>
+will be confused by this and that inner semi-colons could be
+set within braces <code class="docutils literal notranslate"><span class="pre">{;}</span></code> as a work-around. It was not clear from
+this documentation that also <a class="reference internal" href="polexpr-ref.html#id5"><span class="std std-ref">\PolDef</span></a> required
+this work-around. With this relase only <a class="reference internal" href="polexpr-ref.html#poldef"><span class="std std-ref">\poldef</span></a> but
+not <a class="reference internal" href="polexpr-ref.html#id5"><span class="std std-ref">\PolDef</span></a> needs the work-around.</p></li>
+</ul>
+</li>
+<li><p>track <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a> <code class="docutils literal notranslate"><span class="pre">1.4e</span></code> changes relative to powers.</p></li>
+</ul>
+</section>
+<section id="v0-8-3-2021-05-27">
+<h2>v0.8.3 (2021/05/27)</h2>
+<ul class="simple">
+<li><p>small internal update to track an <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a> <code class="docutils literal notranslate"><span class="pre">1.4h</span></code> change
+regarding handling of exceptions. Will require this version at
+least on loading.</p></li>
+</ul>
+</section>
+<section id="v0-8-4-2021-11-01">
+<h2>v0.8.4 (2021/11/01)</h2>
+<ul class="simple">
+<li><p>bugfix: <a class="reference internal" href="polexpr-ref.html#id41"><span class="std std-ref">\PolSturmIsolateZeros**{<sturmname>}</span></a> did not declare the <code class="docutils literal notranslate"><span class="pre"><sturmname>_norr</span></code> and
+<code class="docutils literal notranslate"><span class="pre"><sturmname>_sqf_norr</span></code> polynomials if original polynomial had no real
+root!</p></li>
+</ul>
+</section>
+<section id="v0-8-5-2021-11-30">
+<h2>v0.8.5 (2021/11/30)</h2>
+<ul class="simple">
+<li><p>bugfix: support for the <code class="docutils literal notranslate"><span class="pre">intfrom()</span></code> function was in the code,
+but the declaration to the polynomial parser had not been done.</p></li>
+<li><p>track (belatedly) upstream deprecation of <code class="docutils literal notranslate"><span class="pre">\xintSignedFrac</span></code> and
+<code class="docutils literal notranslate"><span class="pre">\xintSignedFwOver</span></code> at <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a> <code class="docutils literal notranslate"><span class="pre">1.4g</span></code></p></li>
+</ul>
+</section>
+<section id="v0-8-6-2022-01-09">
+<h2>v0.8.6 (2022/01/09)</h2>
+<ul class="simple">
+<li><p>provide a separate <code class="docutils literal notranslate"><span class="pre">polexpr-examples.pdf</span></code> with examples formerly
+shown as part of the html documentation.</p></li>
+<li><p>minor improvement to the computation of a priori bounds on real roots.</p></li>
+<li><p>add <a class="reference internal" href="polexpr-ref.html#polprintintervalsrowseparator"><span class="std std-ref">\PolPrintIntervalsRowSeparator</span></a>
+and allow usage of <code class="docutils literal notranslate"><span class="pre">amsmath</span></code> environments in custom
+<a class="reference internal" href="polexpr-ref.html#polprintintervalsbeginenv"><span class="std std-ref">\PolPrintIntervalsBeginEnv</span></a> and
+<a class="reference internal" href="polexpr-ref.html#polprintintervalsendenv"><span class="std std-ref">\PolPrintIntervalsEndEnv</span></a>.</p></li>
+</ul>
+</section>
+<section id="v0-8-7-2022-05-14">
+<h2>v0.8.7 (2022/05/14)</h2>
+<ul class="simple">
+<li><p>bugfix: catcode sanitization by <a class="reference internal" href="polexpr-ref.html#poldef"><span class="std std-ref">\poldef</span></a> was minimal
+ever since <code class="docutils literal notranslate"><span class="pre">0.1</span></code> and handled only the semi-colon. Thus e.g. the
+active <code class="docutils literal notranslate"><span class="pre">!</span></code> from babel-french caused errors and <code class="docutils literal notranslate"><span class="pre">\string!</span></code> was
+needed as work-around for factorials. Now the same sanitization as
+for <code class="docutils literal notranslate"><span class="pre">\xintdefvar</span></code> and <code class="docutils literal notranslate"><span class="pre">\xintdeffunc</span></code> is applied. This however can
+only work at locations where the catcodes are not yet frozen at the
+time <code class="docutils literal notranslate"><span class="pre">\poldef</span></code> expands.</p></li>
+<li><p>split the html documentation into three files and enhance it via CSS
+styling.</p></li>
+</ul>
+</section>
+</section>
+
+
+ <div class="clearer"></div>
+ </div>
+ </div>
+ </div>
+ <div class="sphinxsidebar" role="navigation" aria-label="main navigation">
+ <div class="sphinxsidebarwrapper"><h3>Contents of this page</h3>
+<ul>
+<li><a class="reference internal" href="#">CHANGES</a><ul>
+<li><a class="reference internal" href="#v0-1-2018-01-11-initial-release-features">v0.1 (2018/01/11): initial release. Features:</a></li>
+<li><a class="reference internal" href="#v0-2-2018-01-14">v0.2 (2018/01/14)</a></li>
+<li><a class="reference internal" href="#v0-3-2018-01-17">v0.3 (2018/01/17)</a></li>
+<li><a class="reference internal" href="#v0-3-1-2018-01-18">v0.3.1 (2018/01/18)</a></li>
+<li><a class="reference internal" href="#v0-4-2018-02-16">v0.4 (2018/02/16)</a></li>
+<li><a class="reference internal" href="#v0-4-1-2018-03-01">v0.4.1 (2018/03/01)</a></li>
+<li><a class="reference internal" href="#v0-4-2-2018-03-03">v0.4.2 (2018/03/03)</a></li>
+<li><a class="reference internal" href="#v0-5-2018-04-08">v0.5 (2018/04/08)</a></li>
+<li><a class="reference internal" href="#v0-5-1-2018-04-22">v0.5.1 (2018/04/22)</a></li>
+<li><a class="reference internal" href="#v0-6-2018-11-20">v0.6 (2018/11/20)</a></li>
+<li><a class="reference internal" href="#v0-7-2018-12-08-v0-7-1-bugfix-v0-7-2-2nd-bugfix-2018-12-09">v0.7 (2018/12/08), v0.7.1 (bugfix), v0.7.2 (2nd bugfix) (2018/12/09)</a></li>
+<li><a class="reference internal" href="#v0-7-3-2019-02-04">v0.7.3 (2019/02/04)</a></li>
+<li><a class="reference internal" href="#v0-7-4-2019-02-12">v0.7.4 (2019/02/12)</a></li>
+<li><a class="reference internal" href="#v0-7-5-2020-01-31">v0.7.5 (2020/01/31)</a></li>
+<li><a class="reference internal" href="#v0-8-2021-03-29">v0.8 (2021/03/29)</a></li>
+<li><a class="reference internal" href="#v0-8-1-2021-04-12">v0.8.1 (2021/04/12)</a></li>
+<li><a class="reference internal" href="#v0-8-2-2021-05-05">v0.8.2 (2021/05/05)</a></li>
+<li><a class="reference internal" href="#v0-8-3-2021-05-27">v0.8.3 (2021/05/27)</a></li>
+<li><a class="reference internal" href="#v0-8-4-2021-11-01">v0.8.4 (2021/11/01)</a></li>
+<li><a class="reference internal" href="#v0-8-5-2021-11-30">v0.8.5 (2021/11/30)</a></li>
+<li><a class="reference internal" href="#v0-8-6-2022-01-09">v0.8.6 (2022/01/09)</a></li>
+<li><a class="reference internal" href="#v0-8-7-2022-05-14">v0.8.7 (2022/05/14)</a></li>
+</ul>
+</li>
+</ul>
+
+ <div role="note" aria-label="source link">
+ <h3>This Page</h3>
+ <ul class="this-page-menu">
+ <li><a href="polexpr-changes.rst.txt"
+ rel="nofollow">Show Source</a></li>
+ </ul>
+ </div>
+ <div>
+ <h4>Previous topic</h4>
+ <p class="topless"><a href="polexpr-ref.html"
+ title="previous chapter">polexpr reference</a></p>
+ </div>
+ </div>
+ </div>
+ <div class="clearer"></div>
+ </div>
+ <div class="related" role="navigation" aria-label="related navigation">
+ <h3>Navigation</h3>
+ <ul>
+ <li class="right" style="margin-right: 10px">
+ <a href="polexpr-ref.html" title="polexpr reference"
+ >previous</a></li>
+ <li class="nav-item nav-item-0"><a href="polexpr.html">polexpr 0.8.7 documentation</a> »</li>
+ <li class="nav-item nav-item-this"><a href="">CHANGES</a></li>
+ </ul>
+ </div>
+ <div class="footer" role="contentinfo">
+ © Copyright 2022, Jean-François Burnol.
+ Created using <a href="https://www.sphinx-doc.org/">Sphinx</a> 5.0.0+/f58771c09.
+ </div>
+ </body>
+</html>
\ No newline at end of file
Property changes on: trunk/Master/texmf-dist/doc/generic/polexpr/polexpr-changes.html
___________________________________________________________________
Added: svn:eol-style
## -0,0 +1 ##
+native
\ No newline at end of property
Added: trunk/Master/texmf-dist/doc/generic/polexpr/polexpr-changes.rst.txt
===================================================================
--- trunk/Master/texmf-dist/doc/generic/polexpr/polexpr-changes.rst.txt (rev 0)
+++ trunk/Master/texmf-dist/doc/generic/polexpr/polexpr-changes.rst.txt 2022-05-15 20:41:35 UTC (rev 63306)
@@ -0,0 +1,513 @@
+.. comment: -*- fill-column: 72; mode: rst -*-
+
+=========
+ CHANGES
+=========
+
+.. _firstrelease:
+
+v0.1 (2018/01/11): initial release. Features:
+---------------------------------------------
+
+* The :ref:`\\poldef <poldef;>` parser itself,
+* Differentiation and anti-differentiation,
+* Euclidean division and GCDs,
+* Various utilities such as :ref:`\\PolFromCSV <PolFromCSV>`,
+ :ref:`\\PolMapCoeffs <PolMapCoeffs>`,
+ :ref:`\\PolToCSV <PolToCSV>`, :ref:`\\PolToExpr <PolToExpr>`, ...
+
+Only one-variable polynomials so far.
+
+v0.2 (2018/01/14)
+-----------------
+
+* Fix: ``"README thinks \numexpr recognizes ^ operator"``.
+* Convert README to reStructuredText markup.
+* Move main documentation from README to separate ``polexpr.txt`` file.
+* Provide ``polexpr.html`` as obtained via DocUtils_ ``rst2html.py``.
+* Convert README to (CTAN compatible) Markdown markup.
+
+Due to lack of available time the test suite might not be extensive
+enough. Bug reports are very welcome!
+
+v0.3 (2018/01/17)
+-----------------
+
+* bug fixes:
+
+ - the ``0.1`` :ref:`\\PolEval <PolEvalAt>` accepted expressions for its
+ second argument, but this was removed by mistake at ``0.2``. Restored.
+
+ **Attention**: at ``0.4`` this has been reverted again, and
+ :ref:`\\PolEval{P}\\AtExpr{foo} <PolEvalAtExpr>` syntax is needed for
+ using expressions in the second argument.
+* incompatible or breaking changes:
+
+ - :ref:`\\PolToExpr <PolToExpr>` now by default uses *descending*
+ powers (it also treats differently coefficients equal to 1 or -1.)
+ Use :ref:`\\PolToExpr* <PolToExpr*>` for *ascending* powers.
+ - :ref:`\\PolEval <PolEvalAt>` reduced the output to smallest terms,
+ but as this is costly with big fractions and not needed if e.g.
+ wrapped in an ``\xintRound`` or ``\xintFloat``, this step has been
+ removed; the former meaning is available as
+ :ref:`\\PolEvalReduced <PolEvalReducedAt>`.
+* new (or newly documented) macros:
+
+ - :ref:`\\PolTypesetCmd <PolTypesetCmd>`
+ - :ref:`\\PolTypesetCmdPrefix <PolTypesetCmdPrefix>`
+ - :ref:`\\PolTypesetMonomialCmd <PolTypesetMonomialCmd>`
+ - :ref:`\\PolEvalReducedAt <PolEvalReducedAt>`
+ - :ref:`\\PolToFloatExpr <PolToFloatExpr>`
+ - :ref:`\\PolToExprOneTerm <PolToExprOneTerm>`
+ - :ref:`\\PolToFloatExprOneTerm <PolToFloatExprOneTerm>`
+ - :ref:`\\PolToExprCmd <PolToExprCmd>`
+ - :ref:`\\PolToFloatExprCmd <PolToFloatExprCmd>`
+ - :ref:`\\PolToExprTermPrefix <PolToExprTermPrefix>`
+ - :ref:`\\PolToExprVar <PolToExprVar>`
+ - :ref:`\\PolToExprTimes <PolToExprTimes>`
+* improvements:
+
+ - documentation has a table of contents, internal hyperlinks,
+ standardized signature notations and added explanations.
+ - one can do ``\PolLet{g}={f}`` or ``\PolLet{g}{f}``.
+ - ``\PolToExpr{f}`` is highly customizable.
+ - :ref:`\\poldef <poldef;>` and other defining macros prepare the
+ polynomial functions for usage within ``\xintthefloatexpr`` (or
+ ``\xintdeffloatvar``). Coefficients are pre-rounded to the floating
+ point precision. Indispensible for numerical algorithms, as exact
+ fractions, even reduced, quickly become very big. See the documentation
+ about how to use the exact polynomials also in floating point context.
+
+ **Attention**: this has been reverted at ``0.4``. The macro
+ :ref:`\\PolGenFloatVariant <PolGenFloatVariant>` must be used for
+ generation floating point polynomial functions.
+
+v0.3.1 (2018/01/18)
+-------------------
+
+Fixes two typos in example code included in the documentation.
+
+v0.4 (2018/02/16)
+-----------------
+
+* bug fixes:
+
+ - when Euclidean division gave a zero remainder, the internal
+ representation of this zero polynomial could be faulty; this
+ could cause mysterious bugs in conjunction with other package
+ macros such as :ref:`\\PolMapCoeffs <PolMapCoeffs>`.
+ - :ref:`\\PolGCD <PolGCD>` was buggy in case of first polynomial being
+ of lesser degree than the second one.
+* breaking changes:
+
+ - formerly :ref:`\\PolEval{P}\\At{foo} <PolEvalAt>` allowed ``foo`` to
+ be an expression, which was transparently handled via
+ ``\xinttheexpr``. Now, ``foo`` must be a fraction (or a macro
+ expanding to such) in the format acceptable by ``xintfrac.sty``
+ macros. Use :ref:`\\PolEval{P}\\AtExpr{foo} <PolEvalAtExpr>` for more
+ general arguments using expression syntax. E.g., if ``foo`` is the
+ name of a variable known to ``\xintexpr``.
+
+ The same holds for :ref:`\\PolEvalReduced <PolEvalReducedAt>`
+ and :ref:`\\PolFloatEval <PolFloatEvalAt>`.
+ - the ``3.0`` automatic generation of floating point variants has
+ been reverted. Not only do *not* the package macros automatically
+ generate floating point variants of newly created polynomials,
+ they actually make pre-existing such variant undefined.
+
+ See :ref:`\\PolGenFloatVariant <PolGenFloatVariant>`.
+* new non-expandable macros:
+
+ - :ref:`\\PolGenFloatVariant <PolGenFloatVariant>`
+ - :ref:`\\PolGlobalLet <PolGlobalLet>`
+ - :ref:`\\PolTypesetOne <PolTypesetOne>`
+ - :ref:`\\PolQuo <PolQuo>`
+ - :ref:`\\PolRem <PolRem>`
+ - :ref:`\\PolToSturm <PolToSturm>`
+ - :ref:`\\PolToSturm\* <PolToSturm*>`
+ - :ref:`\\PolSetToSturmChainSignChangesAt <PolSetToSturmChainSignChangesAt>`
+ - :ref:`\\PolSetToNbOfZerosWithin <PolSetToNbOfZerosWithin>`
+ - :ref:`\\PolSturmIsolateZeros <PolSturmIsolateZeros>`
+ - :ref:`\\PolRefineInterval* <PolRefineInterval*>`
+ - :ref:`\\PolRefineInterval[N] <PolRefineInterval[]>`
+ - :ref:`\\PolEnsureIntervalLength <PolEnsureIntervalLength>`
+ - :ref:`\\PolEnsureIntervalLengths <PolEnsureIntervalLengths>`
+ - :ref:`\\PolPrintIntervals <PolPrintIntervals>`
+ - :ref:`\\PolPrintIntervalsPrintExactZero <PolPrintIntervalsPrintExactZero>`
+ - :ref:`\\PolPrintIntervalsPrintLeftEndPoint <PolPrintIntervalsPrintLeftEndPoint>`
+ - :ref:`\\PolPrintIntervalsPrintRightEndPoint <PolPrintIntervalsPrintRightEndPoint>`
+ - :ref:`\\PolReduceCoeffs* <PolReduceCoeffs*>`
+ - :ref:`\\PolMakeMonic <PolMakeMonic>`
+* new expandable macros:
+
+ - :ref:`\\PolToExprOneTermStyleA <PolToExprOneTermStyleA>`
+ - :ref:`\\PolIfCoeffIsPlusOrMinusOne <PolIfCoeffIsPlusOrMinusOne>`
+ - :ref:`\\PolLeadingCoeff <PolLeadingCoeff>`
+ - :ref:`\\PolSturmChainLength <PolSturmChainLength>`
+ - :ref:`\\PolSturmNbOfIsolatedZeros <PolSturmNbOfIsolatedZeros>`
+ - :ref:`\\PolSturmIfZeroExactlyKnown <PolSturmIfZeroExactlyKnown>`
+ - :ref:`\\PolSturmIsolatedZeroLeft <PolSturmIsolatedZeroLeft>`
+ - :ref:`\\PolSturmIsolatedZeroRight <PolSturmIsolatedZeroRight>`
+ - ``\PolPrintIntervalsTheEndPoint`` (removed at 0.7)
+ - :ref:`\\PolPrintIntervalsTheIndex <PolPrintIntervalsTheIndex>`
+ - ``\PolIfEndPointIsPositive`` (removed at 0.7)
+ - ``\PolIfEndPointIsNegative`` (removed at 0.7)
+ - ``\PolIfEndPointIsZero`` (removed at 0.7)
+ - :ref:`\\PolIntervalWidth <PolIntervalWidth>`
+ - :ref:`\\PolDecToString <PolDecToString>`
+* improvements:
+
+ The main new feature is implementation of the `Sturm algorithm`_
+ for localization of the real roots of polynomials.
+
+v0.4.1 (2018/03/01)
+-------------------
+
+Synced with xint 1.3.
+
+v0.4.2 (2018/03/03)
+-------------------
+
+Documentation fix.
+
+v0.5 (2018/04/08)
+-----------------
+
+* bug fixes:
+
+ - :ref:`\\PolGet{polname}\\fromarray\\macro <PolGet>`
+ crashed when ``\macro`` was
+ an xinttools_ array macro with no items. It now produces the zero
+ polynomial.
+* breaking changes:
+
+ - :ref:`\\PolToSturm <PolToSturm>` creates primitive integer coefficients
+ polynomials. This speeds up localization of roots via
+ :ref:`\\PolSturmIsolateZeros <PolSturmIsolateZeros>`. In case of user
+ protests the author will make available again the code producing the
+ bona fide Sturm polynomials as used formerly.
+ - polynomials created from :ref:`\\PolFromCSV <PolFromCSV>` or
+ :ref:`\\PolGet <PolGet>`
+ get their coefficients normalized via xintfrac_\ 's ``\xintRaw``.
+* experimental change:
+
+ - optional argument to :ref:`\\PolSturmIsolateZeros <PolSturmIsolateZeros>`
+ (see ``The degree 41 polynomial with -2, -1.9, -1.8, ..., 0, 0.1, ...,
+ 1.9, 2 as roots`` in ``polexpr-examples.pdf``). It will presumably be
+ replaced in future by an interval specification.
+* new non-expandable macro:
+
+ - :ref:`\\PolMakePrimitive <PolMakePrimitive>`
+* new expandable macro:
+
+ - :ref:`\\PolIContent <PolIContent>`
+
+v0.5.1 (2018/04/22)
+-------------------
+
+* new feature:
+
+ - the character ``'`` can be used in polynomial names.
+
+v0.6 (2018/11/20)
+-----------------
+
+* bugfix:
+
+ - the starred variant
+ :ref:`\\PolToSturm*{\<polname\>}{\<sturmname\>} <PolToSturm*>`
+ was broken. On the occasion of the fix, its meaning has
+ been modified, see its documentation.
+
+ - using :ref:`\\PolToSturm <PolToSturm>` with a constant polynomial
+ caused a division by zero error.
+
+* new macro:
+
+ - :ref:`\\PolSturmIsolateZeros* <PolSturmIsolateZeros*>`
+ acts like the :ref:`non-starred variant
+ <PolSturmIsolateZeros>` then computes all the multiplicities.
+
+* new expandable macros:
+
+ - :ref:`\\PolSturmIsolatedZeroMultiplicity{\<sturmname\>}{\<index\>} <PolSturmIsolatedZeroMultiplicity>`
+ - :ref:`\\PolSturmNbOfRootsOf{\<sturmname\>}\\LessThanOrEqualTo{\<value\>} <PolSturmNbOfRootsOfLessThanOrEqualTo>`
+ - :ref:`\\PolSturmNbOfRootsOf{\<sturmname\>}\\LessThanOrEqualToExpr{\<num. expr.\>} <PolSturmNbOfRootsOfLessThanOrEqualToExpr>`
+ - :ref:`\\PolSturmNbWithMultOfRootsOf{\<sturmname\>}\\LessThanOrEqualTo{\<value\>} <PolSturmNbWithMultOfRootsOfLessThanOrEqualTo>`
+ - :ref:`\\PolSturmNbWithMultOfRootsOf{\<sturmname\>}\\LessThanOrEqualToExpr{\<num. expr.\>} <PolSturmNbWithMultOfRootsOfLessThanOrEqualToExpr>`
+
+v0.7 (2018/12/08), v0.7.1 (bugfix), v0.7.2 (2nd bugfix) (2018/12/09)
+--------------------------------------------------------------------
+
+* breaking changes:
+
+ - although :ref:`\\PolPrintIntervals[\<varname\>]{\<sturmname\>} <PolPrintIntervals>` default output
+ remains the same, some auxiliary macros for user-customization
+ have been removed: ``\PolPrintIntervalsTheEndPoint``,
+ ``\PolIfEndPointIsPositive{T}{F}``,
+ ``\PolIfEndPointIsNegative{T}{F}``, and
+ ``\PolIfEndPointIsZero{T}{F}``.
+
+* bugfix:
+
+ - it could happen that, contrarily to documentation, an interval computed
+ by :ref:`\\PolSturmIsolateZeros{\<sturmname\>} <PolSturmIsolateZeros>` had
+ zero as an endpoint,
+ - :ref:`\\PolEnsureIntervalLength{\<sturmname\>}{\<index\>}{\<exponent\>}
+ <PolEnsureIntervalLength>` could under certain circumstances erroneously
+ replace a non-zero root by zero,
+ - :ref:`\\PolEnsureIntervalLengths{\<sturmname\>}{\<exponent\>}
+ <PolEnsureIntervalLengths>` crashed when used with a polynomial with no
+ real roots, hence for which no isolation intervals existed (thanks to
+ Thomas Söll for report).
+
+* new macros:
+
+ - :ref:`\\PolSturmIsolateZeros**{\<sturmname\>} <PolSturmIsolateZeros**>`
+ - :ref:`\\PolSturmIsolateZerosGetMultiplicitiesAndRationalRoots{\<sturmname\>} <PolSturmIsolateZerosGetMultiplicitiesAndRationalRoots>`
+ - :ref:`\\PolSturmIsolateZerosAndFindRationalRoots{\<sturmname\>} <PolSturmIsolateZerosAndFindRationalRoots>`
+ - :ref:`\\polexprsetup <polexprsetup>`
+ - :ref:`\\PolPrintIntervals* <PolPrintIntervals*>`
+ - :ref:`\\PolPrintIntervalsNoRealRoots <PolPrintIntervalsNoRealRoots>`
+ - :ref:`\\PolPrintIntervalsBeginEnv <PolPrintIntervalsBeginEnv>`
+ - :ref:`\\PolPrintIntervalsEndEnv <PolPrintIntervalsEndEnv>`
+ - :ref:`\\PolPrintIntervalsKnownRoot <PolPrintIntervalsKnownRoot>`
+ - :ref:`\\PolPrintIntervalsUnknownRoot <PolPrintIntervalsUnknownRoot>`
+ - :ref:`\\PolPrintIntervalsPrintMultiplicity <PolPrintIntervalsPrintMultiplicity>`
+
+* new expandable macros:
+
+ - :ref:`\\PolSturmNbOfRationalRoots{\<sturmname\>} <PolSturmNbOfRationalRoots>`
+ - :ref:`\\PolSturmNbOfRationalRootsWithMultiplicities{\<sturmname\>} <PolSturmNbOfRationalRootsWithMultiplicities>`
+ - :ref:`\\PolSturmRationalRoot{\<sturmname\>}{\<k\>} <PolSturmRationalRoot>`
+ - :ref:`\\PolSturmRationalRootIndex{\<sturmname\>}{\<k\>} <PolSturmRationalRootIndex>`
+ - :ref:`\\PolSturmRationalRootMultiplicity{\<sturmname\>}{\<k\>} <PolSturmRationalRootMultiplicity>`
+ - :ref:`\\PolPrintIntervalsTheVar <PolPrintIntervalsTheVar>`
+ - :ref:`\\PolPrintIntervalsTheSturmName <PolPrintIntervalsTheSturmName>`
+ - :ref:`\\PolPrintIntervalsTheMultiplicity <PolPrintIntervalsTheMultiplicity>`
+
+v0.7.3 (2019/02/04)
+-------------------
+
+* bugfix:
+
+ - Debugging information not destined to user showed in log if root
+ finding was done under ``\xintverbosetrue`` regime.
+ - :ref:`\\PolPrintIntervalsTheVar <PolPrintIntervalsTheVar>` remained
+ defined after :ref:`\\PolPrintIntervals <PolPrintIntervals>` but was
+ left undefined after :ref:`\\PolPrintIntervals* <PolPrintIntervals*>`
+ (reported by Jürgen Gilg). Now remains defined in both cases, and
+ :ref:`\\PolPrintIntervalsTheSturmName <PolPrintIntervalsTheSturmName>`
+ also.
+ - Polynomial names ending in digits caused errors (reported by Thomas
+ Söll).
+
+v0.7.4 (2019/02/12)
+-------------------
+
+* bugfix:
+
+ - 20000000000 is too big for ``\numexpr``, shouldn't I know that?
+ Thanks to Jürgen Gilg for report.
+
+v0.7.5 (2020/01/31)
+-------------------
+
+Synced with xintexpr 1.4. Requires it.
+
+.. _polexpr08release:
+
+v0.8 (2021/03/29)
+-----------------
+
+Synced with xintexpr 1.4d. Requires it.
+
+* breaking changes:
+
+ - As the usability of character ``'`` in names has been extended
+ from ``\poldef`` to also generally ``\xintexpr``, ``\xintdefvar``,
+ and ``\xintdeffunc``, it means that the infix operators
+ ``'and'``, ``'or'``, and ``'mod'`` must be replaced
+ by ``&&``, ``||``, and ``/:`` if they
+ follow immediately a variable name (similarly ``'xor'`` must
+ be replaced by the ``xor()`` function in such case).
+
+ - :ref:`\\PolToExpr <PolToExpr>` by default uses a catcode 12
+ ``^``. See its documentation and the new configuration
+ :ref:`\\PolToExprCaret <PolToExprCaret>`.
+
+* deprecated:
+
+ - Usage of ``P/Q`` for the euclidean quotient of two polynomials is
+ deprecated. Start using ``quo(P,Q)`` in its place.
+
+* bugfix:
+
+ - The ``\xintglobaldefstrue`` setting was obeyed only partially
+ by the polexpr macros defining polynomials.
+
+ - The ``\xintexpr`` variables storing the values of the extremities of the
+ intervals as found by :ref:`\\PolSturmIsolateZeros
+ <PolSturmIsolateZeros>` were not updated at 0.7.5 to the xintexpr 1.4
+ format and thus caused low-level TeX errors if used.
+
+ - Attempting to use in ``\poldef`` a function previously declared
+ via ``\xintdeffunc`` which made usage of the indexing or slicing
+ "ople" syntax typically caused ``TeX capacity exceeded`` error.
+ Indeed 0.7.5 only partially made polexpr able to cope with the
+ extended possibilities for xintexpr 1.4 user-declared functions.
+ Hopefully ``0.8`` achieves full functionality in this context.
+
+* new macros:
+
+ - :ref:`\\polnewpolverbosefalse <polnewpolverbosefalse>`
+ - :ref:`\\PolToExprCaret <PolToExprCaret>`
+ - :ref:`\\PolToExprInVar <PolToExprInVar>`
+ - alongside the major new functionalities described in the next item
+ :ref:`\\PolTypeset <PolTypeset>` and :ref:`\\PolToExpr <PolToExpr>` have
+ been enhanced to accept as argument a general expression and not
+ only a pre-declared polynomial name.
+
+* new features:
+
+ - The package is usable under Plain and probably most any TeX format,
+ and not only under LaTeX.
+
+ - The core of the package has been rewritten entirely in order to
+ start letting ``\xintexpr`` recognize a polynomial type as a genuine
+ variable. This has allowed:
+
+ - to solve the reduced inter-operability problems between polexpr
+ and xintexpr_ which arose as consequences to the deep xintexpr_ ``1.4``
+ evolution,
+
+ - to make available most of the functionality associated to
+ expandable macros directly in the ``\xinteval`` syntax as
+ operators or functions,
+
+ - to provide (expandable) functional interface in ``\xinteval`` to
+ features previously available only via (for some, non-expandable)
+ macro interface such as gcd computations.
+
+See the updated :ref:`Quick syntax overview <quick>` and then
+:ref:`the extended syntax description <polexpr08>`.
+
+v0.8.1 (2021/04/12)
+-------------------
+
+* breaking changes:
+
+ - renamed v0.8's ``icontent()`` to :ref:`cont() <cont>`.
+ - renamed v0.8's ``lcoeff()`` to :ref:`lc() <lc>`.
+
+* bugfix:
+
+ - Sadly, ``diff1()``, ``diff2()``, ``diffn()`` were broken
+ for polynomials of degrees 8 or more, due to a typo and
+ insufficient testing.
+
+ - The package should have (as documented) required xintexpr_ 1.4d
+ but in practice it accepted to work with xintexpr_ 1.4c, whose
+ ``\xinteval`` does not know how to "output" a polynomial.
+
+ - The definition of one of the two variants of
+ :ref:`\\PolSturmNbOfRootsOf... <PolSturmNbOfRootsOfLessThanOrEqualTo>`
+ was broken by an end-of-line space, left-over
+ from mass conversion from LaTeX to TeX syntax.
+
+* added:
+
+ - :ref:`lpol() <lpol>`
+ - :ref:`lcoeffs() <lcoeffs>`
+
+v0.8.2 (2021/05/05)
+-------------------
+
+* breaking change:
+
+ - usage of ``\xintPFloat`` in place of ``\xintFloat`` for
+ :ref:`\\PolToFloatExprCmd <PolToFloatExprCmd>`.
+
+* improved:
+
+ - Some xintexpr_ functions such as ``rseq()`` use the semi-colon,
+ and it was mentioned in the documentation that :ref:`\\poldef <poldef;>`
+ will be confused by this and that inner semi-colons could be
+ set within braces ``{;}`` as a work-around. It was not clear from
+ this documentation that also :ref:`\\PolDef <PolDef>` required
+ this work-around. With this relase only :ref:`\\poldef <poldef;>` but
+ not :ref:`\\PolDef <PolDef>` needs the work-around.
+
+* track xintexpr_ ``1.4e`` changes relative to powers.
+
+v0.8.3 (2021/05/27)
+-------------------
+
+* small internal update to track an xintexpr_ ``1.4h`` change
+ regarding handling of exceptions. Will require this version at
+ least on loading.
+
+v0.8.4 (2021/11/01)
+-------------------
+
+* bugfix: :ref:`\\PolSturmIsolateZeros**{\<sturmname\>}
+ <PolSturmIsolateZeros**>` did not declare the ``<sturmname>_norr`` and
+ ``<sturmname>_sqf_norr`` polynomials if original polynomial had no real
+ root!
+
+v0.8.5 (2021/11/30)
+-------------------
+
+* bugfix: support for the ``intfrom()`` function was in the code,
+ but the declaration to the polynomial parser had not been done.
+
+* track (belatedly) upstream deprecation of ``\xintSignedFrac`` and
+ ``\xintSignedFwOver`` at xintexpr_ ``1.4g``
+
+v0.8.6 (2022/01/09)
+-------------------
+
+* provide a separate ``polexpr-examples.pdf`` with examples formerly
+ shown as part of the html documentation.
+
+* minor improvement to the computation of a priori bounds on real roots.
+
+* add :ref:`\\PolPrintIntervalsRowSeparator <PolPrintIntervalsRowSeparator>`
+ and allow usage of ``amsmath`` environments in custom
+ :ref:`\\PolPrintIntervalsBeginEnv <PolPrintIntervalsBeginEnv>` and
+ :ref:`\\PolPrintIntervalsEndEnv <PolPrintIntervalsEndEnv>`.
+
+v0.8.7 (2022/05/14)
+-------------------
+
+* bugfix: catcode sanitization by :ref:`\\poldef <poldef;>` was minimal
+ ever since ``0.1`` and handled only the semi-colon. Thus e.g. the
+ active ``!`` from babel-french caused errors and ``\string!`` was
+ needed as work-around for factorials. Now the same sanitization as
+ for ``\xintdefvar`` and ``\xintdeffunc`` is applied. This however can
+ only work at locations where the catcodes are not yet frozen at the
+ time ``\poldef`` expands.
+
+* split the html documentation into three files and enhance it via CSS
+ styling.
+
+
+.. _xinttools:
+.. _xintfrac:
+.. _xint: https://www.ctan.org/pkg/xint
+
+.. _xintexpr: https://www.ctan.org/pkg/xintexpr
+
+.. _xintsession: https://www.ctan.org/pkg/xintsession
+
+.. _Wilkinson polynomial: https://en.wikipedia.org/wiki/Wilkinson%27s_polynomial
+
+.. _Sturm algorithm:
+.. _Sturm Theorem: https://en.wikipedia.org/wiki/Sturm%27s_theorem
+
+.. _DocUtils: http://docutils.sourceforge.net/docs/index.html
+
+
+.. Local variables:
+.. sentence-end-double-space: t;
+.. End:
Property changes on: trunk/Master/texmf-dist/doc/generic/polexpr/polexpr-changes.rst.txt
___________________________________________________________________
Added: svn:eol-style
## -0,0 +1 ##
+native
\ No newline at end of property
Modified: trunk/Master/texmf-dist/doc/generic/polexpr/polexpr-examples.pdf
===================================================================
(Binary files differ)
Added: trunk/Master/texmf-dist/doc/generic/polexpr/polexpr-ref.html
===================================================================
--- trunk/Master/texmf-dist/doc/generic/polexpr/polexpr-ref.html (rev 0)
+++ trunk/Master/texmf-dist/doc/generic/polexpr/polexpr-ref.html 2022-05-15 20:41:35 UTC (rev 63306)
@@ -0,0 +1,2898 @@
+
+<!DOCTYPE html>
+
+<html lang="en">
+ <head>
+ <meta charset="utf-8" />
+ <meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="generator" content="Docutils 0.18.1: http://docutils.sourceforge.net/" />
+
+ <title>polexpr reference — polexpr 0.8.7 documentation</title>
+ <link rel="stylesheet" type="text/css" href="polexpr.css" />
+ <link rel="next" title="CHANGES" href="polexpr-changes.html" />
+ <link rel="prev" title="Introduction to polexpr" href="polexpr.html" />
+ </head><body>
+ <div class="related" role="navigation" aria-label="related navigation">
+ <h3>Navigation</h3>
+ <ul>
+ <li class="right" style="margin-right: 10px">
+ <a href="polexpr-changes.html" title="CHANGES"
+ accesskey="N">next</a></li>
+ <li class="right" >
+ <a href="polexpr.html" title="Introduction to polexpr"
+ accesskey="P">previous</a> |</li>
+ <li class="nav-item nav-item-0"><a href="polexpr.html">polexpr 0.8.7 documentation</a> »</li>
+ <li class="nav-item nav-item-this"><a href="">polexpr reference</a></li>
+ </ul>
+ </div>
+
+ <div class="document">
+ <div class="documentwrapper">
+ <div class="bodywrapper">
+ <div class="body" role="main">
+
+ <section id="polexpr-reference">
+<h1>polexpr reference</h1>
+<section id="syntax-overview-via-examples">
+<span id="quick"></span><h2>Syntax overview via examples</h2>
+<p>The syntax to define a new polynomial is:</p>
+<div class="highlight-latex notranslate"><div class="highlight"><pre><span></span><span class="k">\poldef</span> polname(x):= expression in variable x;
+</pre></div>
+</div>
+<p>The expression will be parsed by the services of <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a>, with some
+polynomial aware functions added to its syntax; they are described in
+detail <a class="reference internal" href="#polexpr08"><span class="std std-ref">below</span></a>. The parser accepts and will handle
+exactly arbitrarily big integers or fractions.</p>
+<div class="admonition note">
+<p class="admonition-title">Note</p>
+<p><a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a> does not automatically reduce fractions to lowest terms,
+and, so far (but this may change in future) neither does <a class="reference internal" href="#poldef"><span class="std std-ref">\poldef</span></a>.
+See <a class="reference internal" href="#rdcoeffs"><span class="std std-ref">rdcoeffs()</span></a> and the macro
+<a class="reference internal" href="#polreducecoeffs"><span class="std std-ref">\PolReduceCoeffs</span></a>.</p>
+</div>
+<ul class="simple">
+<li><p>In place of <code class="docutils literal notranslate"><span class="pre">x</span></code> an arbitrary <em>dummy variable</em> is authorized,
+i.e. per default one <code class="docutils literal notranslate"><span class="pre">a,</span> <span class="pre">..,</span> <span class="pre">z,</span> <span class="pre">A,</span> <span class="pre">..,</span> <span class="pre">Z</span></code> (more letters can be declared
+under Unicode engines).</p></li>
+<li><p><code class="docutils literal notranslate"><span class="pre">polname</span></code> consists of <em>letters</em>, <em>digits</em>, and also the <code class="docutils literal notranslate"><span class="pre">_</span></code> and
+<code class="docutils literal notranslate"><span class="pre">'</span></code> characters are allowed. The polynomial name <strong>must</strong> start with
+a letter: do not use the underscore <code class="docutils literal notranslate"><span class="pre">_</span></code> as <em>first character</em> of a
+polynomial name (even if of catcode letter). No warning is emitted
+but dire consequences will ensue. The <code class="docutils literal notranslate"><span class="pre">@</span></code> is also allowed
+(independently of its catcode “letter” or “other”, which does not
+matter). It is recommended to avoid using it as first character,
+except for temporary polynomial variables.</p></li>
+<li><p>The colon before the equality sign is optional and its (reasonable)
+catcode does not matter.</p></li>
+<li><p>The semi-colon at the end of the expression is mandatory. It is not
+allowed to arise from expansion (despite the fact that the expression
+itself will be parsed using only expansion), it must be “visible”
+immediately.</p></li>
+</ul>
+<p>There are some potential problems (refer to the <a class="reference internal" href="#technicalities">Technicalities</a> section at
+bottom of this page) with the semi-colon as expression terminator, so an
+alternative syntax is provided, which avoids it altogether:</p>
+<div class="highlight-latex notranslate"><div class="highlight"><pre><span></span><span class="k">\PolDef</span><span class="na">[optional letter]</span><span class="nb">{</span><polname><span class="nb">}{</span><expr. using letter as indeterminate><span class="nb">}</span>
+</pre></div>
+</div>
+<p>The <code class="docutils literal notranslate"><span class="pre">\PolDef</span></code> optional first argument defaults to <code class="docutils literal notranslate"><span class="pre">x</span></code> and must be
+used as the indeterminate in the expression.</p>
+<p>Examples:</p>
+<p><code class="docutils literal notranslate"><span class="pre">\poldef</span> <span class="pre">f(x):=</span> <span class="pre">1</span> <span class="pre">-</span> <span class="pre">x</span> <span class="pre">+</span> <span class="pre">quo(x^5,1</span> <span class="pre">-</span> <span class="pre">x</span> <span class="pre">+</span> <span class="pre">x^2);</span></code></p>
+<dl>
+<dt><code class="docutils literal notranslate"><span class="pre">\PolDef{f}{1</span> <span class="pre">-</span> <span class="pre">x</span> <span class="pre">+</span> <span class="pre">quo(x^5,1</span> <span class="pre">-</span> <span class="pre">x</span> <span class="pre">+</span> <span class="pre">x^2)}</span></code></dt><dd><p>Both parse the polynomial
+expression, and they create internally macros serving to
+incarnate the polynomial, its coefficients, and the associated
+polynomial function.</p>
+<p>The polynomial can then be used in further polynomial definitions,
+be served as argument to package macros, or appear as a variable in
+various functions <a class="reference internal" href="#polexpr08">described later</a>.</p>
+<div class="admonition warning">
+<p class="admonition-title">Warning</p>
+<p>Both the function <code class="docutils literal notranslate"><span class="pre">quo()</span></code> (as shown in the example above), and
+the infix operator <code class="docutils literal notranslate"><span class="pre">/</span></code> are mapped to the Euclidean quotient.</p>
+<p>This usage of <code class="docutils literal notranslate"><span class="pre">/</span></code> to stand for the Euclidean quotient is
+<strong>deprecated</strong> and reserved for a (somewhat improbable) possible
+extension of the package to handle rational functions as well.</p>
+</div>
+<div class="admonition attention" id="warningtacit">
+<p class="admonition-title">Attention</p>
+<p>Tacit multiplication rules let the parser when encountering
+<code class="docutils literal notranslate"><span class="pre">1/2</span> <span class="pre">x^2</span></code> skip the space and thus handle it as <code class="docutils literal notranslate"><span class="pre">1/(2*x^2)</span></code>.
+But then it gives zero, because <cite>/</cite> stands for the Euclidean
+quotient operation here.</p>
+<p>Thus one must use <code class="docutils literal notranslate"><span class="pre">(1/2)x^2</span></code> or <code class="docutils literal notranslate"><span class="pre">1/2*x^2</span></code> or
+<code class="docutils literal notranslate"><span class="pre">(1/2)*x^2</span></code> for disambiguation: <code class="docutils literal notranslate"><span class="pre">x</span> <span class="pre">-</span> <span class="pre">1/2*x^2</span> <span class="pre">+</span> <span class="pre">1/3*x^3...</span></code>. It is
+simpler to move the denominator to the right: <code class="docutils literal notranslate"><span class="pre">x</span> <span class="pre">-</span> <span class="pre">x^2/2</span> <span class="pre">+</span>
+<span class="pre">x^3/3</span> <span class="pre">-</span> <span class="pre">...</span></code>.</p>
+<p>It is worth noting that <code class="docutils literal notranslate"><span class="pre">1/2(x-1)(x-2)</span></code> suffers the same issue:
+<a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a>‘s tacit multiplication always “ties more”, hence this
+gets interpreted as <code class="docutils literal notranslate"><span class="pre">1/(2*(x-1)*(x-2))</span></code> not as
+<code class="docutils literal notranslate"><span class="pre">(1/2)*(x-1)*(x-2)</span></code> and then gives zero by
+polynomial division. Thus, in such cases, use one of
+<code class="docutils literal notranslate"><span class="pre">(1/2)(x-1)(x-2)</span></code>, <code class="docutils literal notranslate"><span class="pre">1/2*(x-1)(x-2)</span></code> or <code class="docutils literal notranslate"><span class="pre">(x-1)(x-2)/2</span></code>.</p>
+</div>
+<p><code class="docutils literal notranslate"><span class="pre">\poldef</span> <span class="pre">P(x):=...;</span></code> defines <code class="docutils literal notranslate"><span class="pre">P</span></code> as a <em>polynomial function</em>,
+which can be used inside <code class="docutils literal notranslate"><span class="pre">\xinteval</span></code>, as:</p>
+<div class="highlight-latex notranslate"><div class="highlight"><pre><span></span><span class="k">\xinteval</span><span class="nb">{</span>P(3 + 7 + 11)<span class="nb">}</span>
+</pre></div>
+</div>
+<p>or even as:</p>
+<div class="highlight-latex notranslate"><div class="highlight"><pre><span></span><span class="k">\xinteval</span><span class="nb">{</span>P(Q1 + Q2 + Q3)<span class="nb">}</span>
+</pre></div>
+</div>
+<p>where <code class="docutils literal notranslate"><span class="pre">Q1</span></code>, <code class="docutils literal notranslate"><span class="pre">Q2</span></code>, <code class="docutils literal notranslate"><span class="pre">Q3</span></code> are polynomials. The evaluation result,
+if not a scalar, will then be printed as <code class="docutils literal notranslate"><span class="pre">pol([c0,c1,...])</span></code> which
+stands for a polynomial variable having the listed coefficients; see
+<a class="reference internal" href="#pol"><span class="std std-ref">pol()</span></a>.</p>
+<p>Indeed, as seen above with <code class="docutils literal notranslate"><span class="pre">Q1</span></code>, the symbol <code class="docutils literal notranslate"><span class="pre">P</span></code> also stands for
+a <em>variable of polynomial type</em>, which serves as argument to
+polynomial specific functions such as <a class="reference internal" href="#deg"><span class="std std-ref">deg()</span></a> or
+<a class="reference internal" href="#polgcd"><span class="std std-ref">polgcd()</span></a>, or as argument to other polynomials (as
+above), or even simply stands for its own in algebraic expressions
+such as:</p>
+<div class="highlight-latex notranslate"><div class="highlight"><pre><span></span><span class="k">\poldef</span> Q(z):= P<span class="nb">^</span>2 + z<span class="nb">^</span>10;
+</pre></div>
+</div>
+<p>Notice that in the above, the <code class="docutils literal notranslate"><span class="pre">(z)</span></code> part is mandatory, as it informs
+<code class="docutils literal notranslate"><span class="pre">\poldef</span></code> of the letter used for the indeterminate. In the above
+<code class="docutils literal notranslate"><span class="pre">P(z)^2</span></code> would give the same as <code class="docutils literal notranslate"><span class="pre">P^2</span></code> but the latter is slightly
+more efficient.</p>
+<p>One needs to acquire a good understanding of when the symbol <code class="docutils literal notranslate"><span class="pre">P</span></code>
+will stand for a function and when it will stand for a variable.</p>
+<ul>
+<li><p>If <code class="docutils literal notranslate"><span class="pre">P</span></code> and
+<code class="docutils literal notranslate"><span class="pre">Q</span></code> are both declared polynomials then:</p>
+<div class="highlight-latex notranslate"><div class="highlight"><pre><span></span>(P+Q)(3)<span class="c">% <--- attention, does (P+Q)*3, not P(3)+Q(3)</span>
+</pre></div>
+</div>
+<p>is currently evaluated as <code class="docutils literal notranslate"><span class="pre">(P+Q)*3</span></code>, because <code class="docutils literal notranslate"><span class="pre">P+Q</span></code> is not
+known as a <em>function</em>, but <em>only as a variable of polynomial
+type</em>. Note that <a class="reference internal" href="#evalp"><span class="std std-ref">evalp(P+Q,3)</span></a> gives as expected
+the same as <code class="docutils literal notranslate"><span class="pre">P(3)+Q(3)</span></code>.</p>
+</li>
+<li><p>Also:</p>
+<div class="highlight-latex notranslate"><div class="highlight"><pre><span></span>(P)(3)<span class="c">% <--- attention, does P*3, not P(3)</span>
+</pre></div>
+</div>
+<p>will compute <code class="docutils literal notranslate"><span class="pre">P*3</span></code>, because one can not in current <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a> syntax
+enclose a function name in parentheses: consequently it is the variable
+which is used here.</p>
+</li>
+</ul>
+<p>There is a <em>meager possibility</em> that in future some internal changes
+to <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a> would let <code class="docutils literal notranslate"><span class="pre">(P)(3)</span></code> actually compute <code class="docutils literal notranslate"><span class="pre">P(3)</span></code> and
+<code class="docutils literal notranslate"><span class="pre">(P+Q)(3)</span></code> compute <code class="docutils literal notranslate"><span class="pre">P(3)</span> <span class="pre">+</span> <span class="pre">Q(3)</span></code>, but note that <code class="docutils literal notranslate"><span class="pre">(P)(P)</span></code> will
+then do <code class="docutils literal notranslate"><span class="pre">P(P)</span></code> and not <code class="docutils literal notranslate"><span class="pre">P*P</span></code>, the latter, current
+interpretation, looking more intuitive. Anyway, do not rely too
+extensively on tacit <code class="docutils literal notranslate"><span class="pre">*</span></code> and use explicit <code class="docutils literal notranslate"><span class="pre">(P+Q)*(1+2)</span></code> if this
+is what is intended.</p>
+</dd>
+<dt><code class="docutils literal notranslate"><span class="pre">\PolLet{g}={f}</span></code></dt><dd><p>saves a copy of <code class="docutils literal notranslate"><span class="pre">f</span></code> under name <code class="docutils literal notranslate"><span class="pre">g</span></code>. Also usable without <code class="docutils literal notranslate"><span class="pre">=</span></code>.</p>
+<p>Has exactly the same effect as <code class="docutils literal notranslate"><span class="pre">\poldef</span> <span class="pre">g(x):=f;</span></code> or <code class="docutils literal notranslate"><span class="pre">\poldef</span>
+<span class="pre">g(w):=f(w);</span></code>.</p>
+</dd>
+<dt><code class="docutils literal notranslate"><span class="pre">\poldef</span> <span class="pre">f(z):=</span> <span class="pre">f^2;</span></code></dt><dd><p>redefines <code class="docutils literal notranslate"><span class="pre">f</span></code> in terms of itself. Prior to <code class="docutils literal notranslate"><span class="pre">0.8</span></code> one needed
+the right hand side to be <code class="docutils literal notranslate"><span class="pre">f(z)^2</span></code>. Also, now <code class="docutils literal notranslate"><span class="pre">sqr(f)</span></code> is
+possible (also <code class="docutils literal notranslate"><span class="pre">sqr(f(x))</span></code> but not <code class="docutils literal notranslate"><span class="pre">sqr(f)(x)</span></code>).</p>
+<p>It may look strange that an indeterminate variable is used on
+left-hand-side even though it may be absent of right-hand-side, as
+it seems to define <code class="docutils literal notranslate"><span class="pre">f</span></code> always as a polynomial function.</p>
+<p>This is a legacy of pre-<code class="docutils literal notranslate"><span class="pre">0.8</span></code> context.</p>
+<div class="admonition important">
+<p class="admonition-title">Important</p>
+<p>Note that <code class="docutils literal notranslate"><span class="pre">f^2(z)</span></code> or <code class="docutils literal notranslate"><span class="pre">sqr(f)(z)</span></code> will give a logical but
+perhaps unexpected result: first <code class="docutils literal notranslate"><span class="pre">f^2</span></code> is computed, then the
+opening parenthesis is seen which inserts a tacit multiplication
+<code class="docutils literal notranslate"><span class="pre">*</span></code>, so in the end it is as if the input had been <code class="docutils literal notranslate"><span class="pre">f^2</span> <span class="pre">*</span> <span class="pre">z</span></code>.
+Although <code class="docutils literal notranslate"><span class="pre">f</span></code> is both a variable and a function, <code class="docutils literal notranslate"><span class="pre">f^2</span></code> is
+computed as a polynomial <em>variable</em> and ceases being a function.</p>
+</div>
+</dd>
+<dt><code class="docutils literal notranslate"><span class="pre">\poldef</span> <span class="pre">f(T):=</span> <span class="pre">f(f);</span></code></dt><dd><p>again modifies <code class="docutils literal notranslate"><span class="pre">f</span></code>. Here it is used both as variable and as
+a function. Prior to <code class="docutils literal notranslate"><span class="pre">0.8</span></code> it needed to be <code class="docutils literal notranslate"><span class="pre">f(f(T))</span></code>.</p>
+</dd>
+<dt><code class="docutils literal notranslate"><span class="pre">\poldef</span> <span class="pre">k(z):=</span> <span class="pre">f-g(g^2)^2;</span></code></dt><dd><p>if everybody followed, this should now define the zero polynomial…
+And <code class="docutils literal notranslate"><span class="pre">f-sqr(g(sqr(g)))</span></code> computes the same thing.</p>
+<p>We can check this in a typeset document like this:</p>
+<div class="highlight-latex notranslate"><div class="highlight"><pre><span></span><span class="k">\poldef</span> f(x):= 1 - x + quo(x<span class="nb">^</span>5,1 - x + x<span class="nb">^</span>2);<span class="c">%</span>
+<span class="k">\PolLet</span><span class="nb">{</span>g<span class="nb">}</span>=<span class="nb">{</span>f<span class="nb">}</span><span class="c">%</span>
+<span class="k">\poldef</span> f(z):= f<span class="nb">^</span>2;<span class="c">%</span>
+<span class="k">\poldef</span> f(T):= f(f);<span class="c">%</span>
+<span class="k">\poldef</span> k(w):= f-sqr(g(sqr(g)));<span class="c">%</span>
+<span class="sb">$$</span><span class="nb">f</span><span class="o">(</span><span class="nb">x</span><span class="o">)</span><span class="nb"> </span><span class="o">=</span><span class="nb"> </span><span class="nv">\vcenter</span><span class="nb">{</span><span class="nv">\hsize</span><span class="m">10</span><span class="nb">cm </span><span class="nv">\PolTypeset</span><span class="nb">{f}} </span><span class="s">$$</span>
+<span class="sb">$$</span><span class="nb">g</span><span class="o">(</span><span class="nb">z</span><span class="o">)</span><span class="nb"> </span><span class="o">=</span><span class="nb"> </span><span class="nv">\PolTypeset</span><span class="nb">{g} </span><span class="s">$$</span>
+<span class="sb">$$</span><span class="nb">k</span><span class="o">(</span><span class="nb">z</span><span class="o">)</span><span class="nb"> </span><span class="o">=</span><span class="nb"> </span><span class="nv">\PolTypeset</span><span class="nb">{k} </span><span class="s">$$</span>
+<span class="k">\immediate\write</span>128<span class="nb">{</span>f(x)=<span class="k">\PolToExpr</span><span class="nb">{</span>f<span class="nb">}}</span><span class="c">% ah, here we see it also</span>
+</pre></div>
+</div>
+</dd>
+<dt><code class="docutils literal notranslate"><span class="pre">\poldef</span> <span class="pre">f'(x):=</span> <span class="pre">diff1(f);</span></code></dt><dd><p>(new at <code class="docutils literal notranslate"><span class="pre">0.8</span></code>)</p>
+</dd>
+<dt><code class="docutils literal notranslate"><span class="pre">\PolDiff{f}{f'}</span></code></dt><dd><p>Both set <code class="docutils literal notranslate"><span class="pre">f'</span></code> (or any other chosen name) to the derivative
+of <code class="docutils literal notranslate"><span class="pre">f</span></code>.</p>
+<div class="admonition important">
+<p class="admonition-title">Important</p>
+<p>This is not done automatically. If some new definition needs to use
+the derivative of some available polynomial, that derivative
+polynomial must have been previously defined: something such as
+<code class="docutils literal notranslate"><span class="pre">f'(3)^2</span></code> will not work without a prior definition of <code class="docutils literal notranslate"><span class="pre">f'</span></code>.</p>
+<p>But one can now use <code class="docutils literal notranslate"><span class="pre">diff1(f)</span></code> for on-the-spot construction with no
+permanent declaration, so here <code class="docutils literal notranslate"><span class="pre">evalp(diff1(f),3)^2</span></code>. And
+<code class="docutils literal notranslate"><span class="pre">diff1(f)^2</span></code> is same as <code class="docutils literal notranslate"><span class="pre">f'^2</span></code>, assuming here <code class="docutils literal notranslate"><span class="pre">f'</span></code> was declared
+to be the derived polynomial.</p>
+<p>Notice that the name <code class="docutils literal notranslate"><span class="pre">diff1()</span></code> is experimental and may change. Use
+<code class="docutils literal notranslate"><span class="pre">\PolDiff{f}{f'}</span></code> as the stable interface.</p>
+</div>
+</dd>
+<dt><code class="docutils literal notranslate"><span class="pre">\PolTypeset{P}</span></code></dt><dd><p>Typesets (switching to math mode if in text mode):</p>
+<div class="highlight-latex notranslate"><div class="highlight"><pre><span></span><span class="k">\poldef</span> f(x):=(3+x)<span class="nb">^</span>5;<span class="c">%</span>
+<span class="k">\PolDiff</span><span class="nb">{</span>f<span class="nb">}{</span>f'<span class="nb">}</span><span class="k">\PolDiff</span><span class="nb">{</span>f'<span class="nb">}{</span>f''<span class="nb">}</span><span class="k">\PolDiff</span><span class="nb">{</span>f''<span class="nb">}{</span>f'''<span class="nb">}</span><span class="c">%</span>
+<span class="sb">$$</span><span class="nb">f</span><span class="o">(</span><span class="nb">z</span><span class="o">)</span><span class="nb"> </span><span class="o">=</span><span class="nb"> </span><span class="nv">\PolTypeset</span><span class="o">[</span><span class="nb">z</span><span class="o">]</span><span class="nb">{f} </span><span class="s">$$</span>
+<span class="sb">$$</span><span class="nb">f'</span><span class="o">(</span><span class="nb">z</span><span class="o">)</span><span class="nb"> </span><span class="o">=</span><span class="nb"> </span><span class="nv">\PolTypeset</span><span class="o">[</span><span class="nb">z</span><span class="o">]</span><span class="nb">{f'} </span><span class="s">$$</span>
+<span class="sb">$$</span><span class="nb">f''</span><span class="o">(</span><span class="nb">z</span><span class="o">)</span><span class="nb"> </span><span class="o">=</span><span class="nb"> </span><span class="nv">\PolTypeset</span><span class="o">[</span><span class="nb">z</span><span class="o">]</span><span class="nb">{f''} </span><span class="s">$$</span>
+<span class="sb">$$</span><span class="nb">f'''</span><span class="o">(</span><span class="nb">z</span><span class="o">)=</span><span class="nb"> </span><span class="nv">\PolTypeset</span><span class="o">[</span><span class="nb">z</span><span class="o">]</span><span class="nb">{f'''} </span><span class="s">$$</span>
+</pre></div>
+</div>
+<p>See <a class="reference internal" href="#poltypeset">its documentation</a> for the configurability
+via macros.</p>
+<p>Since <code class="docutils literal notranslate"><span class="pre">0.8</span></code> <a class="reference internal" href="#poltypeset">\PolTypeset</a> accepts directly an
+expression, it does not have to be a pre-declared polynomial name:</p>
+<div class="highlight-latex notranslate"><div class="highlight"><pre><span></span><span class="k">\PolTypeset</span><span class="nb">{</span>mul(x-i,i=1..5)<span class="nb">}</span>
+</pre></div>
+</div>
+</dd>
+<dt><code class="docutils literal notranslate"><span class="pre">\PolToExpr{P}</span></code></dt><dd><p>Expandably (contrarily to <a class="reference internal" href="#poltypeset">\PolTypeset</a>)
+produces <code class="docutils literal notranslate"><span class="pre">c_n*x^n</span> <span class="pre">+</span> <span class="pre">...</span> <span class="pre">+</span> <span class="pre">c_0</span></code> starting from the leading
+coefficient. The <code class="docutils literal notranslate"><span class="pre">+</span></code> signs are omitted if followed by negative
+coefficients.</p>
+<p>This is useful for console or file output. This syntax is Maple and
+PSTricks <code class="docutils literal notranslate"><span class="pre">\psplot[algebraic]</span></code> compatible; and also it is
+compatible with <code class="docutils literal notranslate"><span class="pre">\poldef</span></code> input syntax, of course. See
+<a class="reference internal" href="#id69">\PolToExprCaret</a> for configuration of the <code class="docutils literal notranslate"><span class="pre">^</span></code>, for example to
+use rather <code class="docutils literal notranslate"><span class="pre">**</span></code> for Python syntax compliance.</p>
+<p>Changed at <code class="docutils literal notranslate"><span class="pre">0.8</span></code>: the <code class="docutils literal notranslate"><span class="pre">^</span></code> in output is by default of catcode 12
+so in a draft document one can use <code class="docutils literal notranslate"><span class="pre">\PolToExpr{P}</span></code> inside the
+typesetting flow (without requiring math mode, where the <code class="docutils literal notranslate"><span class="pre">*</span></code> would
+be funny and <code class="docutils literal notranslate"><span class="pre">^12</span></code> would only put the <code class="docutils literal notranslate"><span class="pre">1</span></code> as exponent anyhow;
+but arguably in text mode the <code class="docutils literal notranslate"><span class="pre">+</span></code> and <code class="docutils literal notranslate"><span class="pre">-</span></code> are not satisfactory
+for math, except sometimes in monospace typeface, and anyhow TeX is
+unable to break the expression across lines, barring special help).</p>
+<p>See <a class="reference internal" href="#poltoexpr"><span class="std std-ref">\PolToExpr{<pol. expr.>}</span></a> and related macros for customization.</p>
+<p>Extended at <code class="docutils literal notranslate"><span class="pre">0.8</span></code> to accept as argument not only the name of a
+polynomial variable but more generally any polynomial expression.</p>
+</dd>
+</dl>
+</section>
+<section id="using-defined-polynomials-in-floating-point-context">
+<h2>Using defined polynomials in floating point context</h2>
+<p>Exact manipulations with fractional coefficients may quickly lead to
+very large denominators. For numerical evaluations, it is advisable
+to a use a floating point context. But for the polynomial to be
+usable as a function in floating point context, an extra step beyond
+<code class="docutils literal notranslate"><span class="pre">\poldef</span></code> is required: see <a class="reference internal" href="#polgenfloatvariant">\PolGenFloatVariant</a>. Then the
+<code class="docutils literal notranslate"><span class="pre">\xintfloateval</span></code> macro from <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a> will recognize the polynomial
+as a genuine function (with already float-rounded coefficients, and
+using a Horner scheme).</p>
+<p>But <a class="reference internal" href="#polgenfloatvariant">\PolGenFloatVariant</a> must be used each time the polynomial gets
+redefined or a new polynomial is created out of it. Functions such as
+for example <a class="reference internal" href="#deg"><span class="std std-ref">deg()</span></a> which handle the polynomial as an entity
+are only available within the <code class="docutils literal notranslate"><span class="pre">\poldef</span></code> and <code class="docutils literal notranslate"><span class="pre">\xinteval</span></code> (or
+<code class="docutils literal notranslate"><span class="pre">\xintexpr</span></code>) parsers. Inside <code class="docutils literal notranslate"><span class="pre">\xintfloateval</span></code> a polynomial can only
+serve as a numerical function (and only after declaration via
+<a class="reference internal" href="#polgenfloatvariant">\PolGenFloatVariant</a>), and not as a variable.</p>
+<p>In some cases one may wish to replace a polynomial having acquired
+very big fractional coefficients with a new one whose coefficients
+have been float-rounded. See <a class="reference internal" href="#polmapcoeffs"><span class="std std-ref">\PolMapCoeffs</span></a>
+which can be used for example with the <code class="docutils literal notranslate"><span class="pre">\xintFloat</span></code> macro from the
+<a class="reference external" href="https://www.ctan.org/pkg/xint">xintfrac</a> package to achieve this.</p>
+</section>
+<section id="the-polexpr-0-8-extensions-to-the-xintexpr-syntax">
+<span id="polexpr08"></span><h2>The polexpr <code class="docutils literal notranslate"><span class="pre">0.8</span></code> extensions to the <code class="docutils literal notranslate"><span class="pre">\xintexpr</span></code> syntax</h2>
+<p>All the syntax elements described in this section can be used in the
+<code class="docutils literal notranslate"><span class="pre">\xintexpr/\xinteval</span></code> context (where polynomials can be obtained from
+the <code class="docutils literal notranslate"><span class="pre">pol([])</span></code> constructor, once polexpr is loaded): their usage is
+not limited to only <code class="docutils literal notranslate"><span class="pre">\poldef</span></code> context.</p>
+<div class="admonition note">
+<p class="admonition-title">Note</p>
+<p>If a variable <code class="docutils literal notranslate"><span class="pre">myPol</span></code> defined via <code class="docutils literal notranslate"><span class="pre">\xintdefvar</span></code> turns out
+to be a polynomial, the difference with those declared via <code class="docutils literal notranslate"><span class="pre">\poldef</span></code>
+will be:</p>
+<ol class="arabic">
+<li><p><code class="docutils literal notranslate"><span class="pre">myPol</span></code> is not usable as <em>function</em>, but only as a variable.
+Attention that <code class="docutils literal notranslate"><span class="pre">f(x)</span></code> if <code class="docutils literal notranslate"><span class="pre">f</span></code> is only a variable (even a
+polynomial one) will actually compute <code class="docutils literal notranslate"><span class="pre">f</span> <span class="pre">*</span> <span class="pre">x</span></code>.</p></li>
+<li><p><code class="docutils literal notranslate"><span class="pre">myPol</span></code> is not known to the polexpr package, hence for example the
+macros to achieve localization of its roots are unavailable.</p>
+<p>In a parallel universe I perhaps have implemented this expandably
+which means it could then be accessible with syntax such as
+<code class="docutils literal notranslate"><span class="pre">rightmostroot(pol([42,1,34,2,-8,1]))</span></code> but…</p>
+</li>
+</ol>
+</div>
+<section id="warning-about-unstability-of-the-new-syntax">
+<h3>Warning about unstability of the new syntax</h3>
+<div class="admonition warning">
+<p class="admonition-title">Warning</p>
+<p>Consider the entirety of this section as <strong>UNSTABLE</strong> and
+<strong>EXPERIMENTAL</strong> (except perhaps regarding <code class="docutils literal notranslate"><span class="pre">+</span></code>, <code class="docutils literal notranslate"><span class="pre">-</span></code> and <code class="docutils literal notranslate"><span class="pre">*</span></code>).</p>
+<p>And this applies even to items not explicitly flagged with one of
+<strong>unstable</strong>, <strong>Unstable</strong>, or <strong>UNSTABLE</strong> which only reflect that
+documentation was written over a period of time exceeding one minute,
+enough for the author mood changes to kick in.</p>
+<p>It is hard to find good names at the start of a life-long extension
+program of functionalities, and perhaps in future it will be
+preferred to rename everything or give to some functions other
+meanings. Such quasi-complete renamings happened already a few times
+during the week devoted to development.</p>
+</div>
+</section>
+<section id="infix-operators">
+<h3>Infix operators <code class="docutils literal notranslate"><span class="pre">+,</span> <span class="pre">-,</span> <span class="pre">*,</span> <span class="pre">/,</span> <span class="pre">**,</span> <span class="pre">^</span></code></h3>
+<blockquote>
+<div><p>As has been explained in the <a class="reference internal" href="#syntax-overview-via-examples">Syntax overview via examples</a>
+section these infix operators have been made polynomial aware, not
+only in the <code class="docutils literal notranslate"><span class="pre">\poldef</span></code> context, but generally in any
+<code class="docutils literal notranslate"><span class="pre">\xintexpr/\xinteval</span></code> context, inclusive of <code class="docutils literal notranslate"><span class="pre">\xintdeffunc</span></code>.</p>
+<p>Conversely functions declared via <code class="docutils literal notranslate"><span class="pre">\xintdeffunc</span></code> and making use of
+these operators will automatically be able to accept polynomials
+declared from <code class="docutils literal notranslate"><span class="pre">\poldef</span></code> as variables.</p>
+<p>Usage of <code class="docutils literal notranslate"><span class="pre">/</span></code> for euclidean division of polynomials is <strong>deprecated</strong>.
+Only in case of a scalar denominator is it to be considered stable.
+Please use rather <code class="docutils literal notranslate"><span class="pre">quo()</span></code>.</p>
+</div></blockquote>
+</section>
+<section id="experimental-infix-operators">
+<h3>Experimental infix operators <code class="docutils literal notranslate"><span class="pre">//,</span> <span class="pre">/:</span></code></h3>
+<blockquote>
+<div><p>Here is the tentative behaviour of <code class="docutils literal notranslate"><span class="pre">A//B</span></code> according to types:</p>
+<ul class="simple">
+<li><p><code class="docutils literal notranslate"><span class="pre">A</span></code> non scalar and <code class="docutils literal notranslate"><span class="pre">B</span></code> non scalar: euclidean quotient,</p></li>
+<li><p><code class="docutils literal notranslate"><span class="pre">A</span></code> scalar and <code class="docutils literal notranslate"><span class="pre">B</span></code> scalar: floored division,</p></li>
+<li><p><code class="docutils literal notranslate"><span class="pre">A</span></code> scalar and <code class="docutils literal notranslate"><span class="pre">B</span></code> non scalar: produces zero,</p></li>
+<li><p><code class="docutils literal notranslate"><span class="pre">A</span></code> non scalar and <code class="docutils literal notranslate"><span class="pre">B</span></code> scalar: coefficient per
+coefficient floored division.</p></li>
+</ul>
+<p>This is an <strong>experimental</strong> overloading of the <code class="docutils literal notranslate"><span class="pre">//</span></code> and <code class="docutils literal notranslate"><span class="pre">/:</span></code>
+from <code class="docutils literal notranslate"><span class="pre">\xintexpr</span></code>.</p>
+<p>The behaviour in the last case, but not only, is to be considerd
+<strong>unstable</strong>. The alternative would be for <code class="docutils literal notranslate"><span class="pre">A//B</span></code> with <code class="docutils literal notranslate"><span class="pre">B</span></code>
+scalar to act as <code class="docutils literal notranslate"><span class="pre">quo(A,B)</span></code>. But, we have currently chosen to let
+<code class="docutils literal notranslate"><span class="pre">//B</span></code> for a scalar <code class="docutils literal notranslate"><span class="pre">B</span></code> act coefficient-wise on the numerator.
+Beware that it thus means it can be employed with the idea of doing
+euclidean division only by checking that <code class="docutils literal notranslate"><span class="pre">B</span></code> is non-scalar.</p>
+<p>The <code class="docutils literal notranslate"><span class="pre">/:</span></code> operator provides the associated remainder so always
+<code class="docutils literal notranslate"><span class="pre">A</span></code> is reconstructed from <code class="docutils literal notranslate"><span class="pre">(A//B)*B</span> <span class="pre">+</span> <span class="pre">A/:B</span></code>.</p>
+<p>If <code class="docutils literal notranslate"><span class="pre">:</span></code> is active character use <code class="docutils literal notranslate"><span class="pre">/\string:</span></code> (it is safer to use
+<code class="docutils literal notranslate"><span class="pre">/\string</span> <span class="pre">:</span></code> if it is not known if <code class="docutils literal notranslate"><span class="pre">:</span></code> has catcode other, letter,
+or is active, but note that <code class="docutils literal notranslate"><span class="pre">/:</span></code> is fine and needs no precaution if
+<code class="docutils literal notranslate"><span class="pre">:</span></code> has catcode letter, it is only an active <code class="docutils literal notranslate"><span class="pre">:</span></code> which is
+problematic, like for all other characters possibly used in an
+expression).</p>
+<blockquote>
+<div><p><strong>UNSTABLE</strong></p>
+<p>As explained above, there are (among other things) hesitations
+about behaviour with <code class="docutils literal notranslate"><span class="pre">pol2</span></code> a scalar.</p>
+</div></blockquote>
+</div></blockquote>
+</section>
+<section id="comparison-operators">
+<h3>Comparison operators <code class="docutils literal notranslate"><span class="pre"><,</span> <span class="pre">>,</span> <span class="pre"><=,</span> <span class="pre">>=,</span> <span class="pre">==,</span> <span class="pre">!=</span></code></h3>
+<blockquote>
+<div><p><strong>NOT YET IMPLEMENTED</strong></p>
+<p>As the internal representation by <a class="reference external" href="https://www.ctan.org/pkg/xint">xintfrac</a> and <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a> of
+fractions does not currently require them to be in reduced terms,
+such operations would be a bit costly as they could not benefit from
+the <code class="docutils literal notranslate"><span class="pre">\pdfstrcmp</span></code> engine primitive. In fact <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a> does not use
+it yet anywhere, even for normalized pure integers, although it could
+speed up signifcantly certain aspects of core arithmetic.</p>
+<p>Equality of polynomials can currently be tested by computing the
+difference, which is a bit costly. And of course the <code class="docutils literal notranslate"><span class="pre">deg()</span></code>
+function allows comparing degrees. In this context note the
+following syntax:</p>
+<div class="highlight-latex notranslate"><div class="highlight"><pre><span></span>(deg(Q)) ?? <span class="nb">{</span> zero <span class="nb">}</span> <span class="nb">{</span> non-zero scalar <span class="nb">}</span> <span class="nb">{</span> non-scalar <span class="nb">}</span>
+</pre></div>
+</div>
+<p>for branching.</p>
+</div></blockquote>
+</section>
+<section id="pol-nutple-expression">
+<span id="pol"></span><h3><code class="docutils literal notranslate"><span class="pre">pol(<nutple</span> <span class="pre">expression>)</span></code></h3>
+<blockquote>
+<div><p>This converts a nutple <code class="docutils literal notranslate"><span class="pre">[c0,c1,...,cN]</span></code> into the polynomial
+variable having these coefficients. Attention that the square
+brackets are <strong>mandatory</strong>, except of course if the argument is
+actually an expression producing such a “nutple”.</p>
+<blockquote>
+<div><p>Currently, this process will not normalize the coefficients (such
+as reducing to lowest terms), it only trims out the leading zero
+coefficients.</p>
+</div></blockquote>
+<p>Inside <code class="docutils literal notranslate"><span class="pre">\xintexpr</span></code>, this is the only (allowed) way to create ex
+nihilo a polynomial variable; inside <code class="docutils literal notranslate"><span class="pre">\poldef</span></code> it is an alternative
+input syntax which is more efficient than the input <code class="docutils literal notranslate"><span class="pre">c0</span> <span class="pre">+</span> <span class="pre">c1</span> <span class="pre">*</span> <span class="pre">x</span> <span class="pre">+</span> <span class="pre">c2</span> <span class="pre">*</span>
+<span class="pre">x^2</span> <span class="pre">+</span> <span class="pre">...</span></code>.</p>
+</div></blockquote>
+<div class="admonition important">
+<p class="admonition-title">Important</p>
+<p>Whenever an expression with polynomials collapses to a constant, it
+becomes a scalar. There is currently no distinction during the
+parsing of expressions by <code class="docutils literal notranslate"><span class="pre">\poldef</span></code>
+or <code class="docutils literal notranslate"><span class="pre">\xintexpr</span></code> between constant polynomial variables and scalar
+variables.</p>
+<p>Naturally, <code class="docutils literal notranslate"><span class="pre">\poldef</span></code> can be used to declare a constant polynomial
+<code class="docutils literal notranslate"><span class="pre">P</span></code>, then <code class="docutils literal notranslate"><span class="pre">P</span></code> can also be used as function having a value
+independent of argument, but as a variable, it is non-distinguishable
+from a scalar (of course functions such as <code class="docutils literal notranslate"><span class="pre">deg()</span></code> tacitly
+consider scalars to be constant polynomials).</p>
+<p>Notice that we tend to use the vocable “variable” to refer to
+arbitrary expressions used as function arguments, without implying
+that we are actually referring to pre-declared variables in the sense
+of <code class="docutils literal notranslate"><span class="pre">\xintdefvar</span></code>.</p>
+</div>
+</section>
+<section id="lpol-nutple-expression">
+<span id="lpol"></span><h3><code class="docutils literal notranslate"><span class="pre">lpol(<nutple</span> <span class="pre">expression>)</span></code></h3>
+<blockquote>
+<div><p>This converts a nutple <code class="docutils literal notranslate"><span class="pre">[cN,...,c1,c0]</span></code> into the polynomial
+variable having these coefficients, with leading coefficients coming
+first in the input. Attention that the square brackets are
+<strong>mandatory</strong>, except of course if the argument is actually an
+expression producing such a “nutple”.</p>
+<blockquote>
+<div><p>Currently, this process will not normalize the coefficients (such
+as reducing to lowest terms), it only trims out the leading zero
+coefficients.</p>
+<p><strong>NAME UNSTABLE</strong></p>
+</div></blockquote>
+<p>It can be used in <code class="docutils literal notranslate"><span class="pre">\poldef</span></code> as an alternative input syntax, which
+is more efficient than using the algebraic notation with monomials.</p>
+<p>(new with <code class="docutils literal notranslate"><span class="pre">0.8.1</span></code>, an empty nutple will cause breakage)</p>
+</div></blockquote>
+</section>
+<section id="xinteval-pol-expr">
+<span id="xintevalpolexpr"></span><h3><code class="docutils literal notranslate"><span class="pre">\xinteval{<pol.</span> <span class="pre">expr.>}</span></code></h3>
+<blockquote>
+<div><p>This is documented here for lack of a better place: it evaluates the
+polynomial expression then outputs the “string” <code class="docutils literal notranslate"><span class="pre">pol([c0,</span> <span class="pre">c1,</span> <span class="pre">...,</span> <span class="pre">cN])</span></code>
+if the degree <code class="docutils literal notranslate"><span class="pre">N</span></code> is at least one (and the usual scalar output else).</p>
+<p>The “pol” word uses letter catcodes, which is actually mandatory for
+this output to be usable as input, but it does not make sense to use
+this inside <code class="docutils literal notranslate"><span class="pre">\poldef</span></code> or <code class="docutils literal notranslate"><span class="pre">\xintexpr</span></code> at it means basically
+executing <code class="docutils literal notranslate"><span class="pre">pol(coeffs(..expression..))</span></code> which is but a convoluted
+way to obtain the same result as <code class="docutils literal notranslate"><span class="pre">(..expression..)</span></code> (the
+parentheses delimiting the polynomial expression).</p>
+<p>For example, <code class="docutils literal notranslate"><span class="pre">\xinteval{(1+pol([0,1]))^10}</span></code> expands (in two steps)
+to:</p>
+<div class="highlight-latex notranslate"><div class="highlight"><pre><span></span>pol([1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1])
+</pre></div>
+</div>
+<p>You do need loading polexpr for this, else of course <code class="docutils literal notranslate"><span class="pre">pol([])</span></code>
+remains unknown to <code class="docutils literal notranslate"><span class="pre">\xinteval{}</span></code> as well as the polynomial algebra !
+This example can also be done as
+<code class="docutils literal notranslate"><span class="pre">\xinteval{subs((1+x)^10,x=pol([0,1]))}</span></code>.</p>
+<p>I hesitated using as output the polynomial notation as produced by
+<a class="reference internal" href="#poltoexpr">\PolToExpr{}</a>, but finally opted for this.</p>
+</div></blockquote>
+</section>
+<section id="evalp-pol-expr-pol-expr">
+<span id="evalp"></span><h3><code class="docutils literal notranslate"><span class="pre">evalp(<pol.</span> <span class="pre">expr.>,</span> <span class="pre"><pol.</span> <span class="pre">expr>)</span></code></h3>
+<blockquote>
+<div><p>Evaluates the first argument as a polynomial function of the
+second. Usually the second argument will be scalar, but this is not
+required:</p>
+<div class="highlight-latex notranslate"><div class="highlight"><pre><span></span><span class="k">\poldef</span> K(x):= evalp(-3x<span class="nb">^</span>3-5x+1,-27x<span class="nb">^</span>4+5x-2);
+</pre></div>
+</div>
+<p>If the first argument is an already declared polynomial <code class="docutils literal notranslate"><span class="pre">P</span></code>, use
+rather the functional form <code class="docutils literal notranslate"><span class="pre">P()</span></code> (which can accept a numerical as
+well as polynomial argument) as it is more efficient.</p>
+<p>One can also use <code class="docutils literal notranslate"><span class="pre">subs()</span></code> syntax <a class="footnote-reference brackets" href="#id2" id="id1" role="doc-noteref"><span class="fn-bracket">[</span>1<span class="fn-bracket">]</span></a> (see <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a> documentation):</p>
+<div class="highlight-latex notranslate"><div class="highlight"><pre><span></span><span class="k">\poldef</span> K(x):= subs(-3y<span class="nb">^</span>3-5y+1, y = -27x<span class="nb">^</span>4+5x-2);
+</pre></div>
+</div>
+<p>but the <code class="docutils literal notranslate"><span class="pre">evalp()</span></code> will use a Horner evaluation scheme which is
+usually more efficient.</p>
+<aside class="footnote brackets" id="id2" role="note">
+<span class="label"><span class="fn-bracket">[</span><a role="doc-backlink" href="#id1">1</a><span class="fn-bracket">]</span></span>
+<p>by the way Maple uses the opposite, hence wrong, order
+<code class="docutils literal notranslate"><span class="pre">subs(x=...,</span> <span class="pre">P)</span></code> but was written before computer science
+reached the <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a> heights. However it makes validating
+Maple results by polexpr sometimes cumbersome, but perhaps
+they will update it at some point.</p>
+</aside>
+<blockquote>
+<div><p><strong>name unstable</strong></p>
+<p><code class="docutils literal notranslate"><span class="pre">poleval</span></code>? <code class="docutils literal notranslate"><span class="pre">evalpol</span></code>? <code class="docutils literal notranslate"><span class="pre">peval</span></code>? <code class="docutils literal notranslate"><span class="pre">evalp</span></code>? <code class="docutils literal notranslate"><span class="pre">value</span></code>?
+<code class="docutils literal notranslate"><span class="pre">eval</span></code>? <code class="docutils literal notranslate"><span class="pre">evalat</span></code>? <code class="docutils literal notranslate"><span class="pre">eval1at2</span></code>? <code class="docutils literal notranslate"><span class="pre">evalat2nd</span></code>?</p>
+<p>Life is so complicated when one asks questions. Not everybody does,
+though, as is amply demonstrated these days.</p>
+<p><strong>syntax unstable</strong></p>
+<p>I am hesitating about permuting the order of the arguments.</p>
+</div></blockquote>
+</div></blockquote>
+</section>
+<section id="deg-pol-expr">
+<span id="deg"></span><h3><code class="docutils literal notranslate"><span class="pre">deg(<pol.</span> <span class="pre">expr.>)</span></code></h3>
+<blockquote>
+<div><p>Computes the degree.</p>
+</div></blockquote>
+<div class="admonition important">
+<p class="admonition-title">Important</p>
+<p>As <code class="docutils literal notranslate"><span class="pre">\xintexpr</span></code> does not yet support infinities, the degree of
+the zero polynomial is <code class="docutils literal notranslate"><span class="pre">-1</span></code>. Beware that this breaks additivity
+of degrees, but <code class="docutils literal notranslate"><span class="pre">deg(P)<0</span></code> correctly detects the zero polynomial,
+and <code class="docutils literal notranslate"><span class="pre">deg(P)<=0</span></code> detects scalars.</p>
+</div>
+</section>
+<section id="coeffs-pol-expr">
+<h3><code class="docutils literal notranslate"><span class="pre">coeffs(<pol.</span> <span class="pre">expr.>)</span></code></h3>
+<blockquote>
+<div><p>Produces the nutple <code class="docutils literal notranslate"><span class="pre">[c0,c1,...,cN]</span></code> of coefficients. The highest
+degree coefficient is always non zero (except for the zero
+polynomial…).</p>
+<blockquote>
+<div><p><strong>name unstable</strong></p>
+<p>I am considering in particular using <code class="docutils literal notranslate"><span class="pre">polcoeffs()</span></code> to avoid
+having to overload <code class="docutils literal notranslate"><span class="pre">coeffs()</span></code> in future when matrix type
+will be added to <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a>.</p>
+</div></blockquote>
+</div></blockquote>
+</section>
+<section id="lcoeffs-pol-expr">
+<span id="lcoeffs"></span><h3><code class="docutils literal notranslate"><span class="pre">lcoeffs(<pol.</span> <span class="pre">expr.>)</span></code></h3>
+<blockquote>
+<div><p>Produces the nutple <code class="docutils literal notranslate"><span class="pre">[cN,....,c1,c0]</span></code> of coefficients, starting
+with the highest degree coefficient.</p>
+<p>(new with <code class="docutils literal notranslate"><span class="pre">0.8.1</span></code>)</p>
+</div></blockquote>
+</section>
+<section id="coeff-pol-expr-num-expr">
+<h3><code class="docutils literal notranslate"><span class="pre">coeff(<pol.</span> <span class="pre">expr.>,</span> <span class="pre"><num.</span> <span class="pre">expr.>)</span></code></h3>
+<blockquote>
+<div><p>As expected. Produces zero if the numerical index is negative or
+higher than the degree.</p>
+<blockquote>
+<div><p><strong>name, syntax and output unstable</strong></p>
+<p>I am hesitating with <code class="docutils literal notranslate"><span class="pre">coeff(n,pol)</span></code> syntax and also perhaps using
+<code class="docutils literal notranslate"><span class="pre">polcoeff()</span></code> in order to avoid having to overload <code class="docutils literal notranslate"><span class="pre">coeff()</span></code>
+when matrix type will be added to <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a>.</p>
+<p>The current behaviour is at odds with legacy
+<a class="reference internal" href="#polnthcoeff"><span class="std std-ref">\PolNthCoeff{<polname>}{<index>}</span></a> regarding negative indices.
+Accessing leading or sub-leading coefficients can be done with
+other syntax, see <a class="reference internal" href="#lc-pol-expr">lc(<pol. expr.>)</a>, and in some contexts it
+is useful to be able to rely on the fact that coefficients with
+negative indices do vanish, so I am for time being maintaining this.</p>
+</div></blockquote>
+</div></blockquote>
+</section>
+<section id="lc-pol-expr">
+<span id="lc"></span><h3><code class="docutils literal notranslate"><span class="pre">lc(<pol.</span> <span class="pre">expr.>)</span></code></h3>
+<blockquote>
+<div><p>The leading coefficient. The same result can be obtained from
+<code class="docutils literal notranslate"><span class="pre">coeffs(pol)[-1]</span></code>, which shows also how to generalize to access
+sub-leading coefficients. See the <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a> documentation for
+Python-like indexing syntax.</p>
+</div></blockquote>
+</section>
+<section id="monicpart-pol-expr">
+<h3><code class="docutils literal notranslate"><span class="pre">monicpart(<pol.</span> <span class="pre">expr.>)</span></code></h3>
+<blockquote>
+<div><p>Divides by the leading coefficient, except that <code class="docutils literal notranslate"><span class="pre">monicpart(0)==0</span></code>.</p>
+<blockquote>
+<div><p><strong>unstable</strong></p>
+<p>Currently the coefficients are reduced to lowest terms (contrarily
+to legacy behaviour of <a class="reference internal" href="#polmakemonic">\PolMakeMonic</a>), and
+additionally the <a class="reference external" href="https://www.ctan.org/pkg/xint">xintfrac</a> <code class="docutils literal notranslate"><span class="pre">\xintREZ</span></code> macro is applied which
+extracts powers of ten from numerator or denominator and stores
+them internally separately. This is generally beneficial to
+efficiency of multiplication.</p>
+</div></blockquote>
+</div></blockquote>
+</section>
+<section id="cont-pol-expr">
+<span id="cont"></span><h3><code class="docutils literal notranslate"><span class="pre">cont(<pol.</span> <span class="pre">expr.>)</span></code></h3>
+<blockquote>
+<div><p>The (fractional) greatest common divisor of the polynomial
+coefficients. It is always produced as an irreducible (non-negative)
+fraction. According to Gauss theorem the content of a product is the
+product of the contents.</p>
+<blockquote>
+<div><p><strong>name and syntax unstable</strong></p>
+<p>At <code class="docutils literal notranslate"><span class="pre">0.8</span></code> it was created as <code class="docutils literal notranslate"><span class="pre">icontent()</span></code> to match the legacy
+macro <a class="reference internal" href="#policontent">\PolIContent</a>, whose name in 2018 was
+chosen in relation to Maple’s function <code class="docutils literal notranslate"><span class="pre">icontent()</span></code>, possibly
+because at that time I had not seen that Maple also had a
+<code class="docutils literal notranslate"><span class="pre">content()</span></code> function. Name changed at <code class="docutils literal notranslate"><span class="pre">0.8.1</span></code>.</p>
+<p>It will change syntax if in future multivariate polynomials are
+supported, and <code class="docutils literal notranslate"><span class="pre">icontent()</span></code> will then make a come-back.</p>
+</div></blockquote>
+</div></blockquote>
+</section>
+<section id="primpart-pol-expr">
+<h3><code class="docutils literal notranslate"><span class="pre">primpart(<pol.</span> <span class="pre">expr.>)</span></code></h3>
+<blockquote>
+<div><p>The quotient (except for the zero polynomial) by
+<code class="docutils literal notranslate"><span class="pre">cont(<pol.</span> <span class="pre">expr.>)</span></code>. This is thus a polynomial with
+integer coefficients having <code class="docutils literal notranslate"><span class="pre">1</span></code> as greatest common divisor. The
+sign of the leading coefficient is the same as in the original.</p>
+<p>And <code class="docutils literal notranslate"><span class="pre">primpart(0)==0</span></code>.</p>
+<p>The trailing zeros of the integer coefficients are extracted
+into a power of ten exponent part, in the internal representation.</p>
+</div></blockquote>
+</section>
+<section id="quorem-pol-expr-pol-expr">
+<h3><code class="docutils literal notranslate"><span class="pre">quorem(<pol.</span> <span class="pre">expr.>,</span> <span class="pre"><pol.</span> <span class="pre">expr.>)</span></code></h3>
+<blockquote>
+<div><p>Produces a nutple <code class="docutils literal notranslate"><span class="pre">[Q,R]</span></code> with <code class="docutils literal notranslate"><span class="pre">Q</span></code> the euclidean quotient and
+<code class="docutils literal notranslate"><span class="pre">R</span></code> the remainder.</p>
+<blockquote>
+<div><p><strong>name unstable</strong></p>
+<p><code class="docutils literal notranslate"><span class="pre">poldiv()</span></code>?</p>
+</div></blockquote>
+</div></blockquote>
+</section>
+<section id="quo-pol-expr-pol-expr">
+<h3><code class="docutils literal notranslate"><span class="pre">quo(<pol.</span> <span class="pre">expr.>,</span> <span class="pre"><pol.</span> <span class="pre">expr.>)</span></code></h3>
+<blockquote>
+<div><p>The euclidean quotient.</p>
+<p>The deprecated <code class="docutils literal notranslate"><span class="pre">pol1/pol2</span></code> syntax computes the same polynomial.</p>
+</div></blockquote>
+</section>
+<section id="rem-pol-expr-pol-expr">
+<h3><code class="docutils literal notranslate"><span class="pre">rem(<pol.</span> <span class="pre">expr.>,</span> <span class="pre"><pol.</span> <span class="pre">expr.>)</span></code></h3>
+<blockquote>
+<div><p>The euclidean remainder. If <code class="docutils literal notranslate"><span class="pre">pol2</span></code> is a (non-zero) scalar, this is
+zero.</p>
+<p>There is no infix operator associated to this, for lack of evident
+notation. Please advise.</p>
+<p><code class="docutils literal notranslate"><span class="pre">/:</span></code> can be used if one is certain that <code class="docutils literal notranslate"><span class="pre">pol2</span></code> is of
+degree at least one. But read the warning about it being unstable
+even in that case.</p>
+</div></blockquote>
+</section>
+<section id="prem-pol-expr-1-pol-expr-2">
+<span id="prem"></span><h3><code class="docutils literal notranslate"><span class="pre">prem(<pol.</span> <span class="pre">expr.</span> <span class="pre">1>,</span> <span class="pre"><pol.</span> <span class="pre">expr.</span> <span class="pre">2>)</span></code></h3>
+<blockquote>
+<div><p>Produces a nutple <code class="docutils literal notranslate"><span class="pre">[m,</span> <span class="pre">spR]</span></code> where <code class="docutils literal notranslate"><span class="pre">spR</span></code> is the (special) pseudo
+Euclidean remainder. Its description is:</p>
+<ul>
+<li><p>the standard euclidean remainder <code class="docutils literal notranslate"><span class="pre">R</span></code> is <code class="docutils literal notranslate"><span class="pre">spR/m</span></code></p></li>
+<li><p><code class="docutils literal notranslate"><span class="pre">m</span> <span class="pre">=</span> <span class="pre">b^f</span></code> with <code class="docutils literal notranslate"><span class="pre">b</span></code> equal to the <strong>absolute value</strong> of the
+leading coefficient of <code class="docutils literal notranslate"><span class="pre">pol2</span></code>,</p></li>
+<li><p><code class="docutils literal notranslate"><span class="pre">f</span></code> is the number of non-zero coefficients in the euclidean
+quotient, if <code class="docutils literal notranslate"><span class="pre">deg(pol2)>0</span></code> (even if the remainder vanishes).</p>
+<p>If <code class="docutils literal notranslate"><span class="pre">pol2</span></code> is a scalar however, the function outputs <code class="docutils literal notranslate"><span class="pre">[1,0]</span></code>.</p>
+</li>
+</ul>
+<p>With these definitions one can show that if both <code class="docutils literal notranslate"><span class="pre">pol1</span></code> and
+<code class="docutils literal notranslate"><span class="pre">pol2</span></code> have integer coefficients, then this is also the case of
+<code class="docutils literal notranslate"><span class="pre">spR</span></code>, which makes its interest (and also <code class="docutils literal notranslate"><span class="pre">m*Q</span></code> has integer
+coefficients, with <code class="docutils literal notranslate"><span class="pre">Q</span></code> the euclidean quotient, if <code class="docutils literal notranslate"><span class="pre">deg(pol2)>0</span></code>).
+Also, <code class="docutils literal notranslate"><span class="pre">prem()</span></code> is computed faster than <code class="docutils literal notranslate"><span class="pre">rem()</span></code> for such integer
+coefficients polynomials.</p>
+<div class="admonition hint">
+<p class="admonition-title">Hint</p>
+<p>If you want the euclidean quotient <code class="docutils literal notranslate"><span class="pre">R</span></code> evaluated via <code class="docutils literal notranslate"><span class="pre">spR/m</span></code>
+(which may be faster, even with non integer coefficients) use
+<code class="docutils literal notranslate"><span class="pre">subs(last(x)/first(x),x=prem(P,Q))</span></code> syntax as it avoids
+computing <code class="docutils literal notranslate"><span class="pre">prem(P,Q)</span></code> twice. This does the trick both in
+<code class="docutils literal notranslate"><span class="pre">\poldef</span></code> or in <code class="docutils literal notranslate"><span class="pre">\xintdefvar</span></code>.</p>
+<p>However, as is explained in the <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a> documentation, using
+such syntax in an <code class="docutils literal notranslate"><span class="pre">\xintdeffunc</span></code> is (a.t.t.o.w) illusory, due to
+technicalities of how <code class="docutils literal notranslate"><span class="pre">subs()</span></code> gets converted into nested
+expandable macros. One needs an auxiliary function like this:</p>
+<div class="highlight-latex notranslate"><div class="highlight"><pre><span></span><span class="k">\xintdeffunc</span> lastoverfirst(x):=last(x)/first(x);
+<span class="k">\xintdeffunc</span> myR(x)=lastoverfirst(prem(x));
+</pre></div>
+</div>
+<p>Then, <code class="docutils literal notranslate"><span class="pre">myR(pol1,pol2)</span></code> will evaluate <code class="docutils literal notranslate"><span class="pre">prem(pol1,pol2)</span></code> only
+once and compute a polynomial identical to the euclidean
+remainder (internal representations of coefficients may differ).</p>
+</div>
+<p>In this case of integer coefficients polynomials, the polexpr
+internal representation of the integer coefficients in the pseudo
+remainder will be with unit denominators only if that was already the
+case for those of <code class="docutils literal notranslate"><span class="pre">pol1</span></code> and <code class="docutils literal notranslate"><span class="pre">pol2</span></code> (no automatic reduction to
+lowest terms is made prior or after computation).</p>
+<p>Pay attention here that <code class="docutils literal notranslate"><span class="pre">b</span></code> is the <strong>absolute value</strong> of the
+leading coefficient of <code class="docutils literal notranslate"><span class="pre">pol2</span></code>. Thus the coefficients of the
+pseudo-remainder have the same signs as those of the standard
+remainder. This diverges from Maple’s function with the same name.</p>
+</div></blockquote>
+</section>
+<section id="divmod-pol-expr-1-pol-expr-2">
+<h3><code class="docutils literal notranslate"><span class="pre">divmod(<pol.</span> <span class="pre">expr.</span> <span class="pre">1>,</span> <span class="pre"><pol.</span> <span class="pre">expr.</span> <span class="pre">2>)</span></code></h3>
+<blockquote>
+<div><p>Overloads the scalar <code class="docutils literal notranslate"><span class="pre">divmod()</span></code> and associates it with the
+experimental <code class="docutils literal notranslate"><span class="pre">//</span></code> and <code class="docutils literal notranslate"><span class="pre">/:</span></code> as extended to the polynomial type.</p>
+<p>In particular when both <code class="docutils literal notranslate"><span class="pre">pol1</span></code> and <code class="docutils literal notranslate"><span class="pre">pol2</span></code> are scalars, this is
+the usual <code class="docutils literal notranslate"><span class="pre">divmod()</span></code> (as in Python) and for <code class="docutils literal notranslate"><span class="pre">pol1</span></code> and <code class="docutils literal notranslate"><span class="pre">pol2</span></code>
+non constant polynomials, this is the same as <code class="docutils literal notranslate"><span class="pre">quorem()</span></code>.</p>
+<blockquote>
+<div><p><strong>Highly unstable</strong> overloading of <code class="docutils literal notranslate"><span class="pre">\xinteval</span></code>‘s <code class="docutils literal notranslate"><span class="pre">divmod()</span></code>.</p>
+</div></blockquote>
+</div></blockquote>
+</section>
+<section id="mod-pol-expr-1-pol-expr-2">
+<h3><code class="docutils literal notranslate"><span class="pre">mod(<pol.</span> <span class="pre">expr.</span> <span class="pre">1>,</span> <span class="pre"><pol.</span> <span class="pre">expr.</span> <span class="pre">2>)</span></code></h3>
+<blockquote>
+<div><p>The <code class="docutils literal notranslate"><span class="pre">R</span></code> of the <code class="docutils literal notranslate"><span class="pre">divmod()</span></code> output. Same as <code class="docutils literal notranslate"><span class="pre">R</span></code> of <code class="docutils literal notranslate"><span class="pre">quorem()</span></code>
+when the second argument <code class="docutils literal notranslate"><span class="pre">pol2</span></code> is of degree at least one.</p>
+<blockquote>
+<div><p><strong>Highly unstable</strong> overloading of <code class="docutils literal notranslate"><span class="pre">\xinteval</span></code>‘s <code class="docutils literal notranslate"><span class="pre">mod()</span></code>.</p>
+</div></blockquote>
+</div></blockquote>
+</section>
+<section id="polgcd-pol-expr-1-pol-expr-2">
+<h3><code class="docutils literal notranslate"><span class="pre">polgcd(<pol.</span> <span class="pre">expr.</span> <span class="pre">1>,</span> <span class="pre"><pol.</span> <span class="pre">expr.</span> <span class="pre">2>,</span> <span class="pre">...)</span></code></h3>
+<blockquote>
+<div><p>Evaluates to the greatest common polynomial divisor of all the
+polynomial inputs. The output is a <strong>primitive</strong> (in particular,
+with integer coefficients) polynomial. It is zero if and only if all
+inputs vanish.</p>
+<p>Attention, there must be either at least two polynomial variables, or
+alternatively, only one argument which then must be a bracketed list
+or some expression or variable evaluating to such a “nutple” whose
+items are polynomials (see the documentation of the scalar <code class="docutils literal notranslate"><span class="pre">gcd()</span></code>
+in <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a>).</p>
+<blockquote>
+<div><p>The two variable case could (and was, during development) have been
+defined at user level like this:</p>
+<div class="highlight-latex notranslate"><div class="highlight"><pre><span></span><span class="k">\xintdeffunc</span> polgcd<span class="nb">_</span>(P,Q):=
+ (deg(Q))??<span class="nb">{</span>P<span class="nb">}{</span>1<span class="nb">}{</span>polgcd<span class="nb">_</span>(Q,primpart(last(prem(P,Q))))<span class="nb">}</span>;
+<span class="k">\xintdeffunc</span> polgcd(P,Q):=polgcd<span class="nb">_</span>(primpart(P),primpart(Q));<span class="c">%</span>
+</pre></div>
+</div>
+<p>This is basically what is done internally for two polynomials, up
+to some internal optimizations.</p>
+</div></blockquote>
+<p><strong>UNSTABLE</strong></p>
+<p>I hesitate between returning a <em>primitive</em> or a <em>monic</em> polynomial.
+Maple returns a primitive polynomial if all inputs <a class="footnote-reference brackets" href="#id4" id="id3" role="doc-noteref"><span class="fn-bracket">[</span>2<span class="fn-bracket">]</span></a> have integer
+coefficients, else it returns a monic polynomial, but this is
+complicated technically for us to add such a check and would add
+serious overhead.</p>
+<p>Internally, computations are done using primitive
+integer-coefficients polynomials (as can be seen in the function
+template above). So I decided finally to output a primitive
+polynomial, as one can always apply <code class="docutils literal notranslate"><span class="pre">monicpart()</span></code> to it.</p>
+<p>Attention that this is at odds with behaviour of the legacy
+<a class="reference internal" href="#polgcd">\PolGCD</a> (non expandable) macro.</p>
+<aside class="footnote brackets" id="id4" role="note">
+<span class="label"><span class="fn-bracket">[</span><a role="doc-backlink" href="#id3">2</a><span class="fn-bracket">]</span></span>
+<p>actually, only two polynomial arguments are allowed by Maple’s
+<code class="docutils literal notranslate"><span class="pre">gcd()</span></code> as far as I know.</p>
+</aside>
+</div></blockquote>
+</section>
+<section id="resultant-pol-expr-1-pol-expr-2">
+<h3><code class="docutils literal notranslate"><span class="pre">resultant(<pol.</span> <span class="pre">expr.</span> <span class="pre">1>,</span> <span class="pre"><pol.</span> <span class="pre">expr.</span> <span class="pre">2>)</span></code></h3>
+<blockquote>
+<div><p>The resultant.</p>
+<blockquote>
+<div><p><strong>NOT YET IMPLEMENTED</strong></p>
+</div></blockquote>
+</div></blockquote>
+</section>
+<section id="disc-pol-expr">
+<h3><code class="docutils literal notranslate"><span class="pre">disc(<pol.</span> <span class="pre">expr.>)</span></code></h3>
+<blockquote>
+<div><p>The discriminant.</p>
+<blockquote>
+<div><p><strong>NOT YET IMPLEMENTED</strong></p>
+</div></blockquote>
+</div></blockquote>
+</section>
+<section id="polpowmod-pol-expr-1-num-expr-pol-expr-2">
+<h3><code class="docutils literal notranslate"><span class="pre">polpowmod(<pol.</span> <span class="pre">expr.</span> <span class="pre">1>,</span> <span class="pre"><num.</span> <span class="pre">expr.>,</span> <span class="pre"><pol.</span> <span class="pre">expr.</span> <span class="pre">2>)</span></code></h3>
+<blockquote>
+<div><p>Modular exponentiation: <code class="docutils literal notranslate"><span class="pre">mod(pol1^N,</span> <span class="pre">pol2)</span></code> in a more efficient
+manner than first computing <code class="docutils literal notranslate"><span class="pre">pol1^N</span></code> then reducing modulo <code class="docutils literal notranslate"><span class="pre">pol2</span></code>.</p>
+<p>Attention that this is using the <code class="docutils literal notranslate"><span class="pre">mod()</span></code> operation, whose current
+experimental status is as follows:</p>
+<ul class="simple">
+<li><p>if <code class="docutils literal notranslate"><span class="pre">deg(pol2)>0</span></code>, the euclidean remainder operation,</p></li>
+<li><p>if <code class="docutils literal notranslate"><span class="pre">pol2</span></code> is a scalar, coefficient-wise reduction modulo <code class="docutils literal notranslate"><span class="pre">pol2</span></code>.</p></li>
+</ul>
+<p><strong>UNSTABLE</strong></p>
+<blockquote>
+<div><p>This is currently implemented at high level via <code class="docutils literal notranslate"><span class="pre">\xintdeffunc</span></code> and
+recursive definitions, which were copied over from a scalar example
+in the <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a> manual:</p>
+<div class="highlight-latex notranslate"><div class="highlight"><pre><span></span><span class="k">\xintdeffunc</span> polpowmod<span class="nb">_</span>(P, m, Q) :=
+ isone(m)?
+ <span class="c">% m=1: return P modulo Q</span>
+ <span class="nb">{</span> mod(P,Q) <span class="nb">}</span>
+ <span class="c">% m > 1: test if odd or even and do recursive call</span>
+ <span class="nb">{</span> odd(m)? <span class="nb">{</span> mod(P*sqr(polpowmod<span class="nb">_</span>(P, m//2, Q)), Q) <span class="nb">}</span>
+ <span class="nb">{</span> mod( sqr(polpowmod<span class="nb">_</span>(P, m//2, Q)), Q) <span class="nb">}</span>
+ <span class="nb">}</span>
+ ;<span class="c">%</span>
+<span class="k">\xintdeffunc</span> polpowmod(P, m, Q) := (m)?<span class="nb">{</span>polpowmod<span class="nb">_</span>(P, m, Q)<span class="nb">}{</span>1<span class="nb">}</span>;<span class="c">%</span>
+</pre></div>
+</div>
+<p>Negative exponents are not currently implemented.</p>
+<p>For example:</p>
+<div class="highlight-latex notranslate"><div class="highlight"><pre><span></span><span class="k">\xinteval</span><span class="nb">{</span>subs(polpowmod(1+x,100,x<span class="nb">^</span>7),x=pol([0,1]))<span class="nb">}</span>
+<span class="k">\xinteval</span><span class="nb">{</span>subs(polpowmod(1+x,20,10), x=pol([0,1]))<span class="nb">}</span>
+</pre></div>
+</div>
+<p>produce respectively:</p>
+<div class="highlight-latex notranslate"><div class="highlight"><pre><span></span>pol([1, 100, 4950, 161700, 3921225, 75287520, 1192052400])
+pol([1, 0, 0, 0, 5, 4, 0, 0, 0, 0, 6, 0, 0, 0, 0, 4, 5, 0, 0, 0, 1])
+</pre></div>
+</div>
+</div></blockquote>
+</div></blockquote>
+</section>
+<section id="rdcoeffs-pol-expr">
+<span id="rdcoeffs"></span><h3><code class="docutils literal notranslate"><span class="pre">rdcoeffs(<pol.</span> <span class="pre">expr.>)</span></code></h3>
+<blockquote>
+<div><p>This operates on the internal representation of the coefficients,
+reducing them to lowest terms.</p>
+<blockquote>
+<div><p><strong>name HIGHLY undecided</strong></p>
+</div></blockquote>
+</div></blockquote>
+</section>
+<section id="rdzcoeffs-pol-expr">
+<h3><code class="docutils literal notranslate"><span class="pre">rdzcoeffs(<pol.</span> <span class="pre">expr.>)</span></code></h3>
+<blockquote>
+<div><p>This operates on the internal representation of the coefficients,
+reducing them to lowest terms then extracting from numerator
+or denominator the maximal power of ten to store as a decimal
+exponent.</p>
+<p>This is sometimes favourable to more efficient polynomial algebra
+computations.</p>
+<blockquote>
+<div><p><strong>name HIGHLY undecided</strong></p>
+</div></blockquote>
+</div></blockquote>
+</section>
+<section id="diff1-pol-expr">
+<h3><code class="docutils literal notranslate"><span class="pre">diff1(<pol.</span> <span class="pre">expr.>)</span></code></h3>
+<blockquote>
+<div><p>The first derivative.</p>
+<blockquote>
+<div><p><strong>name UNSTABLE</strong></p>
+<p>This name may be used in future to be the partial derivative with
+respect to a first variable.</p>
+</div></blockquote>
+</div></blockquote>
+</section>
+<section id="diff2-pol-expr">
+<h3><code class="docutils literal notranslate"><span class="pre">diff2(<pol.</span> <span class="pre">expr.>)</span></code></h3>
+<blockquote>
+<div><p>The second derivative.</p>
+<blockquote>
+<div><p><strong>name UNSTABLE</strong></p>
+<p>This name may be used in future to be the partial derivative with
+respect to a second variable.</p>
+</div></blockquote>
+</div></blockquote>
+</section>
+<section id="diffn-pol-expr-p-num-expr-n">
+<h3><code class="docutils literal notranslate"><span class="pre">diffn(<pol.</span> <span class="pre">expr.</span> <span class="pre">P>,</span> <span class="pre"><num.</span> <span class="pre">expr.</span> <span class="pre">n>)</span></code></h3>
+<blockquote>
+<div><p>The <code class="docutils literal notranslate"><span class="pre">n</span></code>th derivative of <code class="docutils literal notranslate"><span class="pre">P</span></code>. For <code class="docutils literal notranslate"><span class="pre">n<0</span></code> computes iterated primitives
+vanishing at the origin.</p>
+<p>The coefficients are not reduced to lowest terms.</p>
+<blockquote>
+<div><p><strong>name and syntax UNSTABLE</strong></p>
+<p>I am also considering reversing the order of the arguments.</p>
+</div></blockquote>
+</div></blockquote>
+</section>
+<section id="antider-pol-expr-p">
+<h3><code class="docutils literal notranslate"><span class="pre">antider(<pol.</span> <span class="pre">expr.</span> <span class="pre">P>)</span></code></h3>
+<blockquote>
+<div><p>The primitive of <code class="docutils literal notranslate"><span class="pre">P</span></code> with no constant term. Same as <code class="docutils literal notranslate"><span class="pre">diffn(P,-1)</span></code>.</p>
+</div></blockquote>
+</section>
+<section id="intfrom-pol-expr-p-pol-expr-c">
+<h3><code class="docutils literal notranslate"><span class="pre">intfrom(<pol.</span> <span class="pre">expr.</span> <span class="pre">P>,</span> <span class="pre"><pol.</span> <span class="pre">expr.</span> <span class="pre">c>)</span></code></h3>
+<blockquote>
+<div><p>The primitive of <code class="docutils literal notranslate"><span class="pre">P</span></code> vanishing at <code class="docutils literal notranslate"><span class="pre">c</span></code>, i.e. <code class="docutils literal notranslate"><span class="pre">\int_c^x</span> <span class="pre">P(t)dt</span></code>.</p>
+<p>Also <code class="docutils literal notranslate"><span class="pre">c</span></code> can be a polynomial… so if <code class="docutils literal notranslate"><span class="pre">c</span></code> is monomial <code class="docutils literal notranslate"><span class="pre">x</span></code>
+this will give zero!</p>
+<blockquote>
+<div><p><strong>UNSTABLE</strong></p>
+<p>Allowing general polynomial variable for <code class="docutils literal notranslate"><span class="pre">c</span></code> adds a bit of
+overhead to the case of a pure scalar. So I am hesitating
+maintaining this feature whose interest appears dubious.</p>
+</div></blockquote>
+<div class="admonition attention">
+<p class="admonition-title">Attention</p>
+<p>As the two arguments are both allowed to be polynomials, if by
+inadvertance one exchanges the two, there is no error but the
+meaning of <code class="docutils literal notranslate"><span class="pre">intfrom(c,P)</span></code> is completely otherwise, as it
+produces <code class="docutils literal notranslate"><span class="pre">c*(x</span> <span class="pre">-</span> <span class="pre">P)</span></code> if <code class="docutils literal notranslate"><span class="pre">c</span></code> is a scalar:</p>
+<div class="highlight-latex notranslate"><div class="highlight"><pre><span></span>>>> <span class="nb">&</span>pol
+pol mode (i.e. function definitions use <span class="k">\poldef</span>)
+>>> P(x):=1+x<span class="nb">^</span>2;
+P = x<span class="nb">^</span>2+1
+ --> <span class="nb">&</span>GenFloat(P) lets P become usable as function in fp mode
+ --> <span class="nb">&</span>ROOTS(P) (resp. <span class="nb">&</span>ROOTS(P,N)) finds all rational roots exactly and
+ all irrational roots with at least 10 (resp. N) fractional digits
+>>> intfrom(P,1);
+@<span class="nb">_</span>1 pol([-4/3, 1, 0, 1/3])
+>>> intfrom(1,P);
+@<span class="nb">_</span>2 pol([-1, 1, -1])
+>>> <span class="nb">&</span>bye
+</pre></div>
+</div>
+</div>
+</div></blockquote>
+</section>
+<section id="integral-pol-expr-p-pol-expr-a-pol-expr-b">
+<h3><code class="docutils literal notranslate"><span class="pre">integral(<pol.</span> <span class="pre">expr.</span> <span class="pre">P>,</span> <span class="pre">[<pol.</span> <span class="pre">expr.</span> <span class="pre">a>,</span> <span class="pre"><pol.</span> <span class="pre">expr.</span> <span class="pre">b>])</span></code></h3>
+<blockquote>
+<div><p><code class="docutils literal notranslate"><span class="pre">\int_a^b</span> <span class="pre">P(t)dt</span></code>.</p>
+<div class="admonition warning">
+<p class="admonition-title">Warning</p>
+<p>The brackets here are not denoting an optional argument but a
+<em>mandatory</em> nutple argument <code class="docutils literal notranslate"><span class="pre">[a,</span> <span class="pre">b]</span></code> with <em>two items</em>. No real
+recoverable-from error check is done on the input syntax. The
+input can be an <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a> variable which happens to be a nutple
+with two items, or any expression which evaluates to such a
+nutple.</p>
+</div>
+<p><code class="docutils literal notranslate"><span class="pre">a</span></code> and <code class="docutils literal notranslate"><span class="pre">b</span></code> are not restricted to be scalars, they are allowed to
+be themselves polynomial variables or even polynomial expressions.</p>
+<blockquote>
+<div><p>To compute <code class="docutils literal notranslate"><span class="pre">\int_{x-1}^x</span> <span class="pre">P(t)dt</span></code> it is more efficient to use
+<code class="docutils literal notranslate"><span class="pre">intfrom(x-1)</span></code>.</p>
+<p>Similary to compute <code class="docutils literal notranslate"><span class="pre">\int_x^{x+1}</span> <span class="pre">P(t)dt</span></code>, use <code class="docutils literal notranslate"><span class="pre">-intfrom(x+1)</span></code>.</p>
+<p><strong>UNSTABLE</strong></p>
+<p>Am I right to allow general polynomials <code class="docutils literal notranslate"><span class="pre">a</span></code> and <code class="docutils literal notranslate"><span class="pre">b</span></code> hence add
+overhead to the pure scalar case ?</p>
+</div></blockquote>
+</div></blockquote>
+</section>
+</section>
+<section id="non-expandable-macros">
+<h2>Non-expandable macros</h2>
+<div class="admonition note">
+<p class="admonition-title">Note</p>
+<p>At <code class="docutils literal notranslate"><span class="pre">0.8</span></code> <code class="docutils literal notranslate"><span class="pre">polexpr</span></code> is usable with Plain TeX and not only with
+LaTeX. Some examples given in this section may be using LaTeX syntax
+such as <code class="docutils literal notranslate"><span class="pre">\renewcommand</span></code>.</p>
+</div>
+<section id="poldef-polname-letter-expression-using-the-letter-as-indeterminate">
+<span id="poldef"></span><h3><code class="docutils literal notranslate"><span class="pre">\poldef</span> <span class="pre">polname(letter):=</span> <span class="pre">expression</span> <span class="pre">using</span> <span class="pre">the</span> <span class="pre">letter</span> <span class="pre">as</span> <span class="pre">indeterminate;</span></code></h3>
+<blockquote>
+<div><p>This evaluates the <em>polynomial expression</em> and stores the
+coefficients in a private structure accessible later via other
+package macros, used with argument <code class="docutils literal notranslate"><span class="pre">polname</span></code>. Of course the
+<em>expression</em> can make use of previously defined polynomials.</p>
+<p>Polynomial names must start with a letter and are constituted of
+letters, digits, underscores and the right tick <code class="docutils literal notranslate"><span class="pre">'</span></code>.</p>
+<p>The whole <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a> syntax is authorized, as long as the final
+result is of polynomial type:</p>
+<div class="highlight-latex notranslate"><div class="highlight"><pre><span></span><span class="k">\poldef</span> polname(z) := add((-1)<span class="nb">^</span>i z<span class="nb">^</span>(2i+1)/(2i+1)!, i = 0..10);
+</pre></div>
+</div>
+<p>With fractional coefficients, beware the <a class="reference internal" href="#warningtacit">tacit multiplication issue</a>.</p>
+<p>Furthermore:</p>
+<ul class="simple">
+<li><p>a variable <code class="docutils literal notranslate"><span class="pre">polname</span></code> is defined which can be used in <code class="docutils literal notranslate"><span class="pre">\poldef</span></code>
+as well as in <code class="docutils literal notranslate"><span class="pre">\xinteval</span></code> for algebraic computations or as
+argument to polynomial aware functions,</p></li>
+<li><p>a function <code class="docutils literal notranslate"><span class="pre">polname()</span></code> is defined which can be used in <code class="docutils literal notranslate"><span class="pre">\poldef</span></code>
+as well as in <code class="docutils literal notranslate"><span class="pre">\xinteval</span></code>. It accepts there as argument scalars
+and also other polynomials (via their names, thanks to previous
+item).</p></li>
+</ul>
+<p>Notice that any function defined via <code class="docutils literal notranslate"><span class="pre">\xintdeffunc</span></code> and using
+only algebraic operations (and ople indexing or slicing operations)
+should work fine in <code class="docutils literal notranslate"><span class="pre">\xintexpr/\xinteval</span></code> with such polynomial
+names as argument.</p>
+<p>In the case of a constant polynomial, the <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a> variable (not the
+internal data structure on which the package macros operate)
+associated to it is indistinguishable from a scalar, it is actually
+a scalar and has lost all traces from its origins as a polynomial
+(so for example can be used as argument to the <code class="docutils literal notranslate"><span class="pre">cos()</span></code> function).</p>
+<p>The <em>function</em> on the other hand remains a one-argument function,
+which simply has a constant value.</p>
+<div class="admonition attention">
+<p class="admonition-title">Attention</p>
+<p>The function <code class="docutils literal notranslate"><span class="pre">polname()</span></code> is defined <strong>only</strong> for
+<code class="docutils literal notranslate"><span class="pre">\xintexpr/\xinteval</span></code>
+context. It will be unknown to <code class="docutils literal notranslate"><span class="pre">\xintfloateval</span></code>.</p>
+<p>Worse, a
+previously existing floating point function of the same name will
+be let undefined again, to avoid hard to debug mismatches between
+exact and floating point polynomials. This also applies when the
+polynomial is produced not via <code class="docutils literal notranslate"><span class="pre">\poldef</span></code> or <code class="docutils literal notranslate"><span class="pre">\PolDef</span></code> but
+as result of usage of the other package macros.</p>
+<p>See <a class="reference internal" href="#polgenfloatvariant"><span class="std std-ref">\PolGenFloatVariant{<polname>}</span></a> to generate a <strong>function</strong>
+usable in <code class="docutils literal notranslate"><span class="pre">\xintfloateval</span></code>.</p>
+</div>
+<div class="admonition attention">
+<p class="admonition-title">Attention</p>
+<p>Using the <strong>variable</strong> <code class="docutils literal notranslate"><span class="pre">mypol</span></code> inside <code class="docutils literal notranslate"><span class="pre">\xintfloateval</span></code> will
+generate low-level errors because the infix operators there are
+not polynomial-aware, and the polynomial specific functions such
+as <code class="docutils literal notranslate"><span class="pre">deg()</span></code> are only defined for usage inside <code class="docutils literal notranslate"><span class="pre">\xintexpr</span></code>.</p>
+<p>In short, currently polynomials defined via <code class="docutils literal notranslate"><span class="pre">polexpr</span></code> can
+be used in floating point context only for numerical evaluations,
+via <strong>functions</strong> obtained from <a class="reference internal" href="#polgenfloatvariant"><span class="std std-ref">\PolGenFloatVariant{<polname>}</span></a>
+usage.</p>
+<p>Changes to the original polynomial via package macros are not
+automatically mapped to the numerical floating point evaluator
+which must be manually updated as necessary when the original
+rational coefficient polynomial is modified.</p>
+</div>
+<p>The original expression is lost after parsing, and in particular the
+package provides no way to typeset it (of course the package
+provides macros to typeset the computed polynomial). Typesetting
+the original expression has to be done manually, if needed.</p>
+</div></blockquote>
+</section>
+<section id="poldef-letter-polname-expr-using-the-letter-as-indeterminate">
+<span id="id5"></span><h3><code class="docutils literal notranslate"><span class="pre">\PolDef[<letter>]{<polname>}{<expr.</span> <span class="pre">using</span> <span class="pre">the</span> <span class="pre">letter</span> <span class="pre">as</span> <span class="pre">indeterminate>}</span></code></h3>
+<blockquote>
+<div><p>Does the same as <a class="reference internal" href="#poldef">\poldef</a> in an undelimited macro
+format, the main interest is to avoid potential problems with the
+catcode of the semi-colon in presence of some packages. In absence
+of a <code class="docutils literal notranslate"><span class="pre">[<letter>]</span></code> optional argument, the variable is assumed to be
+<code class="docutils literal notranslate"><span class="pre">x</span></code>.</p>
+</div></blockquote>
+</section>
+<section id="polgenfloatvariant">
+<span id="id6"></span><h3><code class="docutils literal notranslate"><span class="pre">\PolGenFloatVariant{}</span></code></h3>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolGenFloatVariant{<polname>}</span></code></p>
+<blockquote>
+<div><p>Makes the polynomial also usable in the
+<code class="docutils literal notranslate"><span class="pre">\xintfloatexpr/\xintfloateval</span></code> parser. It will therein evaluates
+via an Horner scheme using polynomial coefficients already
+pre-rounded to the float precision.</p>
+<p>See also <a class="reference internal" href="#poltofloatexpr"><span class="std std-ref">\PolToFloatExpr{<pol. expr.>}</span></a>.</p>
+<div class="admonition attention">
+<p class="admonition-title">Attention</p>
+<p>Any operation, for example generating the derivative polynomial,
+or dividing two polynomials or using the <code class="docutils literal notranslate"><span class="pre">\PolLet</span></code>, must be
+followed by explicit usage of <code class="docutils literal notranslate"><span class="pre">\PolGenFloatVariant{<polname>}</span></code> if
+the new polynomial is to be used in <code class="docutils literal notranslate"><span class="pre">\xintfloateval</span></code>.</p>
+</div>
+</div></blockquote>
+</section>
+<section id="poltypeset">
+<span id="id7"></span><h3><code class="docutils literal notranslate"><span class="pre">\PolTypeset{}</span></code></h3>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolTypeset{<pol.</span> <span class="pre">expr.>}</span></code></p>
+<blockquote>
+<div><p>Typesets in descending powers, switching to math mode if in text
+mode, after evaluating the polynomial expression:</p>
+<div class="highlight-latex notranslate"><div class="highlight"><pre><span></span><span class="k">\PolTypeset</span><span class="nb">{</span>mul(x-i,i=1..5)<span class="nb">}</span><span class="c">% possible since polexpr 0.8</span>
+</pre></div>
+</div>
+<p>The letter used in the input expression is by default <code class="docutils literal notranslate"><span class="pre">x</span></code>,
+but can be modified by a redefinition of <a class="reference internal" href="#id67">\PolToExprInVar</a>.</p>
+<p>It uses also by default the letter <code class="docutils literal notranslate"><span class="pre">x</span></code> on output but this one can
+be changed via an optional argument:</p>
+<div class="highlight-latex notranslate"><div class="highlight"><pre><span></span><span class="k">\PolTypeset</span><span class="na">[z]</span><span class="nb">{</span>polname or polynomial expression<span class="nb">}</span>
+</pre></div>
+</div>
+<p>By default zero coefficients are skipped (use <code class="docutils literal notranslate"><span class="pre">\poltypesetalltrue</span></code>
+to get all of them in output).</p>
+<p>The following macros (whose meanings will be found in the package code)
+can be re-defined for customization. Their default definitions are
+expandable, but this is not a requirement.</p>
+</div></blockquote>
+<section id="poltypesetcmd">
+<span id="id8"></span><h4><code class="docutils literal notranslate"><span class="pre">\PolTypesetCmd{}</span></code></h4>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolTypesetCmd{<raw_coeff>}</span></code></p>
+<blockquote>
+<div><p>Its package definition checks if the coefficient is <code class="docutils literal notranslate"><span class="pre">1</span></code> or <code class="docutils literal notranslate"><span class="pre">-1</span></code>
+and then skips printing the <code class="docutils literal notranslate"><span class="pre">1</span></code>, except for the coefficient of
+degree zero. Also it sets the conditional deciding behaviour of
+<a class="reference internal" href="#polifcoeffisplusorminusone"><span class="std std-ref">\PolIfCoeffIsPlusOrMinusOne{T}{F}</span></a>.</p>
+<p>The actual printing of the coefficients, when not equal to plus or
+minus one, is handled by <a class="reference internal" href="#poltypesetone"><span class="std std-ref">\PolTypesetOne{<raw_coeff>}</span></a>.</p>
+</div></blockquote>
+<section id="polifcoeffisplusorminusone">
+<span id="id9"></span><h5><code class="docutils literal notranslate"><span class="pre">\PolIfCoeffIsPlusOrMinusOne{}{}</span></code></h5>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolIfCoeffIsPlusOrMinusOne{T}{F}</span></code></p>
+<blockquote>
+<div><p>This macro is a priori undefined.</p>
+<p>It is defined via the default <a class="reference internal" href="#poltypesetcmd"><span class="std std-ref">\PolTypesetCmd{<raw_coeff>}</span></a> to be
+used if needed in the execution of <a class="reference internal" href="#id11">\PolTypesetMonomialCmd</a>,
+e.g. to insert a <code class="docutils literal notranslate"><span class="pre">\cdot</span></code> in front of <code class="docutils literal notranslate"><span class="pre">\PolVar^{\PolIndex}</span></code> if
+the coefficient is not plus or minus one.</p>
+<p>The macro will execute <code class="docutils literal notranslate"><span class="pre">T</span></code> if the coefficient has been found to be
+plus or minus one, and <code class="docutils literal notranslate"><span class="pre">F</span></code> if not. It chooses expandably between
+<code class="docutils literal notranslate"><span class="pre">T</span></code> and <code class="docutils literal notranslate"><span class="pre">F</span></code>.</p>
+</div></blockquote>
+</section>
+</section>
+<section id="poltypesetone">
+<span id="id10"></span><h4><code class="docutils literal notranslate"><span class="pre">\PolTypesetOne{}</span></code></h4>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolTypesetOne{<raw_coeff>}</span></code></p>
+<blockquote>
+<div><p>Defaults to <code class="docutils literal notranslate"><span class="pre">\xintTeXsignedFrac</span></code> (LaTeX) or <code class="docutils literal notranslate"><span class="pre">\xintTeXsignedOver</span></code>
+(else). But these <a class="reference external" href="https://www.ctan.org/pkg/xint">xintfrac</a> old legacy macros are a bit
+annoying as they insist in exhibiting a power of ten rather than
+using simpler decimal notation.</p>
+<p>As alternative, one can do definitions such as:</p>
+<div class="highlight-latex notranslate"><div class="highlight"><pre><span></span><span class="k">\def\PolTypesetOne</span>#1<span class="nb">{</span><span class="k">\xintDecToString</span><span class="nb">{</span><span class="k">\xintREZ</span><span class="nb">{</span>#1<span class="nb">}}}</span>
+<span class="c">% or with LaTeX+siunitx for example</span>
+<span class="k">\renewcommand\PolTypesetOne</span><span class="na">[1]</span><span class="nb">{</span><span class="k">\num</span><span class="nb">{</span><span class="k">\xintPFloat</span><span class="na">[5]</span><span class="nb">{</span>#1<span class="nb">}}}</span>
+<span class="c">% (as \num of siunitx understands floating point notation)</span>
+<span class="k">\renewcommand\PolTypesetOne</span><span class="na">[1]</span><span class="nb">{</span><span class="k">\num</span><span class="nb">{</span><span class="k">\xintRound</span><span class="nb">{</span>4<span class="nb">}{</span>#1<span class="nb">}}}</span>
+</pre></div>
+</div>
+</div></blockquote>
+</section>
+<section id="poltypesetmonomialcmd">
+<span id="id11"></span><h4><code class="docutils literal notranslate"><span class="pre">\PolTypesetMonomialCmd</span></code></h4>
+<blockquote>
+<div><p>This decides how a monomial (in variable <code class="docutils literal notranslate"><span class="pre">\PolVar</span></code> and with
+exponent <code class="docutils literal notranslate"><span class="pre">\PolIndex</span></code>) is to be printed. The default does nothing
+for the constant term, <code class="docutils literal notranslate"><span class="pre">\PolVar</span></code> for the first degree and
+<code class="docutils literal notranslate"><span class="pre">\PolVar^{\PolIndex}</span></code> for higher degrees monomials. Beware that
+<code class="docutils literal notranslate"><span class="pre">\PolIndex</span></code> expands to digit tokens and needs termination in
+<code class="docutils literal notranslate"><span class="pre">\ifnum</span></code> tests.</p>
+</div></blockquote>
+</section>
+<section id="poltypesetcmdprefix">
+<span id="id12"></span><h4><code class="docutils literal notranslate"><span class="pre">\PolTypesetCmdPrefix{}</span></code></h4>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolTypesetCmdPrefix{<raw_coeff>}</span></code></p>
+<blockquote>
+<div><p>Expands to a <code class="docutils literal notranslate"><span class="pre">+</span></code> if the <code class="docutils literal notranslate"><span class="pre">raw_coeff</span></code> is zero or positive, and to
+nothing if <code class="docutils literal notranslate"><span class="pre">raw_coeff</span></code> is negative, as in latter case the
+<code class="docutils literal notranslate"><span class="pre">\xintTeXsignedFrac</span></code> (or <code class="docutils literal notranslate"><span class="pre">\xintTeXsignedOver</span></code>) used by
+<a class="reference internal" href="#poltypesetcmd"><span class="std std-ref">\PolTypesetCmd{<raw_coeff>}</span></a> will put the <code class="docutils literal notranslate"><span class="pre">-</span></code> sign in front of
+the fraction (if it is a fraction) and this will thus serve as
+separator in the typeset formula. Not used for the first term.</p>
+</div></blockquote>
+</section>
+</section>
+<section id="id13">
+<span id="id14"></span><h3><code class="docutils literal notranslate"><span class="pre">\PolTypeset*{}</span></code></h3>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolTypeset*{<pol.</span> <span class="pre">expr.>}</span></code></p>
+<blockquote>
+<div><p>Typesets in ascending powers. Use <code class="docutils literal notranslate"><span class="pre">[<letter>]</span></code> optional argument
+(after the <code class="docutils literal notranslate"><span class="pre">*</span></code>) to use another letter than <code class="docutils literal notranslate"><span class="pre">x</span></code>.</p>
+<p>Extended at <code class="docutils literal notranslate"><span class="pre">0.8</span></code> to accept general expressions and not only
+polynomial names. Redefine <a class="reference internal" href="#id67">\PolToExprInVar</a> to use in the
+expression another letter than default <code class="docutils literal notranslate"><span class="pre">x</span></code>.</p>
+</div></blockquote>
+</section>
+<section id="pollet">
+<span id="id15"></span><h3><code class="docutils literal notranslate"><span class="pre">\PolLet{}={}</span></code></h3>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolLet{<polname_2>}={<polname_1>}</span></code></p>
+<blockquote>
+<div><p>Makes a copy of the already defined polynomial <code class="docutils literal notranslate"><span class="pre">polname_1</span></code> to a
+new one <code class="docutils literal notranslate"><span class="pre">polname_2</span></code>. This has the same effect as
+<code class="docutils literal notranslate"><span class="pre">\PolDef{<polname_2>}{<polname_1>(x)}</span></code> or (better)
+<code class="docutils literal notranslate"><span class="pre">\PolDef{<polname_2>}{<polname_1>}</span></code> but with less overhead. The
+<code class="docutils literal notranslate"><span class="pre">=</span></code> is optional.</p>
+</div></blockquote>
+</section>
+<section id="polgloballet">
+<span id="id16"></span><h3><code class="docutils literal notranslate"><span class="pre">\PolGlobalLet{}={}</span></code></h3>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolGlobalLet{<polname_2>}={<polname_1>}</span></code></p>
+<blockquote>
+<div><p>Acts globally.</p>
+</div></blockquote>
+</section>
+<section id="polassign-toarray">
+<span id="polassign"></span><h3><code class="docutils literal notranslate"><span class="pre">\PolAssign{}\toarray{}</span></code></h3>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolAssign{<polname>}\toarray{<\macro>}</span></code></p>
+<blockquote>
+<div><p>Defines a one-argument expandable macro <code class="docutils literal notranslate"><span class="pre">\macro{#1}</span></code> which expands
+to the (raw) #1th polynomial coefficient.</p>
+<ul class="simple">
+<li><p>Attention, coefficients here are indexed starting at 1. This is
+an unfortunate legacy situation related to the original indexing
+convention in <a class="reference external" href="https://www.ctan.org/pkg/xint">xinttools</a> arrays.</p></li>
+<li><p>With #1=-1, -2, …, <code class="docutils literal notranslate"><span class="pre">\macro{#1}</span></code> returns leading coefficients.</p></li>
+<li><p>With #1=0, returns the number of coefficients, i.e. <code class="docutils literal notranslate"><span class="pre">1</span> <span class="pre">+</span> <span class="pre">deg</span> <span class="pre">f</span></code>
+for non-zero polynomials.</p></li>
+<li><p>Out-of-range #1’s return <code class="docutils literal notranslate"><span class="pre">0/1[0]</span></code>.</p></li>
+</ul>
+<p>See also <a class="reference internal" href="#polnthcoeff"><span class="std std-ref">\PolNthCoeff{<polname>}{<index>}</span></a>.</p>
+</div></blockquote>
+</section>
+<section id="polget-fromarray">
+<span id="polget"></span><h3><code class="docutils literal notranslate"><span class="pre">\PolGet{}\fromarray{}</span></code></h3>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolGet{<polname>}\fromarray{<\macro>}</span></code></p>
+<blockquote>
+<div><p>Does the converse operation to
+<code class="docutils literal notranslate"><span class="pre">\PolAssign{<polname>}\toarray\macro</span></code>. Each individual
+<code class="docutils literal notranslate"><span class="pre">\macro{<value>}</span></code> gets expanded in an <code class="docutils literal notranslate"><span class="pre">\edef</span></code> and then normalized
+via <a class="reference external" href="https://www.ctan.org/pkg/xint">xintfrac</a>‘s macro <code class="docutils literal notranslate"><span class="pre">\xintRaw</span></code>.</p>
+<p>The leading zeros are removed from the polynomial.</p>
+<p>(contrived) Example:</p>
+<div class="highlight-latex notranslate"><div class="highlight"><pre><span></span><span class="k">\xintAssignArray</span><span class="nb">{</span>1<span class="nb">}{</span>-2<span class="nb">}{</span>5<span class="nb">}{</span>-3<span class="nb">}</span><span class="k">\to\foo</span>
+<span class="k">\PolGet</span><span class="nb">{</span>f<span class="nb">}</span><span class="k">\fromarray\foo</span>
+</pre></div>
+</div>
+<p>This will define <code class="docutils literal notranslate"><span class="pre">f</span></code> as would have <code class="docutils literal notranslate"><span class="pre">\poldef</span> <span class="pre">f(x):=1-2x+5x^2-3x^3;</span></code>.</p>
+</div></blockquote>
+</section>
+<section id="polfromcsv">
+<span id="id17"></span><h3><code class="docutils literal notranslate"><span class="pre">\PolFromCSV{}{}</span></code></h3>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolFromCSV{<polname>}{<csv>}</span></code></p>
+<blockquote>
+<div><p>Defines a polynomial directly from the comma separated list of values
+(or a macro expanding to such a list) of its coefficients, the <em>first
+item</em> gives the constant term, the <em>last item</em> gives the leading
+coefficient, except if zero, then it is dropped (iteratively). List
+items are each expanded in an <code class="docutils literal notranslate"><span class="pre">\edef</span></code> and then put into normalized
+form via <a class="reference external" href="https://www.ctan.org/pkg/xint">xintfrac</a>‘s macro <code class="docutils literal notranslate"><span class="pre">\xintRaw</span></code>.</p>
+<p>As leading zero coefficients are removed:</p>
+<div class="highlight-latex notranslate"><div class="highlight"><pre><span></span><span class="k">\PolFromCSV</span><span class="nb">{</span>f<span class="nb">}{</span>0, 0, 0, 0, 0, 0, 0, 0, 0, 0<span class="nb">}</span>
+</pre></div>
+</div>
+<p>defines the zero polynomial, which holds only one coefficient.</p>
+<p>See also expandable macro <a class="reference internal" href="#poltocsv"><span class="std std-ref">\PolToCSV{<polname>}</span></a>.</p>
+</div></blockquote>
+</section>
+<section id="polmapcoeffs">
+<span id="id18"></span><h3><code class="docutils literal notranslate"><span class="pre">\PolMapCoeffs{}{}</span></code></h3>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolMapCoeffs{\macro}{<polname>}</span></code></p>
+<blockquote>
+<div><p>It modifies (‘in-place’: original coefficients get lost) each
+coefficient of the defined polynomial via the <em>expandable</em> macro
+<code class="docutils literal notranslate"><span class="pre">\macro</span></code>. The degree is adjusted as necessary if some leading
+coefficients vanish after the operation.</p>
+<p>In the replacement text of <code class="docutils literal notranslate"><span class="pre">\macro</span></code>, <code class="docutils literal notranslate"><span class="pre">\index</span></code> expands to the
+coefficient index (starting at zero for the constant term).</p>
+<p>Notice that <code class="docutils literal notranslate"><span class="pre">\macro</span></code> will have to handle inputs in the <a class="reference external" href="https://www.ctan.org/pkg/xint">xintfrac</a>
+internal format. This means that it probably will have to be
+expressed in terms of macros from the <a class="reference external" href="https://www.ctan.org/pkg/xint">xintfrac</a> package.</p>
+<p>Example:</p>
+<div class="highlight-latex notranslate"><div class="highlight"><pre><span></span><span class="k">\def\foo</span>#1<span class="nb">{</span><span class="k">\xintMul</span><span class="nb">{</span>#1<span class="nb">}{</span><span class="k">\the\numexpr\index*\index\relax</span><span class="nb">}}</span>
+</pre></div>
+</div>
+<p>(or with <code class="docutils literal notranslate"><span class="pre">\xintSqr{\index}</span></code>) to replace <code class="docutils literal notranslate"><span class="pre">n</span></code>-th coefficient
+<code class="docutils literal notranslate"><span class="pre">f_n</span></code> by <code class="docutils literal notranslate"><span class="pre">f_n*n^2</span></code>.</p>
+</div></blockquote>
+</section>
+<section id="polreducecoeffs">
+<span id="id19"></span><h3><code class="docutils literal notranslate"><span class="pre">\PolReduceCoeffs{}</span></code></h3>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolReduceCoeffs{<polname>}</span></code></p>
+<blockquote>
+<div><p>Reduces the internal representations of the coefficients to
+their lowest terms.</p>
+</div></blockquote>
+</section>
+<section id="id20">
+<span id="id21"></span><h3><code class="docutils literal notranslate"><span class="pre">\PolReduceCoeffs*{}</span></code></h3>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolReduceCoeffs*{<polname>}</span></code></p>
+<blockquote>
+<div><p>Reduces the internal representations of the coefficients to their
+lowest terms, but ignoring a possible separated “power of ten part”.</p>
+<p>For example, <a class="reference external" href="https://www.ctan.org/pkg/xint">xintfrac</a> stores an <code class="docutils literal notranslate"><span class="pre">30e2/50</span></code> input as <code class="docutils literal notranslate"><span class="pre">30/50</span></code> with
+a separate <code class="docutils literal notranslate"><span class="pre">10^2</span></code> part. This will thus get replaced by <code class="docutils literal notranslate"><span class="pre">3e^2/5</span></code>
+(or rather whatever <a class="reference external" href="https://www.ctan.org/pkg/xint">xintfrac</a> uses for internal representation), and
+not by <code class="docutils literal notranslate"><span class="pre">60</span></code> as would result from complete reduction.</p>
+<p>Evaluations with polynomials treated by this can be much faster than
+with those handled by the non-starred variant
+<a class="reference internal" href="#polreducecoeffs"><span class="std std-ref">\PolReduceCoeffs{<polname>}</span></a>: as the numerators and denominators
+remain generally smaller.</p>
+</div></blockquote>
+</section>
+<section id="polmakemonic">
+<span id="id22"></span><h3><code class="docutils literal notranslate"><span class="pre">\PolMakeMonic{}</span></code></h3>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolMakeMonic{<polname>}</span></code></p>
+<blockquote>
+<div><p>Divides by the leading coefficient. It is recommended to execute
+<a class="reference internal" href="#id20"><span class="std std-ref">\PolReduceCoeffs*{<polname>}</span></a> immediately afterwards. This is not
+done automatically, in case the original polynomial had integer
+coefficients and the user wants to keep the leading one as common
+denominator for typesetting purposes.</p>
+</div></blockquote>
+</section>
+<section id="polmakeprimitive">
+<span id="id23"></span><h3><code class="docutils literal notranslate"><span class="pre">\PolMakePrimitive{}</span></code></h3>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolMakePrimitive{<polname>}</span></code></p>
+<blockquote>
+<div><p>Divides by the integer content see (<a class="reference internal" href="#policontent">\PolIContent</a>).
+This thus produces a polynomial with integer
+coefficients having no common factor. The sign of the leading
+coefficient is not modified.</p>
+</div></blockquote>
+</section>
+<section id="poldiff">
+<span id="id24"></span><h3><code class="docutils literal notranslate"><span class="pre">\PolDiff{}{}</span></code></h3>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolDiff{<polname_1>}{<polname_2>}</span></code></p>
+<blockquote>
+<div><p>This sets <code class="docutils literal notranslate"><span class="pre">polname_2</span></code> to the first derivative of <code class="docutils literal notranslate"><span class="pre">polname_1</span></code>. It
+is allowed to issue <code class="docutils literal notranslate"><span class="pre">\PolDiff{f}{f}</span></code>, effectively replacing <code class="docutils literal notranslate"><span class="pre">f</span></code>
+by <code class="docutils literal notranslate"><span class="pre">f'</span></code>.</p>
+<p>Coefficients of the result <code class="docutils literal notranslate"><span class="pre">polname_2</span></code> are irreducible fractions
+(see <a class="reference internal" href="#technicalities">Technicalities</a> for the whole story.)</p>
+</div></blockquote>
+</section>
+<section id="id25">
+<span id="id26"></span><h3><code class="docutils literal notranslate"><span class="pre">\PolDiff[]{}{}</span></code></h3>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolDiff[N]{<polname_1>}{<polname_2>}</span></code></p>
+<blockquote>
+<div><p>This sets <code class="docutils literal notranslate"><span class="pre">polname_2</span></code> to the <code class="docutils literal notranslate"><span class="pre">N</span></code>-th derivative of <code class="docutils literal notranslate"><span class="pre">polname_1</span></code>.
+Identical arguments is allowed. With <code class="docutils literal notranslate"><span class="pre">N=0</span></code>, same effect as
+<code class="docutils literal notranslate"><span class="pre">\PolLet{<polname_2>}={<polname_1>}</span></code>. With negative <code class="docutils literal notranslate"><span class="pre">N</span></code>, switches to
+using <code class="docutils literal notranslate"><span class="pre">\PolAntiDiff</span></code>.</p>
+</div></blockquote>
+</section>
+<section id="polantidiff">
+<span id="id27"></span><h3><code class="docutils literal notranslate"><span class="pre">\PolAntiDiff{}{}</span></code></h3>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolAntiDiff{<polname_1>}{<polname_2>}</span></code></p>
+<blockquote>
+<div><p>This sets <code class="docutils literal notranslate"><span class="pre">polname_2</span></code> to the primitive of <code class="docutils literal notranslate"><span class="pre">polname_1</span></code> vanishing
+at zero.</p>
+<p>Coefficients of the result <code class="docutils literal notranslate"><span class="pre">polname_2</span></code> are irreducible fractions
+(see <a class="reference internal" href="#technicalities">Technicalities</a> for the whole story.)</p>
+</div></blockquote>
+</section>
+<section id="id28">
+<span id="id29"></span><h3><code class="docutils literal notranslate"><span class="pre">\PolAntiDiff[]{}{}</span></code></h3>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolAntiDiff[N]{<polname_1>}{<polname_2>}</span></code></p>
+<blockquote>
+<div><p>This sets <code class="docutils literal notranslate"><span class="pre">polname_2</span></code> to the result of <code class="docutils literal notranslate"><span class="pre">N</span></code> successive integrations on
+<code class="docutils literal notranslate"><span class="pre">polname_1</span></code>. With negative <code class="docutils literal notranslate"><span class="pre">N</span></code>, it switches to using <code class="docutils literal notranslate"><span class="pre">\PolDiff</span></code>.</p>
+</div></blockquote>
+</section>
+<section id="poldivide">
+<span id="id30"></span><h3><code class="docutils literal notranslate"><span class="pre">\PolDivide{}{}{}{}</span></code></h3>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolDivide{<polname_1>}{<polname_2>}{<polname_Q>}{<polname_R>}</span></code></p>
+<blockquote>
+<div><p>This sets <code class="docutils literal notranslate"><span class="pre">polname_Q</span></code> and <code class="docutils literal notranslate"><span class="pre">polname_R</span></code> to be the quotient and
+remainder in the Euclidean division of <code class="docutils literal notranslate"><span class="pre">polname_1</span></code> by
+<code class="docutils literal notranslate"><span class="pre">polname_2</span></code>.</p>
+</div></blockquote>
+</section>
+<section id="polquo">
+<span id="id31"></span><h3><code class="docutils literal notranslate"><span class="pre">\PolQuo{}{}{}</span></code></h3>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolQuo{<polname_1>}{<polname_2>}{<polname_Q>}</span></code></p>
+<blockquote>
+<div><p>This sets <code class="docutils literal notranslate"><span class="pre">polname_Q</span></code> to be the quotient in the Euclidean division
+of <code class="docutils literal notranslate"><span class="pre">polname_1</span></code> by <code class="docutils literal notranslate"><span class="pre">polname_2</span></code>.</p>
+</div></blockquote>
+</section>
+<section id="polrem">
+<span id="id32"></span><h3><code class="docutils literal notranslate"><span class="pre">\PolRem{}{}{}</span></code></h3>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolRem{<polname_1>}{<polname_2>}{<polname_R>}</span></code></p>
+<blockquote>
+<div><p>This sets <code class="docutils literal notranslate"><span class="pre">polname_R</span></code> to be the remainder in the Euclidean division
+of <code class="docutils literal notranslate"><span class="pre">polname_1</span></code> by <code class="docutils literal notranslate"><span class="pre">polname_2</span></code>.</p>
+</div></blockquote>
+</section>
+<section id="polgcd">
+<span id="id33"></span><h3><code class="docutils literal notranslate"><span class="pre">\PolGCD{}{}{}</span></code></h3>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolGCD{<polname_1>}{<polname_2>}{<polname_GCD>}</span></code></p>
+<blockquote>
+<div><p>This sets <code class="docutils literal notranslate"><span class="pre">polname_GCD</span></code> to be the (monic) GCD of <code class="docutils literal notranslate"><span class="pre">polname_1</span></code>
+and <code class="docutils literal notranslate"><span class="pre">polname_2</span></code>. It is a unitary polynomial except if both
+<code class="docutils literal notranslate"><span class="pre">polname_1</span></code> and <code class="docutils literal notranslate"><span class="pre">polname_2</span></code> vanish, then <code class="docutils literal notranslate"><span class="pre">polname_GCD</span></code> is the
+zero polynomial.</p>
+</div></blockquote>
+</section>
+<section id="root-localization-routines-via-the-sturm-theorem">
+<h3>Root localization routines via the <a class="reference external" href="https://en.wikipedia.org/wiki/Sturm%27s_theorem">Sturm Theorem</a></h3>
+<p>As <a class="reference internal" href="#poltosturm"><span class="std std-ref">\PolToSturm{<polname>}{<sturmname>}</span></a> and
+<a class="reference internal" href="#polsturmisolatezeros"><span class="std std-ref">\PolSturmIsolateZeros{<sturmname>}</span></a> and variants declare
+additional polynomial or scalar variables with names based on <code class="docutils literal notranslate"><span class="pre"><sturmname></span></code> as
+prefix, it is advisable to keep the <code class="docutils literal notranslate"><span class="pre"><sturmname></span></code> namespace separate from
+the one applying to <code class="docutils literal notranslate"><span class="pre">\xintexpr</span></code> variables generally, or to polynomials.</p>
+<section id="poltosturm">
+<span id="id34"></span><h4><code class="docutils literal notranslate"><span class="pre">\PolToSturm{}{}</span></code></h4>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolToSturm{<polname>}{<sturmname>}</span></code></p>
+<blockquote>
+<div><p>With <code class="docutils literal notranslate"><span class="pre"><polname></span></code> being for example <code class="docutils literal notranslate"><span class="pre">P</span></code>, and <code class="docutils literal notranslate"><span class="pre"><sturmname></span></code> being
+for example <code class="docutils literal notranslate"><span class="pre">S</span></code>, the macro starts by computing the derivative
+<code class="docutils literal notranslate"><span class="pre">P'</span></code>, then computes the opposite of the remainder in the euclidean
+division of <code class="docutils literal notranslate"><span class="pre">P</span></code> by <code class="docutils literal notranslate"><span class="pre">P'</span></code>, then the opposite of the remainder in
+the euclidean division of <code class="docutils literal notranslate"><span class="pre">P'</span></code> by the first obtained polynomial,
+etc… Up to signs following the <code class="docutils literal notranslate"><span class="pre">--++--++...</span></code> pattern, these are
+the same remainders as in the Euclide algorithm applied to the
+computation of the GCD of <code class="docutils literal notranslate"><span class="pre">P</span></code> and <code class="docutils literal notranslate"><span class="pre">P'</span></code>.</p>
+<p>The precise process differs from the above description: the
+algorithm first sets <code class="docutils literal notranslate"><span class="pre">S_0_</span></code> to be the <em>primitive part</em> of <code class="docutils literal notranslate"><span class="pre">P</span></code>
+and <code class="docutils literal notranslate"><span class="pre">S_1_</span></code> to be the <em>primitive part</em> of <code class="docutils literal notranslate"><span class="pre">P'</span></code> (see
+<a class="reference internal" href="#policontent"><span class="std std-ref">\PolIContent{<polname>}</span></a>), then at each step
+the remainder is made primitive and stored for internal reference as
+<code class="docutils literal notranslate"><span class="pre">S_k_</span></code>, so only integer-coefficients polynomials are manipulated.</p>
+<div class="admonition warning">
+<p class="admonition-title">Warning</p>
+<p>This exact procedure will perhaps in future be replaced by a
+<em>sub-resultant algorithm</em>, which may bring some speed gain in
+obtaining a pseudo-Sturm sequence, but some experimenting is
+needed, in the context of realistically realizable computations
+by the package; primitive polynomials although a bit costly
+have the smallest coefficients hence are the best for the kind of
+computations done for root localization, after having computed a
+Sturm sequence.</p>
+</div>
+<p>The last non-zero primitivized remainder <code class="docutils literal notranslate"><span class="pre">S_N_</span></code> is, up to sign,
+the primitive part of the GCD of <code class="docutils literal notranslate"><span class="pre">P</span></code> and <code class="docutils literal notranslate"><span class="pre">P'</span></code>. Its roots (real
+and complex) are the multiple roots of the original <code class="docutils literal notranslate"><span class="pre">P</span></code>. The
+original <code class="docutils literal notranslate"><span class="pre">P</span></code> was “square-free” (i.e. did not have multiple real
+or complex roots) if and only if <code class="docutils literal notranslate"><span class="pre">S_N_</span></code> is a constant, which is
+then <code class="docutils literal notranslate"><span class="pre">+1</span></code> or <code class="docutils literal notranslate"><span class="pre">-1</span></code> (its value before primitivization is lost).</p>
+<p>The macro then divides each <code class="docutils literal notranslate"><span class="pre">S_k_</span></code> by <code class="docutils literal notranslate"><span class="pre">S_N_</span></code> and declares the
+quotients <code class="docutils literal notranslate"><span class="pre">S_k</span></code> as user polynomials for future use. By Gauss
+theorem about the contents of integer-coefficients polynomials,
+these <code class="docutils literal notranslate"><span class="pre">S_k</span></code> also are primitive integer-coefficients polynomials.</p>
+<p>This step will be referred to as <em>normalization</em>, and in this
+documentation the obtained polynomials are said to constitute the
+“Sturm chain” (or “Sturm sequence”), i.e. by convention the “Sturm
+chain polynomials” are square-free and primitive. The possibly
+non-square-free ones are referred to as <em>non-normalized</em>.</p>
+<p>As an exception to the rule, if the original <code class="docutils literal notranslate"><span class="pre">P</span></code> was “square-free”
+(i.e. did not have multiple real or complex roots) then
+normalization is skipped (in that case <code class="docutils literal notranslate"><span class="pre">S_N_</span></code> is either <code class="docutils literal notranslate"><span class="pre">+1</span></code> or
+<code class="docutils literal notranslate"><span class="pre">-1</span></code>), so <code class="docutils literal notranslate"><span class="pre">S_0_</span></code> is exactly the primitive part of starting
+polynomial <code class="docutils literal notranslate"><span class="pre">P</span></code>, in the “square-free” case.</p>
+<p>The next logical step is to execute <a class="reference internal" href="#polsturmisolatezeros">\PolSturmIsolateZeros{S}</a> or one of its variants. Be careful not to
+use the names <code class="docutils literal notranslate"><span class="pre">sturmname_0</span></code>, <code class="docutils literal notranslate"><span class="pre">sturmname_1</span></code>, etc… for defining
+other polynomials after having done
+<code class="docutils literal notranslate"><span class="pre">\PolToSturm{<polname>}{<sturmname>}</span></code> and before executing
+<code class="docutils literal notranslate"><span class="pre">\PolSturmIsolateZeros{<sturmname>}</span></code> or its variants else the
+latter will behave erroneously.</p>
+<div class="admonition note">
+<p class="admonition-title">Note</p>
+<p>The declaration of the <code class="docutils literal notranslate"><span class="pre">S_k</span></code>‘s will overwrite
+with no warning previously declared polynomials with identical
+names <code class="docutils literal notranslate"><span class="pre">S_k</span></code>. This is original reason why the macro expects two
+names: <code class="docutils literal notranslate"><span class="pre"><polname></span></code> and <code class="docutils literal notranslate"><span class="pre"><sturmname></span></code>.</p>
+<p>It is allowed to use the polynomial name <code class="docutils literal notranslate"><span class="pre">P</span></code> as Sturm chain
+name <code class="docutils literal notranslate"><span class="pre">S</span></code>: <code class="docutils literal notranslate"><span class="pre">\PolToSturm{f}(f}</span></code>, but of course fusing the
+namespaces is slightly dangerous. And, also <a class="reference internal" href="#polsturmisolatezeros">\PolSturmIsolateZeros</a> creates variables sharing
+the <code class="docutils literal notranslate"><span class="pre"><sturmname></span></code> prefix, which must be taken into account to
+avoid name clashes.</p>
+</div>
+<div class="admonition warning">
+<p class="admonition-title">Warning</p>
+<p>The reason why the <code class="docutils literal notranslate"><span class="pre">S_k</span></code>‘s are declared as polynomials is
+that the associated polynomial functions are needed to compute
+the sign changes in the Sturm sequence evaluated at a given
+location, as this is the basis mechanism of <a class="reference internal" href="#polsturmisolatezeros">\PolSturmIsolateZeros</a> (on the basis of the <a class="reference external" href="https://en.wikipedia.org/wiki/Sturm%27s_theorem">Sturm theorem</a>).</p>
+<p>It is possible that in future the package will only internally
+construct such polynomial functions and only the starred variant
+will make the normalized (i.e. square-free) Sturm sequence public.</p>
+</div>
+<p>The integer <code class="docutils literal notranslate"><span class="pre">N</span></code> giving the length of the Sturm chain <code class="docutils literal notranslate"><span class="pre">S_0</span></code>,
+<code class="docutils literal notranslate"><span class="pre">S_1</span></code>, …, <code class="docutils literal notranslate"><span class="pre">S_N</span></code> is available as
+<a class="reference internal" href="#polsturmchainlength"><span class="std std-ref">\PolSturmChainLength{<sturmname>}</span></a>. If all roots of original <code class="docutils literal notranslate"><span class="pre">P</span></code>
+are real, then <code class="docutils literal notranslate"><span class="pre">N</span></code> is both the number of distinct real roots and
+the degree of <code class="docutils literal notranslate"><span class="pre">S_0</span></code>. In the case of existence of complex roots,
+the number of distinct real roots is at most <code class="docutils literal notranslate"><span class="pre">N</span></code> and <code class="docutils literal notranslate"><span class="pre">N</span></code> is at
+most the degree of <code class="docutils literal notranslate"><span class="pre">S_0</span></code>.</p>
+</div></blockquote>
+</section>
+<section id="id35">
+<span id="id36"></span><h4><code class="docutils literal notranslate"><span class="pre">\PolToSturm*{}{}</span></code></h4>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolToSturm*{<polname>}{<sturmname>}</span></code></p>
+<blockquote>
+<div><p>Does the same as <a class="reference internal" href="#poltosturm">un-starred version</a> and additionally it
+keeps for user usage the memory of the <em>un-normalized</em> (but still
+made primitive) Sturm chain
+polynomials <code class="docutils literal notranslate"><span class="pre">sturmname_k_</span></code>, <code class="docutils literal notranslate"><span class="pre">k=0,1,</span> <span class="pre">...,</span> <span class="pre">N</span></code>, with
+<code class="docutils literal notranslate"><span class="pre">N</span></code> being <a class="reference internal" href="#polsturmchainlength"><span class="std std-ref">\PolSturmChainLength{<sturmname>}</span></a>.</p>
+</div></blockquote>
+</section>
+<section id="polsturmisolatezeros">
+<span id="id37"></span><h4><code class="docutils literal notranslate"><span class="pre">\PolSturmIsolateZeros{}</span></code></h4>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolSturmIsolateZeros{<sturmname>}</span></code></p>
+<blockquote>
+<div><p>The macro locates, using the <a class="reference external" href="https://en.wikipedia.org/wiki/Sturm%27s_theorem">Sturm Theorem</a>, as many disjoint
+intervals as there are distinct real roots.</p>
+<div class="admonition important">
+<p class="admonition-title">Important</p>
+<p>The Sturm chain must have been produced by an earlier
+<a class="reference internal" href="#poltosturm"><span class="std std-ref">\PolToSturm{<polname>}{<sturmname>}</span></a>.</p>
+</div>
+<p>After its execution they are two types of such intervals (stored in
+memory and accessible via macros or <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a> variables, see below):</p>
+<ul class="simple">
+<li><p>singleton <code class="docutils literal notranslate"><span class="pre">{a}</span></code>: then <code class="docutils literal notranslate"><span class="pre">a</span></code> is a root, (necessarily a decimal
+number, but not all such decimal numbers are exactly identified yet).</p></li>
+<li><p>open intervals <code class="docutils literal notranslate"><span class="pre">(a,b)</span></code>: then there is exactly one root <code class="docutils literal notranslate"><span class="pre">z</span></code>
+such that <code class="docutils literal notranslate"><span class="pre">a</span> <span class="pre"><</span> <span class="pre">z</span> <span class="pre"><</span> <span class="pre">b</span></code>, and the end points are guaranteed to not
+be roots.</p></li>
+</ul>
+<p>The interval boundaries are decimal numbers, originating
+in iterated decimal subdivision from initial intervals
+<code class="docutils literal notranslate"><span class="pre">(-10^E,</span> <span class="pre">0)</span></code> and <code class="docutils literal notranslate"><span class="pre">(0,</span> <span class="pre">10^E)</span></code> with <code class="docutils literal notranslate"><span class="pre">E</span></code> chosen initially large
+enough so that all roots are enclosed; if zero is a root it is always
+identified as such. The non-singleton intervals are of the
+type <code class="docutils literal notranslate"><span class="pre">(a/10^f,</span> <span class="pre">(a+1)/10^f)</span></code> with <code class="docutils literal notranslate"><span class="pre">a</span></code> an integer, which is
+neither <code class="docutils literal notranslate"><span class="pre">0</span></code> nor <code class="docutils literal notranslate"><span class="pre">-1</span></code>. Hence either <code class="docutils literal notranslate"><span class="pre">a</span></code> and <code class="docutils literal notranslate"><span class="pre">a+1</span></code> are both positive
+or they are both negative.</p>
+<p>One does not <em>a priori</em> know what will be the lengths of these
+intervals (except that they are always powers of ten), they
+vary depending on how many digits two successive roots have in
+common in their respective decimal expansions.</p>
+<div class="admonition important">
+<p class="admonition-title">Important</p>
+<p>If some two consecutive intervals share an end-point, no
+information is yet gained about the separation between the two
+roots which could at this stage be arbitrarily small.</p>
+<p>See <a class="reference internal" href="#polrefineinterval"><span class="std std-ref">\PolRefineInterval*{<sturmname>}{<index>}</span></a> which addresses
+this issue.</p>
+</div>
+<p>Let us suppose <code class="docutils literal notranslate"><span class="pre"><sturmname></span></code> is <code class="docutils literal notranslate"><span class="pre">S</span></code>.</p>
+<p>The interval boundaries (and exactly found roots) are made available
+for future computations in <code class="docutils literal notranslate"><span class="pre">\xintexpr/xinteval</span></code> or <code class="docutils literal notranslate"><span class="pre">\poldef</span></code> as
+variables <code class="docutils literal notranslate"><span class="pre">SL_1</span></code>, <code class="docutils literal notranslate"><span class="pre">SL_2</span></code>, etc…, for the left end-points and
+<code class="docutils literal notranslate"><span class="pre">SR_1</span></code>, <code class="docutils literal notranslate"><span class="pre">SR_2</span></code>, …, for the right end-points.</p>
+<p>Additionally, <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a> variable <code class="docutils literal notranslate"><span class="pre">SZ_1_isknown</span></code> will have value
+<code class="docutils literal notranslate"><span class="pre">1</span></code> if the root in the first interval is known, and <code class="docutils literal notranslate"><span class="pre">0</span></code>
+otherwise. And similarly for the other intervals.</p>
+<div class="admonition important">
+<p class="admonition-title">Important</p>
+<p>The variable declarations are done with no check of existence of
+previously existing variables with identical names.</p>
+</div>
+<p>Also, macros <a class="reference internal" href="#polsturmisolatedzeroleft"><span class="std std-ref">\PolSturmIsolatedZeroLeft{<sturmname>}{<index>}</span></a> and
+<a class="reference internal" href="#polsturmisolatedzeroright"><span class="std std-ref">\PolSturmIsolatedZeroRight{<sturmname>}{<index>}</span></a> are provided which
+expand to these same values, written in decimal notation (i.e.
+pre-processed by <a class="reference internal" href="#poldectostring">\PolDecToString</a>.) And there
+is also <a class="reference internal" href="#polsturmifzeroexactlyknown"><span class="std std-ref">\PolSturmIfZeroExactlyKnown{<sturmname>}{<index>}{T}{F}</span></a>.</p>
+<div class="admonition important">
+<p class="admonition-title">Important</p>
+<p>Trailing zeroes in the stored decimal numbers accessible via the
+macros are significant: they are also present in the decimal
+expansion of the exact root, so as to be able for example to
+print out bounds of real roots with as many digits as is
+significant, even if the digits are zeros.</p>
+</div>
+<p>The start of the decimal expansion of the <code class="docutils literal notranslate"><span class="pre"><index></span></code>-th root is given by
+<a class="reference internal" href="#polsturmisolatedzeroleft">\PolSturmIsolatedZeroLeft{<sturmname>}{<index>}</a> if the root is positive, and by
+<a class="reference internal" href="#polsturmisolatedzeroright">PolSturmIsolatedZeroRight{<sturmname>}{<index>}</a> if the root is neagtive. These two
+decimal numbers are either both zero or both of the same sign.</p>
+<p>The number of distinct roots is obtainable expandably as
+<a class="reference internal" href="#polsturmnbofisolatedzeros"><span class="std std-ref">\PolSturmNbOfIsolatedZeros{<sturmname>}</span></a>.</p>
+<p>Furthermore
+<a class="reference internal" href="#polsturmnbofrootsoflessthanorequalto"><span class="std std-ref">\PolSturmNbOfRootsOf{<sturmname>}\LessThanOrEqualTo{<value>}</span></a> and
+<a class="reference internal" href="#polsturmnbofrootsoflessthanorequaltoexpr"><span class="std std-ref">\PolSturmNbOfRootsOf{<sturmname>}\LessThanOrEqualToExpr{<num. expr.>}</span></a>.
+will expandably compute respectively the number of real roots at
+most equal to <code class="docutils literal notranslate"><span class="pre">value</span></code> or <code class="docutils literal notranslate"><span class="pre">expression</span></code>, and the same but with
+multiplicities.</p>
+<p>These variables and macros are automatically updated in case of
+subsequent usage of <a class="reference internal" href="#polrefineinterval"><span class="std std-ref">\PolRefineInterval*{<sturmname>}{<index>}</span></a> or
+other localization improving macros.</p>
+<div class="admonition note">
+<p class="admonition-title">Note</p>
+<p>The current polexpr implementation defines the <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a> variables
+and <a class="reference external" href="https://www.ctan.org/pkg/xint">xinttools</a> arrays as described above with global scope. On the
+other hand the Sturm sequence polynomials obey the current scope.</p>
+<p>This is perhaps a bit inconsistent and may change in future.</p>
+</div>
+<div class="admonition note">
+<p class="admonition-title">Note</p>
+<p>The results are exact
+bounds for the mathematically exact real roots.</p>
+<p>Future releases will perhaps also provide macros based on Newton
+or Regula Falsi methods. Exact computations with such methods
+lead however quickly to very big fractions, and this forces usage
+of some rounding scheme for the abscissas if computation times
+are to remain reasonable. This raises issues of its own, which
+are studied in numerical mathematics.</p>
+</div>
+</div></blockquote>
+</section>
+<section id="id38">
+<span id="id39"></span><h4><code class="docutils literal notranslate"><span class="pre">\PolSturmIsolateZeros*{}</span></code></h4>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolSturmIsolateZeros*{<sturmname>}</span></code></p>
+<blockquote>
+<div><p>The macro does the same as <a class="reference internal" href="#polsturmisolatezeros"><span class="std std-ref">\PolSturmIsolateZeros{<sturmname>}</span></a> and
+then in addition it does the extra work to determine all
+multiplicities of the real roots.</p>
+<p>After execution,
+<a class="reference internal" href="#polsturmisolatedzeromultiplicity"><span class="std std-ref">\PolSturmIsolatedZeroMultiplicity{<sturmname>}{<index>}</span></a> expands
+to the multiplicity of the root located in the <code class="docutils literal notranslate"><span class="pre">index</span></code>-th
+interval (intervals are enumerated from left to right, with index
+starting at <code class="docutils literal notranslate"><span class="pre">1</span></code>).</p>
+<p>Furthermore, if for example the <code class="docutils literal notranslate"><span class="pre"><sturmname></span></code> is <code class="docutils literal notranslate"><span class="pre">S</span></code>, <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a>
+variables <code class="docutils literal notranslate"><span class="pre">SM_1</span></code>, <code class="docutils literal notranslate"><span class="pre">SM_2</span></code>… hold the multiplicities thus
+computed.</p>
+<div class="admonition note">
+<p class="admonition-title">Note</p>
+<p>Somewhat counter-intuitively, it is not necessary to have
+executed the <a class="reference internal" href="#id35"><span class="std std-ref">\PolToSturm*</span></a>
+starred variant: during its
+execution, <a class="reference internal" href="#poltosturm"><span class="std std-ref">\PolToSturm</span></a>,
+even though it does not declare the
+non-square-free Sturm chain polynomials as user-level genuine
+polynomials, stores their data in private macros.</p>
+</div>
+<p>See <code class="docutils literal notranslate"><span class="pre">The</span> <span class="pre">degree</span> <span class="pre">nine</span> <span class="pre">polynomial</span> <span class="pre">with</span> <span class="pre">0.99,</span> <span class="pre">0.999,</span> <span class="pre">0.9999</span> <span class="pre">as</span> <span class="pre">triple</span>
+<span class="pre">roots</span></code> example in <code class="docutils literal notranslate"><span class="pre">polexpr-examples.pdf</span></code>.</p>
+</div></blockquote>
+<section id="polsturmisolatezerosandgetmultiplicities">
+<span id="id40"></span><h5><code class="docutils literal notranslate"><span class="pre">\PolSturmIsolateZerosAndGetMultiplicities{}</span></code></h5>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolSturmIsolateZerosAndGetMultiplicities{<sturmname>}</span></code></p>
+<blockquote>
+<div><p>This is another name for <a class="reference internal" href="#id38"><span class="std std-ref">\PolSturmIsolateZeros*{<sturmname>}</span></a>.</p>
+</div></blockquote>
+</section>
+</section>
+<section id="id41">
+<span id="id42"></span><h4><code class="docutils literal notranslate"><span class="pre">\PolSturmIsolateZeros**{}</span></code></h4>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolSturmIsolateZeros**{<sturmname>}</span></code></p>
+<blockquote>
+<div><p>The macro does the same as <a class="reference internal" href="#id38"><span class="std std-ref">\PolSturmIsolateZeros*{<sturmname>}</span></a> and
+in addition it does the extra work to determine all the <em>rational</em>
+roots.</p>
+<div class="admonition note">
+<p class="admonition-title">Note</p>
+<p>After execution of this macro, a root is “known” if and only if
+it is rational.</p>
+</div>
+<p>Furthermore, primitive polynomial <code class="docutils literal notranslate"><span class="pre">sturmname_sqf_norr</span></code> is created
+to match the (square-free) <code class="docutils literal notranslate"><span class="pre">sturmname_0</span></code> from which all rational
+roots have been removed. The number of distinct rational roots is
+thus the difference between the degrees of these two polynomials
+(see also <a class="reference internal" href="#polsturmnbofrationalroots"><span class="std std-ref">\PolSturmNbOfRationalRoots{<sturmname>}</span></a>).</p>
+<p>And <code class="docutils literal notranslate"><span class="pre">sturmname_norr</span></code> is <code class="docutils literal notranslate"><span class="pre">sturmname_0_</span></code> from which all rational
+roots have been removed, i.e. it contains the irrational roots of
+the original polynomial, with the same multiplicities.</p>
+<p>See <code class="docutils literal notranslate"><span class="pre">A</span> <span class="pre">degree</span> <span class="pre">five</span> <span class="pre">polynomial</span> <span class="pre">with</span> <span class="pre">three</span> <span class="pre">rational</span>
+<span class="pre">roots</span></code> in <code class="docutils literal notranslate"><span class="pre">polexpr-examples.pdf</span></code>.</p>
+</div></blockquote>
+<section id="polsturmisolatezerosgetmultiplicitiesandrationalroots">
+<span id="id43"></span><h5><code class="docutils literal notranslate"><span class="pre">\PolSturmIsolateZerosGetMultiplicitiesAndRationalRoots</span></code></h5>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolSturmIsolateZerosGetMultiplicitiesAndRationalRoots</span></code></p>
+<blockquote>
+<div><p>This is another name for <a class="reference internal" href="#id41"><span class="std std-ref">\PolSturmIsolateZeros**{<sturmname>}</span></a>.</p>
+</div></blockquote>
+</section>
+</section>
+<section id="polsturmisolatezerosandfindrationalroots">
+<span id="id44"></span><h4><code class="docutils literal notranslate"><span class="pre">\PolSturmIsolateZerosAndFindRationalRoots{}</span></code></h4>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolSturmIsolateZerosAndFindRationalRoots{<sturmname>}</span></code></p>
+<blockquote>
+<div><p>This works exactly like <a class="reference internal" href="#id41"><span class="std std-ref">\PolSturmIsolateZeros**{<sturmname>}</span></a>
+(inclusive of declaring the polynomials <code class="docutils literal notranslate"><span class="pre">sturmname_sqf_norr</span></code> and
+<code class="docutils literal notranslate"><span class="pre">sturmname_norr</span></code> with no rational roots) except that it does <em>not</em>
+compute the multiplicities of the <em>non-rational</em> roots.</p>
+<div class="admonition note">
+<p class="admonition-title">Note</p>
+<p>There is no macro to find the rational roots but not compute
+their multiplicities at the same time.</p>
+</div>
+<div class="admonition attention">
+<p class="admonition-title">Attention</p>
+<p>This macro does <em>not</em> define <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a> variables
+<code class="docutils literal notranslate"><span class="pre">sturmnameM_1</span></code>, <code class="docutils literal notranslate"><span class="pre">sturmnameM_2</span></code>, … holding the
+multiplicities and it leaves the multiplicity array (whose accessor
+is <a class="reference internal" href="#polsturmisolatedzeromultiplicity"><span class="std std-ref">\PolSturmIsolatedZeroMultiplicity{<sturmname>}{<index>}</span></a>) into
+a broken state, as all non-rational roots will supposedly have
+multiplicity one. This means that the output of
+<a class="reference internal" href="#id61">\PolPrintIntervals*</a> will be
+erroneous regarding the multiplicities of irrational roots.</p>
+<p>I decided to document it because finding multiplicities of the
+non rational roots is somewhat costly, and one may be interested
+only into finding the rational roots (of course random
+polynomials with integer coefficients will not have <em>any</em>
+rational root anyhow).</p>
+</div>
+</div></blockquote>
+</section>
+<section id="polrefineinterval">
+<span id="id45"></span><h4><code class="docutils literal notranslate"><span class="pre">\PolRefineInterval*{}{}</span></code></h4>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolRefineInterval*{<sturmname>}{<index>}</span></code></p>
+<blockquote>
+<div><p>The <code class="docutils literal notranslate"><span class="pre">index</span></code>-th interval (starting indexing at one) is further
+subdivided as many times as is necessary in order for the newer
+interval to have both its end-points distinct from the end-points of
+the original interval. As a consequence, the <code class="docutils literal notranslate"><span class="pre">k</span></code>th root is then
+strictly separated from the other roots.</p>
+</div></blockquote>
+</section>
+<section id="id46">
+<span id="id47"></span><h4><code class="docutils literal notranslate"><span class="pre">\PolRefineInterval[]{}{}</span></code></h4>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolRefineInterval[N]{<sturmname>}{<index>}</span></code></p>
+<blockquote>
+<div><p>The <code class="docutils literal notranslate"><span class="pre">index</span></code>-th interval (starting count at one) is further
+subdivided once, reducing its length by a factor of 10. This is done
+<code class="docutils literal notranslate"><span class="pre">N</span></code> times if the optional argument <code class="docutils literal notranslate"><span class="pre">[N]</span></code> is present.</p>
+</div></blockquote>
+</section>
+<section id="polensureintervallength">
+<span id="id48"></span><h4><code class="docutils literal notranslate"><span class="pre">\PolEnsureIntervalLength{}{}{}</span></code></h4>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolEnsureIntervalLength{<sturmname>}{<index>}{<exponent>}</span></code></p>
+<blockquote>
+<div><p>The <code class="docutils literal notranslate"><span class="pre">index</span></code>-th interval is subdivided until its length becomes at
+most <code class="docutils literal notranslate"><span class="pre">10^E</span></code>. This means (for <code class="docutils literal notranslate"><span class="pre">E<0</span></code>) that the first <code class="docutils literal notranslate"><span class="pre">-E</span></code> digits
+after decimal mark of the <code class="docutils literal notranslate"><span class="pre">k</span></code>th root will then be known exactly.</p>
+</div></blockquote>
+</section>
+<section id="polensureintervallengths">
+<span id="id49"></span><h4><code class="docutils literal notranslate"><span class="pre">\PolEnsureIntervalLengths{}{}</span></code></h4>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolEnsureIntervalLengths{<sturmname>}{<exponent>}</span></code></p>
+<blockquote>
+<div><p>The intervals as obtained from <code class="docutils literal notranslate"><span class="pre">\PolSturmIsolateZeros</span></code> are (if
+necessary) subdivided further by (base 10) dichotomy in order for
+each of them to have length at most <code class="docutils literal notranslate"><span class="pre">10^E</span></code>.</p>
+<p>This means that decimal expansions of all roots will be known with
+<code class="docutils literal notranslate"><span class="pre">-E</span></code> digits (for <code class="docutils literal notranslate"><span class="pre">E<0</span></code>) after decimal mark.</p>
+</div></blockquote>
+</section>
+<section id="polsettosturmchainsignchangesat">
+<span id="id50"></span><h4><code class="docutils literal notranslate"><span class="pre">\PolSetToSturmChainSignChangesAt{}{}{}</span></code></h4>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolSetToSturmChainSignChangesAt{\foo}{<sturmname>}{<value>}</span></code></p>
+<blockquote>
+<div><p>Sets macro <code class="docutils literal notranslate"><span class="pre">\foo</span></code> to store the number of sign changes in the
+already computed normalized Sturm chain with name prefix
+<code class="docutils literal notranslate"><span class="pre"><sturmname></span></code>, at location <code class="docutils literal notranslate"><span class="pre"><value></span></code> (which must be in format as
+acceptable by the <a class="reference external" href="https://www.ctan.org/pkg/xint">xintfrac</a> macros.)</p>
+<p>The definition is made with global scope. For local scope, use
+<code class="docutils literal notranslate"><span class="pre">[\empty]</span></code> as extra optional argument.</p>
+<p>One can use this immediately after creation of the Sturm chain.</p>
+</div></blockquote>
+</section>
+<section id="polsettonbofzeroswithin">
+<span id="id51"></span><h4><code class="docutils literal notranslate"><span class="pre">\PolSetToNbOfZerosWithin{}{}{}{}</span></code></h4>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolSetToNbOfZerosWithin{\foo}{<sturmname>}{<value_left>}{<value_right>}</span></code></p>
+<blockquote>
+<div><p>Sets, assuming the normalized Sturm chain has been already computed,
+macro <code class="docutils literal notranslate"><span class="pre">\foo</span></code> to store the number of roots of <code class="docutils literal notranslate"><span class="pre">sturmname_0</span></code> in
+the interval <code class="docutils literal notranslate"><span class="pre">(value_left,</span> <span class="pre">value_right]</span></code>. The macro first
+re-orders end-points if necessary for <code class="docutils literal notranslate"><span class="pre">value_left</span> <span class="pre"><=</span> <span class="pre">value_right</span></code>
+to hold.</p>
+<p>In accordance to <a class="reference external" href="https://en.wikipedia.org/wiki/Sturm%27s_theorem">Sturm Theorem</a> this is computed as the difference
+between the number of sign changes of the Sturm chain at <code class="docutils literal notranslate"><span class="pre">value_right</span></code>
+and the one at <code class="docutils literal notranslate"><span class="pre">value_left</span></code>.</p>
+<p>The definition is made with global scope. For local scope, use
+<code class="docutils literal notranslate"><span class="pre">[\empty]</span></code> as extra optional argument.</p>
+<p>One can use this immediately after creation of a Sturm chain.</p>
+<p>See also the expandable
+<a class="reference internal" href="#polsturmnbofrootsoflessthanorequalto"><span class="std std-ref">\PolSturmNbOfRootsOf{<sturmname>}\LessThanOrEqualTo{value}</span></a>,
+which however requires prior execution of <a class="reference internal" href="#polsturmisolatezeros">\PolSturmIsolateZeros</a>.</p>
+<p>See also the expandable
+<a class="reference internal" href="#polsturmnbwithmultofrootsoflessthanorequalto"><span class="std std-ref">\PolSturmNbWithMultOfRootsOf{<sturmname>}\LessThanOrEqualTo{value}</span></a>
+which requires prior execution of
+<a class="reference internal" href="#id38">\PolSturmIsolateZeros*</a>.</p>
+</div></blockquote>
+</section>
+</section>
+<section id="displaying-the-found-roots-polprintintervals-varname">
+<span id="polprintintervals"></span><h3>Displaying the found roots: <code class="docutils literal notranslate"><span class="pre">\PolPrintIntervals[<varname>]{}</span></code></h3>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolPrintIntervals[<varname>]{<sturmname>}</span></code></p>
+<blockquote>
+<div><p>This is a convenience macro which prints the bounds for the roots
+<code class="docutils literal notranslate"><span class="pre">Z_1</span></code>, <code class="docutils literal notranslate"><span class="pre">Z_2</span></code>, … (the optional argument <code class="docutils literal notranslate"><span class="pre">varname</span></code> allows to
+specify a replacement for the default <code class="docutils literal notranslate"><span class="pre">Z</span></code>). This will be done (by
+default) in a
+math mode <code class="docutils literal notranslate"><span class="pre">array</span></code>, one interval per row, and pattern <code class="docutils literal notranslate"><span class="pre">rcccl</span></code>,
+where the second and fourth column hold the <code class="docutils literal notranslate"><span class="pre"><</span></code> sign, except when
+the interval reduces to a singleton, which means the root is known
+exactly.</p>
+<div class="admonition note">
+<p class="admonition-title">Note</p>
+<p>The explanations here and in this section are for LaTeX. With
+other TeX macro formats, the LaTeX syntax such as for example
+<code class="docutils literal notranslate"><span class="pre">\begin{array}{rcccl}</span></code> which appears in the documentation here
+is actually replaced with quasi-equivalent direct use of TeX
+primitives.</p>
+</div>
+<p>The next macros which govern its output.</p>
+</div></blockquote>
+<section id="polprintintervalsnorealroots">
+<span id="id52"></span><h4><code class="docutils literal notranslate"><span class="pre">\PolPrintIntervalsNoRealRoots</span></code></h4>
+<blockquote>
+<div><p>Executed in place of an <code class="docutils literal notranslate"><span class="pre">array</span></code> environment, when there are no
+real roots. Default definition:</p>
+<div class="highlight-latex notranslate"><div class="highlight"><pre><span></span><span class="k">\newcommand\PolPrintIntervalsNoRealRoots</span><span class="nb">{}</span>
+</pre></div>
+</div>
+</div></blockquote>
+</section>
+<section id="polprintintervalsbeginenv">
+<span id="id53"></span><h4><code class="docutils literal notranslate"><span class="pre">\PolPrintIntervalsBeginEnv</span></code></h4>
+<blockquote>
+<div><p>Default definition (given here for LaTeX, Plain has a variant):</p>
+<div class="highlight-latex notranslate"><div class="highlight"><pre><span></span><span class="k">\newcommand\PolPrintIntervalsBeginEnv</span><span class="nb">{</span><span class="sb">\[</span><span class="nv">\begin</span><span class="nb">{array}{rcccl}}</span>
+</pre></div>
+</div>
+<p>A simpler <code class="docutils literal notranslate"><span class="pre">center</span></code> environment provides a straightforward way to
+obtain a display allowing pagebreaks. Of course redefinitions must
+at any rate be kept in sync with <a class="reference internal" href="#id56">\PolPrintIntervalsKnownRoot</a> and
+<a class="reference internal" href="#id57">\PolPrintIntervalsUnknownRoot</a>.</p>
+<p>Prior to <code class="docutils literal notranslate"><span class="pre">0.8.6</span></code> it was not possible to use here for example
+<code class="docutils literal notranslate"><span class="pre">\begin{align}</span></code> due to the latter executing twice in contents.</p>
+</div></blockquote>
+</section>
+<section id="polprintintervalsendenv">
+<span id="id54"></span><h4><code class="docutils literal notranslate"><span class="pre">\PolPrintIntervalsEndEnv</span></code></h4>
+<blockquote>
+<div><p>Default definition:</p>
+<div class="highlight-latex notranslate"><div class="highlight"><pre><span></span><span class="k">\newcommand\PolPrintIntervalsEndEnv</span><span class="nb">{</span><span class="k">\end</span><span class="nb">{</span>array<span class="nb">}</span><span class="k">\]</span><span class="nb">}</span>
+</pre></div>
+</div>
+</div></blockquote>
+</section>
+<section id="polprintintervalsrowseparator">
+<span id="id55"></span><h4><code class="docutils literal notranslate"><span class="pre">\PolPrintIntervalsRowSeparator</span></code></h4>
+<blockquote>
+<div><p>Expands by default to <code class="docutils literal notranslate"><span class="pre">\\</span></code> with LaTeX and to <code class="docutils literal notranslate"><span class="pre">\cr</span></code> with Plain</p>
+<p>Added at <code class="docutils literal notranslate"><span class="pre">0.8.6</span></code>.</p>
+</div></blockquote>
+</section>
+<section id="polprintintervalsknownroot">
+<span id="id56"></span><h4><code class="docutils literal notranslate"><span class="pre">\PolPrintIntervalsKnownRoot</span></code></h4>
+<blockquote>
+<div><p>Default definition:</p>
+<div class="highlight-latex notranslate"><div class="highlight"><pre><span></span><span class="k">\newcommand\PolPrintIntervalsKnownRoot</span><span class="nb">{</span><span class="c">%</span>
+ <span class="nb">&&</span><span class="k">\PolPrintIntervalsTheVar</span><span class="nb">_{</span><span class="k">\PolPrintIntervalsTheIndex</span><span class="nb">}</span><span class="c">%</span>
+ <span class="nb">&</span>=<span class="nb">&</span><span class="k">\PolPrintIntervalsPrintExactZero</span>
+<span class="nb">}</span>
+</pre></div>
+</div>
+</div></blockquote>
+</section>
+<section id="polprintintervalsunknownroot">
+<span id="id57"></span><h4><code class="docutils literal notranslate"><span class="pre">\PolPrintIntervalsUnknownRoot</span></code></h4>
+<blockquote>
+<div><p>Default definition:</p>
+<div class="highlight-latex notranslate"><div class="highlight"><pre><span></span><span class="k">\newcommand\PolPrintIntervalsUnknownRoot</span><span class="nb">{</span><span class="c">%</span>
+ <span class="k">\PolPrintIntervalsPrintLeftEndPoint</span><span class="nb">&</span><<span class="nb">&</span><span class="c">%</span>
+ <span class="k">\PolPrintIntervalsTheVar</span><span class="nb">_{</span><span class="k">\PolPrintIntervalsTheIndex</span><span class="nb">}&</span><<span class="nb">&</span><span class="c">%</span>
+ <span class="k">\PolPrintIntervalsPrintRightEndPoint</span>
+<span class="nb">}</span>
+</pre></div>
+</div>
+</div></blockquote>
+</section>
+<section id="polprintintervalsprintexactzero">
+<span id="id58"></span><h4><code class="docutils literal notranslate"><span class="pre">\PolPrintIntervalsPrintExactZero</span></code></h4>
+<blockquote>
+<div><p>Default definition:</p>
+<div class="highlight-latex notranslate"><div class="highlight"><pre><span></span><span class="k">\newcommand\PolPrintIntervalsPrintExactZero</span><span class="nb">{</span><span class="k">\PolPrintIntervalsTheLeftEndPoint</span><span class="nb">}</span>
+</pre></div>
+</div>
+</div></blockquote>
+</section>
+<section id="polprintintervalsprintleftendpoint">
+<span id="id59"></span><h4><code class="docutils literal notranslate"><span class="pre">\PolPrintIntervalsPrintLeftEndPoint</span></code></h4>
+<blockquote>
+<div><p>Default definition:</p>
+<div class="highlight-latex notranslate"><div class="highlight"><pre><span></span><span class="k">\newcommand\PolPrintIntervalsPrintLeftEndPoint</span><span class="nb">{</span><span class="k">\PolPrintIntervalsTheLeftEndPoint</span><span class="nb">}</span>
+</pre></div>
+</div>
+</div></blockquote>
+</section>
+<section id="polprintintervalsprintrightendpoint">
+<span id="id60"></span><h4><code class="docutils literal notranslate"><span class="pre">\PolPrintIntervalsPrintRightEndPoint</span></code></h4>
+<blockquote>
+<div><p>Default definition is:</p>
+<div class="highlight-latex notranslate"><div class="highlight"><pre><span></span><span class="k">\newcommand\PolPrintIntervalsPrintRightEndPoint</span><span class="nb">{</span><span class="k">\PolPrintIntervalsTheRightEndPoint</span><span class="nb">}</span>
+</pre></div>
+</div>
+</div></blockquote>
+</section>
+<section id="polprintintervals-varname">
+<span id="id61"></span><h4><code class="docutils literal notranslate"><span class="pre">\PolPrintIntervals*[<varname>]{}</span></code></h4>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolPrintIntervals*[<varname>]{<sturmname>}</span></code></p>
+<blockquote>
+<div><p>This starred variant produces an alternative output (which
+displays the root multiplicity), and is provided as an
+example of customization.</p>
+<p>As replacement for <a class="reference internal" href="#id56">\PolPrintIntervalsKnownRoot</a>,
+<a class="reference internal" href="#id58">\PolPrintIntervalsPrintExactZero</a>,
+<a class="reference internal" href="#id57">\PolPrintIntervalsUnknownRoot</a> it uses its own
+<code class="docutils literal notranslate"><span class="pre">\POL@@PrintIntervals...</span></code> macros. We only reproduce here one
+definition:</p>
+<div class="highlight-latex notranslate"><div class="highlight"><pre><span></span><span class="k">\newcommand\POL</span>@@PrintIntervalsPrintExactZero<span class="nb">{</span><span class="c">%</span>
+ <span class="k">\displaystyle</span>
+ <span class="k">\xintTeXsignedFrac</span><span class="nb">{</span><span class="k">\PolPrintIntervalsTheLeftEndPoint</span><span class="nb">}</span><span class="c">%</span>
+<span class="nb">}</span><span class="c">%</span>
+</pre></div>
+</div>
+<p>Multiplicities are printed using this auxiliary macro:</p>
+</div></blockquote>
+<section id="polprintintervalsprintmultiplicity">
+<span id="id62"></span><h5><code class="docutils literal notranslate"><span class="pre">\PolPrintIntervalsPrintMultiplicity</span></code></h5>
+<blockquote>
+<div><p>whose default definition is:</p>
+<div class="highlight-latex notranslate"><div class="highlight"><pre><span></span><span class="k">\newcommand\PolPrintIntervalsPrintMultiplicity</span><span class="nb">{</span>(<span class="k">\mbox</span><span class="nb">{</span>mult. <span class="nb">}</span><span class="k">\PolPrintIntervalsTheMultiplicity</span>)<span class="nb">}</span>
+</pre></div>
+</div>
+</div></blockquote>
+</section>
+</section>
+</section>
+</section>
+<section id="expandable-macros">
+<h2>Expandable macros</h2>
+<div class="admonition note">
+<p class="admonition-title">Note</p>
+<p>At <code class="docutils literal notranslate"><span class="pre">0.8</span></code> <code class="docutils literal notranslate"><span class="pre">polexpr</span></code> is usable with Plain TeX and not only with
+LaTeX. Some examples given in this section may be using LaTeX syntax
+such as <code class="docutils literal notranslate"><span class="pre">\renewcommand</span></code>. Convert to TeX primitives as appropriate
+if testing with a non LaTeX macro format.</p>
+</div>
+<p>These macros expand completely in two steps except <code class="docutils literal notranslate"><span class="pre">\PolToExpr</span></code> and
+<code class="docutils literal notranslate"><span class="pre">\PolToFloatExpr</span></code> which need a <code class="docutils literal notranslate"><span class="pre">\write</span></code>, <code class="docutils literal notranslate"><span class="pre">\edef</span></code> or a
+<code class="docutils literal notranslate"><span class="pre">\csname...\endcsname</span></code> context.</p>
+<section id="poltoexpr">
+<span id="id63"></span><h3><code class="docutils literal notranslate"><span class="pre">\PolToExpr{}</span></code></h3>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolToExpr{<pol.</span> <span class="pre">expr.>}</span></code></p>
+<blockquote>
+<div><p>Produces expandably <a class="footnote-reference brackets" href="#id65" id="id64" role="doc-noteref"><span class="fn-bracket">[</span>3<span class="fn-bracket">]</span></a> the string <code class="docutils literal notranslate"><span class="pre">coeff_N*x^N+...</span></code>, i.e. the
+polynomial is using descending powers.</p>
+<aside class="footnote brackets" id="id65" role="note">
+<span class="label"><span class="fn-bracket">[</span><a role="doc-backlink" href="#id64">3</a><span class="fn-bracket">]</span></span>
+<p>requires exhaustive expansion, for example as triggered by
+<code class="docutils literal notranslate"><span class="pre">\write</span></code> or <code class="docutils literal notranslate"><span class="pre">\edef</span></code>.</p>
+</aside>
+<p>Since <code class="docutils literal notranslate"><span class="pre">0.8</span></code> the input is not restricted to be a polynomial name but
+is allowed to be an arbitrary expression. Then <code class="docutils literal notranslate"><span class="pre">x</span></code> is expected as
+indeterminate but this can be customized via <a class="reference internal" href="#id67">\PolToExprInVar</a>.</p>
+<p>The output uses the letter <code class="docutils literal notranslate"><span class="pre">x</span></code> by default, this is customizable
+via <a class="reference internal" href="#poltoexprvar">\PolToExprVar</a>. The default output is compatible both with</p>
+<ul class="simple">
+<li><p>the Maple’s input format,</p></li>
+<li><p>and the PSTricks <code class="docutils literal notranslate"><span class="pre">\psplot[algebraic]</span></code> input format.</p></li>
+</ul>
+<p>Attention that it is not compatible with Python, see further
+<a class="reference internal" href="#id69">\PolToExprCaret</a> in this context.</p>
+<p>The following applies:</p>
+<ul class="simple">
+<li><p>vanishing coefficients are skipped (issue <code class="docutils literal notranslate"><span class="pre">\poltoexpralltrue</span></code> to
+override this and produce output such as <code class="docutils literal notranslate"><span class="pre">x^3+0*x^2+0*x^1+0</span></code>),</p></li>
+<li><p>negative coefficients are not prefixed by a <code class="docutils literal notranslate"><span class="pre">+</span></code> sign (else,
+Maple would not be happy),</p></li>
+<li><p>coefficients numerically equal to <code class="docutils literal notranslate"><span class="pre">1</span></code> (or <code class="docutils literal notranslate"><span class="pre">-1</span></code>) are present
+only via their sign,</p></li>
+<li><p>the letter <code class="docutils literal notranslate"><span class="pre">x</span></code> is used and the degree one monomial is output as
+<code class="docutils literal notranslate"><span class="pre">x</span></code>, not as <code class="docutils literal notranslate"><span class="pre">x^1</span></code>.</p></li>
+<li><p>(<code class="docutils literal notranslate"><span class="pre">0.8</span></code>) the caret <code class="docutils literal notranslate"><span class="pre">^</span></code> is of catcode 12. This means that one
+can for convenience typeset in regular text mode, for example
+using <code class="docutils literal notranslate"><span class="pre">\texttt</span></code> (in LaTeX). But TeX will not know how to break
+the expression across end-of-lines anyhow. Formerly <code class="docutils literal notranslate"><span class="pre">^</span></code> was
+suitable for math mode but as the exponent is not braced this
+worked only for polynomials of degrees at most 9. Anyhow this
+is not supposed to be a typesetting macro.</p></li>
+</ul>
+<p>Complete customization is possible, see the next macros. Any user
+redefinition must maintain the expandability property.</p>
+</div></blockquote>
+<section id="poltoexprvar">
+<span id="id66"></span><h4><code class="docutils literal notranslate"><span class="pre">\PolToExprVar</span></code></h4>
+<blockquote>
+<div><p>Defaults to <code class="docutils literal notranslate"><span class="pre">x</span></code>. The letter used in the macro output.</p>
+</div></blockquote>
+</section>
+<section id="poltoexprinvar">
+<span id="id67"></span><h4><code class="docutils literal notranslate"><span class="pre">\PolToExprInVar</span></code></h4>
+<blockquote>
+<div><p>Defaults to <code class="docutils literal notranslate"><span class="pre">x</span></code>: the letter used as the polynomial indeterminate
+in the macro input.</p>
+<p>Recall that declared polynomials are more efficiently used in
+algebraic expressions without the <code class="docutils literal notranslate"><span class="pre">(x)</span></code>, i.e. <code class="docutils literal notranslate"><span class="pre">P*Q</span></code> is better
+than <code class="docutils literal notranslate"><span class="pre">P(x)*Q(x)</span></code>. Thus the input, even if an expression, does not
+have to contain any <code class="docutils literal notranslate"><span class="pre">x</span></code>.</p>
+<p>(new with <code class="docutils literal notranslate"><span class="pre">0.8</span></code>)</p>
+</div></blockquote>
+</section>
+<section id="poltoexprtimes">
+<span id="id68"></span><h4><code class="docutils literal notranslate"><span class="pre">\PolToExprTimes</span></code></h4>
+<blockquote>
+<div><p>Defaults to <code class="docutils literal notranslate"><span class="pre">*</span></code>.</p>
+</div></blockquote>
+</section>
+<section id="poltoexprcaret">
+<span id="id69"></span><h4><code class="docutils literal notranslate"><span class="pre">\PolToExprCaret</span></code></h4>
+<blockquote>
+<div><p>Defaults to <code class="docutils literal notranslate"><span class="pre">^</span></code> of catcode 12. Set it to
+expand to <code class="docutils literal notranslate"><span class="pre">**</span></code> for Python compatible output.</p>
+<p>(new with <code class="docutils literal notranslate"><span class="pre">0.8</span></code>)</p>
+</div></blockquote>
+</section>
+<section id="poltoexprcmd">
+<span id="id70"></span><h4><code class="docutils literal notranslate"><span class="pre">\PolToExprCmd{}</span></code></h4>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolToExprCmd{<raw_coeff>}</span></code></p>
+<blockquote>
+<div><p>Defaults to <code class="docutils literal notranslate"><span class="pre">\xintPRaw{\xintRawWithZeros{#1}}</span></code>.</p>
+<p>This means that the coefficient value is printed-out as a fraction
+<code class="docutils literal notranslate"><span class="pre">a/b</span></code>, skipping the <code class="docutils literal notranslate"><span class="pre">/b</span></code> part if <code class="docutils literal notranslate"><span class="pre">b</span></code> turns out to be one.</p>
+<p>Configure it to be <code class="docutils literal notranslate"><span class="pre">\xintPRaw{\xintIrr{#1}}</span></code> if the fractions
+must be in irreducible terms.</p>
+<p>An alternative is <code class="docutils literal notranslate"><span class="pre">\xintDecToString{\xintREZ{#1}}</span></code> which uses
+integer or decimal fixed point format such as <code class="docutils literal notranslate"><span class="pre">23.0071</span></code> if the
+internal representation of the number only has a power of ten as
+denominator (the effect of <code class="docutils literal notranslate"><span class="pre">\xintREZ</span></code> here is to remove trailing
+decimal zeros). The behaviour of <code class="docutils literal notranslate"><span class="pre">\xintDecToString</span></code> is not yet
+stable for other cases, and for example at time of writing no
+attempt is made to identify inputs having a finite decimal expansion
+so for example <code class="docutils literal notranslate"><span class="pre">23.007/2</span></code> or <code class="docutils literal notranslate"><span class="pre">23.007/25</span></code> can appear in output
+and not their finite decimal expansion with no denominator.</p>
+</div></blockquote>
+</section>
+<section id="poltoexproneterm">
+<span id="id71"></span><h4><code class="docutils literal notranslate"><span class="pre">\PolToExprOneTerm{}{}</span></code></h4>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolToExprOneTerm{<raw_coeff>}{<exponent>}</span></code></p>
+<blockquote>
+<div><p>This is the macro which from the coefficient and the exponent
+produces the corresponding term in output, such as <code class="docutils literal notranslate"><span class="pre">2/3*x^7</span></code>.</p>
+<p>For its default definition, see the source code. It uses
+<a class="reference internal" href="#poltoexprcmd">\PolToExprCmd</a>, <a class="reference internal" href="#poltoexprtimes">\PolToExprTimes</a>, <a class="reference internal" href="#poltoexprvar">\PolToExprVar</a> and
+<a class="reference internal" href="#id69">\PolToExprCaret</a>.</p>
+</div></blockquote>
+</section>
+<section id="poltoexpronetermstylea">
+<span id="id72"></span><h4><code class="docutils literal notranslate"><span class="pre">\PolToExprOneTermStyleA{}{}</span></code></h4>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolToExprOneTermStyleA{<raw_coeff>}{<exponent>}</span></code></p>
+<blockquote>
+<div><p>This holds the default package meaning of <code class="docutils literal notranslate"><span class="pre">\PolToExprOneTerm</span></code>.</p>
+</div></blockquote>
+</section>
+<section id="poltoexpronetermstyleb">
+<span id="id73"></span><h4><code class="docutils literal notranslate"><span class="pre">\PolToExprOneTermStyleB{}{}</span></code></h4>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolToExprOneTermStyleB{<raw_coeff>}{<exponent>}</span></code></p>
+<blockquote>
+<div><p>This holds an alternative meaning, which puts the fractional part of
+a coefficient after the monomial, i.e. like this:</p>
+<div class="highlight-latex notranslate"><div class="highlight"><pre><span></span>2*x<span class="nb">^</span>11/3+3*x<span class="nb">^</span>8/7-x<span class="nb">^</span>5-x<span class="nb">^</span>4/4-x<span class="nb">^</span>3-x<span class="nb">^</span>2/2-2*x+1
+</pre></div>
+</div>
+<p><a class="reference internal" href="#poltoexprcmd">\PolToExprCmd</a> isn’t used at all in this style. But
+<a class="reference internal" href="#poltoexprtimes">\PolToExprTimes</a>, <a class="reference internal" href="#poltoexprvar">\PolToExprVar</a> and <a class="reference internal" href="#id69">\PolToExprCaret</a> are obeyed.</p>
+<p>To activate it use <code class="docutils literal notranslate"><span class="pre">\let\PolToExprOneTerm\PolToExprOneTermStyleB</span></code>.
+To revert to the package default behaviour, issue
+<code class="docutils literal notranslate"><span class="pre">\let\PolToExprOneTerm\PolToExprOneTermStyleA</span></code>.</p>
+</div></blockquote>
+</section>
+<section id="poltoexprtermprefix">
+<span id="id74"></span><h4><code class="docutils literal notranslate"><span class="pre">\PolToExprTermPrefix{}</span></code></h4>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolToExprTermPrefix{<raw_coeff>}</span></code></p>
+<blockquote>
+<div><p>It receives as argument the coefficient. Its default behaviour is
+to produce a <code class="docutils literal notranslate"><span class="pre">+</span></code> if the coefficient is positive, which will thus
+serve to separate the monomials in the output. This is to match
+the default for <a class="reference internal" href="#poltoexprcmd"><span class="std std-ref">\PolToExprCmd{<raw_coeff>}</span></a> which in case of a
+positive coefficient does not output an explicit <code class="docutils literal notranslate"><span class="pre">+</span></code> prefix.</p>
+</div></blockquote>
+</section>
+</section>
+<section id="poltofloatexpr">
+<span id="id75"></span><h3><code class="docutils literal notranslate"><span class="pre">\PolToFloatExpr{}</span></code></h3>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolToFloatExpr{<pol.</span> <span class="pre">expr.>}</span></code></p>
+<blockquote>
+<div><p>Similar to <a class="reference internal" href="#poltoexpr"><span class="std std-ref">\PolToExpr{<pol. expr.>}</span></a> but using
+<a class="reference internal" href="#poltofloatexprcmd"><span class="std std-ref">\PolToFloatExprCmd{<raw_coeff>}</span></a> which by default rounds and
+converts the coefficients to floating point format.</p>
+<div class="admonition note">
+<p class="admonition-title">Note</p>
+<p>This is unrelated to <a class="reference internal" href="#polgenfloatvariant"><span class="std std-ref">\PolGenFloatVariant{<polname>}</span></a>:
+<a class="reference internal" href="#poltofloatexprcmd"><span class="std std-ref">\PolToFloatExprCmd{<raw_coeff>}</span></a> operates on the <em>exact</em>
+coefficients anew (and may thus produce something else than
+the coefficients of the polynomial function acting
+in <code class="docutils literal notranslate"><span class="pre">\xintfloateval</span></code> if the floating point precision was changed
+in between).</p>
+</div>
+<p>Extended at <code class="docutils literal notranslate"><span class="pre">0.8</span></code> to accept general expressions as input.</p>
+</div></blockquote>
+<section id="poltofloatexproneterm">
+<span id="id76"></span><h4><code class="docutils literal notranslate"><span class="pre">\PolToFloatExprOneTerm{}{}</span></code></h4>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolToFloatExprOneTerm{<raw_coeff>}{<exponent>}</span></code></p>
+<blockquote>
+<div><p>Similar to <a class="reference internal" href="#poltoexproneterm"><span class="std std-ref">\PolToExprOneTerm{<raw_coeff>}{<exponent>}</span></a>. But does not treat
+especially coefficients equal to plus or minus one.</p>
+</div></blockquote>
+</section>
+<section id="poltofloatexprcmd">
+<span id="id77"></span><h4><code class="docutils literal notranslate"><span class="pre">\PolToFloatExprCmd{}</span></code></h4>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolToFloatExprCmd{<raw_coeff>}</span></code></p>
+<blockquote>
+<div><p>The one-argument macro used by <code class="docutils literal notranslate"><span class="pre">\PolToFloatExprOneTerm</span></code>.
+It defaults to <code class="docutils literal notranslate"><span class="pre">\xintPFloat{#1}</span></code>, which trims trailing
+zeroes.</p>
+<p><em>changed at 0.8.2</em> Formerly it was using <code class="docutils literal notranslate"><span class="pre">\xintFloat</span></code>.</p>
+</div></blockquote>
+</section>
+</section>
+<section id="id78">
+<span id="id79"></span><h3><code class="docutils literal notranslate"><span class="pre">\PolToExpr*{}</span></code></h3>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolToExpr*{<pol.</span> <span class="pre">expr.>}</span></code></p>
+<blockquote>
+<div><p>Ascending powers: <code class="docutils literal notranslate"><span class="pre">coeff_0+coeff_1*x+coeff_2*x^2+...</span></code>.</p>
+<p>Extended at <code class="docutils literal notranslate"><span class="pre">0.8</span></code> to accept general expressions as input.</p>
+<p>Customizable with the same macros as for
+<a class="reference internal" href="#poltoexpr"><span class="std std-ref">\PolToExpr{<pol. expr.>}</span></a>.</p>
+</div></blockquote>
+</section>
+<section id="id80">
+<span id="id81"></span><h3><code class="docutils literal notranslate"><span class="pre">\PolToFloatExpr*{}</span></code></h3>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolToFloatExpr*{<pol.</span> <span class="pre">expr.>}</span></code></p>
+<blockquote>
+<div><p>Ascending powers.</p>
+<p>Extended at <code class="docutils literal notranslate"><span class="pre">0.8</span></code> to accept general expressions as input.</p>
+</div></blockquote>
+</section>
+<section id="polnthcoeff">
+<span id="id82"></span><h3><code class="docutils literal notranslate"><span class="pre">\PolNthCoeff{}{}</span></code></h3>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolNthCoeff{<polname>}{<index>}</span></code></p>
+<blockquote>
+<div><p>It expands to the raw <code class="docutils literal notranslate"><span class="pre">N</span></code>-th coefficient (<code class="docutils literal notranslate"><span class="pre">N=0</span></code> corresponds to
+the constant coefficient). If <code class="docutils literal notranslate"><span class="pre">N</span></code> is out of range, zero (in its
+default <a class="reference external" href="https://www.ctan.org/pkg/xint">xintfrac</a> format <code class="docutils literal notranslate"><span class="pre">0/1[0]</span></code>) is returned.</p>
+<p>Negative indices <code class="docutils literal notranslate"><span class="pre">N=-1</span></code>, <code class="docutils literal notranslate"><span class="pre">-2</span></code>, … return the leading
+coefficient, sub-leading coefficient, …, and finally <code class="docutils literal notranslate"><span class="pre">0/1[0]</span></code>
+for <code class="docutils literal notranslate"><span class="pre">N<-1-degree</span></code>.</p>
+</div></blockquote>
+</section>
+<section id="polleadingcoeff">
+<span id="id83"></span><h3><code class="docutils literal notranslate"><span class="pre">\PolLeadingCoeff{}</span></code></h3>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolLeadingCoeff{<polname>}</span></code></p>
+<blockquote>
+<div><p>Expands to the leading coefficient.</p>
+</div></blockquote>
+</section>
+<section id="poldegree">
+<span id="id84"></span><h3><code class="docutils literal notranslate"><span class="pre">\PolDegree{}</span></code></h3>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolDegree{<polname>}</span></code></p>
+<blockquote>
+<div><p>It expands to the degree. This is <code class="docutils literal notranslate"><span class="pre">-1</span></code> if zero polynomial but this
+may change in future. Should it then expand to <code class="docutils literal notranslate"><span class="pre">-\infty</span></code> ?</p>
+</div></blockquote>
+</section>
+<section id="policontent">
+<span id="id85"></span><h3><code class="docutils literal notranslate"><span class="pre">\PolIContent{}</span></code></h3>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolIContent{<polname>}</span></code></p>
+<blockquote>
+<div><p>It expands to the contents of the polynomial, i.e. to the positive
+fraction such that dividing by this fraction produces a polynomial
+with integer coefficients having no common prime divisor.</p>
+<p>See <a class="reference internal" href="#polmakeprimitive">\PolMakePrimitive</a>.</p>
+</div></blockquote>
+</section>
+<section id="poltolist">
+<span id="id86"></span><h3><code class="docutils literal notranslate"><span class="pre">\PolToList{}</span></code></h3>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolToList{<polname>}</span></code></p>
+<blockquote>
+<div><p>Expands to <code class="docutils literal notranslate"><span class="pre">{coeff_0}{coeff_1}...{coeff_N}</span></code> with <code class="docutils literal notranslate"><span class="pre">N</span></code> = degree, and
+<code class="docutils literal notranslate"><span class="pre">coeff_N</span></code> the leading coefficient
+(the zero polynomial does give <code class="docutils literal notranslate"><span class="pre">{0/1[0]}</span></code> and not an
+empty output.)</p>
+</div></blockquote>
+</section>
+<section id="poltocsv">
+<span id="id87"></span><h3><code class="docutils literal notranslate"><span class="pre">\PolToCSV{}</span></code></h3>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolToCSV{<polname>}</span></code></p>
+<blockquote>
+<div><p>Expands to <code class="docutils literal notranslate"><span class="pre">coeff_0,</span> <span class="pre">coeff_1,</span> <span class="pre">coeff_2,</span> <span class="pre">.....,</span> <span class="pre">coeff_N</span></code>, starting
+with constant term and ending with leading coefficient. Converse
+to <a class="reference internal" href="#polfromcsv"><span class="std std-ref">\PolFromCSV{<polname>}{<csv>}</span></a>.</p>
+</div></blockquote>
+</section>
+<section id="poleval-atexpr">
+<span id="polevalatexpr"></span><h3><code class="docutils literal notranslate"><span class="pre">\PolEval{}\AtExpr{}</span></code></h3>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolEval{<polname>}\AtExpr{<num.</span> <span class="pre">expr.>}</span></code></p>
+<blockquote>
+<div><p>Same output as
+<code class="docutils literal notranslate"><span class="pre">\xinteval{polname(numerical</span> <span class="pre">expression)}</span></code>.</p>
+</div></blockquote>
+</section>
+<section id="poleval-at">
+<span id="polevalat"></span><h3><code class="docutils literal notranslate"><span class="pre">\PolEval{}\At{}</span></code></h3>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolEval{<polname>}\At{<value>}</span></code></p>
+<blockquote>
+<div><p>Evaluates the polynomial at the given value which must be in (or
+expand to) a format acceptable to the <a class="reference external" href="https://www.ctan.org/pkg/xint">xintfrac</a> macros.</p>
+</div></blockquote>
+</section>
+<section id="polevalreduced-atexpr">
+<span id="polevalreducedatexpr"></span><h3><code class="docutils literal notranslate"><span class="pre">\PolEvalReduced{}\AtExpr{}</span></code></h3>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolEvalReduced{<polname>}\AtExpr{<num.</span> <span class="pre">expr.>}</span></code></p>
+<blockquote>
+<div><p>Same output as <code class="docutils literal notranslate"><span class="pre">\xinteval{reduce(polname(numerical</span> <span class="pre">expression))}</span></code>.</p>
+</div></blockquote>
+</section>
+<section id="polevalreduced-at">
+<span id="polevalreducedat"></span><h3><code class="docutils literal notranslate"><span class="pre">\PolEvalReduced{}\At{}</span></code></h3>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolEvalReduced{<polname>}\At{<value>}</span></code></p>
+<blockquote>
+<div><p>Evaluates the polynomial at the value which must be in (or expand
+to) a format acceptable to the <a class="reference external" href="https://www.ctan.org/pkg/xint">xintfrac</a> macros, and outputs an
+irreducible fraction.</p>
+</div></blockquote>
+</section>
+<section id="polfloateval-atexpr">
+<span id="polfloatevalatexpr"></span><h3><code class="docutils literal notranslate"><span class="pre">\PolFloatEval{}\AtExpr{}</span></code></h3>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolFloatEval{<polname>}\AtExpr{<num.</span> <span class="pre">expr.>}</span></code></p>
+<blockquote>
+<div><p>Same output as <code class="docutils literal notranslate"><span class="pre">\xintfloateval{polname(numerical</span> <span class="pre">expression)}</span></code>.</p>
+<div class="admonition attention">
+<p class="admonition-title">Attention</p>
+<p><a class="reference internal" href="#polgenfloatvariant">\PolGenFloatVariant</a> must have
+been issued before.</p>
+</div>
+<p>To use the <em>exact coefficients</em> with <em>exactly executed</em> additions
+and multiplications and do the rounding only as the final last step,
+the following syntax can be used: <a class="footnote-reference brackets" href="#id89" id="id88" role="doc-noteref"><span class="fn-bracket">[</span>4<span class="fn-bracket">]</span></a></p>
+<div class="highlight-latex notranslate"><div class="highlight"><pre><span></span><span class="k">\xintfloateval</span><span class="nb">{</span>3.27*<span class="k">\xintexpr</span> f(2.53)<span class="k">\relax</span><span class="nb">^</span>2<span class="nb">}</span>
+</pre></div>
+</div>
+<aside class="footnote brackets" id="id89" role="note">
+<span class="label"><span class="fn-bracket">[</span><a role="doc-backlink" href="#id88">4</a><span class="fn-bracket">]</span></span>
+<p>Cf. <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a> documentation about nested expressions.</p>
+</aside>
+</div></blockquote>
+</section>
+<section id="polfloateval-at">
+<span id="polfloatevalat"></span><h3><code class="docutils literal notranslate"><span class="pre">\PolFloatEval{}\At{}</span></code></h3>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolFloatEval{<polname>}\At{<value>}</span></code></p>
+<blockquote>
+<div><p>Evaluates the polynomial at the value which must be in (or expand
+to) a format acceptable to the <a class="reference external" href="https://www.ctan.org/pkg/xint">xintfrac</a> macros.</p>
+</div></blockquote>
+</section>
+<section id="expandable-macros-in-relation-to-root-localization-via-sturm-theorem">
+<h3>Expandable macros in relation to root localization via <a class="reference external" href="https://en.wikipedia.org/wiki/Sturm%27s_theorem">Sturm Theorem</a></h3>
+<section id="polsturmchainlength">
+<span id="id90"></span><h4><code class="docutils literal notranslate"><span class="pre">\PolSturmChainLength{}</span></code></h4>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolSturmChainLength{<sturmname>}</span></code></p>
+<blockquote>
+<div><p>Returns the integer <code class="docutils literal notranslate"><span class="pre">N</span></code> such that <code class="docutils literal notranslate"><span class="pre">sturmname_N</span></code> is the last one
+in the Sturm chain <code class="docutils literal notranslate"><span class="pre">sturmname_0</span></code>, <code class="docutils literal notranslate"><span class="pre">sturmname_1</span></code>, …</p>
+<p>See <a class="reference internal" href="#poltosturm"><span class="std std-ref">\PolToSturm{<polname>}{<sturmname>}</span></a>.</p>
+</div></blockquote>
+</section>
+<section id="polsturmifzeroexactlyknown">
+<span id="id91"></span><h4><code class="docutils literal notranslate"><span class="pre">\PolSturmIfZeroExactlyKnown{}{}{}{}</span></code></h4>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolSturmIfZeroExactlyKnown{<sturmname>}{<index>}{T}{F}</span></code></p>
+<blockquote>
+<div><p>Executes <code class="docutils literal notranslate"><span class="pre">T</span></code> if the <code class="docutils literal notranslate"><span class="pre">index</span></code>-th interval reduces to a singleton,
+i.e. the root is known exactly, else <code class="docutils literal notranslate"><span class="pre">F</span></code>.</p>
+</div></blockquote>
+</section>
+<section id="polsturmisolatedzeroleft">
+<span id="id92"></span><h4><code class="docutils literal notranslate"><span class="pre">\PolSturmIsolatedZeroLeft{}{}</span></code></h4>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolSturmIsolatedZeroLeft{<sturmname>}{<index>}</span></code></p>
+<blockquote>
+<div><p>Expands to the left end-point for the <code class="docutils literal notranslate"><span class="pre">index</span></code>-th interval, as
+computed by some earlier <a class="reference internal" href="#polsturmisolatezeros"><span class="std std-ref">\PolSturmIsolateZeros{<sturmname>}</span></a>.</p>
+<div class="admonition note">
+<p class="admonition-title">Note</p>
+<p>Execution of this macro after some
+<a class="reference internal" href="#id46">\PolRefineInterval{<sturmname>}{<index>}</a>
+will take into account the now known tighter bounds.</p>
+</div>
+<p>The value is pre-formatted using <a class="reference internal" href="#poldectostring">\PolDecTostring</a>.</p>
+</div></blockquote>
+</section>
+<section id="polsturmisolatedzeroright">
+<span id="id93"></span><h4><code class="docutils literal notranslate"><span class="pre">\PolSturmIsolatedZeroRight{}{}</span></code></h4>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolSturmIsolatedZeroRight{<sturmname>}{<index>}</span></code></p>
+<blockquote>
+<div><p>Expands to the right end-point for the <code class="docutils literal notranslate"><span class="pre">index</span></code>-th interval as
+computed by some earlier <a class="reference internal" href="#polsturmisolatezeros"><span class="std std-ref">\PolSturmIsolateZeros{<sturmname>}</span></a> and
+possibly refined afterwards.</p>
+<p>The value is pre-formatted using <a class="reference internal" href="#poldectostring">\PolDecTostring</a>.</p>
+</div></blockquote>
+</section>
+<section id="polsturmisolatedzeromultiplicity">
+<span id="id94"></span><h4><code class="docutils literal notranslate"><span class="pre">\PolSturmIsolatedZeroMultiplicity{}{}</span></code></h4>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolSturmIsolatedZeroMultiplicity{<sturmname>}{<index>}</span></code></p>
+<blockquote>
+<div><p>Expands to the multiplicity of the unique root contained in the
+<code class="docutils literal notranslate"><span class="pre">index</span></code>-th interval.</p>
+<div class="admonition attention">
+<p class="admonition-title">Attention</p>
+<p>A prior execution of <a class="reference internal" href="#id38"><span class="std std-ref">\PolSturmIsolateZeros*{<sturmname>}</span></a> is mandatory.</p>
+</div>
+<p>See <code class="docutils literal notranslate"><span class="pre">The</span> <span class="pre">degree</span> <span class="pre">nine</span> <span class="pre">polynomial</span> <span class="pre">with</span> <span class="pre">0.99,</span> <span class="pre">0.999,</span> <span class="pre">0.9999</span> <span class="pre">as</span> <span class="pre">triple</span>
+<span class="pre">roots</span></code> in <code class="docutils literal notranslate"><span class="pre">polexpr-examples.pdf</span></code>.</p>
+</div></blockquote>
+</section>
+<section id="polsturmnbofisolatedzeros">
+<span id="id95"></span><h4><code class="docutils literal notranslate"><span class="pre">\PolSturmNbOfIsolatedZeros{}</span></code></h4>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolSturmNbOfIsolatedZeros{<sturmname>}</span></code></p>
+<blockquote>
+<div><p>Expands to the number of real roots of the polynomial
+<code class="docutils literal notranslate"><span class="pre"><sturmname>_0</span></code>, i.e. the number of distinct real roots of the
+polynomial originally used to create the Sturm chain via
+<a class="reference internal" href="#poltosturm"><span class="std std-ref">\PolToSturm{<polname>}{<sturmname>}</span></a>.</p>
+</div></blockquote>
+<div class="admonition warning">
+<p class="admonition-title">Warning</p>
+<p>The next few macros counting roots, with or without multiplicities,
+less than or equal to some value, are under evaluation and may be
+removed from the package if their utility is judged to be not high
+enough. They can be re-coded at user level on the basis of the other
+documented package macros anyway.</p>
+</div>
+</section>
+<section id="polsturmnbofrootsof-lessthanorequalto">
+<span id="polsturmnbofrootsoflessthanorequalto"></span><h4><code class="docutils literal notranslate"><span class="pre">\PolSturmNbOfRootsOf{}\LessThanOrEqualTo{}</span></code></h4>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolSturmNbOfRootsOf{<sturmname>}\LessThanOrEqualTo{<value>}</span></code></p>
+<blockquote>
+<div><p>Expands to the number of distinct roots (of the polynomial used to
+create the Sturm chain) less than or equal to the <code class="docutils literal notranslate"><span class="pre">value</span></code> (i.e. a
+number of fraction recognizable by the <a class="reference external" href="https://www.ctan.org/pkg/xint">xintfrac</a> macros).</p>
+<div class="admonition attention">
+<p class="admonition-title">Attention</p>
+<p><a class="reference internal" href="#polsturmisolatezeros"><span class="std std-ref">\PolSturmIsolateZeros{<sturmname>}</span></a> must have been executed
+beforehand.</p>
+<p>And the argument is a <code class="docutils literal notranslate"><span class="pre"><sturmname></span></code>, not a <code class="docutils literal notranslate"><span class="pre"><polname></span></code> (this is
+why the macro contains Sturm in its name), simply to be reminded
+of the above constraint.</p>
+</div>
+</div></blockquote>
+</section>
+<section id="polsturmnbofrootsof-lessthanorequaltoexpr">
+<span id="polsturmnbofrootsoflessthanorequaltoexpr"></span><h4><code class="docutils literal notranslate"><span class="pre">\PolSturmNbOfRootsOf{}\LessThanOrEqualToExpr{}</span></code></h4>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolSturmNbOfRootsOf{<sturmname>}\LessThanOrEqualToExpr{<num.</span> <span class="pre">expr.>}</span></code></p>
+<blockquote>
+<div><p>Expands to the number of distinct roots (of the polynomial
+used to create the Sturm chain) which are less than or equal to the
+given numerical expression.</p>
+<div class="admonition attention">
+<p class="admonition-title">Attention</p>
+<p><a class="reference internal" href="#polsturmisolatezeros"><span class="std std-ref">\PolSturmIsolateZeros{<sturmname>}</span></a> must have been executed
+beforehand.</p>
+</div>
+</div></blockquote>
+</section>
+<section id="polsturmnbwithmultofrootsof-lessthanorequalto">
+<span id="polsturmnbwithmultofrootsoflessthanorequalto"></span><h4><code class="docutils literal notranslate"><span class="pre">\PolSturmNbWithMultOfRootsOf{}\LessThanOrEqualTo{}</span></code></h4>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolSturmNbWithMultOfRootsOf{<sturmname>}\LessThanOrEqualTo{<value>}</span></code></p>
+<blockquote>
+<div><p>Expands to the number counted with multiplicities of the roots (of
+the polynomial used to create the Sturm chain) which are less than
+or equal to the given <code class="docutils literal notranslate"><span class="pre">value</span></code>.</p>
+<div class="admonition attention">
+<p class="admonition-title">Attention</p>
+<p><a class="reference internal" href="#id38"><span class="std std-ref">\PolSturmIsolateZeros*{<sturmname>}</span></a> (or the double starred
+variant) must have been executed beforehand.</p>
+</div>
+</div></blockquote>
+</section>
+<section id="polsturmnbwithmultofrootsof-lessthanorequaltoexpr">
+<span id="polsturmnbwithmultofrootsoflessthanorequaltoexpr"></span><h4><code class="docutils literal notranslate"><span class="pre">\PolSturmNbWithMultOfRootsOf{}\LessThanOrEqualToExpr{}</span></code></h4>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolSturmNbWithMultOfRootsOf{<sturmname>}\LessThanOrEqualToExpr{<num.</span> <span class="pre">expr.>}</span></code></p>
+<blockquote>
+<div><p>Expands to the total number of roots (counted with multiplicities)
+which are less than or equal to the given <code class="docutils literal notranslate"><span class="pre">expression</span></code>.</p>
+<div class="admonition attention">
+<p class="admonition-title">Attention</p>
+<p><a class="reference internal" href="#id38"><span class="std std-ref">\PolSturmIsolateZeros*{<sturmname>}</span></a> (or the double starred
+variant) must have been executed beforehand.</p>
+</div>
+</div></blockquote>
+</section>
+<section id="polsturmnbofrationalroots">
+<span id="id96"></span><h4><code class="docutils literal notranslate"><span class="pre">\PolSturmNbOfRationalRoots{}</span></code></h4>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolSturmNbOfRationalRoots{<sturmname>}</span></code></p>
+<blockquote>
+<div><p>Expands to the number of rational roots (without multiplicities).</p>
+<div class="admonition attention">
+<p class="admonition-title">Attention</p>
+<p><a class="reference internal" href="#id41"><span class="std std-ref">\PolSturmIsolateZeros**{<sturmname>}</span></a> must have been executed
+beforehand.</p>
+</div>
+</div></blockquote>
+</section>
+<section id="polsturmnbofrationalrootswithmultiplicities">
+<span id="id97"></span><h4><code class="docutils literal notranslate"><span class="pre">\PolSturmNbOfRationalRootsWithMultiplicities{}</span></code></h4>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolSturmNbOfRationalRootsWithMultiplicities{<sturmname>}</span></code></p>
+<blockquote>
+<div><p>Expands to the number of rational roots (counted with multiplicities).</p>
+<div class="admonition attention">
+<p class="admonition-title">Attention</p>
+<p><a class="reference internal" href="#id41"><span class="std std-ref">\PolSturmIsolateZeros**{<sturmname>}</span></a> must have been executed
+beforehand.</p>
+</div>
+</div></blockquote>
+</section>
+<section id="polsturmrationalroot">
+<span id="id98"></span><h4><code class="docutils literal notranslate"><span class="pre">\PolSturmRationalRoot{}{}</span></code></h4>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolSturmRationalRoot{<sturmname>}{<k>}</span></code></p>
+<blockquote>
+<div><p>Expands to the k-th rational root. They are enumerated from left to
+right starting at index value <code class="docutils literal notranslate"><span class="pre">1</span></code>.</p>
+<div class="admonition attention">
+<p class="admonition-title">Attention</p>
+<p><a class="reference internal" href="#id41"><span class="std std-ref">\PolSturmIsolateZeros**{<sturmname>}</span></a> must have been executed
+beforehand.</p>
+</div>
+</div></blockquote>
+</section>
+<section id="polsturmrationalrootindex">
+<span id="id99"></span><h4><code class="docutils literal notranslate"><span class="pre">\PolSturmRationalRootIndex{}{}</span></code></h4>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolSturmRationalRootIndex{<sturmname>}{<k>}</span></code></p>
+<blockquote>
+<div><p>Expands to the index of the <code class="docutils literal notranslate"><span class="pre">k</span></code>th rational root as part of the
+ordered real roots (counted without multiplicities). So
+<a class="reference internal" href="#polsturmrationalroot"><span class="std std-ref">\PolSturmRationalRoot{<sturmname>}{<k>}</span></a> is equivalent to
+this nested call:</p>
+<div class="highlight-latex notranslate"><div class="highlight"><pre><span></span><span class="k">\PolSturmIsolatedZeroLeft</span><span class="nb">{</span><sturmname><span class="nb">}{</span><span class="k">\PolSturmRationalRootIndex</span><span class="nb">{</span><sturmname><span class="nb">}{</span><k><span class="nb">}}</span>
+</pre></div>
+</div>
+<div class="admonition attention">
+<p class="admonition-title">Attention</p>
+<p><a class="reference internal" href="#id41"><span class="std std-ref">\PolSturmIsolateZeros**{<sturmname>}</span></a> must have been executed
+beforehand.</p>
+</div>
+</div></blockquote>
+</section>
+<section id="polsturmrationalrootmultiplicity">
+<span id="id100"></span><h4><code class="docutils literal notranslate"><span class="pre">\PolSturmRationalRootMultiplicity{}{}</span></code></h4>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolSturmRationalRootMultiplicity{<sturmname>}{<k>}</span></code></p>
+<blockquote>
+<div><p>Expands to the multiplicity of the <code class="docutils literal notranslate"><span class="pre">k</span></code>th rational root.</p>
+<div class="admonition attention">
+<p class="admonition-title">Attention</p>
+<p><a class="reference internal" href="#id41"><span class="std std-ref">\PolSturmIsolateZeros**{<sturmname>}</span></a> must have been executed
+beforehand.</p>
+</div>
+</div></blockquote>
+</section>
+<section id="polintervalwidth">
+<span id="id101"></span><h4><code class="docutils literal notranslate"><span class="pre">\PolIntervalWidth{}{}</span></code></h4>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolIntervalWidth{<sturmname>}{<index>}</span></code></p>
+<blockquote>
+<div><p>The <code class="docutils literal notranslate"><span class="pre">10^E</span></code> width of the current <code class="docutils literal notranslate"><span class="pre">index</span></code>-th root localization
+interval. Output is in <a class="reference external" href="https://www.ctan.org/pkg/xint">xintfrac</a> raw <code class="docutils literal notranslate"><span class="pre">1/1[E]</span></code> format (if not zero).</p>
+</div></blockquote>
+</section>
+</section>
+<section id="expandable-macros-for-use-within-execution-of-polprintintervals">
+<h3>Expandable macros for use within execution of <code class="docutils literal notranslate"><span class="pre">\PolPrintIntervals</span></code></h3>
+<p>These macros are for usage within custom user redefinitions of
+<a class="reference internal" href="#id56">\PolPrintIntervalsKnownRoot</a>, <a class="reference internal" href="#id57">\PolPrintIntervalsUnknownRoot</a>, or
+in redefinitions of <a class="reference internal" href="#polprintintervalsprintexactzero">PolPrintIntervalsPrintExactZero</a> (used in the
+default for the former) and of <a class="reference internal" href="#id59">\PolPrintIntervalsPrintLeftEndPoint</a>,
+<a class="reference internal" href="#id60">\PolPrintIntervalsPrintRightEndPoint</a> (used in the default for the
+latter).</p>
+<section id="polprintintervalsthevar">
+<span id="id102"></span><h4><code class="docutils literal notranslate"><span class="pre">\PolPrintIntervalsTheVar</span></code></h4>
+<blockquote>
+<div><p>Expands to the name (default <code class="docutils literal notranslate"><span class="pre">Z</span></code>) used for representing the roots,
+which was passed as optional argument <code class="docutils literal notranslate"><span class="pre">varname</span></code> to
+<a class="reference internal" href="#polprintintervals"><span class="std std-ref">\PolPrintIntervals[varname]{<sturmname>}</span></a>.</p>
+</div></blockquote>
+</section>
+<section id="polprintintervalstheindex">
+<span id="id103"></span><h4><code class="docutils literal notranslate"><span class="pre">\PolPrintIntervalsTheIndex</span></code></h4>
+<blockquote>
+<div><p>Expands to the index of the considered interval (indexing starting
+at 1 for the leftmost interval).</p>
+</div></blockquote>
+</section>
+<section id="polprintintervalsthesturmname">
+<span id="id104"></span><h4><code class="docutils literal notranslate"><span class="pre">\PolPrintIntervalsTheSturmName</span></code></h4>
+<blockquote>
+<div><p>Expands to the argument which was passed as <code class="docutils literal notranslate"><span class="pre"><sturmname></span></code> to
+<a class="reference internal" href="#polprintintervals"><span class="std std-ref">\PolPrintIntervals[varname]{<sturmname>}</span></a>.</p>
+</div></blockquote>
+</section>
+<section id="polprintintervalstheleftendpoint">
+<span id="id105"></span><h4><code class="docutils literal notranslate"><span class="pre">\PolPrintIntervalsTheLeftEndPoint</span></code></h4>
+<blockquote>
+<div><p>The left end point of the interval, as would be produced by
+<a class="reference internal" href="#polsturmisolatedzeroleft">\PolSturmIsolatedZeroLeft</a> if it was
+used with arguments the Sturm chain name and interval index returned
+by <a class="reference internal" href="#id104">\PolPrintIntervalsTheSturmName</a> and
+<a class="reference internal" href="#id103">\PolPrintIntervalsTheIndex</a>.</p>
+</div></blockquote>
+</section>
+<section id="polprintintervalstherightendpoint">
+<span id="id106"></span><h4><code class="docutils literal notranslate"><span class="pre">\PolPrintIntervalsTheRightEndPoint</span></code></h4>
+<blockquote>
+<div><p>The right end point of the interval, as would be produced by
+<a class="reference internal" href="#polsturmisolatedzeroright">\PolSturmIsolatedZeroRight</a> for
+this Sturm chain name and index.</p>
+</div></blockquote>
+</section>
+<section id="polprintintervalsthemultiplicity">
+<span id="id107"></span><h4><code class="docutils literal notranslate"><span class="pre">\PolPrintIntervalsTheMultiplicity</span></code></h4>
+<blockquote>
+<div><p>The multiplicity of the unique root within the interval of index
+<a class="reference internal" href="#id103">\PolPrintIntervalsTheIndex</a>. Makes sense only if the starred (or
+double-starred) variant of <a class="reference internal" href="#polsturmisolatezeros">\PolSturmIsolateZeros</a> was used earlier.</p>
+</div></blockquote>
+</section>
+</section>
+</section>
+<section id="tex-booleans-with-names-enacting-their-defaults">
+<h2>TeX Booleans (with names enacting their defaults)</h2>
+<section id="xintverbosefalse">
+<span id="id108"></span><h3><code class="docutils literal notranslate"><span class="pre">\xintverbosefalse</span></code></h3>
+<blockquote>
+<div><p>This is actually an <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a> configuration. Setting it to
+<code class="docutils literal notranslate"><span class="pre">true</span></code> triggers the writing of information to the log when new
+polynomial or scalar variables are defined.</p>
+<div class="admonition caution">
+<p class="admonition-title">Caution</p>
+<p>The macro and variable meanings as written to the log are to be
+considered unstable and undocumented internal structures.</p>
+</div>
+</div></blockquote>
+</section>
+<section id="polnewpolverbosefalse">
+<span id="id109"></span><h3><code class="docutils literal notranslate"><span class="pre">\polnewpolverbosefalse</span></code></h3>
+<blockquote>
+<div><p>When <code class="docutils literal notranslate"><span class="pre">\poldef</span></code> is used, both a variable and a function are
+defined. The default <code class="docutils literal notranslate"><span class="pre">\polnewpolverbosefalse</span></code> setting suppresses
+the print-out to the log and terminal of the function macro meaning,
+as it only duplicates the information contained in the variable
+which is already printed out to the log and terminal.</p>
+<p>However <a class="reference internal" href="#polgenfloatvariant"><span class="std std-ref">\PolGenFloatVariant{<polname>}</span></a>
+does still print out the information relative to the polynomial
+function it defines for use in <code class="docutils literal notranslate"><span class="pre">\xintfloateval{}</span></code> as there is no
+float polynomial variable, only the</p>
+<p>function, and it is the only way to see its rounded coefficients
+(<code class="docutils literal notranslate"><span class="pre">\xintverbosefalse</span></code> suppresses also that info).</p>
+<p>If set to <code class="docutils literal notranslate"><span class="pre">true</span></code>, it overrides in both cases
+<code class="docutils literal notranslate"><span class="pre">\xintverbosefalse</span></code>. The setting only affects polynomial
+declarations. Scalar variables such as those holding information on
+roots obey only the <code class="docutils literal notranslate"><span class="pre">\xintverbose...</span></code> setting.</p>
+<p>(new with <code class="docutils literal notranslate"><span class="pre">0.8</span></code>)</p>
+</div></blockquote>
+</section>
+<section id="poltypesetallfalse">
+<span id="id110"></span><h3><code class="docutils literal notranslate"><span class="pre">\poltypesetallfalse</span></code></h3>
+<blockquote>
+<div><p>If <code class="docutils literal notranslate"><span class="pre">true</span></code>, <a class="reference internal" href="#poltypeset">\PolTypeset</a> will also typeset the vanishing
+coefficients.</p>
+</div></blockquote>
+</section>
+<section id="poltoexprallfalse">
+<span id="id111"></span><h3><code class="docutils literal notranslate"><span class="pre">\poltoexprallfalse</span></code></h3>
+<blockquote>
+<div><p>If <code class="docutils literal notranslate"><span class="pre">true</span></code>, <a class="reference internal" href="#poltoexpr"><span class="std std-ref">\PolToExpr{<pol. expr.>}</span></a> and
+<a class="reference internal" href="#poltofloatexpr"><span class="std std-ref">\PolToFloatExpr{<pol. expr.>}</span></a> will also
+include the vanishing coefficients in their outputs.</p>
+</div></blockquote>
+</section>
+</section>
+<section id="utilities">
+<h2>Utilities</h2>
+<section id="poldectostring">
+<span id="id112"></span><h3><code class="docutils literal notranslate"><span class="pre">\PolDecToString{}</span></code></h3>
+<p>Syntax: <code class="docutils literal notranslate"><span class="pre">\PolDecToString{decimal</span> <span class="pre">number}</span></code></p>
+<blockquote>
+<div><p>This is a utility macro to print decimal numbers. It is an alias
+for <code class="docutils literal notranslate"><span class="pre">\xintDecToString</span></code>.</p>
+</div></blockquote>
+<blockquote>
+<div><p>For example
+<code class="docutils literal notranslate"><span class="pre">\PolDecToString{123.456e-8}</span></code> will expand to <code class="docutils literal notranslate"><span class="pre">0.00000123456</span></code>
+and <code class="docutils literal notranslate"><span class="pre">\PolDecToString{123.450e-8}</span></code> to <code class="docutils literal notranslate"><span class="pre">0.00000123450</span></code> which
+illustrates that trailing zeros are not trimmed.</p>
+<p>To trim trailing zeroes, one can use
+<code class="docutils literal notranslate"><span class="pre">\PolDecToString{\xintREZ{#1}}</span></code>.</p>
+<p>Attention that a.t.t.o.w. if the argument is for example <code class="docutils literal notranslate"><span class="pre">1/5</span></code>, the
+macro does not identify that this is in fact a number with a finite
+decimal expansion and it outputs <code class="docutils literal notranslate"><span class="pre">1/5</span></code>. See current <a class="reference external" href="https://www.ctan.org/pkg/xint">xintfrac</a>
+documentation.</p>
+</div></blockquote>
+</section>
+<section id="polexprsetup-key-val">
+<span id="polexprsetup"></span><h3><code class="docutils literal notranslate"><span class="pre">\polexprsetup{key=val,...}</span></code></h3>
+<blockquote>
+<div><p>Serves to customize the package. Currently only two keys are
+recognized:</p>
+<ul class="simple">
+<li><p><code class="docutils literal notranslate"><span class="pre">norr</span></code>: the postfix that <a class="reference internal" href="#id41"><span class="std std-ref">\PolSturmIsolateZeros**{<sturmname>}</span></a>
+should append to <code class="docutils literal notranslate"><span class="pre"><sturmname></span></code> to declare the primitive polynomial
+obtained from original one after removal of all rational roots.
+The default value is <code class="docutils literal notranslate"><span class="pre">_norr</span></code> (standing for “no rational roots”).</p></li>
+<li><p><code class="docutils literal notranslate"><span class="pre">sqfnorr</span></code>: the postfix that <a class="reference internal" href="#id41"><span class="std std-ref">\PolSturmIsolateZeros**{<sturmname>}</span></a>
+should append to <code class="docutils literal notranslate"><span class="pre"><sturmname></span></code> to declare the primitive polynomial
+obtained from original one after removal of all rational roots and
+suppression of all multiplicities.
+The default value is <code class="docutils literal notranslate"><span class="pre">_sqf_norr</span></code> (standing for “square-free with
+no rational roots”).</p></li>
+</ul>
+<p>The package executes <code class="docutils literal notranslate"><span class="pre">\polexprsetup{norr=_norr,</span>
+<span class="pre">sqfnorr=_sqf_norr}</span></code> as default.</p>
+</div></blockquote>
+</section>
+</section>
+<section id="technicalities">
+<h2>Technicalities</h2>
+<ul>
+<li><p>The <code class="docutils literal notranslate"><span class="pre">@</span></code> is allowed in the name of a polynomial (independently of
+whether it is of catcode letter or other.) This has always been the
+case, but was not documented by polexpr prior to <code class="docutils literal notranslate"><span class="pre">0.8</span></code>, as the
+author has never found the time to provide some official guidelines on
+how to name temporary variables and the <code class="docutils literal notranslate"><span class="pre">@</span></code> is used already as such
+internally; time has still not yet been found to review the situation
+but it seems reasonable to recommend at any rate to restrict usage of
+<code class="docutils literal notranslate"><span class="pre">@</span></code> to scratch variables of defined macros and to avoid using it to
+name document variable.</p></li>
+<li><p>Catcodes are set temporarily by <a class="reference internal" href="#poldef">\poldef</a> macro to safe
+values prior to grab the polynomial expression up to the terminator
+<code class="docutils literal notranslate"><span class="pre">;</span></code>, and also by <a class="reference internal" href="#id5">\PolDef</a> prior to grab the
+brace-enclosed polynomial expression. This gives a layer of
+protection in case some package (for example the <code class="docutils literal notranslate"><span class="pre">babel-french</span></code> module)
+has made some characters active. It will fail though if the whole
+thing is located inside some definition of a macro done at a time the
+characters are active.</p></li>
+<li><div class="admonition attention">
+<p class="admonition-title">Attention</p>
+<p>Contrarily to <code class="docutils literal notranslate"><span class="pre">\xintdefvar</span></code> and <code class="docutils literal notranslate"><span class="pre">\xintdeffunc</span></code> from <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a>,
+<code class="docutils literal notranslate"><span class="pre">\poldef</span></code> uses a naive delimited macro to fetch up to the
+expression terminator <code class="docutils literal notranslate"><span class="pre">";"</span></code>, hence it will be fooled if some
+<code class="docutils literal notranslate"><span class="pre">;</span></code> is used inside the expression (which is possible as it
+appears in some <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a> constructs). Work-around is to use curly
+braces around the inner semi-colons, or simpler to use
+<code class="docutils literal notranslate"><span class="pre">\PolDef</span></code>.</p>
+</div>
+</li>
+<li><p>As a consequence of <a class="reference external" href="https://www.ctan.org/pkg/xint">xintfrac</a> addition and subtraction always using
+least common multiples for the denominators, user-chosen common
+denominators (currently) survive additions and multiplications. For
+example, this:</p>
+<div class="highlight-latex notranslate"><div class="highlight"><pre><span></span><span class="k">\poldef</span> P(x):= 1/2 + 2/2*x + 3/2*x<span class="nb">^</span>3 + 4/2*x<span class="nb">^</span>4;
+<span class="k">\poldef</span> Q(x):= 1/3 + (2/3)x + (3/3)x<span class="nb">^</span>3 + (4/3)x<span class="nb">^</span>4;
+<span class="k">\poldef</span> PQ(x):= P*Q;
+</pre></div>
+</div>
+<p>gives internally the polynomial:</p>
+<div class="highlight-latex notranslate"><div class="highlight"><pre><span></span>1/6+4/6*x<span class="nb">^</span>1+4/6*x<span class="nb">^</span>2+6/6*x<span class="nb">^</span>3+20/6*x<span class="nb">^</span>4+16/6*x<span class="nb">^</span>5+9/6*x<span class="nb">^</span>6+24/6*x<span class="nb">^</span>7+16/6*x<span class="nb">^</span>8
+</pre></div>
+</div>
+<p>where all coefficients have the same denominator 6. Notice though that
+<code class="docutils literal notranslate"><span class="pre">\PolToExpr{PQ}</span></code> outputs the <code class="docutils literal notranslate"><span class="pre">6/6*x^3</span></code> as <code class="docutils literal notranslate"><span class="pre">x^3</span></code> because (by
+default) it recognizes and filters out coefficients equal to one or
+minus one. One can use for example
+<code class="docutils literal notranslate"><span class="pre">\PolToCSV{PQ}</span></code> to see the internally stored coefficients.</p>
+</li>
+<li><p><a class="reference internal" href="#poldiff"><span class="std std-ref">\PolDiff{<polname_1>}{<polname_2>}</span></a> always applies <code class="docutils literal notranslate"><span class="pre">\xintPIrr</span></code> to the
+resulting coefficients, which means that fractions are reduced to
+lowest terms but ignoring an already separated <em>power of ten</em> part <code class="docutils literal notranslate"><span class="pre">[N]</span></code>
+present in the internal representation. This is tentative and may change.</p>
+<p>Same remark for <a class="reference internal" href="#polantidiff"><span class="std std-ref">\PolAntiDiff{<polname_1>}{<polname_2>}</span></a>.</p>
+</li>
+<li><p>Currently, the package stores all coefficients from index <code class="docutils literal notranslate"><span class="pre">0</span></code> to
+index equal to the polynomial degree inside a single macro, as a list.
+This data structure is obviously very inefficient for polynomials of
+high degree and few coefficients (as an example with <code class="docutils literal notranslate"><span class="pre">\poldef</span>
+<span class="pre">f(x):=x^1000</span> <span class="pre">+</span> <span class="pre">x^500;</span></code> the subsequent definition <code class="docutils literal notranslate"><span class="pre">\poldef</span> <span class="pre">g(x):=</span>
+<span class="pre">f(x)^2;</span></code> will do of the order of 1,000,000 multiplications and
+additions involvings only zeroes… which does take time). This
+may change in the future.</p></li>
+<li><p>As is to be expected internal structures of the package are barely
+documented and unstable. Don’t use them.</p></li>
+</ul>
+</section>
+</section>
+
+
+ <div class="clearer"></div>
+ </div>
+ </div>
+ </div>
+ <div class="sphinxsidebar" role="navigation" aria-label="main navigation">
+ <div class="sphinxsidebarwrapper"><h3>Contents of this page</h3>
+<ul>
+<li><a class="reference internal" href="#">polexpr reference</a><ul>
+<li><a class="reference internal" href="#syntax-overview-via-examples">Syntax overview via examples</a></li>
+<li><a class="reference internal" href="#using-defined-polynomials-in-floating-point-context">Using defined polynomials in floating point context</a></li>
+<li><a class="reference internal" href="#the-polexpr-0-8-extensions-to-the-xintexpr-syntax">The polexpr <code class="docutils literal notranslate"><span class="pre">0.8</span></code> extensions to the <code class="docutils literal notranslate"><span class="pre">\xintexpr</span></code> syntax</a><ul>
+<li><a class="reference internal" href="#warning-about-unstability-of-the-new-syntax">Warning about unstability of the new syntax</a></li>
+<li><a class="reference internal" href="#infix-operators">Infix operators <code class="docutils literal notranslate"><span class="pre">+,</span> <span class="pre">-,</span> <span class="pre">*,</span> <span class="pre">/,</span> <span class="pre">**,</span> <span class="pre">^</span></code></a></li>
+<li><a class="reference internal" href="#experimental-infix-operators">Experimental infix operators <code class="docutils literal notranslate"><span class="pre">//,</span> <span class="pre">/:</span></code></a></li>
+<li><a class="reference internal" href="#comparison-operators">Comparison operators <code class="docutils literal notranslate"><span class="pre"><,</span> <span class="pre">>,</span> <span class="pre"><=,</span> <span class="pre">>=,</span> <span class="pre">==,</span> <span class="pre">!=</span></code></a></li>
+<li><a class="reference internal" href="#pol-nutple-expression"><code class="docutils literal notranslate"><span class="pre">pol(<nutple</span> <span class="pre">expression>)</span></code></a></li>
+<li><a class="reference internal" href="#lpol-nutple-expression"><code class="docutils literal notranslate"><span class="pre">lpol(<nutple</span> <span class="pre">expression>)</span></code></a></li>
+<li><a class="reference internal" href="#xinteval-pol-expr"><code class="docutils literal notranslate"><span class="pre">\xinteval{<pol.</span> <span class="pre">expr.>}</span></code></a></li>
+<li><a class="reference internal" href="#evalp-pol-expr-pol-expr"><code class="docutils literal notranslate"><span class="pre">evalp(<pol.</span> <span class="pre">expr.>,</span> <span class="pre"><pol.</span> <span class="pre">expr>)</span></code></a></li>
+<li><a class="reference internal" href="#deg-pol-expr"><code class="docutils literal notranslate"><span class="pre">deg(<pol.</span> <span class="pre">expr.>)</span></code></a></li>
+<li><a class="reference internal" href="#coeffs-pol-expr"><code class="docutils literal notranslate"><span class="pre">coeffs(<pol.</span> <span class="pre">expr.>)</span></code></a></li>
+<li><a class="reference internal" href="#lcoeffs-pol-expr"><code class="docutils literal notranslate"><span class="pre">lcoeffs(<pol.</span> <span class="pre">expr.>)</span></code></a></li>
+<li><a class="reference internal" href="#coeff-pol-expr-num-expr"><code class="docutils literal notranslate"><span class="pre">coeff(<pol.</span> <span class="pre">expr.>,</span> <span class="pre"><num.</span> <span class="pre">expr.>)</span></code></a></li>
+<li><a class="reference internal" href="#lc-pol-expr"><code class="docutils literal notranslate"><span class="pre">lc(<pol.</span> <span class="pre">expr.>)</span></code></a></li>
+<li><a class="reference internal" href="#monicpart-pol-expr"><code class="docutils literal notranslate"><span class="pre">monicpart(<pol.</span> <span class="pre">expr.>)</span></code></a></li>
+<li><a class="reference internal" href="#cont-pol-expr"><code class="docutils literal notranslate"><span class="pre">cont(<pol.</span> <span class="pre">expr.>)</span></code></a></li>
+<li><a class="reference internal" href="#primpart-pol-expr"><code class="docutils literal notranslate"><span class="pre">primpart(<pol.</span> <span class="pre">expr.>)</span></code></a></li>
+<li><a class="reference internal" href="#quorem-pol-expr-pol-expr"><code class="docutils literal notranslate"><span class="pre">quorem(<pol.</span> <span class="pre">expr.>,</span> <span class="pre"><pol.</span> <span class="pre">expr.>)</span></code></a></li>
+<li><a class="reference internal" href="#quo-pol-expr-pol-expr"><code class="docutils literal notranslate"><span class="pre">quo(<pol.</span> <span class="pre">expr.>,</span> <span class="pre"><pol.</span> <span class="pre">expr.>)</span></code></a></li>
+<li><a class="reference internal" href="#rem-pol-expr-pol-expr"><code class="docutils literal notranslate"><span class="pre">rem(<pol.</span> <span class="pre">expr.>,</span> <span class="pre"><pol.</span> <span class="pre">expr.>)</span></code></a></li>
+<li><a class="reference internal" href="#prem-pol-expr-1-pol-expr-2"><code class="docutils literal notranslate"><span class="pre">prem(<pol.</span> <span class="pre">expr.</span> <span class="pre">1>,</span> <span class="pre"><pol.</span> <span class="pre">expr.</span> <span class="pre">2>)</span></code></a></li>
+<li><a class="reference internal" href="#divmod-pol-expr-1-pol-expr-2"><code class="docutils literal notranslate"><span class="pre">divmod(<pol.</span> <span class="pre">expr.</span> <span class="pre">1>,</span> <span class="pre"><pol.</span> <span class="pre">expr.</span> <span class="pre">2>)</span></code></a></li>
+<li><a class="reference internal" href="#mod-pol-expr-1-pol-expr-2"><code class="docutils literal notranslate"><span class="pre">mod(<pol.</span> <span class="pre">expr.</span> <span class="pre">1>,</span> <span class="pre"><pol.</span> <span class="pre">expr.</span> <span class="pre">2>)</span></code></a></li>
+<li><a class="reference internal" href="#polgcd-pol-expr-1-pol-expr-2"><code class="docutils literal notranslate"><span class="pre">polgcd(<pol.</span> <span class="pre">expr.</span> <span class="pre">1>,</span> <span class="pre"><pol.</span> <span class="pre">expr.</span> <span class="pre">2>,</span> <span class="pre">...)</span></code></a></li>
+<li><a class="reference internal" href="#resultant-pol-expr-1-pol-expr-2"><code class="docutils literal notranslate"><span class="pre">resultant(<pol.</span> <span class="pre">expr.</span> <span class="pre">1>,</span> <span class="pre"><pol.</span> <span class="pre">expr.</span> <span class="pre">2>)</span></code></a></li>
+<li><a class="reference internal" href="#disc-pol-expr"><code class="docutils literal notranslate"><span class="pre">disc(<pol.</span> <span class="pre">expr.>)</span></code></a></li>
+<li><a class="reference internal" href="#polpowmod-pol-expr-1-num-expr-pol-expr-2"><code class="docutils literal notranslate"><span class="pre">polpowmod(<pol.</span> <span class="pre">expr.</span> <span class="pre">1>,</span> <span class="pre"><num.</span> <span class="pre">expr.>,</span> <span class="pre"><pol.</span> <span class="pre">expr.</span> <span class="pre">2>)</span></code></a></li>
+<li><a class="reference internal" href="#rdcoeffs-pol-expr"><code class="docutils literal notranslate"><span class="pre">rdcoeffs(<pol.</span> <span class="pre">expr.>)</span></code></a></li>
+<li><a class="reference internal" href="#rdzcoeffs-pol-expr"><code class="docutils literal notranslate"><span class="pre">rdzcoeffs(<pol.</span> <span class="pre">expr.>)</span></code></a></li>
+<li><a class="reference internal" href="#diff1-pol-expr"><code class="docutils literal notranslate"><span class="pre">diff1(<pol.</span> <span class="pre">expr.>)</span></code></a></li>
+<li><a class="reference internal" href="#diff2-pol-expr"><code class="docutils literal notranslate"><span class="pre">diff2(<pol.</span> <span class="pre">expr.>)</span></code></a></li>
+<li><a class="reference internal" href="#diffn-pol-expr-p-num-expr-n"><code class="docutils literal notranslate"><span class="pre">diffn(<pol.</span> <span class="pre">expr.</span> <span class="pre">P>,</span> <span class="pre"><num.</span> <span class="pre">expr.</span> <span class="pre">n>)</span></code></a></li>
+<li><a class="reference internal" href="#antider-pol-expr-p"><code class="docutils literal notranslate"><span class="pre">antider(<pol.</span> <span class="pre">expr.</span> <span class="pre">P>)</span></code></a></li>
+<li><a class="reference internal" href="#intfrom-pol-expr-p-pol-expr-c"><code class="docutils literal notranslate"><span class="pre">intfrom(<pol.</span> <span class="pre">expr.</span> <span class="pre">P>,</span> <span class="pre"><pol.</span> <span class="pre">expr.</span> <span class="pre">c>)</span></code></a></li>
+<li><a class="reference internal" href="#integral-pol-expr-p-pol-expr-a-pol-expr-b"><code class="docutils literal notranslate"><span class="pre">integral(<pol.</span> <span class="pre">expr.</span> <span class="pre">P>,</span> <span class="pre">[<pol.</span> <span class="pre">expr.</span> <span class="pre">a>,</span> <span class="pre"><pol.</span> <span class="pre">expr.</span> <span class="pre">b>])</span></code></a></li>
+</ul>
+</li>
+<li><a class="reference internal" href="#non-expandable-macros">Non-expandable macros</a><ul>
+<li><a class="reference internal" href="#poldef-polname-letter-expression-using-the-letter-as-indeterminate"><code class="docutils literal notranslate"><span class="pre">\poldef</span> <span class="pre">polname(letter):=</span> <span class="pre">expression</span> <span class="pre">using</span> <span class="pre">the</span> <span class="pre">letter</span> <span class="pre">as</span> <span class="pre">indeterminate;</span></code></a></li>
+<li><a class="reference internal" href="#poldef-letter-polname-expr-using-the-letter-as-indeterminate"><code class="docutils literal notranslate"><span class="pre">\PolDef[<letter>]{<polname>}{<expr.</span> <span class="pre">using</span> <span class="pre">the</span> <span class="pre">letter</span> <span class="pre">as</span> <span class="pre">indeterminate>}</span></code></a></li>
+<li><a class="reference internal" href="#polgenfloatvariant"><code class="docutils literal notranslate"><span class="pre">\PolGenFloatVariant{}</span></code></a></li>
+<li><a class="reference internal" href="#poltypeset"><code class="docutils literal notranslate"><span class="pre">\PolTypeset{}</span></code></a><ul>
+<li><a class="reference internal" href="#poltypesetcmd"><code class="docutils literal notranslate"><span class="pre">\PolTypesetCmd{}</span></code></a><ul>
+<li><a class="reference internal" href="#polifcoeffisplusorminusone"><code class="docutils literal notranslate"><span class="pre">\PolIfCoeffIsPlusOrMinusOne{}{}</span></code></a></li>
+</ul>
+</li>
+<li><a class="reference internal" href="#poltypesetone"><code class="docutils literal notranslate"><span class="pre">\PolTypesetOne{}</span></code></a></li>
+<li><a class="reference internal" href="#poltypesetmonomialcmd"><code class="docutils literal notranslate"><span class="pre">\PolTypesetMonomialCmd</span></code></a></li>
+<li><a class="reference internal" href="#poltypesetcmdprefix"><code class="docutils literal notranslate"><span class="pre">\PolTypesetCmdPrefix{}</span></code></a></li>
+</ul>
+</li>
+<li><a class="reference internal" href="#id13"><code class="docutils literal notranslate"><span class="pre">\PolTypeset*{}</span></code></a></li>
+<li><a class="reference internal" href="#pollet"><code class="docutils literal notranslate"><span class="pre">\PolLet{}={}</span></code></a></li>
+<li><a class="reference internal" href="#polgloballet"><code class="docutils literal notranslate"><span class="pre">\PolGlobalLet{}={}</span></code></a></li>
+<li><a class="reference internal" href="#polassign-toarray"><code class="docutils literal notranslate"><span class="pre">\PolAssign{}\toarray{}</span></code></a></li>
+<li><a class="reference internal" href="#polget-fromarray"><code class="docutils literal notranslate"><span class="pre">\PolGet{}\fromarray{}</span></code></a></li>
+<li><a class="reference internal" href="#polfromcsv"><code class="docutils literal notranslate"><span class="pre">\PolFromCSV{}{}</span></code></a></li>
+<li><a class="reference internal" href="#polmapcoeffs"><code class="docutils literal notranslate"><span class="pre">\PolMapCoeffs{}{}</span></code></a></li>
+<li><a class="reference internal" href="#polreducecoeffs"><code class="docutils literal notranslate"><span class="pre">\PolReduceCoeffs{}</span></code></a></li>
+<li><a class="reference internal" href="#id20"><code class="docutils literal notranslate"><span class="pre">\PolReduceCoeffs*{}</span></code></a></li>
+<li><a class="reference internal" href="#polmakemonic"><code class="docutils literal notranslate"><span class="pre">\PolMakeMonic{}</span></code></a></li>
+<li><a class="reference internal" href="#polmakeprimitive"><code class="docutils literal notranslate"><span class="pre">\PolMakePrimitive{}</span></code></a></li>
+<li><a class="reference internal" href="#poldiff"><code class="docutils literal notranslate"><span class="pre">\PolDiff{}{}</span></code></a></li>
+<li><a class="reference internal" href="#id25"><code class="docutils literal notranslate"><span class="pre">\PolDiff[]{}{}</span></code></a></li>
+<li><a class="reference internal" href="#polantidiff"><code class="docutils literal notranslate"><span class="pre">\PolAntiDiff{}{}</span></code></a></li>
+<li><a class="reference internal" href="#id28"><code class="docutils literal notranslate"><span class="pre">\PolAntiDiff[]{}{}</span></code></a></li>
+<li><a class="reference internal" href="#poldivide"><code class="docutils literal notranslate"><span class="pre">\PolDivide{}{}{}{}</span></code></a></li>
+<li><a class="reference internal" href="#polquo"><code class="docutils literal notranslate"><span class="pre">\PolQuo{}{}{}</span></code></a></li>
+<li><a class="reference internal" href="#polrem"><code class="docutils literal notranslate"><span class="pre">\PolRem{}{}{}</span></code></a></li>
+<li><a class="reference internal" href="#polgcd"><code class="docutils literal notranslate"><span class="pre">\PolGCD{}{}{}</span></code></a></li>
+<li><a class="reference internal" href="#root-localization-routines-via-the-sturm-theorem">Root localization routines via the Sturm Theorem</a><ul>
+<li><a class="reference internal" href="#poltosturm"><code class="docutils literal notranslate"><span class="pre">\PolToSturm{}{}</span></code></a></li>
+<li><a class="reference internal" href="#id35"><code class="docutils literal notranslate"><span class="pre">\PolToSturm*{}{}</span></code></a></li>
+<li><a class="reference internal" href="#polsturmisolatezeros"><code class="docutils literal notranslate"><span class="pre">\PolSturmIsolateZeros{}</span></code></a></li>
+<li><a class="reference internal" href="#id38"><code class="docutils literal notranslate"><span class="pre">\PolSturmIsolateZeros*{}</span></code></a><ul>
+<li><a class="reference internal" href="#polsturmisolatezerosandgetmultiplicities"><code class="docutils literal notranslate"><span class="pre">\PolSturmIsolateZerosAndGetMultiplicities{}</span></code></a></li>
+</ul>
+</li>
+<li><a class="reference internal" href="#id41"><code class="docutils literal notranslate"><span class="pre">\PolSturmIsolateZeros**{}</span></code></a><ul>
+<li><a class="reference internal" href="#polsturmisolatezerosgetmultiplicitiesandrationalroots"><code class="docutils literal notranslate"><span class="pre">\PolSturmIsolateZerosGetMultiplicitiesAndRationalRoots</span></code></a></li>
+</ul>
+</li>
+<li><a class="reference internal" href="#polsturmisolatezerosandfindrationalroots"><code class="docutils literal notranslate"><span class="pre">\PolSturmIsolateZerosAndFindRationalRoots{}</span></code></a></li>
+<li><a class="reference internal" href="#polrefineinterval"><code class="docutils literal notranslate"><span class="pre">\PolRefineInterval*{}{}</span></code></a></li>
+<li><a class="reference internal" href="#id46"><code class="docutils literal notranslate"><span class="pre">\PolRefineInterval[]{}{}</span></code></a></li>
+<li><a class="reference internal" href="#polensureintervallength"><code class="docutils literal notranslate"><span class="pre">\PolEnsureIntervalLength{}{}{}</span></code></a></li>
+<li><a class="reference internal" href="#polensureintervallengths"><code class="docutils literal notranslate"><span class="pre">\PolEnsureIntervalLengths{}{}</span></code></a></li>
+<li><a class="reference internal" href="#polsettosturmchainsignchangesat"><code class="docutils literal notranslate"><span class="pre">\PolSetToSturmChainSignChangesAt{}{}{}</span></code></a></li>
+<li><a class="reference internal" href="#polsettonbofzeroswithin"><code class="docutils literal notranslate"><span class="pre">\PolSetToNbOfZerosWithin{}{}{}{}</span></code></a></li>
+</ul>
+</li>
+<li><a class="reference internal" href="#displaying-the-found-roots-polprintintervals-varname">Displaying the found roots: <code class="docutils literal notranslate"><span class="pre">\PolPrintIntervals[<varname>]{}</span></code></a><ul>
+<li><a class="reference internal" href="#polprintintervalsnorealroots"><code class="docutils literal notranslate"><span class="pre">\PolPrintIntervalsNoRealRoots</span></code></a></li>
+<li><a class="reference internal" href="#polprintintervalsbeginenv"><code class="docutils literal notranslate"><span class="pre">\PolPrintIntervalsBeginEnv</span></code></a></li>
+<li><a class="reference internal" href="#polprintintervalsendenv"><code class="docutils literal notranslate"><span class="pre">\PolPrintIntervalsEndEnv</span></code></a></li>
+<li><a class="reference internal" href="#polprintintervalsrowseparator"><code class="docutils literal notranslate"><span class="pre">\PolPrintIntervalsRowSeparator</span></code></a></li>
+<li><a class="reference internal" href="#polprintintervalsknownroot"><code class="docutils literal notranslate"><span class="pre">\PolPrintIntervalsKnownRoot</span></code></a></li>
+<li><a class="reference internal" href="#polprintintervalsunknownroot"><code class="docutils literal notranslate"><span class="pre">\PolPrintIntervalsUnknownRoot</span></code></a></li>
+<li><a class="reference internal" href="#polprintintervalsprintexactzero"><code class="docutils literal notranslate"><span class="pre">\PolPrintIntervalsPrintExactZero</span></code></a></li>
+<li><a class="reference internal" href="#polprintintervalsprintleftendpoint"><code class="docutils literal notranslate"><span class="pre">\PolPrintIntervalsPrintLeftEndPoint</span></code></a></li>
+<li><a class="reference internal" href="#polprintintervalsprintrightendpoint"><code class="docutils literal notranslate"><span class="pre">\PolPrintIntervalsPrintRightEndPoint</span></code></a></li>
+<li><a class="reference internal" href="#polprintintervals-varname"><code class="docutils literal notranslate"><span class="pre">\PolPrintIntervals*[<varname>]{}</span></code></a><ul>
+<li><a class="reference internal" href="#polprintintervalsprintmultiplicity"><code class="docutils literal notranslate"><span class="pre">\PolPrintIntervalsPrintMultiplicity</span></code></a></li>
+</ul>
+</li>
+</ul>
+</li>
+</ul>
+</li>
+<li><a class="reference internal" href="#expandable-macros">Expandable macros</a><ul>
+<li><a class="reference internal" href="#poltoexpr"><code class="docutils literal notranslate"><span class="pre">\PolToExpr{}</span></code></a><ul>
+<li><a class="reference internal" href="#poltoexprvar"><code class="docutils literal notranslate"><span class="pre">\PolToExprVar</span></code></a></li>
+<li><a class="reference internal" href="#poltoexprinvar"><code class="docutils literal notranslate"><span class="pre">\PolToExprInVar</span></code></a></li>
+<li><a class="reference internal" href="#poltoexprtimes"><code class="docutils literal notranslate"><span class="pre">\PolToExprTimes</span></code></a></li>
+<li><a class="reference internal" href="#poltoexprcaret"><code class="docutils literal notranslate"><span class="pre">\PolToExprCaret</span></code></a></li>
+<li><a class="reference internal" href="#poltoexprcmd"><code class="docutils literal notranslate"><span class="pre">\PolToExprCmd{}</span></code></a></li>
+<li><a class="reference internal" href="#poltoexproneterm"><code class="docutils literal notranslate"><span class="pre">\PolToExprOneTerm{}{}</span></code></a></li>
+<li><a class="reference internal" href="#poltoexpronetermstylea"><code class="docutils literal notranslate"><span class="pre">\PolToExprOneTermStyleA{}{}</span></code></a></li>
+<li><a class="reference internal" href="#poltoexpronetermstyleb"><code class="docutils literal notranslate"><span class="pre">\PolToExprOneTermStyleB{}{}</span></code></a></li>
+<li><a class="reference internal" href="#poltoexprtermprefix"><code class="docutils literal notranslate"><span class="pre">\PolToExprTermPrefix{}</span></code></a></li>
+</ul>
+</li>
+<li><a class="reference internal" href="#poltofloatexpr"><code class="docutils literal notranslate"><span class="pre">\PolToFloatExpr{}</span></code></a><ul>
+<li><a class="reference internal" href="#poltofloatexproneterm"><code class="docutils literal notranslate"><span class="pre">\PolToFloatExprOneTerm{}{}</span></code></a></li>
+<li><a class="reference internal" href="#poltofloatexprcmd"><code class="docutils literal notranslate"><span class="pre">\PolToFloatExprCmd{}</span></code></a></li>
+</ul>
+</li>
+<li><a class="reference internal" href="#id78"><code class="docutils literal notranslate"><span class="pre">\PolToExpr*{}</span></code></a></li>
+<li><a class="reference internal" href="#id80"><code class="docutils literal notranslate"><span class="pre">\PolToFloatExpr*{}</span></code></a></li>
+<li><a class="reference internal" href="#polnthcoeff"><code class="docutils literal notranslate"><span class="pre">\PolNthCoeff{}{}</span></code></a></li>
+<li><a class="reference internal" href="#polleadingcoeff"><code class="docutils literal notranslate"><span class="pre">\PolLeadingCoeff{}</span></code></a></li>
+<li><a class="reference internal" href="#poldegree"><code class="docutils literal notranslate"><span class="pre">\PolDegree{}</span></code></a></li>
+<li><a class="reference internal" href="#policontent"><code class="docutils literal notranslate"><span class="pre">\PolIContent{}</span></code></a></li>
+<li><a class="reference internal" href="#poltolist"><code class="docutils literal notranslate"><span class="pre">\PolToList{}</span></code></a></li>
+<li><a class="reference internal" href="#poltocsv"><code class="docutils literal notranslate"><span class="pre">\PolToCSV{}</span></code></a></li>
+<li><a class="reference internal" href="#poleval-atexpr"><code class="docutils literal notranslate"><span class="pre">\PolEval{}\AtExpr{}</span></code></a></li>
+<li><a class="reference internal" href="#poleval-at"><code class="docutils literal notranslate"><span class="pre">\PolEval{}\At{}</span></code></a></li>
+<li><a class="reference internal" href="#polevalreduced-atexpr"><code class="docutils literal notranslate"><span class="pre">\PolEvalReduced{}\AtExpr{}</span></code></a></li>
+<li><a class="reference internal" href="#polevalreduced-at"><code class="docutils literal notranslate"><span class="pre">\PolEvalReduced{}\At{}</span></code></a></li>
+<li><a class="reference internal" href="#polfloateval-atexpr"><code class="docutils literal notranslate"><span class="pre">\PolFloatEval{}\AtExpr{}</span></code></a></li>
+<li><a class="reference internal" href="#polfloateval-at"><code class="docutils literal notranslate"><span class="pre">\PolFloatEval{}\At{}</span></code></a></li>
+<li><a class="reference internal" href="#expandable-macros-in-relation-to-root-localization-via-sturm-theorem">Expandable macros in relation to root localization via Sturm Theorem</a><ul>
+<li><a class="reference internal" href="#polsturmchainlength"><code class="docutils literal notranslate"><span class="pre">\PolSturmChainLength{}</span></code></a></li>
+<li><a class="reference internal" href="#polsturmifzeroexactlyknown"><code class="docutils literal notranslate"><span class="pre">\PolSturmIfZeroExactlyKnown{}{}{}{}</span></code></a></li>
+<li><a class="reference internal" href="#polsturmisolatedzeroleft"><code class="docutils literal notranslate"><span class="pre">\PolSturmIsolatedZeroLeft{}{}</span></code></a></li>
+<li><a class="reference internal" href="#polsturmisolatedzeroright"><code class="docutils literal notranslate"><span class="pre">\PolSturmIsolatedZeroRight{}{}</span></code></a></li>
+<li><a class="reference internal" href="#polsturmisolatedzeromultiplicity"><code class="docutils literal notranslate"><span class="pre">\PolSturmIsolatedZeroMultiplicity{}{}</span></code></a></li>
+<li><a class="reference internal" href="#polsturmnbofisolatedzeros"><code class="docutils literal notranslate"><span class="pre">\PolSturmNbOfIsolatedZeros{}</span></code></a></li>
+<li><a class="reference internal" href="#polsturmnbofrootsof-lessthanorequalto"><code class="docutils literal notranslate"><span class="pre">\PolSturmNbOfRootsOf{}\LessThanOrEqualTo{}</span></code></a></li>
+<li><a class="reference internal" href="#polsturmnbofrootsof-lessthanorequaltoexpr"><code class="docutils literal notranslate"><span class="pre">\PolSturmNbOfRootsOf{}\LessThanOrEqualToExpr{}</span></code></a></li>
+<li><a class="reference internal" href="#polsturmnbwithmultofrootsof-lessthanorequalto"><code class="docutils literal notranslate"><span class="pre">\PolSturmNbWithMultOfRootsOf{}\LessThanOrEqualTo{}</span></code></a></li>
+<li><a class="reference internal" href="#polsturmnbwithmultofrootsof-lessthanorequaltoexpr"><code class="docutils literal notranslate"><span class="pre">\PolSturmNbWithMultOfRootsOf{}\LessThanOrEqualToExpr{}</span></code></a></li>
+<li><a class="reference internal" href="#polsturmnbofrationalroots"><code class="docutils literal notranslate"><span class="pre">\PolSturmNbOfRationalRoots{}</span></code></a></li>
+<li><a class="reference internal" href="#polsturmnbofrationalrootswithmultiplicities"><code class="docutils literal notranslate"><span class="pre">\PolSturmNbOfRationalRootsWithMultiplicities{}</span></code></a></li>
+<li><a class="reference internal" href="#polsturmrationalroot"><code class="docutils literal notranslate"><span class="pre">\PolSturmRationalRoot{}{}</span></code></a></li>
+<li><a class="reference internal" href="#polsturmrationalrootindex"><code class="docutils literal notranslate"><span class="pre">\PolSturmRationalRootIndex{}{}</span></code></a></li>
+<li><a class="reference internal" href="#polsturmrationalrootmultiplicity"><code class="docutils literal notranslate"><span class="pre">\PolSturmRationalRootMultiplicity{}{}</span></code></a></li>
+<li><a class="reference internal" href="#polintervalwidth"><code class="docutils literal notranslate"><span class="pre">\PolIntervalWidth{}{}</span></code></a></li>
+</ul>
+</li>
+<li><a class="reference internal" href="#expandable-macros-for-use-within-execution-of-polprintintervals">Expandable macros for use within execution of <code class="docutils literal notranslate"><span class="pre">\PolPrintIntervals</span></code></a><ul>
+<li><a class="reference internal" href="#polprintintervalsthevar"><code class="docutils literal notranslate"><span class="pre">\PolPrintIntervalsTheVar</span></code></a></li>
+<li><a class="reference internal" href="#polprintintervalstheindex"><code class="docutils literal notranslate"><span class="pre">\PolPrintIntervalsTheIndex</span></code></a></li>
+<li><a class="reference internal" href="#polprintintervalsthesturmname"><code class="docutils literal notranslate"><span class="pre">\PolPrintIntervalsTheSturmName</span></code></a></li>
+<li><a class="reference internal" href="#polprintintervalstheleftendpoint"><code class="docutils literal notranslate"><span class="pre">\PolPrintIntervalsTheLeftEndPoint</span></code></a></li>
+<li><a class="reference internal" href="#polprintintervalstherightendpoint"><code class="docutils literal notranslate"><span class="pre">\PolPrintIntervalsTheRightEndPoint</span></code></a></li>
+<li><a class="reference internal" href="#polprintintervalsthemultiplicity"><code class="docutils literal notranslate"><span class="pre">\PolPrintIntervalsTheMultiplicity</span></code></a></li>
+</ul>
+</li>
+</ul>
+</li>
+<li><a class="reference internal" href="#tex-booleans-with-names-enacting-their-defaults">TeX Booleans (with names enacting their defaults)</a><ul>
+<li><a class="reference internal" href="#xintverbosefalse"><code class="docutils literal notranslate"><span class="pre">\xintverbosefalse</span></code></a></li>
+<li><a class="reference internal" href="#polnewpolverbosefalse"><code class="docutils literal notranslate"><span class="pre">\polnewpolverbosefalse</span></code></a></li>
+<li><a class="reference internal" href="#poltypesetallfalse"><code class="docutils literal notranslate"><span class="pre">\poltypesetallfalse</span></code></a></li>
+<li><a class="reference internal" href="#poltoexprallfalse"><code class="docutils literal notranslate"><span class="pre">\poltoexprallfalse</span></code></a></li>
+</ul>
+</li>
+<li><a class="reference internal" href="#utilities">Utilities</a><ul>
+<li><a class="reference internal" href="#poldectostring"><code class="docutils literal notranslate"><span class="pre">\PolDecToString{}</span></code></a></li>
+<li><a class="reference internal" href="#polexprsetup-key-val"><code class="docutils literal notranslate"><span class="pre">\polexprsetup{key=val,...}</span></code></a></li>
+</ul>
+</li>
+<li><a class="reference internal" href="#technicalities">Technicalities</a></li>
+</ul>
+</li>
+</ul>
+
+ <div role="note" aria-label="source link">
+ <h3>This Page</h3>
+ <ul class="this-page-menu">
+ <li><a href="polexpr-ref.rst.txt"
+ rel="nofollow">Show Source</a></li>
+ </ul>
+ </div>
+ <div>
+ <h4>Previous topic</h4>
+ <p class="topless"><a href="polexpr.html"
+ title="previous chapter">Introduction to polexpr</a></p>
+ </div>
+ <div>
+ <h4>Next topic</h4>
+ <p class="topless"><a href="polexpr-changes.html"
+ title="next chapter">CHANGES</a></p>
+ </div>
+ </div>
+ </div>
+ <div class="clearer"></div>
+ </div>
+ <div class="related" role="navigation" aria-label="related navigation">
+ <h3>Navigation</h3>
+ <ul>
+ <li class="right" style="margin-right: 10px">
+ <a href="polexpr-changes.html" title="CHANGES"
+ >next</a></li>
+ <li class="right" >
+ <a href="polexpr.html" title="Introduction to polexpr"
+ >previous</a> |</li>
+ <li class="nav-item nav-item-0"><a href="polexpr.html">polexpr 0.8.7 documentation</a> »</li>
+ <li class="nav-item nav-item-this"><a href="">polexpr reference</a></li>
+ </ul>
+ </div>
+ <div class="footer" role="contentinfo">
+ © Copyright 2022, Jean-François Burnol.
+ Created using <a href="https://www.sphinx-doc.org/">Sphinx</a> 5.0.0+/f58771c09.
+ </div>
+ </body>
+</html>
\ No newline at end of file
Property changes on: trunk/Master/texmf-dist/doc/generic/polexpr/polexpr-ref.html
___________________________________________________________________
Added: svn:eol-style
## -0,0 +1 ##
+native
\ No newline at end of property
Added: trunk/Master/texmf-dist/doc/generic/polexpr/polexpr-ref.rst.txt
===================================================================
--- trunk/Master/texmf-dist/doc/generic/polexpr/polexpr-ref.rst.txt (rev 0)
+++ trunk/Master/texmf-dist/doc/generic/polexpr/polexpr-ref.rst.txt 2022-05-15 20:41:35 UTC (rev 63306)
@@ -0,0 +1,3184 @@
+.. comment: -*- fill-column: 72; mode: rst -*-
+
+===================
+ polexpr reference
+===================
+
+.. _quick:
+
+Syntax overview via examples
+----------------------------
+
+The syntax to define a new polynomial is::
+
+ \poldef polname(x):= expression in variable x;
+
+..
+
+The expression will be parsed by the services of xintexpr_, with some
+polynomial aware functions added to its syntax; they are described in
+detail :ref:`below <polexpr08>`. The parser accepts and will handle
+exactly arbitrarily big integers or fractions.
+
+.. note::
+
+ xintexpr_ does not automatically reduce fractions to lowest terms,
+ and, so far (but this may change in future) neither does :ref:`\\poldef
+ <poldef;>`.
+ See :ref:`rdcoeffs() <rdcoeffs>` and the macro
+ :ref:`\\PolReduceCoeffs <PolReduceCoeffs>`.
+
+
+- In place of ``x`` an arbitrary *dummy variable* is authorized,
+ i.e. per default one ``a, .., z, A, .., Z`` (more letters can be declared
+ under Unicode engines).
+
+- ``polname`` consists of *letters*, *digits*, and also the ``_`` and
+ ``'`` characters are allowed. The polynomial name **must** start with
+ a letter: do not use the underscore ``_`` as *first character* of a
+ polynomial name (even if of catcode letter). No warning is emitted
+ but dire consequences will ensue. The ``@`` is also allowed
+ (independently of its catcode "letter" or "other", which does not
+ matter). It is recommended to avoid using it as first character,
+ except for temporary polynomial variables.
+
+- The colon before the equality sign is optional and its (reasonable)
+ catcode does not matter.
+
+- The semi-colon at the end of the expression is mandatory. It is not
+ allowed to arise from expansion (despite the fact that the expression
+ itself will be parsed using only expansion), it must be "visible"
+ immediately.
+
+There are some potential problems (refer to the Technicalities_ section at
+bottom of this page) with the semi-colon as expression terminator, so an
+alternative syntax is provided, which avoids it altogether::
+
+ \PolDef[optional letter]{<polname>}{<expr. using letter as indeterminate>}
+
+The ``\PolDef`` optional first argument defaults to ``x`` and must be
+used as the indeterminate in the expression.
+
+Examples:
+
+``\poldef f(x):= 1 - x + quo(x^5,1 - x + x^2);``
+
+``\PolDef{f}{1 - x + quo(x^5,1 - x + x^2)}``
+ Both parse the polynomial
+ expression, and they create internally macros serving to
+ incarnate the polynomial, its coefficients, and the associated
+ polynomial function.
+
+ The polynomial can then be used in further polynomial definitions,
+ be served as argument to package macros, or appear as a variable in
+ various functions `described later <polexpr08_>`_.
+
+ .. warning::
+
+ Both the function ``quo()`` (as shown in the example above), and
+ the infix operator ``/`` are mapped to the Euclidean quotient.
+
+ This usage of ``/`` to stand for the Euclidean quotient is
+ **deprecated** and reserved for a (somewhat improbable) possible
+ extension of the package to handle rational functions as well.
+
+ .. _warningtacit:
+
+ .. attention::
+
+ Tacit multiplication rules let the parser when encountering
+ ``1/2 x^2`` skip the space and thus handle it as ``1/(2*x^2)``.
+ But then it gives zero, because `/` stands for the Euclidean
+ quotient operation here.
+
+ Thus one must use ``(1/2)x^2`` or ``1/2*x^2`` or
+ ``(1/2)*x^2`` for disambiguation: ``x - 1/2*x^2 + 1/3*x^3...``. It is
+ simpler to move the denominator to the right: ``x - x^2/2 +
+ x^3/3 - ...``.
+
+ It is worth noting that ``1/2(x-1)(x-2)`` suffers the same issue:
+ xintexpr_\ 's tacit multiplication always "ties more", hence this
+ gets interpreted as ``1/(2*(x-1)*(x-2))`` not as
+ ``(1/2)*(x-1)*(x-2)`` and then gives zero by
+ polynomial division. Thus, in such cases, use one of
+ ``(1/2)(x-1)(x-2)``, ``1/2*(x-1)(x-2)`` or ``(x-1)(x-2)/2``.
+
+ ``\poldef P(x):=...;`` defines ``P`` as a *polynomial function*,
+ which can be used inside ``\xinteval``, as::
+
+ \xinteval{P(3 + 7 + 11)}
+
+ or even as::
+
+ \xinteval{P(Q1 + Q2 + Q3)}
+
+ where ``Q1``, ``Q2``, ``Q3`` are polynomials. The evaluation result,
+ if not a scalar, will then be printed as ``pol([c0,c1,...])`` which
+ stands for a polynomial variable having the listed coefficients; see
+ :ref:`pol() <pol>`.
+
+ Indeed, as seen above with ``Q1``, the symbol ``P`` also stands for
+ a *variable of polynomial type*, which serves as argument to
+ polynomial specific functions such as :ref:`deg() <deg>` or
+ :ref:`polgcd() <polgcd>`, or as argument to other polynomials (as
+ above), or even simply stands for its own in algebraic expressions
+ such as::
+
+ \poldef Q(z):= P^2 + z^10;
+
+ Notice that in the above, the ``(z)`` part is mandatory, as it informs
+ ``\poldef`` of the letter used for the indeterminate. In the above
+ ``P(z)^2`` would give the same as ``P^2`` but the latter is slightly
+ more efficient.
+
+ One needs to acquire a good understanding of when the symbol ``P``
+ will stand for a function and when it will stand for a variable.
+
+ - If ``P`` and
+ ``Q`` are both declared polynomials then::
+
+ (P+Q)(3)% <--- attention, does (P+Q)*3, not P(3)+Q(3)
+
+ is currently evaluated as ``(P+Q)*3``, because ``P+Q`` is not
+ known as a *function*, but *only as a variable of polynomial
+ type*. Note that :ref:`evalp(P+Q,3) <evalp>` gives as expected
+ the same as ``P(3)+Q(3)``.
+
+ - Also::
+
+ (P)(3)% <--- attention, does P*3, not P(3)
+
+ will compute ``P*3``, because one can not in current xintexpr_ syntax
+ enclose a function name in parentheses: consequently it is the variable
+ which is used here.
+
+ There is a *meager possibility* that in future some internal changes
+ to xintexpr_ would let ``(P)(3)`` actually compute ``P(3)`` and
+ ``(P+Q)(3)`` compute ``P(3) + Q(3)``, but note that ``(P)(P)`` will
+ then do ``P(P)`` and not ``P*P``, the latter, current
+ interpretation, looking more intuitive. Anyway, do not rely too
+ extensively on tacit ``*`` and use explicit ``(P+Q)*(1+2)`` if this
+ is what is intended.
+
+
+``\PolLet{g}={f}``
+ saves a copy of ``f`` under name ``g``. Also usable without ``=``.
+
+ Has exactly the same effect as ``\poldef g(x):=f;`` or ``\poldef
+ g(w):=f(w);``\ .
+
+``\poldef f(z):= f^2;``
+ redefines ``f`` in terms of itself. Prior to ``0.8`` one needed
+ the right hand side to be ``f(z)^2``. Also, now ``sqr(f)`` is
+ possible (also ``sqr(f(x))`` but not ``sqr(f)(x)``).
+
+ It may look strange that an indeterminate variable is used on
+ left-hand-side even though it may be absent of right-hand-side, as
+ it seems to define ``f`` always as a polynomial function.
+
+ This is a legacy of pre-``0.8`` context.
+
+ .. important::
+
+ Note that ``f^2(z)`` or ``sqr(f)(z)`` will give a logical but
+ perhaps unexpected result: first ``f^2`` is computed, then the
+ opening parenthesis is seen which inserts a tacit multiplication
+ ``*``, so in the end it is as if the input had been ``f^2 * z``.
+ Although ``f`` is both a variable and a function, ``f^2`` is
+ computed as a polynomial *variable* and ceases being a function.
+
+``\poldef f(T):= f(f);``
+ again modifies ``f``. Here it is used both as variable and as
+ a function. Prior to ``0.8`` it needed to be ``f(f(T))``.
+
+``\poldef k(z):= f-g(g^2)^2;``
+ if everybody followed, this should now define the zero polynomial...
+ And ``f-sqr(g(sqr(g)))`` computes the same thing.
+
+ We can check this in a typeset document like this::
+
+ \poldef f(x):= 1 - x + quo(x^5,1 - x + x^2);%
+ \PolLet{g}={f}%
+ \poldef f(z):= f^2;%
+ \poldef f(T):= f(f);%
+ \poldef k(w):= f-sqr(g(sqr(g)));%
+ $$f(x) = \vcenter{\hsize10cm \PolTypeset{f}} $$
+ $$g(z) = \PolTypeset{g} $$
+ $$k(z) = \PolTypeset{k} $$
+ \immediate\write128{f(x)=\PolToExpr{f}}% ah, here we see it also
+
+``\poldef f'(x):= diff1(f);``
+ (new at ``0.8``)
+
+``\PolDiff{f}{f'}``
+ Both set ``f'`` (or any other chosen name) to the derivative
+ of ``f``.
+
+ .. important::
+
+ This is not done automatically. If some new definition needs to use
+ the derivative of some available polynomial, that derivative
+ polynomial must have been previously defined: something such as
+ ``f'(3)^2`` will not work without a prior definition of ``f'``.
+
+ But one can now use ``diff1(f)`` for on-the-spot construction with no
+ permanent declaration, so here ``evalp(diff1(f),3)^2``. And
+ ``diff1(f)^2`` is same as ``f'^2``, assuming here ``f'`` was declared
+ to be the derived polynomial.
+
+ Notice that the name ``diff1()`` is experimental and may change. Use
+ ``\PolDiff{f}{f'}`` as the stable interface.
+
+``\PolTypeset{P}``
+ Typesets (switching to math mode if in text mode)::
+
+ \poldef f(x):=(3+x)^5;%
+ \PolDiff{f}{f'}\PolDiff{f'}{f''}\PolDiff{f''}{f'''}%
+ $$f(z) = \PolTypeset[z]{f} $$
+ $$f'(z) = \PolTypeset[z]{f'} $$
+ $$f''(z) = \PolTypeset[z]{f''} $$
+ $$f'''(z)= \PolTypeset[z]{f'''} $$
+
+ See `its documentation <PolTypeset_>`_ for the configurability
+ via macros.
+
+ Since ``0.8`` `\\PolTypeset <PolTypeset_>`_ accepts directly an
+ expression, it does not have to be a pre-declared polynomial name::
+
+ \PolTypeset{mul(x-i,i=1..5)}
+
+``\PolToExpr{P}``
+ Expandably (contrarily to `\\PolTypeset <PolTypeset_>`_)
+ produces ``c_n*x^n + ... + c_0`` starting from the leading
+ coefficient. The ``+`` signs are omitted if followed by negative
+ coefficients.
+
+ This is useful for console or file output. This syntax is Maple and
+ PSTricks ``\psplot[algebraic]`` compatible; and also it is
+ compatible with ``\poldef`` input syntax, of course. See
+ `\\PolToExprCaret`_ for configuration of the ``^``, for example to
+ use rather ``**`` for Python syntax compliance.
+
+ Changed at ``0.8``: the ``^`` in output is by default of catcode 12
+ so in a draft document one can use ``\PolToExpr{P}`` inside the
+ typesetting flow (without requiring math mode, where the ``*`` would
+ be funny and ``^12`` would only put the ``1`` as exponent anyhow;
+ but arguably in text mode the ``+`` and ``-`` are not satisfactory
+ for math, except sometimes in monospace typeface, and anyhow TeX is
+ unable to break the expression across lines, barring special help).
+
+ See :ref:`\\PolToExpr{\<pol. expr.\>} <PolToExpr>` and related macros for customization.
+
+ Extended at ``0.8`` to accept as argument not only the name of a
+ polynomial variable but more generally any polynomial expression.
+
+
+Using defined polynomials in floating point context
+---------------------------------------------------
+
+Exact manipulations with fractional coefficients may quickly lead to
+very large denominators. For numerical evaluations, it is advisable
+to a use a floating point context. But for the polynomial to be
+usable as a function in floating point context, an extra step beyond
+``\poldef`` is required: see `\\PolGenFloatVariant`_. Then the
+``\xintfloateval`` macro from xintexpr_ will recognize the polynomial
+as a genuine function (with already float-rounded coefficients, and
+using a Horner scheme).
+
+But `\\PolGenFloatVariant`_ must be used each time the polynomial gets
+redefined or a new polynomial is created out of it. Functions such as
+for example :ref:`deg() <deg>` which handle the polynomial as an entity
+are only available within the ``\poldef`` and ``\xinteval`` (or
+``\xintexpr``) parsers. Inside ``\xintfloateval`` a polynomial can only
+serve as a numerical function (and only after declaration via
+`\\PolGenFloatVariant`_), and not as a variable.
+
+In some cases one may wish to replace a polynomial having acquired
+very big fractional coefficients with a new one whose coefficients
+have been float-rounded. See :ref:`\\PolMapCoeffs <PolMapCoeffs>`
+which can be used for example with the ``\xintFloat`` macro from the
+xintfrac_ package to achieve this.
+
+
+.. _polexpr08:
+
+The polexpr ``0.8`` extensions to the ``\xintexpr`` syntax
+----------------------------------------------------------
+
+All the syntax elements described in this section can be used in the
+``\xintexpr/\xinteval`` context (where polynomials can be obtained from
+the ``pol([])`` constructor, once polexpr is loaded): their usage is
+not limited to only ``\poldef`` context.
+
+.. note::
+
+ If a variable ``myPol`` defined via ``\xintdefvar`` turns out
+ to be a polynomial, the difference with those declared via ``\poldef``
+ will be:
+
+ 1. ``myPol`` is not usable as *function*, but only as a variable.
+ Attention that ``f(x)`` if ``f`` is only a variable (even a
+ polynomial one) will actually compute ``f * x``.
+
+ 2. ``myPol`` is not known to the polexpr package, hence for example the
+ macros to achieve localization of its roots are unavailable.
+
+ In a parallel universe I perhaps have implemented this expandably
+ which means it could then be accessible with syntax such as
+ ``rightmostroot(pol([42,1,34,2,-8,1]))`` but...
+
+
+Warning about unstability of the new syntax
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+.. warning::
+
+ Consider the entirety of this section as **UNSTABLE** and
+ **EXPERIMENTAL** (except perhaps regarding ``+``, ``-`` and ``*``).
+
+ And this applies even to items not explicitly flagged with one of
+ **unstable**, **Unstable**, or **UNSTABLE** which only reflect that
+ documentation was written over a period of time exceeding one minute,
+ enough for the author mood changes to kick in.
+
+ It is hard to find good names at the start of a life-long extension
+ program of functionalities, and perhaps in future it will be
+ preferred to rename everything or give to some functions other
+ meanings. Such quasi-complete renamings happened already a few times
+ during the week devoted to development.
+
+
+Infix operators ``+, -, *, /, **, ^``
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+ As has been explained in the `Syntax overview via examples`_
+ section these infix operators have been made polynomial aware, not
+ only in the ``\poldef`` context, but generally in any
+ ``\xintexpr/\xinteval`` context, inclusive of ``\xintdeffunc``.
+
+ Conversely functions declared via ``\xintdeffunc`` and making use of
+ these operators will automatically be able to accept polynomials
+ declared from ``\poldef`` as variables.
+
+ Usage of ``/`` for euclidean division of polynomials is **deprecated**.
+ Only in case of a scalar denominator is it to be considered stable.
+ Please use rather ``quo()``.
+
+Experimental infix operators ``//, /:``
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+ Here is the tentative behaviour of ``A//B`` according to types:
+
+ - ``A`` non scalar and ``B`` non scalar: euclidean quotient,
+
+ - ``A`` scalar and ``B`` scalar: floored division,
+
+ - ``A`` scalar and ``B`` non scalar: produces zero,
+
+ - ``A`` non scalar and ``B`` scalar: coefficient per
+ coefficient floored division.
+
+ This is an **experimental** overloading of the ``//`` and ``/:``
+ from ``\xintexpr``.
+
+ The behaviour in the last case, but not only, is to be considerd
+ **unstable**. The alternative would be for ``A//B`` with ``B``
+ scalar to act as ``quo(A,B)``. But, we have currently chosen to let
+ ``//B`` for a scalar ``B`` act coefficient-wise on the numerator.
+ Beware that it thus means it can be employed with the idea of doing
+ euclidean division only by checking that ``B`` is non-scalar.
+
+ The ``/:`` operator provides the associated remainder so always
+ ``A`` is reconstructed from ``(A//B)*B + A/:B``.
+
+ If ``:`` is active character use ``/\string:`` (it is safer to use
+ ``/\string :`` if it is not known if ``:`` has catcode other, letter,
+ or is active, but note that ``/:`` is fine and needs no precaution if
+ ``:`` has catcode letter, it is only an active ``:`` which is
+ problematic, like for all other characters possibly used in an
+ expression).
+
+ **UNSTABLE**
+
+ As explained above, there are (among other things) hesitations
+ about behaviour with ``pol2`` a scalar.
+
+Comparison operators ``<, >, <=, >=, ==, !=``
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+ **NOT YET IMPLEMENTED**
+
+ As the internal representation by xintfrac_ and xintexpr_ of
+ fractions does not currently require them to be in reduced terms,
+ such operations would be a bit costly as they could not benefit from
+ the ``\pdfstrcmp`` engine primitive. In fact xintexpr_ does not use
+ it yet anywhere, even for normalized pure integers, although it could
+ speed up signifcantly certain aspects of core arithmetic.
+
+ Equality of polynomials can currently be tested by computing the
+ difference, which is a bit costly. And of course the ``deg()``
+ function allows comparing degrees. In this context note the
+ following syntax::
+
+ (deg(Q)) ?? { zero } { non-zero scalar } { non-scalar }
+
+ for branching.
+
+
+.. _pol:
+
+``pol(<nutple expression>)``
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+ This converts a nutple ``[c0,c1,...,cN]`` into the polynomial
+ variable having these coefficients. Attention that the square
+ brackets are **mandatory**, except of course if the argument is
+ actually an expression producing such a "nutple".
+
+ Currently, this process will not normalize the coefficients (such
+ as reducing to lowest terms), it only trims out the leading zero
+ coefficients.
+
+ Inside ``\xintexpr``, this is the only (allowed) way to create ex
+ nihilo a polynomial variable; inside ``\poldef`` it is an alternative
+ input syntax which is more efficient than the input ``c0 + c1 * x + c2 *
+ x^2 + ...``.
+
+.. important::
+
+ Whenever an expression with polynomials collapses to a constant, it
+ becomes a scalar. There is currently no distinction during the
+ parsing of expressions by ``\poldef``
+ or ``\xintexpr`` between constant polynomial variables and scalar
+ variables.
+
+ Naturally, ``\poldef`` can be used to declare a constant polynomial
+ ``P``, then ``P`` can also be used as function having a value
+ independent of argument, but as a variable, it is non-distinguishable
+ from a scalar (of course functions such as ``deg()`` tacitly
+ consider scalars to be constant polynomials).
+
+ Notice that we tend to use the vocable "variable" to refer to
+ arbitrary expressions used as function arguments, without implying
+ that we are actually referring to pre-declared variables in the sense
+ of ``\xintdefvar``.
+
+.. _lpol:
+
+``lpol(<nutple expression>)``
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+ This converts a nutple ``[cN,...,c1,c0]`` into the polynomial
+ variable having these coefficients, with leading coefficients coming
+ first in the input. Attention that the square brackets are
+ **mandatory**, except of course if the argument is actually an
+ expression producing such a "nutple".
+
+ Currently, this process will not normalize the coefficients (such
+ as reducing to lowest terms), it only trims out the leading zero
+ coefficients.
+
+ **NAME UNSTABLE**
+
+ It can be used in ``\poldef`` as an alternative input syntax, which
+ is more efficient than using the algebraic notation with monomials.
+
+ (new with ``0.8.1``, an empty nutple will cause breakage)
+
+.. _xintevalpolexpr:
+
+``\xinteval{<pol. expr.>}``
+~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+ This is documented here for lack of a better place: it evaluates the
+ polynomial expression then outputs the "string" ``pol([c0, c1, ..., cN])``
+ if the degree ``N`` is at least one (and the usual scalar output else).
+
+ The "pol" word uses letter catcodes, which is actually mandatory for
+ this output to be usable as input, but it does not make sense to use
+ this inside ``\poldef`` or ``\xintexpr`` at it means basically
+ executing ``pol(coeffs(..expression..))`` which is but a convoluted
+ way to obtain the same result as ``(..expression..)`` (the
+ parentheses delimiting the polynomial expression).
+
+ For example, ``\xinteval{(1+pol([0,1]))^10}`` expands (in two steps)
+ to::
+
+ pol([1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1])
+
+ You do need loading polexpr for this, else of course ``pol([])``
+ remains unknown to ``\xinteval{}`` as well as the polynomial algebra !
+ This example can also be done as
+ ``\xinteval{subs((1+x)^10,x=pol([0,1]))}``.
+
+ I hesitated using as output the polynomial notation as produced by
+ `\\PolToExpr{} <poltoexpr_>`_, but finally opted for this.
+
+.. _evalp:
+
+``evalp(<pol. expr.>, <pol. expr>)``
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+ Evaluates the first argument as a polynomial function of the
+ second. Usually the second argument will be scalar, but this is not
+ required::
+
+ \poldef K(x):= evalp(-3x^3-5x+1,-27x^4+5x-2);
+
+ If the first argument is an already declared polynomial ``P``, use
+ rather the functional form ``P()`` (which can accept a numerical as
+ well as polynomial argument) as it is more efficient.
+
+ One can also use ``subs()`` syntax [#]_ (see xintexpr_ documentation)::
+
+ \poldef K(x):= subs(-3y^3-5y+1, y = -27x^4+5x-2);
+
+ but the ``evalp()`` will use a Horner evaluation scheme which is
+ usually more efficient.
+
+ .. [#] by the way Maple uses the opposite, hence wrong, order
+ ``subs(x=..., P)`` but was written before computer science
+ reached the xintexpr_ heights. However it makes validating
+ Maple results by polexpr sometimes cumbersome, but perhaps
+ they will update it at some point.
+
+ ..
+
+ **name unstable**
+
+ ``poleval``? ``evalpol``? ``peval``? ``evalp``? ``value``?
+ ``eval``? ``evalat``? ``eval1at2``? ``evalat2nd``?
+
+ Life is so complicated when one asks questions. Not everybody does,
+ though, as is amply demonstrated these days.
+
+ **syntax unstable**
+
+ I am hesitating about permuting the order of the arguments.
+
+.. _deg:
+
+``deg(<pol. expr.>)``
+~~~~~~~~~~~~~~~~~~~~~
+
+ Computes the degree.
+
+.. important::
+
+ As ``\xintexpr`` does not yet support infinities, the degree of
+ the zero polynomial is ``-1``. Beware that this breaks additivity
+ of degrees, but ``deg(P)<0`` correctly detects the zero polynomial,
+ and ``deg(P)<=0`` detects scalars.
+
+``coeffs(<pol. expr.>)``
+~~~~~~~~~~~~~~~~~~~~~~~~
+
+ Produces the nutple ``[c0,c1,...,cN]`` of coefficients. The highest
+ degree coefficient is always non zero (except for the zero
+ polynomial...).
+
+ **name unstable**
+
+ I am considering in particular using ``polcoeffs()`` to avoid
+ having to overload ``coeffs()`` in future when matrix type
+ will be added to xintexpr_.
+
+.. _lcoeffs:
+
+``lcoeffs(<pol. expr.>)``
+~~~~~~~~~~~~~~~~~~~~~~~~~
+
+ Produces the nutple ``[cN,....,c1,c0]`` of coefficients, starting
+ with the highest degree coefficient.
+
+ (new with ``0.8.1``)
+
+``coeff(<pol. expr.>, <num. expr.>)``
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+ As expected. Produces zero if the numerical index is negative or
+ higher than the degree.
+
+ **name, syntax and output unstable**
+
+ I am hesitating with ``coeff(n,pol)`` syntax and also perhaps using
+ ``polcoeff()`` in order to avoid having to overload ``coeff()``
+ when matrix type will be added to xintexpr_.
+
+ The current behaviour is at odds with legacy
+ :ref:`\\PolNthCoeff{\<polname\>}{\<index\>} <PolNthCoeff>` regarding negative indices.
+ Accessing leading or sub-leading coefficients can be done with
+ other syntax, see `lc(<pol. expr.>)`_, and in some contexts it
+ is useful to be able to rely on the fact that coefficients with
+ negative indices do vanish, so I am for time being maintaining this.
+
+.. _lc:
+
+``lc(<pol. expr.>)``
+~~~~~~~~~~~~~~~~~~~~
+
+ The leading coefficient. The same result can be obtained from
+ ``coeffs(pol)[-1]``, which shows also how to generalize to access
+ sub-leading coefficients. See the xintexpr_ documentation for
+ Python-like indexing syntax.
+
+``monicpart(<pol. expr.>)``
+~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+ Divides by the leading coefficient, except that ``monicpart(0)==0``.
+
+ **unstable**
+
+ Currently the coefficients are reduced to lowest terms (contrarily
+ to legacy behaviour of `\\PolMakeMonic <polmakemonic_>`_), and
+ additionally the xintfrac_ ``\xintREZ`` macro is applied which
+ extracts powers of ten from numerator or denominator and stores
+ them internally separately. This is generally beneficial to
+ efficiency of multiplication.
+
+.. _cont:
+
+``cont(<pol. expr.>)``
+~~~~~~~~~~~~~~~~~~~~~~
+
+ The (fractional) greatest common divisor of the polynomial
+ coefficients. It is always produced as an irreducible (non-negative)
+ fraction. According to Gauss theorem the content of a product is the
+ product of the contents.
+
+ .. commentaire 8 avril 2021
+
+ surprenamment après avoir utilisé `\\PolIContent <PolIContent_>`_
+ une fois on peut utiliser `\\PolIContent`_ directement.
+
+ avec docutils 0.16
+
+ ..
+
+ **name and syntax unstable**
+
+ At ``0.8`` it was created as ``icontent()`` to match the legacy
+ macro `\\PolIContent <PolIContent_>`_, whose name in 2018 was
+ chosen in relation to Maple's function ``icontent()``, possibly
+ because at that time I had not seen that Maple also had a
+ ``content()`` function. Name changed at ``0.8.1``.
+
+ It will change syntax if in future multivariate polynomials are
+ supported, and ``icontent()`` will then make a come-back.
+
+``primpart(<pol. expr.>)``
+~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+ The quotient (except for the zero polynomial) by
+ ``cont(<pol. expr.>)``. This is thus a polynomial with
+ integer coefficients having ``1`` as greatest common divisor. The
+ sign of the leading coefficient is the same as in the original.
+
+ And ``primpart(0)==0``.
+
+ The trailing zeros of the integer coefficients are extracted
+ into a power of ten exponent part, in the internal representation.
+
+``quorem(<pol. expr.>, <pol. expr.>)``
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+ Produces a nutple ``[Q,R]`` with ``Q`` the euclidean quotient and
+ ``R`` the remainder.
+
+ **name unstable**
+
+ ``poldiv()``?
+
+``quo(<pol. expr.>, <pol. expr.>)``
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+ The euclidean quotient.
+
+ The deprecated ``pol1/pol2`` syntax computes the same polynomial.
+
+``rem(<pol. expr.>, <pol. expr.>)``
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+ The euclidean remainder. If ``pol2`` is a (non-zero) scalar, this is
+ zero.
+
+ There is no infix operator associated to this, for lack of evident
+ notation. Please advise.
+
+ ``/:`` can be used if one is certain that ``pol2`` is of
+ degree at least one. But read the warning about it being unstable
+ even in that case.
+
+.. not implemented
+
+ ``spquorem(pol1,pol2)``
+ ~~~~~~~~~~~~~~~~~~~~~~~
+
+ Produces a tuple ``[Q,R]`` with the pseudo-quotient and
+ pseudo-remainder. See `prem(pol1, pol2) <prem_>`_ for
+ their definitions.
+
+ **NOT IMPLEMENTED**
+
+ I am hesitating returning rather the nutple ``[b^f, Q, R]`` or
+ ``[f, Q, R]``. Note that the number of non-zero coefficients of
+ a polynomial ``P`` can be computed as ``add(?(c),c=coeffs(P))``,
+ and in this context I am hesitating abstracting a function to
+ provide this [#]_. The usual problem is that I don't know how to
+ name the function.
+
+ I am also hesitating providing rather a function returning only
+ ``f`` and ``R``, not ``Q``, which for modular computations we don't
+ need to carry along.
+
+ .. [#] one can embed ``\xintiiexpr add(?(c),c=coeffs(P))\relax``
+ inside ``\xintexpr`` and it will be more efficient for long
+ polynomials, but naturally a core implementation using a
+ single ``\numexpr`` would be quite more efficient still.
+
+.. _prem:
+
+``prem(<pol. expr. 1>, <pol. expr. 2>)``
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+ Produces a nutple ``[m, spR]`` where ``spR`` is the (special) pseudo
+ Euclidean remainder. Its description is:
+
+ - the standard euclidean remainder ``R`` is ``spR/m``
+
+ - ``m = b^f`` with ``b`` equal to the **absolute value** of the
+ leading coefficient of ``pol2``,
+
+ - ``f`` is the number of non-zero coefficients in the euclidean
+ quotient, if ``deg(pol2)>0`` (even if the remainder vanishes).
+
+ If ``pol2`` is a scalar however, the function outputs ``[1,0]``.
+
+ With these definitions one can show that if both ``pol1`` and
+ ``pol2`` have integer coefficients, then this is also the case of
+ ``spR``, which makes its interest (and also ``m*Q`` has integer
+ coefficients, with ``Q`` the euclidean quotient, if ``deg(pol2)>0``).
+ Also, ``prem()`` is computed faster than ``rem()`` for such integer
+ coefficients polynomials.
+
+ .. hint::
+
+ If you want the euclidean quotient ``R`` evaluated via ``spR/m``
+ (which may be faster, even with non integer coefficients) use
+ ``subs(last(x)/first(x),x=prem(P,Q))`` syntax as it avoids
+ computing ``prem(P,Q)`` twice. This does the trick both in
+ ``\poldef`` or in ``\xintdefvar``.
+
+ However, as is explained in the xintexpr_ documentation, using
+ such syntax in an ``\xintdeffunc`` is (a.t.t.o.w) illusory, due to
+ technicalities of how ``subs()`` gets converted into nested
+ expandable macros. One needs an auxiliary function like this::
+
+ \xintdeffunc lastoverfirst(x):=last(x)/first(x);
+ \xintdeffunc myR(x)=lastoverfirst(prem(x));
+
+ Then, ``myR(pol1,pol2)`` will evaluate ``prem(pol1,pol2)`` only
+ once and compute a polynomial identical to the euclidean
+ remainder (internal representations of coefficients may differ).
+
+ In this case of integer coefficients polynomials, the polexpr
+ internal representation of the integer coefficients in the pseudo
+ remainder will be with unit denominators only if that was already the
+ case for those of ``pol1`` and ``pol2`` (no automatic reduction to
+ lowest terms is made prior or after computation).
+
+ Pay attention here that ``b`` is the **absolute value** of the
+ leading coefficient of ``pol2``. Thus the coefficients of the
+ pseudo-remainder have the same signs as those of the standard
+ remainder. This diverges from Maple's function with the same name.
+
+
+``divmod(<pol. expr. 1>, <pol. expr. 2>)``
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+ Overloads the scalar ``divmod()`` and associates it with the
+ experimental ``//`` and ``/:`` as extended to the polynomial type.
+
+ In particular when both ``pol1`` and ``pol2`` are scalars, this is
+ the usual ``divmod()`` (as in Python) and for ``pol1`` and ``pol2``
+ non constant polynomials, this is the same as ``quorem()``.
+
+ **Highly unstable** overloading of ``\xinteval``\ 's ``divmod()``.
+
+``mod(<pol. expr. 1>, <pol. expr. 2>)``
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+ The ``R`` of the ``divmod()`` output. Same as ``R`` of ``quorem()``
+ when the second argument ``pol2`` is of degree at least one.
+
+ **Highly unstable** overloading of ``\xinteval``\ 's ``mod()``.
+
+``polgcd(<pol. expr. 1>, <pol. expr. 2>, ...)``
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+ Evaluates to the greatest common polynomial divisor of all the
+ polynomial inputs. The output is a **primitive** (in particular,
+ with integer coefficients) polynomial. It is zero if and only if all
+ inputs vanish.
+
+ Attention, there must be either at least two polynomial variables, or
+ alternatively, only one argument which then must be a bracketed list
+ or some expression or variable evaluating to such a "nutple" whose
+ items are polynomials (see the documentation of the scalar ``gcd()``
+ in xintexpr_).
+
+ The two variable case could (and was, during development) have been
+ defined at user level like this::
+
+ \xintdeffunc polgcd_(P,Q):=
+ (deg(Q))??{P}{1}{polgcd_(Q,primpart(last(prem(P,Q))))};
+ \xintdeffunc polgcd(P,Q):=polgcd_(primpart(P),primpart(Q));%
+
+ This is basically what is done internally for two polynomials, up
+ to some internal optimizations.
+
+ **UNSTABLE**
+
+ I hesitate between returning a *primitive* or a *monic* polynomial.
+ Maple returns a primitive polynomial if all inputs [#]_ have integer
+ coefficients, else it returns a monic polynomial, but this is
+ complicated technically for us to add such a check and would add
+ serious overhead.
+
+ Internally, computations are done using primitive
+ integer-coefficients polynomials (as can be seen in the function
+ template above). So I decided finally to output a primitive
+ polynomial, as one can always apply ``monicpart()`` to it.
+
+ Attention that this is at odds with behaviour of the legacy
+ `\\PolGCD <PolGCD_>`_ (non expandable) macro.
+
+ .. [#] actually, only two polynomial arguments are allowed by Maple's
+ ``gcd()`` as far as I know.
+
+``resultant(<pol. expr. 1>, <pol. expr. 2>)``
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+ The resultant.
+
+ **NOT YET IMPLEMENTED**
+
+``disc(<pol. expr.>)``
+~~~~~~~~~~~~~~~~~~~~~~
+
+ The discriminant.
+
+ **NOT YET IMPLEMENTED**
+
+``polpowmod(<pol. expr. 1>, <num. expr.>, <pol. expr. 2>)``
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+ Modular exponentiation: ``mod(pol1^N, pol2)`` in a more efficient
+ manner than first computing ``pol1^N`` then reducing modulo ``pol2``.
+
+ Attention that this is using the ``mod()`` operation, whose current
+ experimental status is as follows:
+
+ - if ``deg(pol2)>0``, the euclidean remainder operation,
+ - if ``pol2`` is a scalar, coefficient-wise reduction modulo ``pol2``.
+
+
+ **UNSTABLE**
+
+ This is currently implemented at high level via ``\xintdeffunc`` and
+ recursive definitions, which were copied over from a scalar example
+ in the xintexpr_ manual::
+
+ \xintdeffunc polpowmod_(P, m, Q) :=
+ isone(m)?
+ % m=1: return P modulo Q
+ { mod(P,Q) }
+ % m > 1: test if odd or even and do recursive call
+ { odd(m)? { mod(P*sqr(polpowmod_(P, m//2, Q)), Q) }
+ { mod( sqr(polpowmod_(P, m//2, Q)), Q) }
+ }
+ ;%
+ \xintdeffunc polpowmod(P, m, Q) := (m)?{polpowmod_(P, m, Q)}{1};%
+
+ Negative exponents are not currently implemented.
+
+ For example::
+
+ \xinteval{subs(polpowmod(1+x,100,x^7),x=pol([0,1]))}
+ \xinteval{subs(polpowmod(1+x,20,10), x=pol([0,1]))}
+
+ produce respectively::
+
+ pol([1, 100, 4950, 161700, 3921225, 75287520, 1192052400])
+ pol([1, 0, 0, 0, 5, 4, 0, 0, 0, 0, 6, 0, 0, 0, 0, 4, 5, 0, 0, 0, 1])
+
+.. perte de temps terrible pourquoi j'écris cela
+ When ``pol2`` is as scalar then the degrees of the modular powers
+ ``mod(pol1^N, pol2)`` will in general increase linearly in ``N``
+ hence become big. But one can play with modifying the above
+ template and nesting two ``mod()``, one with an integer modulus,
+ say ``7``, and the other the a monic integer coefficients
+ polynomial such as ``Q = x^2+1``. Then an integer coefficients
+ polynomial ``P`` will have an integer coefficient remainder modulo
+ ``Q``, and
+
+.. _rdcoeffs:
+
+``rdcoeffs(<pol. expr.>)``
+~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+ This operates on the internal representation of the coefficients,
+ reducing them to lowest terms.
+
+ **name HIGHLY undecided**
+
+``rdzcoeffs(<pol. expr.>)``
+~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+ This operates on the internal representation of the coefficients,
+ reducing them to lowest terms then extracting from numerator
+ or denominator the maximal power of ten to store as a decimal
+ exponent.
+
+ This is sometimes favourable to more efficient polynomial algebra
+ computations.
+
+ **name HIGHLY undecided**
+
+``diff1(<pol. expr.>)``
+~~~~~~~~~~~~~~~~~~~~~~~
+
+ The first derivative.
+
+ **name UNSTABLE**
+
+ This name may be used in future to be the partial derivative with
+ respect to a first variable.
+
+``diff2(<pol. expr.>)``
+~~~~~~~~~~~~~~~~~~~~~~~
+
+ The second derivative.
+
+ **name UNSTABLE**
+
+ This name may be used in future to be the partial derivative with
+ respect to a second variable.
+
+
+``diffn(<pol. expr. P>, <num. expr. n>)``
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+ The ``n``\ th derivative of ``P``. For ``n<0`` computes iterated primitives
+ vanishing at the origin.
+
+ The coefficients are not reduced to lowest terms.
+
+ **name and syntax UNSTABLE**
+
+ I am also considering reversing the order of the arguments.
+
+``antider(<pol. expr. P>)``
+~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+ The primitive of ``P`` with no constant term. Same as ``diffn(P,-1)``.
+
+``intfrom(<pol. expr. P>, <pol. expr. c>)``
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+ The primitive of ``P`` vanishing at ``c``, i.e. ``\int_c^x P(t)dt``.
+
+ Also ``c`` can be a polynomial... so if ``c`` is monomial ``x``
+ this will give zero!
+
+ **UNSTABLE**
+
+ Allowing general polynomial variable for ``c`` adds a bit of
+ overhead to the case of a pure scalar. So I am hesitating
+ maintaining this feature whose interest appears dubious.
+
+ .. attention::
+
+ As the two arguments are both allowed to be polynomials, if by
+ inadvertance one exchanges the two, there is no error but the
+ meaning of ``intfrom(c,P)`` is completely otherwise, as it
+ produces ``c*(x - P)`` if ``c`` is a scalar::
+
+ >>> &pol
+ pol mode (i.e. function definitions use \poldef)
+ >>> P(x):=1+x^2;
+ P = x^2+1
+ --> &GenFloat(P) lets P become usable as function in fp mode
+ --> &ROOTS(P) (resp. &ROOTS(P,N)) finds all rational roots exactly and
+ all irrational roots with at least 10 (resp. N) fractional digits
+ >>> intfrom(P,1);
+ @_1 pol([-4/3, 1, 0, 1/3])
+ >>> intfrom(1,P);
+ @_2 pol([-1, 1, -1])
+ >>> &bye
+
+
+
+.. grosse hésitation ici
+
+ ``intto(<pol. expr. P>, <pol. expr. c>)``
+ -----------------------------------------
+
+ ``\int_x^c P(t)dt``.
+
+ c'est l'opposé du précédent
+
+ mais le nom pourrait faire penser à \int_0^x plutôt
+
+``integral(<pol. expr. P>, [<pol. expr. a>, <pol. expr. b>])``
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+ ``\int_a^b P(t)dt``.
+
+ .. warning::
+
+ The brackets here are not denoting an optional argument but a
+ *mandatory* nutple argument ``[a, b]`` with *two items*. No real
+ recoverable-from error check is done on the input syntax. The
+ input can be an xintexpr_ variable which happens to be a nutple
+ with two items, or any expression which evaluates to such a
+ nutple.
+
+ ``a`` and ``b`` are not restricted to be scalars, they are allowed to
+ be themselves polynomial variables or even polynomial expressions.
+
+ To compute ``\int_{x-1}^x P(t)dt`` it is more efficient to use
+ ``intfrom(x-1)``.
+
+ Similary to compute ``\int_x^{x+1} P(t)dt``, use ``-intfrom(x+1)``.
+
+ **UNSTABLE**
+
+ Am I right to allow general polynomials ``a`` and ``b`` hence add
+ overhead to the pure scalar case ?
+
+
+
+Non-expandable macros
+---------------------
+
+.. note::
+
+ At ``0.8`` ``polexpr`` is usable with Plain TeX and not only with
+ LaTeX. Some examples given in this section may be using LaTeX syntax
+ such as ``\renewcommand``.
+
+.. _poldef;:
+
+``\poldef polname(letter):= expression using the letter as indeterminate;``
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+ This evaluates the *polynomial expression* and stores the
+ coefficients in a private structure accessible later via other
+ package macros, used with argument ``polname``. Of course the
+ *expression* can make use of previously defined polynomials.
+
+ Polynomial names must start with a letter and are constituted of
+ letters, digits, underscores and the right tick ``'``.
+
+ The whole xintexpr_ syntax is authorized, as long as the final
+ result is of polynomial type::
+
+ \poldef polname(z) := add((-1)^i z^(2i+1)/(2i+1)!, i = 0..10);
+
+ With fractional coefficients, beware the `tacit multiplication issue
+ <warningtacit_>`_.
+
+ Furthermore:
+
+ - a variable ``polname`` is defined which can be used in ``\poldef``
+ as well as in ``\xinteval`` for algebraic computations or as
+ argument to polynomial aware functions,
+
+ - a function ``polname()`` is defined which can be used in ``\poldef``
+ as well as in ``\xinteval``. It accepts there as argument scalars
+ and also other polynomials (via their names, thanks to previous
+ item).
+
+ Notice that any function defined via ``\xintdeffunc`` and using
+ only algebraic operations (and ople indexing or slicing operations)
+ should work fine in ``\xintexpr/\xinteval`` with such polynomial
+ names as argument.
+
+ In the case of a constant polynomial, the xintexpr_ variable (not the
+ internal data structure on which the package macros operate)
+ associated to it is indistinguishable from a scalar, it is actually
+ a scalar and has lost all traces from its origins as a polynomial
+ (so for example can be used as argument to the ``cos()`` function).
+
+ The *function* on the other hand remains a one-argument function,
+ which simply has a constant value.
+
+ .. attention::
+
+ The function ``polname()`` is defined **only** for
+ ``\xintexpr/\xinteval``
+ context. It will be unknown to ``\xintfloateval``.
+
+ Worse, a
+ previously existing floating point function of the same name will
+ be let undefined again, to avoid hard to debug mismatches between
+ exact and floating point polynomials. This also applies when the
+ polynomial is produced not via ``\poldef`` or ``\PolDef`` but
+ as result of usage of the other package macros.
+
+ See :ref:`\\PolGenFloatVariant{\<polname\>} <PolGenFloatVariant>` to generate a **function**
+ usable in ``\xintfloateval``.
+
+ .. attention::
+
+ Using the **variable** ``mypol`` inside ``\xintfloateval`` will
+ generate low-level errors because the infix operators there are
+ not polynomial-aware, and the polynomial specific functions such
+ as ``deg()`` are only defined for usage inside ``\xintexpr``.
+
+ In short, currently polynomials defined via ``polexpr`` can
+ be used in floating point context only for numerical evaluations,
+ via **functions** obtained from :ref:`\\PolGenFloatVariant{\<polname\>} <PolGenFloatVariant>`
+ usage.
+
+ Changes to the original polynomial via package macros are not
+ automatically mapped to the numerical floating point evaluator
+ which must be manually updated as necessary when the original
+ rational coefficient polynomial is modified.
+
+ The original expression is lost after parsing, and in particular the
+ package provides no way to typeset it (of course the package
+ provides macros to typeset the computed polynomial). Typesetting
+ the original expression has to be done manually, if needed.
+
+.. _PolDef:
+
+``\PolDef[<letter>]{<polname>}{<expr. using the letter as indeterminate>}``
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+ Does the same as `\\poldef <poldef;_>`_ in an undelimited macro
+ format, the main interest is to avoid potential problems with the
+ catcode of the semi-colon in presence of some packages. In absence
+ of a ``[<letter>]`` optional argument, the variable is assumed to be
+ ``x``.
+
+
+.. _PolGenFloatVariant:
+
+``\PolGenFloatVariant{}``
+~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Syntax: ``\PolGenFloatVariant{<polname>}``
+
+ Makes the polynomial also usable in the
+ ``\xintfloatexpr/\xintfloateval`` parser. It will therein evaluates
+ via an Horner scheme using polynomial coefficients already
+ pre-rounded to the float precision.
+
+ See also :ref:`\\PolToFloatExpr{\<pol. expr.\>} <PolToFloatExpr>`.
+
+ .. attention::
+
+ Any operation, for example generating the derivative polynomial,
+ or dividing two polynomials or using the ``\PolLet``, must be
+ followed by explicit usage of ``\PolGenFloatVariant{<polname>}`` if
+ the new polynomial is to be used in ``\xintfloateval``.
+
+.. _PolTypeset:
+
+``\PolTypeset{}``
+~~~~~~~~~~~~~~~~~
+
+Syntax: ``\PolTypeset{<pol. expr.>}``
+
+ Typesets in descending powers, switching to math mode if in text
+ mode, after evaluating the polynomial expression::
+
+ \PolTypeset{mul(x-i,i=1..5)}% possible since polexpr 0.8
+
+ The letter used in the input expression is by default ``x``,
+ but can be modified by a redefinition of `\\PolToExprInVar`_.
+
+ It uses also by default the letter ``x`` on output but this one can
+ be changed via an optional argument::
+
+ \PolTypeset[z]{polname or polynomial expression}
+
+ By default zero coefficients are skipped (use ``\poltypesetalltrue``
+ to get all of them in output).
+
+ The following macros (whose meanings will be found in the package code)
+ can be re-defined for customization. Their default definitions are
+ expandable, but this is not a requirement.
+
+.. _PolTypesetCmd:
+
+``\PolTypesetCmd{}``
+^^^^^^^^^^^^^^^^^^^^
+
+Syntax: ``\PolTypesetCmd{<raw_coeff>}``
+
+ Its package definition checks if the coefficient is ``1`` or ``-1``
+ and then skips printing the ``1``, except for the coefficient of
+ degree zero. Also it sets the conditional deciding behaviour of
+ :ref:`\\PolIfCoeffIsPlusOrMinusOne{T}{F} <PolIfCoeffIsPlusOrMinusOne>`.
+
+ The actual printing of the coefficients, when not equal to plus or
+ minus one, is handled by :ref:`\\PolTypesetOne{\<raw_coeff\>} <PolTypesetOne>`.
+
+.. _PolIfCoeffIsPlusOrMinusOne:
+
+``\PolIfCoeffIsPlusOrMinusOne{}{}``
+***********************************
+
+Syntax: ``\PolIfCoeffIsPlusOrMinusOne{T}{F}``
+
+ This macro is a priori undefined.
+
+ It is defined via the default :ref:`\\PolTypesetCmd{\<raw_coeff\>} <PolTypesetCmd>` to be
+ used if needed in the execution of `\\PolTypesetMonomialCmd`_,
+ e.g. to insert a ``\cdot`` in front of ``\PolVar^{\PolIndex}`` if
+ the coefficient is not plus or minus one.
+
+ The macro will execute ``T`` if the coefficient has been found to be
+ plus or minus one, and ``F`` if not. It chooses expandably between
+ ``T`` and ``F``.
+
+.. _PolTypesetOne:
+
+``\PolTypesetOne{}``
+^^^^^^^^^^^^^^^^^^^^
+
+Syntax: ``\PolTypesetOne{<raw_coeff>}``
+
+ Defaults to ``\xintTeXsignedFrac`` (LaTeX) or ``\xintTeXsignedOver``
+ (else). But these xintfrac_ old legacy macros are a bit
+ annoying as they insist in exhibiting a power of ten rather than
+ using simpler decimal notation.
+
+ As alternative, one can do definitions such as::
+
+ \def\PolTypesetOne#1{\xintDecToString{\xintREZ{#1}}}
+ % or with LaTeX+siunitx for example
+ \renewcommand\PolTypesetOne[1]{\num{\xintPFloat[5]{#1}}}
+ % (as \num of siunitx understands floating point notation)
+ \renewcommand\PolTypesetOne[1]{\num{\xintRound{4}{#1}}}
+
+.. _PolTypesetMonomialCmd:
+
+``\PolTypesetMonomialCmd``
+^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+ This decides how a monomial (in variable ``\PolVar`` and with
+ exponent ``\PolIndex``) is to be printed. The default does nothing
+ for the constant term, ``\PolVar`` for the first degree and
+ ``\PolVar^{\PolIndex}`` for higher degrees monomials. Beware that
+ ``\PolIndex`` expands to digit tokens and needs termination in
+ ``\ifnum`` tests.
+
+.. _PolTypesetCmdPrefix:
+
+``\PolTypesetCmdPrefix{}``
+^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Syntax: ``\PolTypesetCmdPrefix{<raw_coeff>}``
+
+ Expands to a ``+`` if the ``raw_coeff`` is zero or positive, and to
+ nothing if ``raw_coeff`` is negative, as in latter case the
+ ``\xintTeXsignedFrac`` (or ``\xintTeXsignedOver``) used by
+ :ref:`\\PolTypesetCmd{\<raw_coeff\>} <PolTypesetCmd>` will put the ``-`` sign in front of
+ the fraction (if it is a fraction) and this will thus serve as
+ separator in the typeset formula. Not used for the first term.
+
+
+.. _PolTypeset*:
+
+``\PolTypeset*{}``
+~~~~~~~~~~~~~~~~~~
+
+Syntax: ``\PolTypeset*{<pol. expr.>}``
+
+ Typesets in ascending powers. Use ``[<letter>]`` optional argument
+ (after the ``*``) to use another letter than ``x``.
+
+ Extended at ``0.8`` to accept general expressions and not only
+ polynomial names. Redefine `\\PolToExprInVar`_ to use in the
+ expression another letter than default ``x``.
+
+
+.. _PolLet:
+
+``\PolLet{}={}``
+~~~~~~~~~~~~~~~~
+
+Syntax: ``\PolLet{<polname_2>}={<polname_1>}``
+
+ Makes a copy of the already defined polynomial ``polname_1`` to a
+ new one ``polname_2``. This has the same effect as
+ ``\PolDef{<polname_2>}{<polname_1>(x)}`` or (better)
+ ``\PolDef{<polname_2>}{<polname_1>}`` but with less overhead. The
+ ``=`` is optional.
+
+.. _PolGlobalLet:
+
+``\PolGlobalLet{}={}``
+~~~~~~~~~~~~~~~~~~~~~~
+
+Syntax: ``\PolGlobalLet{<polname_2>}={<polname_1>}``
+
+ Acts globally.
+
+.. _PolAssign:
+
+``\PolAssign{}\toarray{}``
+~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Syntax: ``\PolAssign{<polname>}\toarray{<\macro>}``
+
+ Defines a one-argument expandable macro ``\macro{#1}`` which expands
+ to the (raw) #1th polynomial coefficient.
+
+ - Attention, coefficients here are indexed starting at 1. This is
+ an unfortunate legacy situation related to the original indexing
+ convention in xinttools_ arrays.
+
+ - With #1=-1, -2, ..., ``\macro{#1}`` returns leading coefficients.
+
+ - With #1=0, returns the number of coefficients, i.e. ``1 + deg f``
+ for non-zero polynomials.
+
+ - Out-of-range #1's return ``0/1[0]``.
+
+ See also :ref:`\\PolNthCoeff{\<polname\>}{\<index\>} <PolNthCoeff>`.
+
+.. _PolGet:
+
+``\PolGet{}\fromarray{}``
+~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Syntax: ``\PolGet{<polname>}\fromarray{<\macro>}``
+
+ Does the converse operation to
+ ``\PolAssign{<polname>}\toarray\macro``. Each individual
+ ``\macro{<value>}`` gets expanded in an ``\edef`` and then normalized
+ via xintfrac_\ 's macro ``\xintRaw``.
+
+ The leading zeros are removed from the polynomial.
+
+ (contrived) Example::
+
+ \xintAssignArray{1}{-2}{5}{-3}\to\foo
+ \PolGet{f}\fromarray\foo
+
+ This will define ``f`` as would have ``\poldef f(x):=1-2x+5x^2-3x^3;``.
+
+ .. vieux commentaire
+
+ Prior to ``0.5``, coefficients were not normalized via
+ ``\xintRaw`` for internal storage.
+
+.. _PolFromCSV:
+
+``\PolFromCSV{}{}``
+~~~~~~~~~~~~~~~~~~~
+
+Syntax: ``\PolFromCSV{<polname>}{<csv>}``
+
+ Defines a polynomial directly from the comma separated list of values
+ (or a macro expanding to such a list) of its coefficients, the *first
+ item* gives the constant term, the *last item* gives the leading
+ coefficient, except if zero, then it is dropped (iteratively). List
+ items are each expanded in an ``\edef`` and then put into normalized
+ form via xintfrac_\ 's macro ``\xintRaw``.
+
+ As leading zero coefficients are removed::
+
+ \PolFromCSV{f}{0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
+
+ defines the zero polynomial, which holds only one coefficient.
+
+ See also expandable macro :ref:`\\PolToCSV{\<polname\>} <PolToCSV>`.
+
+ .. vieux commentaire
+
+ Prior to ``0.5``, coefficients were not normalized via
+ ``\xintRaw`` for internal storage.
+
+
+.. _PolMapCoeffs:
+
+``\PolMapCoeffs{}{}``
+~~~~~~~~~~~~~~~~~~~~~
+
+Syntax: ``\PolMapCoeffs{\macro}{<polname>}``
+
+ It modifies ('in-place': original coefficients get lost) each
+ coefficient of the defined polynomial via the *expandable* macro
+ ``\macro``. The degree is adjusted as necessary if some leading
+ coefficients vanish after the operation.
+
+ In the replacement text of ``\macro``, ``\index`` expands to the
+ coefficient index (starting at zero for the constant term).
+
+ Notice that ``\macro`` will have to handle inputs in the xintfrac_
+ internal format. This means that it probably will have to be
+ expressed in terms of macros from the xintfrac_ package.
+
+ Example::
+
+ \def\foo#1{\xintMul{#1}{\the\numexpr\index*\index\relax}}
+
+ (or with ``\xintSqr{\index}``) to replace ``n``-th coefficient
+ ``f_n`` by ``f_n*n^2``.
+
+.. _PolReduceCoeffs:
+
+``\PolReduceCoeffs{}``
+~~~~~~~~~~~~~~~~~~~~~~
+
+Syntax: ``\PolReduceCoeffs{<polname>}``
+
+ Reduces the internal representations of the coefficients to
+ their lowest terms.
+
+.. _PolReduceCoeffs*:
+
+``\PolReduceCoeffs*{}``
+~~~~~~~~~~~~~~~~~~~~~~~
+
+Syntax: ``\PolReduceCoeffs*{<polname>}``
+
+ Reduces the internal representations of the coefficients to their
+ lowest terms, but ignoring a possible separated "power of ten part".
+
+ For example, xintfrac_ stores an ``30e2/50`` input as ``30/50`` with
+ a separate ``10^2`` part. This will thus get replaced by ``3e^2/5``
+ (or rather whatever xintfrac_ uses for internal representation), and
+ not by ``60`` as would result from complete reduction.
+
+ Evaluations with polynomials treated by this can be much faster than
+ with those handled by the non-starred variant
+ :ref:`\\PolReduceCoeffs{\<polname\>} <PolReduceCoeffs>`: as the numerators and denominators
+ remain generally smaller.
+
+.. _PolMakeMonic:
+
+``\PolMakeMonic{}``
+~~~~~~~~~~~~~~~~~~~
+
+Syntax: ``\PolMakeMonic{<polname>}``
+
+ Divides by the leading coefficient. It is recommended to execute
+ :ref:`\\PolReduceCoeffs*{\<polname\>} <PolReduceCoeffs*>` immediately afterwards. This is not
+ done automatically, in case the original polynomial had integer
+ coefficients and the user wants to keep the leading one as common
+ denominator for typesetting purposes.
+
+.. _PolMakePrimitive:
+
+``\PolMakePrimitive{}``
+~~~~~~~~~~~~~~~~~~~~~~~
+
+Syntax: ``\PolMakePrimitive{<polname>}``
+
+ Divides by the integer content see (`\\PolIContent`_).
+ This thus produces a polynomial with integer
+ coefficients having no common factor. The sign of the leading
+ coefficient is not modified.
+
+.. _PolDiff:
+
+``\PolDiff{}{}``
+~~~~~~~~~~~~~~~~
+
+Syntax: ``\PolDiff{<polname_1>}{<polname_2>}``
+
+ This sets ``polname_2`` to the first derivative of ``polname_1``. It
+ is allowed to issue ``\PolDiff{f}{f}``, effectively replacing ``f``
+ by ``f'``.
+
+ Coefficients of the result ``polname_2`` are irreducible fractions
+ (see `Technicalities`_ for the whole story.)
+
+.. _PolDiff[]:
+
+``\PolDiff[]{}{}``
+~~~~~~~~~~~~~~~~~~
+
+Syntax: ``\PolDiff[N]{<polname_1>}{<polname_2>}``
+
+ This sets ``polname_2`` to the ``N``-th derivative of ``polname_1``.
+ Identical arguments is allowed. With ``N=0``, same effect as
+ ``\PolLet{<polname_2>}={<polname_1>}``. With negative ``N``, switches to
+ using ``\PolAntiDiff``.
+
+.. _PolAntiDiff:
+
+``\PolAntiDiff{}{}``
+~~~~~~~~~~~~~~~~~~~~
+
+Syntax: ``\PolAntiDiff{<polname_1>}{<polname_2>}``
+
+ This sets ``polname_2`` to the primitive of ``polname_1`` vanishing
+ at zero.
+
+ Coefficients of the result ``polname_2`` are irreducible fractions
+ (see `Technicalities`_ for the whole story.)
+
+.. _PolAntiDiff[]:
+
+``\PolAntiDiff[]{}{}``
+~~~~~~~~~~~~~~~~~~~~~~~
+
+Syntax: ``\PolAntiDiff[N]{<polname_1>}{<polname_2>}``
+
+ This sets ``polname_2`` to the result of ``N`` successive integrations on
+ ``polname_1``. With negative ``N``, it switches to using ``\PolDiff``.
+
+.. _PolDivide:
+
+``\PolDivide{}{}{}{}``
+~~~~~~~~~~~~~~~~~~~~~~
+
+Syntax: ``\PolDivide{<polname_1>}{<polname_2>}{<polname_Q>}{<polname_R>}``
+
+ This sets ``polname_Q`` and ``polname_R`` to be the quotient and
+ remainder in the Euclidean division of ``polname_1`` by
+ ``polname_2``.
+
+.. _PolQuo:
+
+``\PolQuo{}{}{}``
+~~~~~~~~~~~~~~~~~
+
+Syntax: ``\PolQuo{<polname_1>}{<polname_2>}{<polname_Q>}``
+
+ This sets ``polname_Q`` to be the quotient in the Euclidean division
+ of ``polname_1`` by ``polname_2``.
+
+.. _PolRem:
+
+``\PolRem{}{}{}``
+~~~~~~~~~~~~~~~~~
+
+Syntax: ``\PolRem{<polname_1>}{<polname_2>}{<polname_R>}``
+
+ This sets ``polname_R`` to be the remainder in the Euclidean division
+ of ``polname_1`` by ``polname_2``.
+
+.. _PolGCD:
+
+``\PolGCD{}{}{}``
+~~~~~~~~~~~~~~~~~
+
+Syntax: ``\PolGCD{<polname_1>}{<polname_2>}{<polname_GCD>}``
+
+ This sets ``polname_GCD`` to be the (monic) GCD of ``polname_1``
+ and ``polname_2``. It is a unitary polynomial except if both
+ ``polname_1`` and ``polname_2`` vanish, then ``polname_GCD`` is the
+ zero polynomial.
+
+.. ``\PolIGCD{<polname_1>}{<polname_2>}{polname_iGCD}``
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+ **NOT YET**
+
+ This **assumes** that the two polynomials have integer coefficients.
+ It then computes the greatest common divisor in the integer
+ polynomial ring, normalized to have a positive leading coefficient
+ (if the inputs are not both zero).
+
+
+Root localization routines via the `Sturm Theorem`_
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+As :ref:`\\PolToSturm{\<polname\>}{\<sturmname\>} <PolToSturm>` and
+:ref:`\\PolSturmIsolateZeros{\<sturmname\>} <PolSturmIsolateZeros>` and variants declare
+additional polynomial or scalar variables with names based on ``<sturmname>`` as
+prefix, it is advisable to keep the ``<sturmname>`` namespace separate from
+the one applying to ``\xintexpr`` variables generally, or to polynomials.
+
+.. _PolToSturm:
+
+``\PolToSturm{}{}``
+^^^^^^^^^^^^^^^^^^^
+
+Syntax: ``\PolToSturm{<polname>}{<sturmname>}``
+
+ With ``<polname>`` being for example ``P``, and ``<sturmname>`` being
+ for example ``S``, the macro starts by computing the derivative
+ ``P'``, then computes the opposite of the remainder in the euclidean
+ division of ``P`` by ``P'``, then the opposite of the remainder in
+ the euclidean division of ``P'`` by the first obtained polynomial,
+ etc... Up to signs following the ``--++--++...`` pattern, these are
+ the same remainders as in the Euclide algorithm applied to the
+ computation of the GCD of ``P`` and ``P'``.
+
+ The precise process differs from the above description: the
+ algorithm first sets ``S_0_`` to be the *primitive part* of ``P``
+ and ``S_1_`` to be the *primitive part* of ``P'`` (see
+ :ref:`\\PolIContent{\<polname\>} <PolIContent>`), then at each step
+ the remainder is made primitive and stored for internal reference as
+ ``S_k_``, so only integer-coefficients polynomials are manipulated.
+
+ .. warning::
+
+ This exact procedure will perhaps in future be replaced by a
+ *sub-resultant algorithm*, which may bring some speed gain in
+ obtaining a pseudo-Sturm sequence, but some experimenting is
+ needed, in the context of realistically realizable computations
+ by the package; primitive polynomials although a bit costly
+ have the smallest coefficients hence are the best for the kind of
+ computations done for root localization, after having computed a
+ Sturm sequence.
+
+ The last non-zero primitivized remainder ``S_N_`` is, up to sign,
+ the primitive part of the GCD of ``P`` and ``P'``. Its roots (real
+ and complex) are the multiple roots of the original ``P``. The
+ original ``P`` was "square-free" (i\.e\. did not have multiple real
+ or complex roots) if and only if ``S_N_`` is a constant, which is
+ then ``+1`` or ``-1`` (its value before primitivization is lost).
+
+ The macro then divides each ``S_k_`` by ``S_N_`` and declares the
+ quotients ``S_k`` as user polynomials for future use. By Gauss
+ theorem about the contents of integer-coefficients polynomials,
+ these ``S_k`` also are primitive integer-coefficients polynomials.
+
+ This step will be referred to as *normalization*, and in this
+ documentation the obtained polynomials are said to constitute the
+ "Sturm chain" (or "Sturm sequence"), i.e. by convention the "Sturm
+ chain polynomials" are square-free and primitive. The possibly
+ non-square-free ones are referred to as *non-normalized*.
+
+ As an exception to the rule, if the original ``P`` was "square-free"
+ (i\.e\. did not have multiple real or complex roots) then
+ normalization is skipped (in that case ``S_N_`` is either ``+1`` or
+ ``-1``), so ``S_0_`` is exactly the primitive part of starting
+ polynomial ``P``, in the "square-free" case.
+
+ The next logical step is to execute `\\PolSturmIsolateZeros{S}
+ <PolSturmIsolateZeros_>`_ or one of its variants. Be careful not to
+ use the names ``sturmname_0``, ``sturmname_1``, etc... for defining
+ other polynomials after having done
+ ``\PolToSturm{<polname>}{<sturmname>}`` and before executing
+ ``\PolSturmIsolateZeros{<sturmname>}`` or its variants else the
+ latter will behave erroneously.
+
+ .. note::
+
+ The declaration of the ``S_k``\ 's will overwrite
+ with no warning previously declared polynomials with identical
+ names ``S_k``. This is original reason why the macro expects two
+ names: ``<polname>`` and ``<sturmname>``.
+
+ It is allowed to use the polynomial name ``P`` as Sturm chain
+ name ``S``: ``\PolToSturm{f}(f}``, but of course fusing the
+ namespaces is slightly dangerous. And, also `\\PolSturmIsolateZeros
+ <PolSturmIsolateZeros_>`_ creates variables sharing
+ the ``<sturmname>`` prefix, which must be taken into account to
+ avoid name clashes.
+
+ .. warning::
+
+ The reason why the ``S_k``\ 's are declared as polynomials is
+ that the associated polynomial functions are needed to compute
+ the sign changes in the Sturm sequence evaluated at a given
+ location, as this is the basis mechanism of `\\PolSturmIsolateZeros
+ <PolSturmIsolateZeros_>`_ (on the basis of the `Sturm theorem`_).
+
+ It is possible that in future the package will only internally
+ construct such polynomial functions and only the starred variant
+ will make the normalized (i.e. square-free) Sturm sequence public.
+
+ The integer ``N`` giving the length of the Sturm chain ``S_0``,
+ ``S_1``, ..., ``S_N`` is available as
+ :ref:`\\PolSturmChainLength{\<sturmname\>} <PolSturmChainLength>`. If all roots of original ``P``
+ are real, then ``N`` is both the number of distinct real roots and
+ the degree of ``S_0``. In the case of existence of complex roots,
+ the number of distinct real roots is at most ``N`` and ``N`` is at
+ most the degree of ``S_0``.
+
+.. _PolToSturm*:
+
+``\PolToSturm*{}{}``
+^^^^^^^^^^^^^^^^^^^^
+
+Syntax: ``\PolToSturm*{<polname>}{<sturmname>}``
+
+ Does the same as `un-starred version <PolToSturm_>`_ and additionally it
+ keeps for user usage the memory of the *un-normalized* (but still
+ made primitive) Sturm chain
+ polynomials ``sturmname_k_``, ``k=0,1, ..., N``, with
+ ``N`` being :ref:`\\PolSturmChainLength{\<sturmname\>} <PolSturmChainLength>`.
+
+ .. comment
+
+ The square-free part of ``<polname>`` is ``sturmname_0``, and their
+ quotient is the polynomial with name
+ ``sturmname_\PolSturmChainLength{<sturmname>}_``. It thus easy to
+ set-up a loop iteratively computing the latter until the last one
+ is a constant, thus obtaining the decomposition of an ``f`` as
+ a product ``c f_1 f_2 f_3 ...`` of a constant and square-free (primitive)
+ polynomials, where each ``f_i`` divides its predecessor.
+
+.. _PolSturmIsolateZeros:
+
+``\PolSturmIsolateZeros{}``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Syntax: ``\PolSturmIsolateZeros{<sturmname>}``
+
+ The macro locates, using the `Sturm Theorem`_, as many disjoint
+ intervals as there are distinct real roots.
+
+ .. important::
+
+ The Sturm chain must have been produced by an earlier
+ :ref:`\\PolToSturm{\<polname\>}{\<sturmname\>} <PolToSturm>`.
+
+ After its execution they are two types of such intervals (stored in
+ memory and accessible via macros or xintexpr_ variables, see below):
+
+ - singleton ``{a}``: then ``a`` is a root, (necessarily a decimal
+ number, but not all such decimal numbers are exactly identified yet).
+
+ - open intervals ``(a,b)``: then there is exactly one root ``z``
+ such that ``a < z < b``, and the end points are guaranteed to not
+ be roots.
+
+ The interval boundaries are decimal numbers, originating
+ in iterated decimal subdivision from initial intervals
+ ``(-10^E, 0)`` and ``(0, 10^E)`` with ``E`` chosen initially large
+ enough so that all roots are enclosed; if zero is a root it is always
+ identified as such. The non-singleton intervals are of the
+ type ``(a/10^f, (a+1)/10^f)`` with ``a`` an integer, which is
+ neither ``0`` nor ``-1``. Hence either ``a`` and ``a+1`` are both positive
+ or they are both negative.
+
+ One does not *a priori* know what will be the lengths of these
+ intervals (except that they are always powers of ten), they
+ vary depending on how many digits two successive roots have in
+ common in their respective decimal expansions.
+
+ .. important::
+
+ If some two consecutive intervals share an end-point, no
+ information is yet gained about the separation between the two
+ roots which could at this stage be arbitrarily small.
+
+ See :ref:`\\PolRefineInterval*{\<sturmname\>}{\<index\>} <PolRefineInterval*>` which addresses
+ this issue.
+
+ .. This procedure is covariant
+ with the independent variable ``x`` becoming ``-x``.
+ Hmm, pas sûr et trop fatigué
+
+ Let us suppose ``<sturmname>`` is ``S``.
+
+ The interval boundaries (and exactly found roots) are made available
+ for future computations in ``\xintexpr/xinteval`` or ``\poldef`` as
+ variables ``SL_1``, ``SL_2``, etc..., for the left end-points and
+ ``SR_1``, ``SR_2``, ..., for the right end-points.
+
+ Additionally, xintexpr_ variable ``SZ_1_isknown`` will have value
+ ``1`` if the root in the first interval is known, and ``0``
+ otherwise. And similarly for the other intervals.
+
+ .. important::
+
+ The variable declarations are done with no check of existence of
+ previously existing variables with identical names.
+
+ Also, macros :ref:`\\PolSturmIsolatedZeroLeft{\<sturmname\>}{\<index\>} <PolSturmIsolatedZeroLeft>` and
+ :ref:`\\PolSturmIsolatedZeroRight{\<sturmname\>}{\<index\>} <PolSturmIsolatedZeroRight>` are provided which
+ expand to these same values, written in decimal notation (i.e.
+ pre-processed by `\\PolDecToString <PolDecToString_>`_.) And there
+ is also :ref:`\\PolSturmIfZeroExactlyKnown{\<sturmname\>}{\<index\>}{T}{F} <PolSturmIfZeroExactlyKnown>`.
+
+ .. important::
+
+ Trailing zeroes in the stored decimal numbers accessible via the
+ macros are significant: they are also present in the decimal
+ expansion of the exact root, so as to be able for example to
+ print out bounds of real roots with as many digits as is
+ significant, even if the digits are zeros.
+
+ The start of the decimal expansion of the ``<index>``-th root is given by
+ `\\PolSturmIsolatedZeroLeft{<sturmname>}{<index>}
+ <PolSturmIsolatedZeroLeft_>`_ if the root is positive, and by
+ `\PolSturmIsolatedZeroRight{<sturmname>}{<index>}
+ <PolSturmIsolatedZeroRight_>`_ if the root is neagtive. These two
+ decimal numbers are either both zero or both of the same sign.
+
+ The number of distinct roots is obtainable expandably as
+ :ref:`\\PolSturmNbOfIsolatedZeros{\<sturmname\>} <PolSturmNbOfIsolatedZeros>`.
+
+ Furthermore
+ :ref:`\\PolSturmNbOfRootsOf{\<sturmname\>}\\LessThanOrEqualTo{\<value\>} <PolSturmNbOfRootsOfLessThanOrEqualTo>` and
+ :ref:`\\PolSturmNbOfRootsOf{\<sturmname\>}\\LessThanOrEqualToExpr{\<num. expr.\>} <PolSturmNbOfRootsOfLessThanOrEqualToExpr>`.
+ will expandably compute respectively the number of real roots at
+ most equal to ``value`` or ``expression``, and the same but with
+ multiplicities.
+
+ These variables and macros are automatically updated in case of
+ subsequent usage of :ref:`\\PolRefineInterval*{\<sturmname\>}{\<index\>} <PolRefineInterval*>` or
+ other localization improving macros.
+
+ .. note::
+
+ The current polexpr implementation defines the xintexpr_ variables
+ and xinttools_ arrays as described above with global scope. On the
+ other hand the Sturm sequence polynomials obey the current scope.
+
+ This is perhaps a bit inconsistent and may change in future.
+
+ .. note::
+
+ The results are exact
+ bounds for the mathematically exact real roots.
+
+ Future releases will perhaps also provide macros based on Newton
+ or Regula Falsi methods. Exact computations with such methods
+ lead however quickly to very big fractions, and this forces usage
+ of some rounding scheme for the abscissas if computation times
+ are to remain reasonable. This raises issues of its own, which
+ are studied in numerical mathematics.
+
+.. _PolSturmIsolateZeros*:
+
+``\PolSturmIsolateZeros*{}``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Syntax: ``\PolSturmIsolateZeros*{<sturmname>}``
+
+ The macro does the same as :ref:`\\PolSturmIsolateZeros{\<sturmname\>} <PolSturmIsolateZeros>` and
+ then in addition it does the extra work to determine all
+ multiplicities of the real roots.
+
+ After execution,
+ :ref:`\\PolSturmIsolatedZeroMultiplicity{\<sturmname\>}{\<index\>} <PolSturmIsolatedZeroMultiplicity>` expands
+ to the multiplicity of the root located in the ``index``\ -th
+ interval (intervals are enumerated from left to right, with index
+ starting at ``1``).
+
+ Furthermore, if for example the ``<sturmname>`` is ``S``, xintexpr_
+ variables ``SM_1``, ``SM_2``... hold the multiplicities thus
+ computed.
+
+ .. note::
+
+ Somewhat counter-intuitively, it is not necessary to have
+ executed the :ref:`\\PolToSturm* <PolToSturm*>`
+ starred variant: during its
+ execution, :ref:`\\PolToSturm <PolToSturm>`,
+ even though it does not declare the
+ non-square-free Sturm chain polynomials as user-level genuine
+ polynomials, stores their data in private macros.
+
+ See ``The degree nine polynomial with 0.99, 0.999, 0.9999 as triple
+ roots`` example in ``polexpr-examples.pdf``.
+
+.. _PolSturmIsolateZerosAndGetMultiplicities:
+
+``\PolSturmIsolateZerosAndGetMultiplicities{}``
+***********************************************
+
+Syntax: ``\PolSturmIsolateZerosAndGetMultiplicities{<sturmname>}``
+
+ This is another name for :ref:`\\PolSturmIsolateZeros*{\<sturmname\>} <PolSturmIsolateZeros*>`.
+
+.. _PolSturmIsolateZeros**:
+
+``\PolSturmIsolateZeros**{}``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Syntax: ``\PolSturmIsolateZeros**{<sturmname>}``
+
+ The macro does the same as :ref:`\\PolSturmIsolateZeros*{\<sturmname\>} <PolSturmIsolateZeros*>` and
+ in addition it does the extra work to determine all the *rational*
+ roots.
+
+ .. note::
+
+ After execution of this macro, a root is "known" if and only if
+ it is rational.
+
+ Furthermore, primitive polynomial ``sturmname_sqf_norr`` is created
+ to match the (square-free) ``sturmname_0`` from which all rational
+ roots have been removed. The number of distinct rational roots is
+ thus the difference between the degrees of these two polynomials
+ (see also :ref:`\\PolSturmNbOfRationalRoots{\<sturmname\>}
+ <PolSturmNbOfRationalRoots>`).
+
+ And ``sturmname_norr`` is ``sturmname_0_`` from which all rational
+ roots have been removed, i.e. it contains the irrational roots of
+ the original polynomial, with the same multiplicities.
+
+ See ``A degree five polynomial with three rational
+ roots`` in ``polexpr-examples.pdf``.
+
+.. _PolSturmIsolateZerosGetMultiplicitiesAndRationalRoots:
+
+``\PolSturmIsolateZerosGetMultiplicitiesAndRationalRoots``
+**********************************************************
+
+Syntax: ``\PolSturmIsolateZerosGetMultiplicitiesAndRationalRoots``
+
+ This is another name for :ref:`\\PolSturmIsolateZeros**{\<sturmname\>} <PolSturmIsolateZeros**>`.
+
+.. _PolSturmIsolateZerosAndFindRationalRoots:
+
+``\PolSturmIsolateZerosAndFindRationalRoots{}``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Syntax: ``\PolSturmIsolateZerosAndFindRationalRoots{<sturmname>}``
+
+ This works exactly like :ref:`\\PolSturmIsolateZeros**{\<sturmname\>} <PolSturmIsolateZeros**>`
+ (inclusive of declaring the polynomials ``sturmname_sqf_norr`` and
+ ``sturmname_norr`` with no rational roots) except that it does *not*
+ compute the multiplicities of the *non-rational* roots.
+
+ .. note::
+
+ There is no macro to find the rational roots but not compute
+ their multiplicities at the same time.
+
+ .. attention::
+
+ This macro does *not* define xintexpr_ variables
+ ``sturmnameM_1``, ``sturmnameM_2``, ... holding the
+ multiplicities and it leaves the multiplicity array (whose accessor
+ is :ref:`\\PolSturmIsolatedZeroMultiplicity{\<sturmname\>}{\<index\>} <PolSturmIsolatedZeroMultiplicity>`) into
+ a broken state, as all non-rational roots will supposedly have
+ multiplicity one. This means that the output of
+ `\\PolPrintIntervals* <PolPrintIntervals*_>`_ will be
+ erroneous regarding the multiplicities of irrational roots.
+
+ I decided to document it because finding multiplicities of the
+ non rational roots is somewhat costly, and one may be interested
+ only into finding the rational roots (of course random
+ polynomials with integer coefficients will not have *any*
+ rational root anyhow).
+
+
+.. _PolRefineInterval*:
+
+``\PolRefineInterval*{}{}``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Syntax: ``\PolRefineInterval*{<sturmname>}{<index>}``
+
+ The ``index``\ -th interval (starting indexing at one) is further
+ subdivided as many times as is necessary in order for the newer
+ interval to have both its end-points distinct from the end-points of
+ the original interval. As a consequence, the ``k``\ th root is then
+ strictly separated from the other roots.
+
+.. _PolRefineInterval[]:
+
+``\PolRefineInterval[]{}{}``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Syntax: ``\PolRefineInterval[N]{<sturmname>}{<index>}``
+
+ The ``index``\ -th interval (starting count at one) is further
+ subdivided once, reducing its length by a factor of 10. This is done
+ ``N`` times if the optional argument ``[N]`` is present.
+
+.. _PolEnsureIntervalLength:
+
+``\PolEnsureIntervalLength{}{}{}``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Syntax: ``\PolEnsureIntervalLength{<sturmname>}{<index>}{<exponent>}``
+
+ The ``index``\ -th interval is subdivided until its length becomes at
+ most ``10^E``. This means (for ``E<0``) that the first ``-E`` digits
+ after decimal mark of the ``k``\ th root will then be known exactly.
+
+.. _PolEnsureIntervalLengths:
+
+``\PolEnsureIntervalLengths{}{}``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Syntax: ``\PolEnsureIntervalLengths{<sturmname>}{<exponent>}``
+
+ The intervals as obtained from ``\PolSturmIsolateZeros`` are (if
+ necessary) subdivided further by (base 10) dichotomy in order for
+ each of them to have length at most ``10^E``.
+
+ This means that decimal expansions of all roots will be known with
+ ``-E`` digits (for ``E<0``) after decimal mark.
+
+.. _PolSetToSturmChainSignChangesAt:
+
+``\PolSetToSturmChainSignChangesAt{}{}{}``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Syntax: ``\PolSetToSturmChainSignChangesAt{\foo}{<sturmname>}{<value>}``
+
+ Sets macro ``\foo`` to store the number of sign changes in the
+ already computed normalized Sturm chain with name prefix
+ ``<sturmname>``, at location ``<value>`` (which must be in format as
+ acceptable by the xintfrac_ macros.)
+
+ The definition is made with global scope. For local scope, use
+ ``[\empty]`` as extra optional argument.
+
+ One can use this immediately after creation of the Sturm chain.
+
+.. _PolSetToNbOfZerosWithin:
+
+``\PolSetToNbOfZerosWithin{}{}{}{}``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Syntax: ``\PolSetToNbOfZerosWithin{\foo}{<sturmname>}{<value_left>}{<value_right>}``
+
+ Sets, assuming the normalized Sturm chain has been already computed,
+ macro ``\foo`` to store the number of roots of ``sturmname_0`` in
+ the interval ``(value_left, value_right]``. The macro first
+ re-orders end-points if necessary for ``value_left <= value_right``
+ to hold.
+
+ In accordance to `Sturm Theorem`_ this is computed as the difference
+ between the number of sign changes of the Sturm chain at ``value_right``
+ and the one at ``value_left``.
+
+ The definition is made with global scope. For local scope, use
+ ``[\empty]`` as extra optional argument.
+
+ One can use this immediately after creation of a Sturm chain.
+
+ See also the expandable
+ :ref:`\\PolSturmNbOfRootsOf{\<sturmname\>}\\LessThanOrEqualTo{value} <PolSturmNbOfRootsOfLessThanOrEqualTo>`,
+ which however requires prior execution of `\\PolSturmIsolateZeros
+ <PolSturmIsolateZeros_>`_.
+
+ See also the expandable
+ :ref:`\\PolSturmNbWithMultOfRootsOf{\<sturmname\>}\\LessThanOrEqualTo{value} <PolSturmNbWithMultOfRootsOfLessThanOrEqualTo>`
+ which requires prior execution of
+ `\\PolSturmIsolateZeros* <PolSturmIsolateZeros*_>`_.
+
+.. _PolPrintIntervals:
+
+Displaying the found roots: ``\PolPrintIntervals[<varname>]{}``
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Syntax: ``\PolPrintIntervals[<varname>]{<sturmname>}``
+
+ This is a convenience macro which prints the bounds for the roots
+ ``Z_1``, ``Z_2``, ... (the optional argument ``varname`` allows to
+ specify a replacement for the default ``Z``). This will be done (by
+ default) in a
+ math mode ``array``, one interval per row, and pattern ``rcccl``,
+ where the second and fourth column hold the ``<`` sign, except when
+ the interval reduces to a singleton, which means the root is known
+ exactly.
+
+ .. note::
+
+ The explanations here and in this section are for LaTeX. With
+ other TeX macro formats, the LaTeX syntax such as for example
+ ``\begin{array}{rcccl}`` which appears in the documentation here
+ is actually replaced with quasi-equivalent direct use of TeX
+ primitives.
+
+ The next macros which govern its output.
+
+.. _PolPrintIntervalsNoRealRoots:
+
+``\PolPrintIntervalsNoRealRoots``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+ Executed in place of an ``array`` environment, when there are no
+ real roots. Default definition::
+
+ \newcommand\PolPrintIntervalsNoRealRoots{}
+
+.. _PolPrintIntervalsBeginEnv:
+
+``\PolPrintIntervalsBeginEnv``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+ Default definition (given here for LaTeX, Plain has a variant)::
+
+ \newcommand\PolPrintIntervalsBeginEnv{\[\begin{array}{rcccl}}
+
+ A simpler ``center`` environment provides a straightforward way to
+ obtain a display allowing pagebreaks. Of course redefinitions must
+ at any rate be kept in sync with `\\PolPrintIntervalsKnownRoot`_ and
+ `\\PolPrintIntervalsUnknownRoot`_.
+
+ Prior to ``0.8.6`` it was not possible to use here for example
+ ``\begin{align}`` due to the latter executing twice in contents.
+
+
+.. _PolPrintIntervalsEndEnv:
+
+``\PolPrintIntervalsEndEnv``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+ Default definition::
+
+ \newcommand\PolPrintIntervalsEndEnv{\end{array}\]}
+
+.. _PolPrintIntervalsRowSeparator:
+
+``\PolPrintIntervalsRowSeparator``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+ Expands by default to ``\\`` with LaTeX and to ``\cr`` with Plain
+
+ Added at ``0.8.6``.
+
+.. _PolPrintIntervalsKnownRoot:
+
+``\PolPrintIntervalsKnownRoot``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+ Default definition::
+
+ \newcommand\PolPrintIntervalsKnownRoot{%
+ &&\PolPrintIntervalsTheVar_{\PolPrintIntervalsTheIndex}%
+ &=&\PolPrintIntervalsPrintExactZero
+ }
+
+.. _PolPrintIntervalsUnknownRoot:
+
+``\PolPrintIntervalsUnknownRoot``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+ Default definition::
+
+ \newcommand\PolPrintIntervalsUnknownRoot{%
+ \PolPrintIntervalsPrintLeftEndPoint&<&%
+ \PolPrintIntervalsTheVar_{\PolPrintIntervalsTheIndex}&<&%
+ \PolPrintIntervalsPrintRightEndPoint
+ }
+
+
+.. _PolPrintIntervalsPrintExactZero:
+
+``\PolPrintIntervalsPrintExactZero``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+ Default definition::
+
+ \newcommand\PolPrintIntervalsPrintExactZero{\PolPrintIntervalsTheLeftEndPoint}
+
+
+.. _PolPrintIntervalsPrintLeftEndPoint:
+
+``\PolPrintIntervalsPrintLeftEndPoint``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+ Default definition::
+
+ \newcommand\PolPrintIntervalsPrintLeftEndPoint{\PolPrintIntervalsTheLeftEndPoint}
+
+.. _PolPrintIntervalsPrintRightEndPoint:
+
+``\PolPrintIntervalsPrintRightEndPoint``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+ Default definition is::
+
+ \newcommand\PolPrintIntervalsPrintRightEndPoint{\PolPrintIntervalsTheRightEndPoint}
+
+.. _PolPrintIntervals*:
+
+``\PolPrintIntervals*[<varname>]{}``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Syntax: ``\PolPrintIntervals*[<varname>]{<sturmname>}``
+
+ This starred variant produces an alternative output (which
+ displays the root multiplicity), and is provided as an
+ example of customization.
+
+ As replacement for `\\PolPrintIntervalsKnownRoot`_,
+ `\\PolPrintIntervalsPrintExactZero`_,
+ `\\PolPrintIntervalsUnknownRoot`_ it uses its own
+ ``\POL@@PrintIntervals...`` macros. We only reproduce here one
+ definition::
+
+ \newcommand\POL@@PrintIntervalsPrintExactZero{%
+ \displaystyle
+ \xintTeXsignedFrac{\PolPrintIntervalsTheLeftEndPoint}%
+ }%
+
+ Multiplicities are printed using this auxiliary macro:
+
+.. _PolPrintIntervalsPrintMultiplicity:
+
+``\PolPrintIntervalsPrintMultiplicity``
+***************************************
+
+ whose default definition is::
+
+ \newcommand\PolPrintIntervalsPrintMultiplicity{(\mbox{mult. }\PolPrintIntervalsTheMultiplicity)}
+
+
+Expandable macros
+-----------------
+
+.. note::
+
+ At ``0.8`` ``polexpr`` is usable with Plain TeX and not only with
+ LaTeX. Some examples given in this section may be using LaTeX syntax
+ such as ``\renewcommand``. Convert to TeX primitives as appropriate
+ if testing with a non LaTeX macro format.
+
+These macros expand completely in two steps except ``\PolToExpr`` and
+``\PolToFloatExpr`` which need a ``\write``, ``\edef`` or a
+``\csname...\endcsname`` context.
+
+.. _PolToExpr:
+
+``\PolToExpr{}``
+~~~~~~~~~~~~~~~~
+
+Syntax: ``\PolToExpr{<pol. expr.>}``
+
+ Produces expandably [#]_ the string ``coeff_N*x^N+...``, i.e. the
+ polynomial is using descending powers.
+
+ .. [#] requires exhaustive expansion, for example as triggered by
+ ``\write`` or ``\edef``.
+
+ Since ``0.8`` the input is not restricted to be a polynomial name but
+ is allowed to be an arbitrary expression. Then ``x`` is expected as
+ indeterminate but this can be customized via `\\PolToExprInVar`_.
+
+ The output uses the letter ``x`` by default, this is customizable
+ via `\\PolToExprVar`_. The default output is compatible both with
+
+ - the Maple's input format,
+
+ - and the PSTricks ``\psplot[algebraic]`` input format.
+
+ Attention that it is not compatible with Python, see further
+ `\\PolToExprCaret`_ in this context.
+
+ The following applies:
+
+ - vanishing coefficients are skipped (issue ``\poltoexpralltrue`` to
+ override this and produce output such as ``x^3+0*x^2+0*x^1+0``),
+
+ - negative coefficients are not prefixed by a ``+`` sign (else,
+ Maple would not be happy),
+
+ - coefficients numerically equal to ``1`` (or ``-1``) are present
+ only via their sign,
+
+ - the letter ``x`` is used and the degree one monomial is output as
+ ``x``, not as ``x^1``.
+
+ - (``0.8``) the caret ``^`` is of catcode 12. This means that one
+ can for convenience typeset in regular text mode, for example
+ using ``\texttt`` (in LaTeX). But TeX will not know how to break
+ the expression across end-of-lines anyhow. Formerly ``^`` was
+ suitable for math mode but as the exponent is not braced this
+ worked only for polynomials of degrees at most 9. Anyhow this
+ is not supposed to be a typesetting macro.
+
+ Complete customization is possible, see the next macros. Any user
+ redefinition must maintain the expandability property.
+
+.. _PolToExprVar:
+
+``\PolToExprVar``
+^^^^^^^^^^^^^^^^^
+
+ Defaults to ``x``. The letter used in the macro output.
+
+
+.. _PolToExprInVar:
+
+``\PolToExprInVar``
+^^^^^^^^^^^^^^^^^^^
+
+ Defaults to ``x``: the letter used as the polynomial indeterminate
+ in the macro input.
+
+ Recall that declared polynomials are more efficiently used in
+ algebraic expressions without the ``(x)``, i.e. ``P*Q`` is better
+ than ``P(x)*Q(x)``. Thus the input, even if an expression, does not
+ have to contain any ``x``.
+
+ (new with ``0.8``)
+
+.. _PolToExprTimes:
+
+``\PolToExprTimes``
+^^^^^^^^^^^^^^^^^^^
+
+ Defaults to ``*``.
+
+.. _PolToExprCaret:
+
+``\PolToExprCaret``
+^^^^^^^^^^^^^^^^^^^
+
+ Defaults to ``^`` of catcode 12. Set it to
+ expand to ``**`` for Python compatible output.
+
+ (new with ``0.8``)
+
+.. _PolToExprCmd:
+
+``\PolToExprCmd{}``
+^^^^^^^^^^^^^^^^^^^
+
+Syntax: ``\PolToExprCmd{<raw_coeff>}``
+
+ Defaults to ``\xintPRaw{\xintRawWithZeros{#1}}``.
+
+ This means that the coefficient value is printed-out as a fraction
+ ``a/b``, skipping the ``/b`` part if ``b`` turns out to be one.
+
+ Configure it to be ``\xintPRaw{\xintIrr{#1}}`` if the fractions
+ must be in irreducible terms.
+
+ An alternative is ``\xintDecToString{\xintREZ{#1}}`` which uses
+ integer or decimal fixed point format such as ``23.0071`` if the
+ internal representation of the number only has a power of ten as
+ denominator (the effect of ``\xintREZ`` here is to remove trailing
+ decimal zeros). The behaviour of ``\xintDecToString`` is not yet
+ stable for other cases, and for example at time of writing no
+ attempt is made to identify inputs having a finite decimal expansion
+ so for example ``23.007/2`` or ``23.007/25`` can appear in output
+ and not their finite decimal expansion with no denominator.
+
+.. _PolToExprOneTerm:
+
+``\PolToExprOneTerm{}{}``
+^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Syntax: ``\PolToExprOneTerm{<raw_coeff>}{<exponent>}``
+
+ This is the macro which from the coefficient and the exponent
+ produces the corresponding term in output, such as ``2/3*x^7``.
+
+ For its default definition, see the source code. It uses
+ `\\PolToExprCmd <PolToExprCmd_>`_, `\\PolToExprTimes
+ <PolToExprTimes_>`_, `\\PolToExprVar <PolToExprVar_>`_ and
+ `\\PolToExprCaret`_.
+
+.. _PolToExprOneTermStyleA:
+
+``\PolToExprOneTermStyleA{}{}``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Syntax: ``\PolToExprOneTermStyleA{<raw_coeff>}{<exponent>}``
+
+ This holds the default package meaning of ``\PolToExprOneTerm``.
+
+.. _PolToExprOneTermStyleB:
+
+``\PolToExprOneTermStyleB{}{}``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Syntax: ``\PolToExprOneTermStyleB{<raw_coeff>}{<exponent>}``
+
+ This holds an alternative meaning, which puts the fractional part of
+ a coefficient after the monomial, i.e. like this::
+
+ 2*x^11/3+3*x^8/7-x^5-x^4/4-x^3-x^2/2-2*x+1
+
+ `\\PolToExprCmd <PolToExprCmd_>`_ isn't used at all in this style. But
+ `\\PolToExprTimes <PolToExprTimes_>`_, `\\PolToExprVar
+ <PolToExprVar_>`_ and `\\PolToExprCaret`_ are obeyed.
+
+ To activate it use ``\let\PolToExprOneTerm\PolToExprOneTermStyleB``.
+ To revert to the package default behaviour, issue
+ ``\let\PolToExprOneTerm\PolToExprOneTermStyleA``.
+
+.. _PolToExprTermPrefix:
+
+``\PolToExprTermPrefix{}``
+^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Syntax: ``\PolToExprTermPrefix{<raw_coeff>}``
+
+ It receives as argument the coefficient. Its default behaviour is
+ to produce a ``+`` if the coefficient is positive, which will thus
+ serve to separate the monomials in the output. This is to match
+ the default for :ref:`\\PolToExprCmd{\<raw_coeff\>} <PolToExprCmd>` which in case of a
+ positive coefficient does not output an explicit ``+`` prefix.
+
+.. _PolToFloatExpr:
+
+``\PolToFloatExpr{}``
+~~~~~~~~~~~~~~~~~~~~~
+
+Syntax: ``\PolToFloatExpr{<pol. expr.>}``
+
+ Similar to :ref:`\\PolToExpr{\<pol. expr.\>} <PolToExpr>` but using
+ :ref:`\\PolToFloatExprCmd{\<raw_coeff\>} <PolToFloatExprCmd>` which by default rounds and
+ converts the coefficients to floating point format.
+
+ .. note::
+
+ This is unrelated to :ref:`\\PolGenFloatVariant{\<polname\>} <PolGenFloatVariant>`:
+ :ref:`\\PolToFloatExprCmd{\<raw_coeff\>} <PolToFloatExprCmd>` operates on the *exact*
+ coefficients anew (and may thus produce something else than
+ the coefficients of the polynomial function acting
+ in ``\xintfloateval`` if the floating point precision was changed
+ in between).
+
+ Extended at ``0.8`` to accept general expressions as input.
+
+.. _PolToFloatExprOneTerm:
+
+``\PolToFloatExprOneTerm{}{}``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Syntax: ``\PolToFloatExprOneTerm{<raw_coeff>}{<exponent>}``
+
+ Similar to :ref:`\\PolToExprOneTerm{\<raw_coeff\>}{\<exponent\>} <PolToExprOneTerm>`. But does not treat
+ especially coefficients equal to plus or minus one.
+
+.. _PolToFloatExprCmd:
+
+``\PolToFloatExprCmd{}``
+^^^^^^^^^^^^^^^^^^^^^^^^
+
+Syntax: ``\PolToFloatExprCmd{<raw_coeff>}``
+
+ The one-argument macro used by ``\PolToFloatExprOneTerm``.
+ It defaults to ``\xintPFloat{#1}``, which trims trailing
+ zeroes.
+
+ *changed at 0.8.2* Formerly it was using ``\xintFloat``.
+
+.. _PolToExpr*:
+
+``\PolToExpr*{}``
+~~~~~~~~~~~~~~~~~
+
+Syntax: ``\PolToExpr*{<pol. expr.>}``
+
+ Ascending powers: ``coeff_0+coeff_1*x+coeff_2*x^2+...``.
+
+ Extended at ``0.8`` to accept general expressions as input.
+
+ Customizable with the same macros as for
+ :ref:`\\PolToExpr{\<pol. expr.\>} <PolToExpr>`.
+
+.. _PolToFloatExpr*:
+
+``\PolToFloatExpr*{}``
+~~~~~~~~~~~~~~~~~~~~~~
+
+Syntax: ``\PolToFloatExpr*{<pol. expr.>}``
+
+ Ascending powers.
+
+ Extended at ``0.8`` to accept general expressions as input.
+
+.. _PolNthCoeff:
+
+``\PolNthCoeff{}{}``
+~~~~~~~~~~~~~~~~~~~~
+
+Syntax: ``\PolNthCoeff{<polname>}{<index>}``
+
+ It expands to the raw ``N``-th coefficient (``N=0`` corresponds to
+ the constant coefficient). If ``N`` is out of range, zero (in its
+ default xintfrac_ format ``0/1[0]``) is returned.
+
+ Negative indices ``N=-1``, ``-2``, ... return the leading
+ coefficient, sub-leading coefficient, ..., and finally ``0/1[0]``
+ for ``N<-1-degree``.
+
+.. _PolLeadingCoeff:
+
+``\PolLeadingCoeff{}``
+~~~~~~~~~~~~~~~~~~~~~~
+
+Syntax: ``\PolLeadingCoeff{<polname>}``
+
+ Expands to the leading coefficient.
+
+.. _PolDegree:
+
+``\PolDegree{}``
+~~~~~~~~~~~~~~~~
+
+Syntax: ``\PolDegree{<polname>}``
+
+ It expands to the degree. This is ``-1`` if zero polynomial but this
+ may change in future. Should it then expand to ``-\infty`` ?
+
+.. _PolIContent:
+
+``\PolIContent{}``
+~~~~~~~~~~~~~~~~~~
+
+Syntax: ``\PolIContent{<polname>}``
+
+ It expands to the contents of the polynomial, i.e. to the positive
+ fraction such that dividing by this fraction produces a polynomial
+ with integer coefficients having no common prime divisor.
+
+ See `\\PolMakePrimitive <PolMakePrimitive_>`_.
+
+.. _PolToList:
+
+``\PolToList{}``
+~~~~~~~~~~~~~~~~
+
+Syntax: ``\PolToList{<polname>}``
+
+ Expands to ``{coeff_0}{coeff_1}...{coeff_N}`` with ``N`` = degree, and
+ ``coeff_N`` the leading coefficient
+ (the zero polynomial does give ``{0/1[0]}`` and not an
+ empty output.)
+
+.. _PolToCSV:
+
+``\PolToCSV{}``
+~~~~~~~~~~~~~~~
+
+Syntax: ``\PolToCSV{<polname>}``
+
+ Expands to ``coeff_0, coeff_1, coeff_2, ....., coeff_N``, starting
+ with constant term and ending with leading coefficient. Converse
+ to :ref:`\\PolFromCSV{\<polname\>}{\<csv\>} <PolFromCSV>`.
+
+
+.. _PolEvalAtExpr:
+
+``\PolEval{}\AtExpr{}``
+~~~~~~~~~~~~~~~~~~~~~~~
+
+Syntax: ``\PolEval{<polname>}\AtExpr{<num. expr.>}``
+
+ Same output as
+ ``\xinteval{polname(numerical expression)}``.
+
+.. _PolEvalAt:
+
+``\PolEval{}\At{}``
+~~~~~~~~~~~~~~~~~~~
+
+Syntax: ``\PolEval{<polname>}\At{<value>}``
+
+ Evaluates the polynomial at the given value which must be in (or
+ expand to) a format acceptable to the xintfrac_ macros.
+
+.. _PolEvalReducedAtExpr:
+
+``\PolEvalReduced{}\AtExpr{}``
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Syntax: ``\PolEvalReduced{<polname>}\AtExpr{<num. expr.>}``
+
+ Same output as ``\xinteval{reduce(polname(numerical expression))}``.
+
+.. _PolEvalReducedAt:
+
+``\PolEvalReduced{}\At{}``
+~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Syntax: ``\PolEvalReduced{<polname>}\At{<value>}``
+
+ Evaluates the polynomial at the value which must be in (or expand
+ to) a format acceptable to the xintfrac_ macros, and outputs an
+ irreducible fraction.
+
+.. _PolFloatEvalAtExpr:
+
+``\PolFloatEval{}\AtExpr{}``
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Syntax: ``\PolFloatEval{<polname>}\AtExpr{<num. expr.>}``
+
+ Same output as ``\xintfloateval{polname(numerical expression)}``.
+
+ .. attention::
+
+ `\\PolGenFloatVariant <PolGenFloatVariant_>`_ must have
+ been issued before.
+
+ To use the *exact coefficients* with *exactly executed* additions
+ and multiplications and do the rounding only as the final last step,
+ the following syntax can be used: [#]_
+
+ ::
+
+ \xintfloateval{3.27*\xintexpr f(2.53)\relax^2}
+
+
+ .. [#] Cf. xintexpr_ documentation about nested expressions.
+
+.. _PolFloatEvalAt:
+
+``\PolFloatEval{}\At{}``
+~~~~~~~~~~~~~~~~~~~~~~~~
+
+Syntax: ``\PolFloatEval{<polname>}\At{<value>}``
+
+ Evaluates the polynomial at the value which must be in (or expand
+ to) a format acceptable to the xintfrac_ macros.
+
+
+Expandable macros in relation to root localization via `Sturm Theorem`_
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+.. _PolSturmChainLength:
+
+``\PolSturmChainLength{}``
+^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Syntax: ``\PolSturmChainLength{<sturmname>}``
+
+ Returns the integer ``N`` such that ``sturmname_N`` is the last one
+ in the Sturm chain ``sturmname_0``, ``sturmname_1``, ...
+
+ See :ref:`\\PolToSturm{\<polname\>}{\<sturmname\>} <PolToSturm>`.
+
+.. _PolSturmIfZeroExactlyKnown:
+
+``\PolSturmIfZeroExactlyKnown{}{}{}{}``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Syntax: ``\PolSturmIfZeroExactlyKnown{<sturmname>}{<index>}{T}{F}``
+
+ Executes ``T`` if the ``index``\ -th interval reduces to a singleton,
+ i.e. the root is known exactly, else ``F``.
+
+ .. vieux commentaire
+
+ ``index`` is allowed to be something like ``1+2*3`` as it is fed
+ to ``\the\numexpr...\relax``.
+
+.. _PolSturmIsolatedZeroLeft:
+
+``\PolSturmIsolatedZeroLeft{}{}``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Syntax: ``\PolSturmIsolatedZeroLeft{<sturmname>}{<index>}``
+
+ Expands to the left end-point for the ``index``\ -th interval, as
+ computed by some earlier :ref:`\\PolSturmIsolateZeros{\<sturmname\>} <PolSturmIsolateZeros>`.
+
+ .. note::
+
+ Execution of this macro after some
+ `\\PolRefineInterval{<sturmname>}{<index>} <PolRefineInterval[]_>`_
+ will take into account the now known tighter bounds.
+
+ The value is pre-formatted using `\\PolDecTostring
+ <PolDecToString_>`_.
+
+.. _PolSturmIsolatedZeroRight:
+
+``\PolSturmIsolatedZeroRight{}{}``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Syntax: ``\PolSturmIsolatedZeroRight{<sturmname>}{<index>}``
+
+ Expands to the right end-point for the ``index``\ -th interval as
+ computed by some earlier :ref:`\\PolSturmIsolateZeros{\<sturmname\>} <PolSturmIsolateZeros>` and
+ possibly refined afterwards.
+
+ The value is pre-formatted using `\\PolDecTostring
+ <PolDecToString_>`_.
+
+.. _PolSturmIsolatedZeroMultiplicity:
+
+``\PolSturmIsolatedZeroMultiplicity{}{}``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Syntax: ``\PolSturmIsolatedZeroMultiplicity{<sturmname>}{<index>}``
+
+ Expands to the multiplicity of the unique root contained in the
+ ``index``\ -th interval.
+
+ .. attention::
+
+ A prior execution of :ref:`\\PolSturmIsolateZeros*{\<sturmname\>} <PolSturmIsolateZeros*>` is mandatory.
+
+ See ``The degree nine polynomial with 0.99, 0.999, 0.9999 as triple
+ roots`` in ``polexpr-examples.pdf``.
+
+.. _PolSturmNbOfIsolatedZeros:
+
+``\PolSturmNbOfIsolatedZeros{}``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Syntax: ``\PolSturmNbOfIsolatedZeros{<sturmname>}``
+
+ Expands to the number of real roots of the polynomial
+ ``<sturmname>_0``, i.e. the number of distinct real roots of the
+ polynomial originally used to create the Sturm chain via
+ :ref:`\\PolToSturm{\<polname\>}{\<sturmname\>} <PolToSturm>`.
+
+.. warning::
+
+ The next few macros counting roots, with or without multiplicities,
+ less than or equal to some value, are under evaluation and may be
+ removed from the package if their utility is judged to be not high
+ enough. They can be re-coded at user level on the basis of the other
+ documented package macros anyway.
+
+.. _PolSturmNbOfRootsOfLessThanOrEqualTo:
+
+``\PolSturmNbOfRootsOf{}\LessThanOrEqualTo{}``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Syntax: ``\PolSturmNbOfRootsOf{<sturmname>}\LessThanOrEqualTo{<value>}``
+
+ Expands to the number of distinct roots (of the polynomial used to
+ create the Sturm chain) less than or equal to the ``value`` (i.e. a
+ number of fraction recognizable by the xintfrac_ macros).
+
+ .. attention::
+
+ :ref:`\\PolSturmIsolateZeros{\<sturmname\>} <PolSturmIsolateZeros>` must have been executed
+ beforehand.
+
+ And the argument is a ``<sturmname>``, not a ``<polname>`` (this is
+ why the macro contains Sturm in its name), simply to be reminded
+ of the above constraint.
+
+.. _PolSturmNbOfRootsOfLessThanOrEqualToExpr:
+
+``\PolSturmNbOfRootsOf{}\LessThanOrEqualToExpr{}``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Syntax: ``\PolSturmNbOfRootsOf{<sturmname>}\LessThanOrEqualToExpr{<num. expr.>}``
+
+ Expands to the number of distinct roots (of the polynomial
+ used to create the Sturm chain) which are less than or equal to the
+ given numerical expression.
+
+ .. attention::
+
+ :ref:`\\PolSturmIsolateZeros{\<sturmname\>} <PolSturmIsolateZeros>` must have been executed
+ beforehand.
+
+.. _PolSturmNbWithMultOfRootsOfLessThanOrEqualTo:
+
+``\PolSturmNbWithMultOfRootsOf{}\LessThanOrEqualTo{}``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Syntax: ``\PolSturmNbWithMultOfRootsOf{<sturmname>}\LessThanOrEqualTo{<value>}``
+
+ Expands to the number counted with multiplicities of the roots (of
+ the polynomial used to create the Sturm chain) which are less than
+ or equal to the given ``value``.
+
+ .. attention::
+
+ :ref:`\\PolSturmIsolateZeros*{\<sturmname\>} <PolSturmIsolateZeros*>` (or the double starred
+ variant) must have been executed beforehand.
+
+.. _PolSturmNbWithMultOfRootsOfLessThanOrEqualToExpr:
+
+``\PolSturmNbWithMultOfRootsOf{}\LessThanOrEqualToExpr{}``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Syntax: ``\PolSturmNbWithMultOfRootsOf{<sturmname>}\LessThanOrEqualToExpr{<num. expr.>}``
+
+ Expands to the total number of roots (counted with multiplicities)
+ which are less than or equal to the given ``expression``.
+
+ .. attention::
+
+ :ref:`\\PolSturmIsolateZeros*{\<sturmname\>} <PolSturmIsolateZeros*>` (or the double starred
+ variant) must have been executed beforehand.
+
+.. _PolSturmNbOfRationalRoots:
+
+``\PolSturmNbOfRationalRoots{}``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Syntax: ``\PolSturmNbOfRationalRoots{<sturmname>}``
+
+ Expands to the number of rational roots (without multiplicities).
+
+ .. attention::
+
+ :ref:`\\PolSturmIsolateZeros**{\<sturmname\>} <PolSturmIsolateZeros**>` must have been executed
+ beforehand.
+
+.. _PolSturmNbOfRationalRootsWithMultiplicities:
+
+``\PolSturmNbOfRationalRootsWithMultiplicities{}``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Syntax: ``\PolSturmNbOfRationalRootsWithMultiplicities{<sturmname>}``
+
+ Expands to the number of rational roots (counted with multiplicities).
+
+ .. attention::
+
+ :ref:`\\PolSturmIsolateZeros**{\<sturmname\>} <PolSturmIsolateZeros**>` must have been executed
+ beforehand.
+
+.. _PolSturmRationalRoot:
+
+``\PolSturmRationalRoot{}{}``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Syntax: ``\PolSturmRationalRoot{<sturmname>}{<k>}``
+
+ Expands to the k-th rational root. They are enumerated from left to
+ right starting at index value ``1``.
+
+ .. attention::
+
+ :ref:`\\PolSturmIsolateZeros**{\<sturmname\>} <PolSturmIsolateZeros**>` must have been executed
+ beforehand.
+
+.. _PolSturmRationalRootIndex:
+
+``\PolSturmRationalRootIndex{}{}``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Syntax: ``\PolSturmRationalRootIndex{<sturmname>}{<k>}``
+
+ Expands to the index of the ``k``\ th rational root as part of the
+ ordered real roots (counted without multiplicities). So
+ :ref:`\\PolSturmRationalRoot{\<sturmname\>}{\<k\>} <PolSturmRationalRoot>` is equivalent to
+ this nested call::
+
+ \PolSturmIsolatedZeroLeft{<sturmname>}{\PolSturmRationalRootIndex{<sturmname>}{<k>}}
+
+ .. attention::
+
+ :ref:`\\PolSturmIsolateZeros**{\<sturmname\>} <PolSturmIsolateZeros**>` must have been executed
+ beforehand.
+
+.. _PolSturmRationalRootMultiplicity:
+
+``\PolSturmRationalRootMultiplicity{}{}``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Syntax: ``\PolSturmRationalRootMultiplicity{<sturmname>}{<k>}``
+
+ Expands to the multiplicity of the ``k``\ th rational root.
+
+ .. attention::
+
+ :ref:`\\PolSturmIsolateZeros**{\<sturmname\>} <PolSturmIsolateZeros**>` must have been executed
+ beforehand.
+
+.. _PolIntervalWidth:
+
+``\PolIntervalWidth{}{}``
+^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Syntax: ``\PolIntervalWidth{<sturmname>}{<index>}``
+
+ The ``10^E`` width of the current ``index``\ -th root localization
+ interval. Output is in xintfrac_ raw ``1/1[E]`` format (if not zero).
+
+ .. renommer cela en \PolSturmIntervalWidth ?
+
+Expandable macros for use within execution of ``\PolPrintIntervals``
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+These macros are for usage within custom user redefinitions of
+`\\PolPrintIntervalsKnownRoot`_, `\\PolPrintIntervalsUnknownRoot`_, or
+in redefinitions of `\PolPrintIntervalsPrintExactZero`_ (used in the
+default for the former) and of `\\PolPrintIntervalsPrintLeftEndPoint`_,
+`\\PolPrintIntervalsPrintRightEndPoint`_ (used in the default for the
+latter).
+
+.. vieux commentaire
+
+ Some macros formerly mentioned here got removed at 0.7:
+ ``\PolPrintIntervalsTheEndPoint``,
+ ``\PolIfEndPointIsPositive{T}{F}``,
+ ``\PolIfEndPointIsNegative{T}{F}``,
+ ``\PolIfEndPointIsZero{T}{F}``.
+
+.. _PolPrintIntervalsTheVar:
+
+``\PolPrintIntervalsTheVar``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+ Expands to the name (default ``Z``) used for representing the roots,
+ which was passed as optional argument ``varname`` to
+ :ref:`\\PolPrintIntervals[varname]{\<sturmname\>} <PolPrintIntervals>`.
+
+.. _PolPrintIntervalsTheIndex:
+
+``\PolPrintIntervalsTheIndex``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+ Expands to the index of the considered interval (indexing starting
+ at 1 for the leftmost interval).
+
+.. _PolPrintIntervalsTheSturmName:
+
+``\PolPrintIntervalsTheSturmName``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+ Expands to the argument which was passed as ``<sturmname>`` to
+ :ref:`\\PolPrintIntervals[varname]{\<sturmname\>} <PolPrintIntervals>`.
+
+.. _PolPrintIntervalsTheLeftEndPoint:
+
+``\PolPrintIntervalsTheLeftEndPoint``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+ The left end point of the interval, as would be produced by
+ `\\PolSturmIsolatedZeroLeft <PolSturmIsolatedZeroLeft_>`_ if it was
+ used with arguments the Sturm chain name and interval index returned
+ by `\\PolPrintIntervalsTheSturmName`_ and
+ `\\PolPrintIntervalsTheIndex`_.
+
+.. _PolPrintIntervalsTheRightEndPoint:
+
+``\PolPrintIntervalsTheRightEndPoint``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+ The right end point of the interval, as would be produced by
+ `\\\PolSturmIsolatedZeroRight <PolSturmIsolatedZeroRight_>`_ for
+ this Sturm chain name and index.
+
+.. _PolPrintIntervalsTheMultiplicity:
+
+``\PolPrintIntervalsTheMultiplicity``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+ The multiplicity of the unique root within the interval of index
+ `\\PolPrintIntervalsTheIndex`_. Makes sense only if the starred (or
+ double-starred) variant of `\\PolSturmIsolateZeros
+ <PolSturmIsolateZeros_>`_ was used earlier.
+
+
+TeX Booleans (with names enacting their defaults)
+-------------------------------------------------
+
+.. _xintverbosefalse:
+
+``\xintverbosefalse``
+~~~~~~~~~~~~~~~~~~~~~
+
+ This is actually an xintexpr_ configuration. Setting it to
+ ``true`` triggers the writing of information to the log when new
+ polynomial or scalar variables are defined.
+
+ .. caution::
+
+ The macro and variable meanings as written to the log are to be
+ considered unstable and undocumented internal structures.
+
+.. _polnewpolverbosefalse:
+
+``\polnewpolverbosefalse``
+~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+ When ``\poldef`` is used, both a variable and a function are
+ defined. The default ``\polnewpolverbosefalse`` setting suppresses
+ the print-out to the log and terminal of the function macro meaning,
+ as it only duplicates the information contained in the variable
+ which is already printed out to the log and terminal.
+
+ However :ref:`\\PolGenFloatVariant{\<polname\>} <PolGenFloatVariant>`
+ does still print out the information relative to the polynomial
+ function it defines for use in ``\xintfloateval{}`` as there is no
+ float polynomial variable, only the
+
+ function, and it is the only way to see its rounded coefficients
+ (``\xintverbosefalse`` suppresses also that info).
+
+ If set to ``true``, it overrides in both cases
+ ``\xintverbosefalse``. The setting only affects polynomial
+ declarations. Scalar variables such as those holding information on
+ roots obey only the ``\xintverbose...`` setting.
+
+ (new with ``0.8``)
+
+.. _poltypesetallfalse:
+
+``\poltypesetallfalse``
+~~~~~~~~~~~~~~~~~~~~~~~
+
+ If ``true``, `\\PolTypeset <PolTypeset_>`_ will also typeset the vanishing
+ coefficients.
+
+
+.. _poltoexprallfalse:
+
+``\poltoexprallfalse``
+~~~~~~~~~~~~~~~~~~~~~~
+
+ If ``true``, :ref:`\\PolToExpr{\<pol. expr.\>} <PolToExpr>` and
+ :ref:`\\PolToFloatExpr{\<pol. expr.\>} <PolToFloatExpr>` will also
+ include the vanishing coefficients in their outputs.
+
+
+Utilities
+---------
+
+.. _PolDecToString:
+
+``\PolDecToString{}``
+~~~~~~~~~~~~~~~~~~~~~
+
+Syntax: ``\PolDecToString{decimal number}``
+
+ This is a utility macro to print decimal numbers. It is an alias
+ for ``\xintDecToString``.
+
+.. vieux commentaire
+
+ It has been
+ backported to xintfrac_ (release ``1.3`` of ``2018/03/01``) under
+ the name ``\xintDecToString``, and the ``polexpr`` macro is simply
+ now an alias to it.
+
+..
+
+ For example
+ ``\PolDecToString{123.456e-8}`` will expand to ``0.00000123456``
+ and ``\PolDecToString{123.450e-8}`` to ``0.00000123450`` which
+ illustrates that trailing zeros are not trimmed.
+
+ To trim trailing zeroes, one can use
+ ``\PolDecToString{\xintREZ{#1}}``.
+
+ Attention that a.t.t.o.w. if the argument is for example ``1/5``, the
+ macro does not identify that this is in fact a number with a finite
+ decimal expansion and it outputs ``1/5``. See current xintfrac_
+ documentation.
+
+.. vieux commentaire
+
+ The precise behaviour of this macro may evolve in future releases of
+ xintexpr_.
+
+..
+
+
+.. _polexprsetup:
+
+``\polexprsetup{key=val,...}``
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+ Serves to customize the package. Currently only two keys are
+ recognized:
+
+ - ``norr``: the postfix that :ref:`\\PolSturmIsolateZeros**{\<sturmname\>} <PolSturmIsolateZeros**>`
+ should append to ``<sturmname>`` to declare the primitive polynomial
+ obtained from original one after removal of all rational roots.
+ The default value is ``_norr`` (standing for “no rational roots”).
+
+ - ``sqfnorr``: the postfix that :ref:`\\PolSturmIsolateZeros**{\<sturmname\>} <PolSturmIsolateZeros**>`
+ should append to ``<sturmname>`` to declare the primitive polynomial
+ obtained from original one after removal of all rational roots and
+ suppression of all multiplicities.
+ The default value is ``_sqf_norr`` (standing for “square-free with
+ no rational roots”).
+
+ The package executes ``\polexprsetup{norr=_norr,
+ sqfnorr=_sqf_norr}`` as default.
+
+
+Technicalities
+--------------
+
+
+- The ``@`` is allowed in the name of a polynomial (independently of
+ whether it is of catcode letter or other.) This has always been the
+ case, but was not documented by polexpr prior to ``0.8``, as the
+ author has never found the time to provide some official guidelines on
+ how to name temporary variables and the ``@`` is used already as such
+ internally; time has still not yet been found to review the situation
+ but it seems reasonable to recommend at any rate to restrict usage of
+ ``@`` to scratch variables of defined macros and to avoid using it to
+ name document variable.
+
+- Catcodes are set temporarily by `\\poldef <poldef;_>`_ macro to safe
+ values prior to grab the polynomial expression up to the terminator
+ ``;``, and also by `\\PolDef <PolDef_>`_ prior to grab the
+ brace-enclosed polynomial expression. This gives a layer of
+ protection in case some package (for example the ``babel-french`` module)
+ has made some characters active. It will fail though if the whole
+ thing is located inside some definition of a macro done at a time the
+ characters are active.
+
+- ..
+
+ .. attention::
+
+ Contrarily to ``\xintdefvar`` and ``\xintdeffunc`` from xintexpr_,
+ ``\poldef`` uses a naive delimited macro to fetch up to the
+ expression terminator ``";"``, hence it will be fooled if some
+ ``;`` is used inside the expression (which is possible as it
+ appears in some xintexpr_ constructs). Work-around is to use curly
+ braces around the inner semi-colons, or simpler to use
+ ``\PolDef``.
+
+- As a consequence of xintfrac_ addition and subtraction always using
+ least common multiples for the denominators, user-chosen common
+ denominators (currently) survive additions and multiplications. For
+ example, this::
+
+ \poldef P(x):= 1/2 + 2/2*x + 3/2*x^3 + 4/2*x^4;
+ \poldef Q(x):= 1/3 + (2/3)x + (3/3)x^3 + (4/3)x^4;
+ \poldef PQ(x):= P*Q;
+
+ gives internally the polynomial::
+
+ 1/6+4/6*x^1+4/6*x^2+6/6*x^3+20/6*x^4+16/6*x^5+9/6*x^6+24/6*x^7+16/6*x^8
+
+ where all coefficients have the same denominator 6. Notice though that
+ ``\PolToExpr{PQ}`` outputs the ``6/6*x^3`` as ``x^3`` because (by
+ default) it recognizes and filters out coefficients equal to one or
+ minus one. One can use for example
+ ``\PolToCSV{PQ}`` to see the internally stored coefficients.
+
+ .. vieux commentaire
+
+ prior to ``0.4.1``, ``polexpr`` used to temporarily patch
+ during the parsing of polynomials the xintfrac_ macros. This
+ patch was backported to xintexpr_ at release ``1.3``.
+
+- :ref:`\\PolDiff{\<polname_1\>}{\<polname_2\>} <PolDiff>` always applies ``\xintPIrr`` to the
+ resulting coefficients, which means that fractions are reduced to
+ lowest terms but ignoring an already separated *power of ten* part ``[N]``
+ present in the internal representation. This is tentative and may change.
+
+ Same remark for :ref:`\\PolAntiDiff{\<polname_1\>}{\<polname_2\>} <PolAntiDiff>`.
+
+- Currently, the package stores all coefficients from index ``0`` to
+ index equal to the polynomial degree inside a single macro, as a list.
+ This data structure is obviously very inefficient for polynomials of
+ high degree and few coefficients (as an example with ``\poldef
+ f(x):=x^1000 + x^500;`` the subsequent definition ``\poldef g(x):=
+ f(x)^2;`` will do of the order of 1,000,000 multiplications and
+ additions involvings only zeroes... which does take time). This
+ may change in the future.
+
+- As is to be expected internal structures of the package are barely
+ documented and unstable. Don't use them.
+
+
+.. _xinttools:
+.. _xintfrac:
+.. _xint: https://www.ctan.org/pkg/xint
+
+.. _xintexpr: https://www.ctan.org/pkg/xintexpr
+
+.. _xintsession: https://www.ctan.org/pkg/xintsession
+
+.. _Wilkinson polynomial: https://en.wikipedia.org/wiki/Wilkinson%27s_polynomial
+
+.. _Sturm algorithm:
+.. _Sturm Theorem: https://en.wikipedia.org/wiki/Sturm%27s_theorem
+
+.. _DocUtils: http://docutils.sourceforge.net/docs/index.html
+
+
+.. Local variables:
+.. sentence-end-double-space: t;
+.. End:
Property changes on: trunk/Master/texmf-dist/doc/generic/polexpr/polexpr-ref.rst.txt
___________________________________________________________________
Added: svn:eol-style
## -0,0 +1 ##
+native
\ No newline at end of property
Added: trunk/Master/texmf-dist/doc/generic/polexpr/polexpr.css
===================================================================
--- trunk/Master/texmf-dist/doc/generic/polexpr/polexpr.css (rev 0)
+++ trunk/Master/texmf-dist/doc/generic/polexpr/polexpr.css 2022-05-15 20:41:35 UTC (rev 63306)
@@ -0,0 +1,826 @@
+/*
+ * polexpr.css
+ * ~~~~~~~~~~~
+ *
+ * stylesheet for polexpr html documentation
+ * Copyright (c) 2022 by Jean-François Burnol
+ *
+ * It has been obtained on May 13, 2022 by Jean-François Burnol via
+ * copying selected extracts from the css files as found in the output
+ * of a sphinx-build with "bizstyle" theme, enough for the styling the
+ * html elements used in polexpr html documentation, and with a few
+ * changes here and there.
+ *
+ * It also incorporate (essentially) the output of `pygmentize -S
+ * friendly -f html` which specifies the behaviour of the highlighting,
+ * and is produced by default by Sphinx on all sphinx-build runs.
+ *
+ */
+
+
+/* -- start of extracts from basic.css -------------------------------------- */
+
+/* -- main layout ----------------------------------------------------------- */
+
+div.section::after {
+ display: block;
+ content: '';
+ clear: left;
+}
+
+/* -- relbar ---------------------------------------------------------------- */
+
+div.related {
+ width: 100%;
+ font-size: 90%;
+}
+
+div.related h3 {
+ display: none;
+}
+
+div.related ul {
+ margin: 0;
+ padding: 0 0 0 10px;
+ list-style: none;
+}
+
+div.related li {
+ display: inline;
+}
+
+div.related li.right {
+ float: right;
+ margin-right: 5px;
+}
+
+/* -- sidebar --------------------------------------------------------------- */
+
+div.sphinxsidebarwrapper {
+ padding: 10px 5px 0 10px;
+}
+
+div.sphinxsidebar {
+ float: left;
+ width: 35%; /* polexpr */
+ margin-left: -100%;
+ font-size: 90%;
+ word-wrap: break-word;
+ overflow-wrap : break-word;
+}
+
+div.sphinxsidebar ul {
+ list-style: none;
+}
+
+div.sphinxsidebar ul ul,
+div.sphinxsidebar ul.want-points {
+ margin-left: 20px;
+ list-style: square;
+}
+
+div.sphinxsidebar ul ul {
+ margin-top: 0;
+ margin-bottom: 0;
+}
+
+/* -- general body styles --------------------------------------------------- */
+
+div.body {
+ min-width: 360px;
+ max-width: 800px;
+}
+
+div.body p, div.body dd, div.body li, div.body blockquote {
+ -moz-hyphens: auto;
+ -ms-hyphens: auto;
+ -webkit-hyphens: auto;
+ hyphens: auto;
+}
+
+a.headerlink {
+ visibility: hidden;
+}
+
+a.brackets:before,
+span.brackets > a:before{
+ content: "[";
+}
+
+a.brackets:after,
+span.brackets > a:after {
+ content: "]";
+}
+
+h1:hover > a.headerlink,
+h2:hover > a.headerlink,
+h3:hover > a.headerlink,
+h4:hover > a.headerlink,
+h5:hover > a.headerlink,
+h6:hover > a.headerlink,
+dt:hover > a.headerlink,
+caption:hover > a.headerlink,
+p.caption:hover > a.headerlink,
+div.code-block-caption:hover > a.headerlink {
+ visibility: visible;
+}
+
+div.body p.caption {
+ text-align: inherit;
+}
+
+div.body td {
+ text-align: left;
+}
+
+.first {
+ margin-top: 0 !important;
+}
+
+.align-left {
+ text-align: left;
+}
+
+.align-center {
+ text-align: center;
+}
+
+.align-default {
+ text-align: center;
+}
+
+.align-right {
+ text-align: right;
+}
+
+/* -- sidebars -------------------------------------------------------------- */
+
+div.sidebar,
+aside.sidebar {
+ margin: 0 0 0.5em 1em;
+ border: 1px solid #ddb;
+ padding: 7px;
+ background-color: #ffe;
+ width: 40%;
+ float: right;
+ clear: right;
+ overflow-x: auto;
+}
+
+p.sidebar-title {
+ font-weight: bold;
+}
+
+div.admonition, div.topic, blockquote {
+ clear: left;
+}
+
+/* -- topics ---------------------------------------------------------------- */
+
+div.topic {
+ border: 1px solid #ccc;
+ padding: 7px;
+ margin: 10px 0 10px 0;
+}
+
+p.topic-title {
+ font-size: 1.1em;
+ font-weight: bold;
+ margin-top: 10px;
+}
+
+/* -- admonitions ----------------------------------------------------------- */
+
+div.admonition {
+ margin-top: 10px;
+ margin-bottom: 10px;
+ padding: 7px;
+}
+
+div.admonition dt {
+ font-weight: bold;
+}
+
+p.admonition-title {
+ margin: 0px 10px 5px 0px;
+ font-weight: bold;
+}
+
+div.body p.centered {
+ text-align: center;
+ margin-top: 25px;
+}
+
+/* -- content of sidebars/topics/admonitions -------------------------------- */
+
+div.sidebar > :last-child,
+aside.sidebar > :last-child,
+div.topic > :last-child,
+div.admonition > :last-child {
+ margin-bottom: 0;
+}
+
+div.sidebar::after,
+aside.sidebar::after,
+div.topic::after,
+div.admonition::after,
+blockquote::after {
+ display: block;
+ content: '';
+ clear: both;
+}
+
+.footnote:target {
+ background-color: #ffa;
+}
+
+/* -- code displays --------------------------------------------------------- */
+
+pre {
+ overflow: auto;
+ overflow-y: hidden; /* fixes display issues on Chrome browsers */
+}
+
+pre, div[class*="highlight-"] {
+ clear: both;
+}
+
+span.pre {
+ -moz-hyphens: none;
+ -ms-hyphens: none;
+ -webkit-hyphens: none;
+ hyphens: none;
+ white-space: nowrap;
+}
+
+div[class*="highlight-"] {
+ margin: 1em 0;
+}
+
+td.linenos pre {
+ border: 0;
+ background-color: transparent;
+ color: #aaa;
+}
+
+
+.highlight .hll {
+ display: block;
+}
+
+div.highlight pre,
+table.highlighttable pre {
+ margin: 0;
+}
+
+table.highlighttable td.linenos,
+span.linenos,
+div.highlight span.gp { /* gp: Generic.Prompt */
+ user-select: none;
+ -webkit-user-select: text; /* Safari fallback only */
+ -webkit-user-select: none; /* Chrome/Safari */
+ -moz-user-select: none; /* Firefox */
+ -ms-user-select: none; /* IE10+ */
+}
+
+div.code-block-caption span.caption-number {
+ padding: 0.1em 0.3em;
+ font-style: italic;
+}
+
+div.code-block-caption span.caption-text {
+}
+
+div.literal-block-wrapper {
+ margin: 1em 0;
+}
+
+code.xref, a code {
+ background-color: transparent;
+ font-weight: bold;
+}
+
+h1 code, h2 code, h3 code, h4 code, h5 code, h6 code {
+ background-color: transparent;
+}
+
+/* -- printout stylesheet --------------------------------------------------- */
+
+ at media print {
+ div.document,
+ div.documentwrapper,
+ div.bodywrapper {
+ margin: 0 !important;
+ width: 100%;
+ }
+
+ div.sphinxsidebar,
+ div.related,
+ div.footer,
+ #top-link {
+ display: none;
+ }
+}
+
+/* -- end of extracts from basic.css ---------------------------------------- */
+
+/* -- start of extracts from bizstyle.css ----------------------------------- */
+
+/* -- page layout ----------------------------------------------------------- */
+
+body {
+ font-family: 'Lucida Grande', 'Lucida Sans Unicode', 'Geneva',
+ 'Verdana', sans-serif;
+ /* font-size: 14px; not for polexpr.css */
+ letter-spacing: -0.01em;
+ line-height: 150%;
+ text-align: center;
+ background-color: white;
+ background-image: url(background_b01.png);
+ color: black;
+ padding: 0;
+ border-right: 1px solid #336699;
+ border-left: 1px solid #336699;
+
+ margin: 0px 40px 0px 40px;
+}
+
+div.document {
+ background-color: white;
+ text-align: left;
+ background-repeat: repeat-x;
+
+ -moz-box-shadow: 2px 2px 5px #000;
+ -webkit-box-shadow: 2px 2px 5px #000;
+}
+
+div.documentwrapper {
+ float: left;
+ width: 100%;
+}
+
+div.bodywrapper {
+ margin: 0 0 0 240px;
+ border-left: 1px solid #ccc;
+}
+
+div.body {
+ margin: 0;
+ padding: 0.5em 20px 20px 20px;
+}
+div.bodywrapper {
+ margin: 0 calc(35% + 30px) 0 0; /* polexpr */
+ border-right: 1px solid #ccc;
+}
+
+div.related {
+ font-size: 1em;
+
+ -moz-box-shadow: 2px 2px 5px #000;
+ -webkit-box-shadow: 2px 2px 5px #000;
+}
+
+div.related ul {
+ background-color: #336699;
+ height: 100%;
+ overflow: hidden;
+ border-top: 1px solid #ddd;
+ border-bottom: 1px solid #ddd;
+}
+
+div.related ul li {
+ color: white;
+ margin: 0;
+ padding: 0;
+ height: 2em;
+ float: left;
+}
+
+div.related ul li.right {
+ float: right;
+ margin-right: 5px;
+}
+
+div.related ul li a {
+ margin: 0;
+ padding: 0 5px 0 5px;
+ line-height: 1.75em;
+ color: #fff;
+}
+
+div.related ul li a:hover {
+ color: #fff;
+ text-decoration: underline;
+}
+
+div.sphinxsidebarwrapper {
+ padding: 0;
+}
+
+div.sphinxsidebar {
+ padding: 0.5em 12px 12px 12px;
+ width: 35%; /* polexpr */
+ float: right;
+ font-size: 1em;
+ text-align: left;
+}
+
+div.sphinxsidebar h3, div.sphinxsidebar h4 {
+ margin: 1em 0 0.5em 0;
+ font-size: 1em;
+ padding: 0.1em 0 0.1em 0.5em;
+ color: white;
+ border: 1px solid #336699;
+ background-color: #336699;
+}
+
+div.sphinxsidebar h3 a {
+ color: white;
+}
+
+div.sphinxsidebar ul {
+ padding-left: 1.5em;
+ margin-top: 7px;
+ padding: 0;
+ line-height: 130%;
+}
+
+div.sphinxsidebar ul ul {
+ margin-left: 20px;
+}
+
+div.sphinxsidebar input {
+ border: 1px solid #336699;
+}
+
+div.footer {
+ background-color: white;
+ color: #336699;
+ padding: 3px 8px 3px 0;
+ clear: both;
+ font-size: 0.8em;
+ text-align: right;
+ border-bottom: 1px solid #336699;
+
+ -moz-box-shadow: 2px 2px 5px #000;
+ -webkit-box-shadow: 2px 2px 5px #000;
+}
+
+div.footer a {
+ color: #336699;
+ text-decoration: underline;
+}
+
+/* -- body styles ----------------------------------------------------------- */
+
+p {
+ margin: 0.8em 0 0.5em 0;
+}
+
+a {
+ color: #336699;
+ text-decoration: none;
+}
+
+a:hover {
+ color: #336699;
+ text-decoration: underline;
+}
+
+div.body a {
+ text-decoration: underline;
+}
+
+h1, h2, h3 {
+ color: #336699;
+}
+
+h1 {
+ margin: 0;
+ padding: 0.7em 0 0.3em 0;
+ font-size: 1.5em;
+}
+
+h2 {
+ margin: 1.3em 0 0.2em 0;
+ font-size: 1.35em;
+ padding-bottom: .5em;
+ border-bottom: 1px solid #336699;
+}
+
+h3 {
+ margin: 1em 0 -0.3em 0;
+ font-size: 1.2em;
+ padding-bottom: .3em;
+ border-bottom: 1px solid #CCCCCC;
+}
+
+div.body h1 a, div.body h2 a, div.body h3 a,
+div.body h4 a, div.body h5 a, div.body h6 a {
+ color: black!important;
+}
+
+h1 a.anchor, h2 a.anchor, h3 a.anchor,
+h4 a.anchor, h5 a.anchor, h6 a.anchor {
+ display: none;
+ margin: 0 0 0 0.3em;
+ padding: 0 0.2em 0 0.2em;
+ color: #aaa!important;
+}
+
+h1:hover a.anchor, h2:hover a.anchor, h3:hover a.anchor, h4:hover a.anchor,
+h5:hover a.anchor, h6:hover a.anchor {
+ display: inline;
+}
+
+h1 a.anchor:hover, h2 a.anchor:hover, h3 a.anchor:hover, h4 a.anchor:hover,
+h5 a.anchor:hover, h6 a.anchor:hover {
+ color: #777;
+ background-color: #eee;
+}
+
+a.headerlink {
+ color: #c60f0f!important;
+ font-size: 1em;
+ margin-left: 6px;
+ padding: 0 4px 0 4px;
+ text-decoration: none!important;
+}
+
+a.headerlink:hover {
+ background-color: #ccc;
+ color: white!important;
+}
+
+cite, code, tt {
+ font-family: 'Consolas', 'Deja Vu Sans Mono',
+ 'Bitstream Vera Sans Mono', monospace;
+ /* font-size: 0.95em; not for polexpr */
+ letter-spacing: 0.01em;
+}
+
+code {
+ background-color: #F2F2F2;
+ border-bottom: 1px solid #ddd;
+ color: #333;
+}
+
+code.descname, code.descclassname, code.xref {
+ border: 0;
+}
+
+hr {
+ border: 1px solid #abc;
+ margin: 2em;
+}
+
+a code {
+ border: 0;
+ color: #CA7900;
+}
+
+a code:hover {
+ color: #2491CF;
+}
+
+pre {
+ background-color: transparent !important;
+ font-family: 'Consolas', 'Deja Vu Sans Mono',
+ 'Bitstream Vera Sans Mono', monospace;
+ /* font-size: 0.95em; not for polexpr */
+ letter-spacing: 0.015em;
+ line-height: 120%;
+ padding: 0.5em;
+ border-right: 5px solid #ccc;
+ border-left: 5px solid #ccc;
+}
+
+pre a {
+ color: inherit;
+ text-decoration: underline;
+}
+
+td.linenos pre {
+ padding: 0.5em 0;
+}
+
+div.quotebar {
+ background-color: #f8f8f8;
+ max-width: 250px;
+ float: right;
+ padding: 2px 7px;
+ border: 1px solid #ccc;
+}
+
+div.topic {
+ background-color: #f8f8f8;
+}
+
+div.admonition {
+ /* font-size: 0.9em; not for polexpr */
+ margin: 1em 0 1em 0;
+ border: 3px solid #cccccc;
+ background-color: #f7f7f7;
+ padding: 0;
+}
+
+div.admonition p {
+ margin: 0.5em 1em 0.5em 1em;
+ padding: 0;
+}
+
+div.admonition li p {
+ margin-left: 0;
+}
+
+div.admonition pre, div.warning pre {
+ margin: 0;
+}
+
+div.highlight {
+ margin: 0.4em 1em;
+}
+
+div.admonition p.admonition-title {
+ margin: 0;
+ padding: 0.1em 0 0.1em 0.5em;
+ color: white;
+ border-bottom: 3px solid #cccccc;
+ font-weight: bold;
+ background-color: #165e83;
+}
+
+div.danger { border: 3px solid #f0908d; background-color: #f0cfa0; }
+div.error { border: 3px solid #f0908d; background-color: #ede4cd; }
+div.warning { border: 3px solid #f8b862; background-color: #f0cfa0; }
+div.caution { border: 3px solid #f8b862; background-color: #ede4cd; }
+div.attention { border: 3px solid #f8b862; background-color: #f3f3f3; }
+div.important { border: 3px solid #f0cfa0; background-color: #ede4cd; }
+div.note { border: 3px solid #f0cfa0; background-color: #f3f3f3; }
+div.hint { border: 3px solid #bed2c3; background-color: #f3f3f3; }
+div.tip { border: 3px solid #bed2c3; background-color: #f3f3f3; }
+
+div.danger p.admonition-title, div.error p.admonition-title {
+ background-color: #b7282e;
+ border-bottom: 3px solid #f0908d;
+}
+
+div.caution p.admonition-title,
+div.warning p.admonition-title,
+div.attention p.admonition-title {
+ background-color: #f19072;
+ border-bottom: 3px solid #f8b862;
+}
+
+div.note p.admonition-title, div.important p.admonition-title {
+ background-color: #f8b862;
+ border-bottom: 3px solid #f0cfa0;
+}
+
+div.hint p.admonition-title, div.tip p.admonition-title {
+ background-color: #7ebea5;
+ border-bottom: 3px solid #bed2c3;
+}
+
+div.admonition ul, div.admonition ol,
+div.warning ul, div.warning ol {
+ margin: 0.1em 0.5em 0.5em 3em;
+ padding: 0;
+}
+
+div.versioninfo {
+ margin: 1em 0 0 0;
+ border: 1px solid #ccc;
+ background-color: #DDEAF0;
+ padding: 8px;
+ line-height: 1.3em;
+ font-size: 0.9em;
+}
+
+div.literal-block-wrapper div.code-block-caption {
+ background-color: #EEE;
+ border-style: solid;
+ border-color: #CCC;
+ border-width: 1px 5px;
+}
+
+/* WIDE DESKTOP STYLE */
+ at media only screen and (min-width: 1176px) {
+body {
+ margin: 0 40px 0 40px;
+}
+}
+
+/* TABLET STYLE */
+ at media only screen and (min-width: 768px) and (max-width: 991px) {
+body {
+ margin: 0 40px 0 40px;
+}
+}
+
+/* MOBILE LAYOUT (PORTRAIT/320px) */
+ at media only screen and (max-width: 767px) {
+body {
+ margin: 0;
+}
+div.bodywrapper {
+ margin: 0;
+ width: 100%;
+ border: none;
+}
+div.sphinxsidebar {
+ display: none;
+}
+}
+
+/* MOBILE LAYOUT (LANDSCAPE/480px) */
+ at media only screen and (min-width: 480px) and (max-width: 767px) {
+body {
+ margin: 0 20px 0 20px;
+}
+}
+
+/* RETINA OVERRIDES */
+ at media
+only screen and (-webkit-min-device-pixel-ratio: 2),
+only screen and (min-device-pixel-ratio: 2) {
+}
+
+/* -- end ------------------------------------------------------------------- */
+
+/* -- pygments styling from `pygmentize -S friendly -f html` ---------------- */
+
+pre { line-height: 125%; }
+td.linenos .normal { color: #666666; background-color: transparent; padding-left: 5px; padding-right: 5px; }
+span.linenos { color: #666666; background-color: transparent; padding-left: 5px; padding-right: 5px; }
+td.linenos .special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; }
+span.linenos.special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; }
+.highlight .hll { background-color: #ffffcc }
+.highlight { background: #f0f0f0; }
+.highlight .c { color: #60a0b0; font-style: italic } /* Comment */
+.highlight .err { border: 1px solid #FF0000 } /* Error */
+.highlight .k { color: #007020; font-weight: bold } /* Keyword */
+.highlight .o { color: #666666 } /* Operator */
+.highlight .ch { color: #60a0b0; font-style: italic } /* Comment.Hashbang */
+.highlight .cm { color: #60a0b0; font-style: italic } /* Comment.Multiline */
+.highlight .cp { color: #007020 } /* Comment.Preproc */
+.highlight .cpf { color: #60a0b0; font-style: italic } /* Comment.PreprocFile */
+.highlight .c1 { color: #60a0b0; font-style: italic } /* Comment.Single */
+.highlight .cs { color: #60a0b0; background-color: #fff0f0 } /* Comment.Special */
+.highlight .gd { color: #A00000 } /* Generic.Deleted */
+.highlight .ge { font-style: italic } /* Generic.Emph */
+.highlight .gr { color: #FF0000 } /* Generic.Error */
+.highlight .gh { color: #000080; font-weight: bold } /* Generic.Heading */
+.highlight .gi { color: #00A000 } /* Generic.Inserted */
+.highlight .go { color: #888888 } /* Generic.Output */
+.highlight .gp { color: #c65d09; font-weight: bold } /* Generic.Prompt */
+.highlight .gs { font-weight: bold } /* Generic.Strong */
+.highlight .gu { color: #800080; font-weight: bold } /* Generic.Subheading */
+.highlight .gt { color: #0044DD } /* Generic.Traceback */
+.highlight .kc { color: #007020; font-weight: bold } /* Keyword.Constant */
+.highlight .kd { color: #007020; font-weight: bold } /* Keyword.Declaration */
+.highlight .kn { color: #007020; font-weight: bold } /* Keyword.Namespace */
+.highlight .kp { color: #007020 } /* Keyword.Pseudo */
+.highlight .kr { color: #007020; font-weight: bold } /* Keyword.Reserved */
+.highlight .kt { color: #902000 } /* Keyword.Type */
+.highlight .m { color: #40a070 } /* Literal.Number */
+.highlight .s { color: #4070a0 } /* Literal.String */
+.highlight .na { color: #4070a0 } /* Name.Attribute */
+.highlight .nb { color: #007020 } /* Name.Builtin */
+.highlight .nc { color: #0e84b5; font-weight: bold } /* Name.Class */
+.highlight .no { color: #60add5 } /* Name.Constant */
+.highlight .nd { color: #555555; font-weight: bold } /* Name.Decorator */
+.highlight .ni { color: #d55537; font-weight: bold } /* Name.Entity */
+.highlight .ne { color: #007020 } /* Name.Exception */
+.highlight .nf { color: #06287e } /* Name.Function */
+.highlight .nl { color: #002070; font-weight: bold } /* Name.Label */
+.highlight .nn { color: #0e84b5; font-weight: bold } /* Name.Namespace */
+.highlight .nt { color: #062873; font-weight: bold } /* Name.Tag */
+.highlight .nv { color: #bb60d5 } /* Name.Variable */
+.highlight .ow { color: #007020; font-weight: bold } /* Operator.Word */
+.highlight .w { color: #bbbbbb } /* Text.Whitespace */
+.highlight .mb { color: #40a070 } /* Literal.Number.Bin */
+.highlight .mf { color: #40a070 } /* Literal.Number.Float */
+.highlight .mh { color: #40a070 } /* Literal.Number.Hex */
+.highlight .mi { color: #40a070 } /* Literal.Number.Integer */
+.highlight .mo { color: #40a070 } /* Literal.Number.Oct */
+.highlight .sa { color: #4070a0 } /* Literal.String.Affix */
+.highlight .sb { color: #4070a0 } /* Literal.String.Backtick */
+.highlight .sc { color: #4070a0 } /* Literal.String.Char */
+.highlight .dl { color: #4070a0 } /* Literal.String.Delimiter */
+.highlight .sd { color: #4070a0; font-style: italic } /* Literal.String.Doc */
+.highlight .s2 { color: #4070a0 } /* Literal.String.Double */
+.highlight .se { color: #4070a0; font-weight: bold } /* Literal.String.Escape */
+.highlight .sh { color: #4070a0 } /* Literal.String.Heredoc */
+.highlight .si { color: #70a0d0; font-style: italic } /* Literal.String.Interpol */
+.highlight .sx { color: #c65d09 } /* Literal.String.Other */
+.highlight .sr { color: #235388 } /* Literal.String.Regex */
+.highlight .s1 { color: #4070a0 } /* Literal.String.Single */
+.highlight .ss { color: #517918 } /* Literal.String.Symbol */
+.highlight .bp { color: #007020 } /* Name.Builtin.Pseudo */
+.highlight .fm { color: #06287e } /* Name.Function.Magic */
+.highlight .vc { color: #bb60d5 } /* Name.Variable.Class */
+.highlight .vg { color: #bb60d5 } /* Name.Variable.Global */
+.highlight .vi { color: #bb60d5 } /* Name.Variable.Instance */
+.highlight .vm { color: #bb60d5 } /* Name.Variable.Magic */
+.highlight .il { color: #40a070 } /* Literal.Number.Integer.Long */
Property changes on: trunk/Master/texmf-dist/doc/generic/polexpr/polexpr.css
___________________________________________________________________
Added: svn:eol-style
## -0,0 +1 ##
+native
\ No newline at end of property
Modified: trunk/Master/texmf-dist/doc/generic/polexpr/polexpr.html
===================================================================
--- trunk/Master/texmf-dist/doc/generic/polexpr/polexpr.html 2022-05-15 11:23:40 UTC (rev 63305)
+++ trunk/Master/texmf-dist/doc/generic/polexpr/polexpr.html 2022-05-15 20:41:35 UTC (rev 63306)
@@ -1,3822 +1,190 @@
+
<!DOCTYPE html>
-<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
-<head>
-<meta charset="utf-8"/>
-<meta name="generator" content="Docutils 0.16: http://docutils.sourceforge.net/" />
-<title>polexpr reference documentation</title>
-<style type="text/css">
-/* Minimal style sheet for the HTML output of Docutils. */
-/* */
-/* :Author: Günter Milde, based on html4css1.css by David Goodger */
-/* :Id: $Id: minimal.css 8397 2019-09-20 11:09:34Z milde $ */
-/* :Copyright: © 2015 Günter Milde. */
-/* :License: Released under the terms of the `2-Clause BSD license`_, */
-/* in short: */
-/* */
-/* Copying and distribution of this file, with or without modification, */
-/* are permitted in any medium without royalty provided the copyright */
-/* notice and this notice are preserved. */
-/* */
-/* This file is offered as-is, without any warranty. */
-/* */
-/* .. _2-Clause BSD license: http://www.spdx.org/licenses/BSD-2-Clause */
+<html lang="en">
+ <head>
+ <meta charset="utf-8" />
+ <meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="generator" content="Docutils 0.18.1: http://docutils.sourceforge.net/" />
-/* This CSS2.1_ stylesheet defines rules for Docutils elements without */
-/* HTML equivalent. It is required to make the document semantic visible. */
-/* */
-/* .. _CSS2.1: http://www.w3.org/TR/CSS2 */
-/* .. _validates: http://jigsaw.w3.org/css-validator/validator$link */
+ <title>Introduction to polexpr — polexpr 0.8.7 documentation</title>
+ <link rel="stylesheet" type="text/css" href="polexpr.css" />
+ <link rel="next" title="polexpr reference" href="polexpr-ref.html" />
+ </head><body>
+ <div class="related" role="navigation" aria-label="related navigation">
+ <h3>Navigation</h3>
+ <ul>
+ <li class="right" style="margin-right: 10px">
+ <a href="polexpr-ref.html" title="polexpr reference"
+ accesskey="N">next</a></li>
+ <li class="nav-item nav-item-0"><a href="#">polexpr 0.8.7 documentation</a> »</li>
+ <li class="nav-item nav-item-this"><a href="">Introduction to polexpr</a></li>
+ </ul>
+ </div>
-/* alignment of text and inline objects inside block objects*/
-.align-left { text-align: left; }
-.align-right { text-align: right; }
-.align-center { clear: both; text-align: center; }
-.align-top { vertical-align: top; }
-.align-middle { vertical-align: middle; }
-.align-bottom { vertical-align: bottom; }
-
-/* titles */
-h1.title, p.subtitle {
- text-align: center;
-}
-p.topic-title,
-p.sidebar-title,
-p.rubric,
-p.admonition-title,
-p.system-message-title {
- font-weight: bold;
-}
-h1 + p.subtitle,
-h1 + p.section-subtitle {
- font-size: 1.6em;
-}
-h2 + p.section-subtitle { font-size: 1.28em; }
-p.subtitle,
-p.section-subtitle,
-p.sidebar-subtitle {
- font-weight: bold;
- margin-top: -0.5em;
-}
-p.sidebar-title,
-p.rubric {
- font-size: larger;
-}
-p.rubric { color: maroon; }
-a.toc-backref {
- color: black;
- text-decoration: none; }
-
-/* Warnings, Errors */
-div.caution p.admonition-title,
-div.attention p.admonition-title,
-div.danger p.admonition-title,
-div.error p.admonition-title,
-div.warning p.admonition-title,
-div.system-messages h1,
-div.error,
-span.problematic,
-p.system-message-title {
- color: red;
-}
-
-/* inline literals */
-span.docutils.literal {
- font-family: monospace;
- white-space: pre-wrap;
-}
-/* do not wraph at hyphens and similar: */
-.literal > span.pre { white-space: nowrap; }
-
-/* Lists */
-
-/* compact and simple lists: no margin between items */
-.simple li, .compact li,
-.simple ul, .compact ul,
-.simple ol, .compact ol,
-.simple > li p, .compact > li p,
-dl.simple > dd, dl.compact > dd {
- margin-top: 0;
- margin-bottom: 0;
-}
-
-/* Table of Contents */
-div.topic.contents { margin: 0.5em 0; }
-div.topic.contents ul {
- list-style-type: none;
- padding-left: 1.5em;
-}
-
-/* Enumerated Lists */
-ol.arabic { list-style: decimal }
-ol.loweralpha { list-style: lower-alpha }
-ol.upperalpha { list-style: upper-alpha }
-ol.lowerroman { list-style: lower-roman }
-ol.upperroman { list-style: upper-roman }
-
-dt span.classifier { font-style: italic }
-dt span.classifier:before {
- font-style: normal;
- margin: 0.5em;
- content: ":";
-}
-
-/* Field Lists and drivatives */
-/* bold field name, content starts on the same line */
-dl.field-list > dt,
-dl.option-list > dt,
-dl.docinfo > dt,
-dl.footnote > dt,
-dl.citation > dt {
- font-weight: bold;
- clear: left;
- float: left;
- margin: 0;
- padding: 0;
- padding-right: 0.5em;
-}
-/* Offset for field content (corresponds to the --field-name-limit option) */
-dl.field-list > dd,
-dl.option-list > dd,
-dl.docinfo > dd {
- margin-left: 9em; /* ca. 14 chars in the test examples */
-}
-/* start field-body on a new line after long field names */
-dl.field-list > dd > *:first-child,
-dl.option-list > dd > *:first-child
-{
- display: inline-block;
- width: 100%;
- margin: 0;
-}
-/* field names followed by a colon */
-dl.field-list > dt:after,
-dl.docinfo > dt:after {
- content: ":";
-}
-
-/* Bibliographic Fields (docinfo) */
-pre.address { font: inherit; }
-dd.authors > p { margin: 0; }
-
-/* Option Lists */
-dl.option-list { margin-left: 1.5em; }
-dl.option-list > dt { font-weight: normal; }
-span.option { white-space: nowrap; }
-
-/* Footnotes and Citations */
-dl.footnote.superscript > dd {margin-left: 1em; }
-dl.footnote.brackets > dd {margin-left: 2em; }
-dl > dt.label { font-weight: normal; }
-a.footnote-reference.brackets:before,
-dt.label > span.brackets:before { content: "["; }
-a.footnote-reference.brackets:after,
-dt.label > span.brackets:after { content: "]"; }
-a.footnote-reference.superscript,
-dl.footnote.superscript > dt.label {
- vertical-align: super;
- font-size: smaller;
-}
-dt.label > span.fn-backref { margin-left: 0.2em; }
-dt.label > span.fn-backref > a { font-style: italic; }
-
-/* Line Blocks */
-div.line-block { display: block; }
-div.line-block div.line-block {
- margin-top: 0;
- margin-bottom: 0;
- margin-left: 40px;
-}
-
-/* Figures, Images, and Tables */
-.figure.align-left,
-figure.align-left,
-img.align-left,
-object.align-left,
-table.align-left {
- margin-right: auto;
-}
-.figure.align-center,
-figure.align-center,
-img.align-center,
-object.align-center,
-table.align-center {
- margin-left: auto;
- margin-right: auto;
-}
-.figure.align-right,
-figure.align-right,
-img.align-right,
-object.align-right,
-table.align-right {
- margin-left: auto;
-}
-.figure.align-center, .figure.align-right,
-figure.align-center, figure.align-right,
-img.align-center, img.align-right,
-object.align-center, object.align-right {
- display: block;
-}
-/* reset inner alignment in figures and tables */
-.figure.align-left, .figure.align-right,
-figure.align-left, figure.align-right,
-table.align-left, table.align-center, table.align-right {
- text-align: inherit;
-}
-
-/* Admonitions and System Messages */
-div.admonition,
-div.system-message,
-div.sidebar,
-aside.sidebar {
- margin: 1em 1.5em;
- border: medium outset;
- padding-top: 0.5em;
- padding-bottom: 0.5em;
- padding-right: 1em;
- padding-left: 1em;
-}
-
-/* Sidebar */
-div.sidebar,
-aside.sidebar {
- width: 30%;
- max-width: 26em;
- float: right;
- clear: right;
-}
-
-/* Text Blocks */
-blockquote,
-div.topic,
-pre.literal-block,
-pre.doctest-block,
-pre.math,
-pre.code {
- margin-left: 1.5em;
- margin-right: 1.5em;
-}
-pre.code .ln { color: gray; } /* line numbers */
-
-/* Tables */
-table { border-collapse: collapse; }
-td, th {
- border-style: solid;
- border-color: silver;
- padding: 0 1ex;
- border-width: thin;
-}
-td > p:first-child, th > p:first-child { margin-top: 0; }
-td > p, th > p { margin-bottom: 0; }
-
-table > caption {
- text-align: left;
- margin-bottom: 0.25em
-}
-
-table.borderless td, table.borderless th {
- border: 0;
- padding: 0;
- padding-right: 0.5em /* separate table cells */
-}
-
-/* Document Header and Footer */
-/* div.header, */
-/* header { border-bottom: 1px solid black; } */
-/* div.footer, */
-/* footer { border-top: 1px solid black; } */
-
-/* new HTML5 block elements: set display for older browsers */
-header, section, footer, aside, nav, main, article, figure {
- display: block;
-}
-
-</style>
-<style type="text/css">
-
-/* CSS31_ style sheet for the output of Docutils HTML writers. */
-/* Rules for easy reading and pre-defined style variants. */
-/* */
-/* :Author: Günter Milde, based on html4css1.css by David Goodger */
-/* :Id: $Id: plain.css 8397 2019-09-20 11:09:34Z milde $ */
-/* :Copyright: © 2015 Günter Milde. */
-/* :License: Released under the terms of the `2-Clause BSD license`_, */
-/* in short: */
-/* */
-/* Copying and distribution of this file, with or without modification, */
-/* are permitted in any medium without royalty provided the copyright */
-/* notice and this notice are preserved. */
-/* */
-/* This file is offered as-is, without any warranty. */
-/* */
-/* .. _2-Clause BSD license: http://www.spdx.org/licenses/BSD-2-Clause */
-/* .. _CSS3: http://www.w3.org/TR/CSS3 */
-
-
-/* Document Structure */
-/* ****************** */
-
-/* "page layout" */
-body {
- margin: 0;
- background-color: #dbdbdb;
-}
-div.document,
-main {
- line-height:1.3;
- counter-reset: table;
- /* counter-reset: figure; */
- /* avoid long lines --> better reading */
- /* OTOH: lines should not be too short because of missing hyphenation, */
- max-width: 50em;
- padding: 1px 2%; /* 1px on top avoids grey bar above title (mozilla) */
- margin: auto;
- background-color: white;
-}
-
-/* Sections */
-
-/* Transitions */
-
-hr.docutils {
- width: 80%;
- margin-top: 1em;
- margin-bottom: 1em;
- clear: both;
-}
-
-/* Paragraphs */
-/* ========== */
-
-/* vertical space (parskip) */
-p, ol, ul, dl,
-div.line-block,
-div.topic,
-table {
- margin-top: 0.5em;
- margin-bottom: 0.5em;
-}
-p:first-child { margin-top: 0; }
-/* (:last-child is new in CSS 3) */
-p:last-child { margin-bottom: 0; }
-
-h1, h2, h3, h4, h5, h6,
-dl > dd {
- margin-bottom: 0.5em;
-}
-
-/* Lists */
-/* ===== */
-
-/* Definition Lists */
-
-/* lists nested in definition lists */
-/* (:only-child is new in CSS 3) */
-dd > ul:only-child, dd > ol:only-child { padding-left: 1em; }
-
-/* Description Lists */
-/* styled like in most dictionaries, encyclopedias etc. */
-dl.description > dt {
- font-weight: bold;
- clear: left;
- float: left;
- margin: 0;
- padding: 0;
- padding-right: 0.5em;
-}
-
-/* Field Lists */
-
-/* example for custom field-name width */
-dl.field-list.narrow > dd {
- margin-left: 5em;
-}
-/* run-in: start field-body on same line after long field names */
-dl.field-list.run-in > dd p {
- display: block;
-}
-
-/* Bibliographic Fields */
-
-/* generally, bibliographic fields use special definition list dl.docinfo */
-/* but dedication and abstract are placed into "topic" divs */
-div.abstract p.topic-title {
- text-align: center;
-}
-div.dedication {
- margin: 2em 5em;
- text-align: center;
- font-style: italic;
-}
-div.dedication p.topic-title {
- font-style: normal;
-}
-
-/* Citations */
-dl.citation dt.label {
- font-weight: bold;
-}
-span.fn-backref {
- font-weight: normal;
-}
-
-/* Text Blocks */
-/* =========== */
-
-/* Literal Blocks */
-
-pre.literal-block,
-pre.doctest-block,
-pre.math,
-pre.code {
- font-family: monospace;
-}
-
-/* Block Quotes */
-
-blockquote > table,
-div.topic > table {
- margin-top: 0;
- margin-bottom: 0;
-}
-blockquote p.attribution,
-div.topic p.attribution {
- text-align: right;
- margin-left: 20%;
-}
-
-/* Tables */
-/* ====== */
-
-/* th { vertical-align: bottom; } */
-
-table tr { text-align: left; }
-
-/* "booktabs" style (no vertical lines) */
-table.booktabs {
- border: 0;
- border-top: 2px solid;
- border-bottom: 2px solid;
- border-collapse: collapse;
-}
-table.booktabs * {
- border: 0;
-}
-table.booktabs th {
- border-bottom: thin solid;
-}
-
-/* numbered tables (counter defined in div.document) */
-table.numbered > caption:before {
- counter-increment: table;
- content: "Table " counter(table) ": ";
- font-weight: bold;
-}
-
-/* Explicit Markup Blocks */
-/* ====================== */
-
-/* Footnotes and Citations */
-/* ----------------------- */
-
-/* line on the left */
-dl.footnote {
- padding-left: 1ex;
- border-left: solid;
- border-left-width: thin;
-}
-
-/* Directives */
-/* ---------- */
-
-/* Body Elements */
-/* ~~~~~~~~~~~~~ */
-
-/* Images and Figures */
-
-/* let content flow to the side of aligned images and figures */
-.figure.align-left,
-figure.align-left,
-img.align-left,
-object.align-left {
- display: block;
- clear: left;
- float: left;
- margin-right: 1em;
-}
-.figure.align-right,
-figure.align-right,
-img.align-right,
-object.align-right {
- display: block;
- clear: right;
- float: right;
- margin-left: 1em;
-}
-/* Stop floating sidebars, images and figures at section level 1,2,3 */
-h1, h2, h3 { clear: both; }
-
-/* Sidebar */
-
-/* Move right. In a layout with fixed margins, */
-/* it can be moved into the margin. */
-div.sidebar,
-aside.sidebar {
- width: 30%;
- max-width: 26em;
- margin-left: 1em;
- margin-right: -2%;
- background-color: #ffffee;
-}
-
-/* Code */
-
-pre.code { padding: 0.7ex }
-pre.code, code { background-color: #eeeeee }
-pre.code .ln { color: gray; } /* line numbers */
-/* basic highlighting: for a complete scheme, see */
-/* http://docutils.sourceforge.net/sandbox/stylesheets/ */
-pre.code .comment, code .comment { color: #5C6576 }
-pre.code .keyword, code .keyword { color: #3B0D06; font-weight: bold }
-pre.code .literal.string, code .literal.string { color: #0C5404 }
-pre.code .name.builtin, code .name.builtin { color: #352B84 }
-pre.code .deleted, code .deleted { background-color: #DEB0A1}
-pre.code .inserted, code .inserted { background-color: #A3D289}
-
-/* Math */
-/* styled separately (see math.css for math-output=HTML) */
-
-/* Epigraph */
-/* Highlights */
-/* Pull-Quote */
-/* Compound Paragraph */
-/* Container */
-
-/* can be styled in a custom stylesheet */
-
-/* Document Header and Footer */
-
-footer, header,
-div.footer, div.header {
- font-size: smaller;
- clear: both;
- padding: 0.5em 2%;
- background-color: #ebebee;
- border: none;
-}
-
-/* Inline Markup */
-/* ============= */
-
-/* Emphasis */
-/* em */
-/* Strong Emphasis */
-/* strong */
-/* Interpreted Text */
-/* span.interpreted */
-/* Title Reference */
-/* cite */
-
-/* Inline Literals */
-/* possible values: normal, nowrap, pre, pre-wrap, pre-line */
-/* span.docutils.literal { white-space: pre-wrap; } */
-
-/* Hyperlink References */
-a { text-decoration: none; }
-
-/* External Targets */
-/* span.target.external */
-/* Internal Targets */
-/* span.target.internal */
-/* Footnote References */
-/* a.footnote-reference */
-/* Citation References */
-/* a.citation-reference */
-
-</style>
-</head>
-<body>
-<div class="document" id="polexpr-reference-documentation">
-<h1 class="title">polexpr reference documentation</h1>
-<p class="subtitle" id="id1">0.8.6 (2022/01/09)</p>
-
-<div class="section" id="introduction">
-<h1><a class="toc-backref" href="#id35">Introduction</a></h1>
-<p>This is a TeX and LaTeX macro package.</p>
+ <div class="document">
+ <div class="documentwrapper">
+ <div class="bodywrapper">
+ <div class="body" role="main">
+
+ <section id="introduction-to-polexpr">
+<h1>Introduction to polexpr</h1>
+<p><a class="reference external" href="https://www.ctan.org/pkg/polexpr">polexpr</a> is a TeX and LaTeX macro package.</p>
<p>To use it with Plain or formats other than LaTeX:</p>
-<pre class="literal-block">\input polexpr.sty</pre>
+<div class="highlight-latex notranslate"><div class="highlight"><pre><span></span><span class="k">\input</span> polexpr.sty
+</pre></div>
+</div>
<p>To use it with LaTeX:</p>
-<pre class="literal-block">\usepackage{polexpr}</pre>
-<p>The capabilities of the package are implemented via:</p>
-<ul class="simple">
-<li><p>a parser <span class="docutils literal">\poldef</span> allowing to define polynomials via the usual
-algebraic notations,</p></li>
-<li><p>many functions available for use directly in the powerful <span class="docutils literal">\poldef</span> or
-<span class="docutils literal"><span class="pre">\xintexpr/\xinteval</span></span> expandable functional syntax,</p></li>
-<li><p>and macros acting on named polynomials which may serve either as
-alternative to the functional interface or to provide further
-capabilities, such as root localization to arbitrary precision.</p></li>
-</ul>
+<div class="highlight-latex notranslate"><div class="highlight"><pre><span></span><span class="k">\usepackage</span><span class="nb">{</span>polexpr<span class="nb">}</span>
+</pre></div>
</div>
-<div class="section" id="examples-of-root-localization">
-<h1><a class="toc-backref" href="#id36">Examples of root localization</a></h1>
-<p>This legacy section has been moved to the
-<a class="reference external" href="polexpr-examples.pdf">polexpr-examples.pdf</a> document.
-To access it (if previous link does not work):</p>
-<pre class="literal-block">texdoc polexpr-examples</pre>
+<p><a class="reference external" href="https://www.ctan.org/pkg/polexpr">polexpr</a> loads <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a> and extends its syntax with a polynomial type.</p>
+<p>Polynomials are defined via the <a class="reference internal" href="polexpr-ref.html#quick"><span class="std std-ref">\poldef</span></a> parser and
+can then be manipulated via TeX macros for various operations such
+as obtaining G.C.D.s, computing derivatives, or indefinite
+integrals… many of these functionalities are available directly
+via functions in the syntax recognized by the <code class="docutils literal notranslate"><span class="pre">\poldef</span></code> parser.</p>
+<p>Apart from the final step of internally creating some TeX macros
+associated with the polynomial name, this is all done completely
+expandably, and a polynomial expression can be fetched directly to
+<code class="docutils literal notranslate"><span class="pre">\xinteval</span></code> for a completely expandable operation from start to
+finish.</p>
+<p>For polynomials fully declared via <code class="docutils literal notranslate"><span class="pre">\poldef</span></code>, root localization
+implementing the <a class="reference external" href="https://en.wikipedia.org/wiki/Sturm%27s_theorem">Sturm algorithm</a> is available via macros.
+Arbitrarily long decimal expansion of all real roots can be
+obtained, and all rational roots can be found exactly.</p>
+<p>The legacy documentation section which showed examples of root
+localization has been moved to the <a class="reference external" href="polexpr-examples.pdf">polexpr-examples.pdf</a> document, where both the TeX code and its
+output are displayed.</p>
+<p>To access this document (if the previous link for some reason does not
+work):</p>
+<div class="highlight-latex notranslate"><div class="highlight"><pre><span></span>texdoc polexpr-examples
+</pre></div>
</div>
-<div class="section" id="usage-via-xintsession">
-<h1>Usage via <a class="reference external" href="https://www.ctan.org/pkg/xintsession">xintsession</a></h1>
+<section id="usage-via-xintsession">
+<h2>Usage via <a class="reference external" href="https://www.ctan.org/pkg/xintsession">xintsession</a></h2>
<p>The simplest manner to get a feeling for the package abilities regarding
-root localization is to use it on the command line via the <a class="reference external" href="https://www.ctan.org/pkg/xintsession">xintsession</a>
-interface. Here is an example:</p>
-<pre class="literal-block">$ rlwrap etex xintsession
-[...xintsession welcome message...]
-Starting in exact mode (floating point evaluations use 16 digits)
->>> &pol
-pol mode (i.e. function definitions use \poldef)
->>> f(x) := x^7 - x^6 - 2x + 1;
-f = x^7-x^6-2*x+1
- --> &GenFloat(f) lets f become usable as function in fp mode
- --> &ROOTS(f) (resp. &ROOTS(f,N)) finds all rational roots exactly and
- all irrational roots with at least 10 (resp. N) fractional digits
->>> &ROOTS(f)
-Solving for real roots of f and assigning them (please wait...)
-(mult. 1) Rootf_1 = -1.0719678841...
-(mult. 1) Rootf_2 = 0.4962386948...
-(mult. 1) Rootf_3 = 1.3151140860...
-Square-free irrational part: x^7-x^6-2*x+1
- --> &REFINEROOTS(f,N) to extend real irr. roots to N fractional digits
->>> &REFINEROOTS(f,40)
-Refining real roots of f to 40 digits (please wait...)
-(mult. 1) Rootf_1 = -1.0719678841080266034109100331975342338141...
-(mult. 1) Rootf_2 = 0.4962386948771497344730618510143671567979...
-(mult. 1) Rootf_3 = 1.3151140860165192656960005018679846354234...</pre>
+in particularl root localization is to use it on the command line
+via the <a class="reference external" href="https://www.ctan.org/pkg/xintsession">xintsession</a> interface. Here is an example:</p>
+<div class="highlight-latex notranslate"><div class="highlight"><pre><span></span><span class="s">$</span><span class="nb"> rlwrap etex xintsession</span>
+<span class="o">[</span><span class="nb">...xintsession welcome message...</span><span class="o">]</span><span class="nb"></span>
+<span class="nb">Starting in exact mode </span><span class="o">(</span><span class="nb">floating point evaluations use </span><span class="m">16</span><span class="nb"> digits</span><span class="o">)</span><span class="nb"></span>
+<span class="nb">>>> &pol</span>
+<span class="nb">pol mode </span><span class="o">(</span><span class="nb">i.e. function definitions use </span><span class="nv">\poldef</span><span class="o">)</span><span class="nb"></span>
+<span class="nb">>>> f</span><span class="o">(</span><span class="nb">x</span><span class="o">)</span><span class="nb"> :</span><span class="o">=</span><span class="nb"> x^</span><span class="m">7</span><span class="nb"> </span><span class="o">-</span><span class="nb"> x^</span><span class="m">6</span><span class="nb"> </span><span class="o">-</span><span class="nb"> </span><span class="m">2</span><span class="nb">x </span><span class="o">+</span><span class="nb"> </span><span class="m">1</span><span class="nb">;</span>
+<span class="nb">f </span><span class="o">=</span><span class="nb"> x^</span><span class="m">7</span><span class="o">-</span><span class="nb">x^</span><span class="m">6</span><span class="o">-</span><span class="m">2</span><span class="o">*</span><span class="nb">x</span><span class="o">+</span><span class="m">1</span><span class="nb"></span>
+<span class="nb"> </span><span class="o">--</span><span class="nb">> &GenFloat</span><span class="o">(</span><span class="nb">f</span><span class="o">)</span><span class="nb"> lets f become usable as function in fp mode</span>
+<span class="nb"> </span><span class="o">--</span><span class="nb">> &ROOTS</span><span class="o">(</span><span class="nb">f</span><span class="o">)</span><span class="nb"> </span><span class="o">(</span><span class="nb">resp. &ROOTS</span><span class="o">(</span><span class="nb">f,N</span><span class="o">))</span><span class="nb"> finds all rational roots exactly and</span>
+<span class="nb"> all irrational roots with at least </span><span class="m">10</span><span class="nb"> </span><span class="o">(</span><span class="nb">resp. N</span><span class="o">)</span><span class="nb"> fractional digits</span>
+<span class="nb">>>> &ROOTS</span><span class="o">(</span><span class="nb">f</span><span class="o">)</span><span class="nb"></span>
+<span class="nb">Solving for real roots of f and assigning them </span><span class="o">(</span><span class="nb">please wait...</span><span class="o">)</span><span class="nb"></span>
+<span class="o">(</span><span class="nb">mult. </span><span class="m">1</span><span class="o">)</span><span class="nb"> Rootf_</span><span class="m">1</span><span class="nb"> </span><span class="o">=</span><span class="nb"> </span><span class="o">-</span><span class="m">1</span><span class="nb">.</span><span class="m">0719678841</span><span class="nb">...</span>
+<span class="o">(</span><span class="nb">mult. </span><span class="m">1</span><span class="o">)</span><span class="nb"> Rootf_</span><span class="m">2</span><span class="nb"> </span><span class="o">=</span><span class="nb"> </span><span class="m">0</span><span class="nb">.</span><span class="m">4962386948</span><span class="nb">...</span>
+<span class="o">(</span><span class="nb">mult. </span><span class="m">1</span><span class="o">)</span><span class="nb"> Rootf_</span><span class="m">3</span><span class="nb"> </span><span class="o">=</span><span class="nb"> </span><span class="m">1</span><span class="nb">.</span><span class="m">3151140860</span><span class="nb">...</span>
+<span class="nb">Square</span><span class="o">-</span><span class="nb">free irrational part: x^</span><span class="m">7</span><span class="o">-</span><span class="nb">x^</span><span class="m">6</span><span class="o">-</span><span class="m">2</span><span class="o">*</span><span class="nb">x</span><span class="o">+</span><span class="m">1</span><span class="nb"></span>
+<span class="nb"> </span><span class="o">--</span><span class="nb">> &REFINEROOTS</span><span class="o">(</span><span class="nb">f,N</span><span class="o">)</span><span class="nb"> to extend real irr. roots to N fractional digits</span>
+<span class="nb">>>> &REFINEROOTS</span><span class="o">(</span><span class="nb">f,</span><span class="m">40</span><span class="o">)</span><span class="nb"></span>
+<span class="nb">Refining real roots of f to </span><span class="m">40</span><span class="nb"> digits </span><span class="o">(</span><span class="nb">please wait...</span><span class="o">)</span><span class="nb"></span>
+<span class="o">(</span><span class="nb">mult. </span><span class="m">1</span><span class="o">)</span><span class="nb"> Rootf_</span><span class="m">1</span><span class="nb"> </span><span class="o">=</span><span class="nb"> </span><span class="o">-</span><span class="m">1</span><span class="nb">.</span><span class="m">0719678841080266034109100331975342338141</span><span class="nb">...</span>
+<span class="o">(</span><span class="nb">mult. </span><span class="m">1</span><span class="o">)</span><span class="nb"> Rootf_</span><span class="m">2</span><span class="nb"> </span><span class="o">=</span><span class="nb"> </span><span class="m">0</span><span class="nb">.</span><span class="m">4962386948771497344730618510143671567979</span><span class="nb">...</span>
+<span class="o">(</span><span class="nb">mult. </span><span class="m">1</span><span class="o">)</span><span class="nb"> Rootf_</span><span class="m">3</span><span class="nb"> </span><span class="o">=</span><span class="nb"> </span><span class="m">1</span><span class="nb">.</span><span class="m">3151140860165192656960005018679846354234</span><span class="nb">...</span>
+</pre></div>
+</div>
<p>The <a class="reference external" href="https://www.ctan.org/pkg/xintsession">xintsession</a> interface allows to define polynomial variables via its
-<span class="docutils literal">&pol</span> mode. It also exposes <a class="reference internal" href="#polexpr08">all polynomial functions added to the
-xintexpr syntax</a> by <span class="docutils literal">polexpr</span>. Further, as seen in the
-example above it also covers some of the <span class="docutils literal">polexpr</span> capabilities
+<code class="docutils literal notranslate"><span class="pre">&pol</span></code> mode. It also exposes <a class="reference internal" href="polexpr-ref.html#polexpr08"><span class="std std-ref">all polynomial functions added to the
+xintexpr syntax</span></a> by <code class="docutils literal notranslate"><span class="pre">polexpr</span></code>. Further, as seen in the
+example above it also covers some of the <code class="docutils literal notranslate"><span class="pre">polexpr</span></code> capabilities
currently implemented via user macros. This is to be considered a work
-in progress, the above <span class="docutils literal">&ROOTS</span> and <span class="docutils literal">&REFINEROOTS</span> may be renamed
+in progress, the above <code class="docutils literal notranslate"><span class="pre">&ROOTS</span></code> and <code class="docutils literal notranslate"><span class="pre">&REFINEROOTS</span></code> may be renamed
into something else, and may have been so already since this
documentation was written.</p>
-<p>Any input on the command line at the <a class="reference external" href="https://www.ctan.org/pkg/xintsession">xintsession</a> <span class="docutils literal">>>></span> prompt which
+<p>Any input on the command line at the <a class="reference external" href="https://www.ctan.org/pkg/xintsession">xintsession</a> <code class="docutils literal notranslate"><span class="pre">>>></span></code> prompt which
starts with a backslash is executed as TeX macros, so all macros of
-<span class="docutils literal">polexpr</span> are in fact already available, including those typesetting
+<code class="docutils literal notranslate"><span class="pre">polexpr</span></code> are in fact already available, including those typesetting
material in background of the interactive session on command line. The
-<span class="docutils literal">&ROOTS</span> and <span class="docutils literal">&REFINEROOTS</span> direct their outputs to the
+<code class="docutils literal notranslate"><span class="pre">&ROOTS</span></code> and <code class="docutils literal notranslate"><span class="pre">&REFINEROOTS</span></code> direct their outputs to the
terminal rather than to the TeX page as would the typesetting macros
-defined by <span class="docutils literal">polexpr</span> itself.</p>
-<div class="contents topic" id="contents">
-<p class="topic-title">Contents</p>
-<ul class="simple">
-<li><p><a class="reference internal" href="#introduction" id="id35">Introduction</a></p></li>
-<li><p><a class="reference internal" href="#examples-of-root-localization" id="id36">Examples of root localization</a></p></li>
-<li><p><a class="reference internal" href="#usage-via-xintsession" id="id37">Usage via xintsession</a></p></li>
-<li><p><a class="reference internal" href="#quick-syntax-overview" id="id38">Quick syntax overview</a></p></li>
-<li><p><a class="reference internal" href="#the-polexpr-0-8-extensions-to-the-xintexpr-syntax" id="id39">The polexpr <span class="docutils literal">0.8</span> extensions to the <span class="docutils literal">\xintexpr</span> syntax</a></p>
-<ul>
-<li><p><a class="reference internal" href="#warning-about-unstability-of-the-new-syntax" id="id40">Warning about unstability of the new syntax</a></p></li>
-<li><p><a class="reference internal" href="#infix-operators" id="id41">Infix operators <span class="docutils literal">+, <span class="pre">-,</span> *, /, **, ^</span></a></p></li>
-<li><p><a class="reference internal" href="#experimental-infix-operators" id="id42">Experimental infix operators <span class="docutils literal">//, /:</span></a></p></li>
-<li><p><a class="reference internal" href="#comparison-operators" id="id43">Comparison operators <span class="docutils literal"><, >, <=, >=, ==, !=</span></a></p></li>
-<li><p><a class="reference internal" href="#pol-nutple-expression" id="id44"><span class="docutils literal"><span class="pre">pol(<nutple</span> expression>)</span></a></p></li>
-<li><p><a class="reference internal" href="#lpol-nutple-expression" id="id45"><span class="docutils literal"><span class="pre">lpol(<nutple</span> expression>)</span></a></p></li>
-<li><p><a class="reference internal" href="#xinteval-pol-expr" id="id46"><span class="docutils literal"><span class="pre">\xinteval{<pol.</span> <span class="pre">expr.>}</span></span></a></p></li>
-<li><p><a class="reference internal" href="#evalp-pol-expr-pol-expr" id="id47"><span class="docutils literal"><span class="pre">evalp(<pol.</span> <span class="pre">expr.>,</span> <pol. expr>)</span></a></p></li>
-<li><p><a class="reference internal" href="#deg-pol-expr" id="id48"><span class="docutils literal"><span class="pre">deg(<pol.</span> <span class="pre">expr.>)</span></span></a></p></li>
-<li><p><a class="reference internal" href="#coeffs-pol-expr" id="id49"><span class="docutils literal"><span class="pre">coeffs(<pol.</span> <span class="pre">expr.>)</span></span></a></p></li>
-<li><p><a class="reference internal" href="#lcoeffs-pol-expr" id="id50"><span class="docutils literal"><span class="pre">lcoeffs(<pol.</span> <span class="pre">expr.>)</span></span></a></p></li>
-<li><p><a class="reference internal" href="#coeff-pol-expr-num-expr" id="id51"><span class="docutils literal"><span class="pre">coeff(<pol.</span> <span class="pre">expr.>,</span> <num. <span class="pre">expr.>)</span></span></a></p></li>
-<li><p><a class="reference internal" href="#lc-pol-expr" id="id52"><span class="docutils literal"><span class="pre">lc(<pol.</span> <span class="pre">expr.>)</span></span></a></p></li>
-<li><p><a class="reference internal" href="#monicpart-pol-expr" id="id53"><span class="docutils literal"><span class="pre">monicpart(<pol.</span> <span class="pre">expr.>)</span></span></a></p></li>
-<li><p><a class="reference internal" href="#cont-pol-expr" id="id54"><span class="docutils literal"><span class="pre">cont(<pol.</span> <span class="pre">expr.>)</span></span></a></p></li>
-<li><p><a class="reference internal" href="#primpart-pol-expr" id="id55"><span class="docutils literal"><span class="pre">primpart(<pol.</span> <span class="pre">expr.>)</span></span></a></p></li>
-<li><p><a class="reference internal" href="#quorem-pol-expr-pol-expr" id="id56"><span class="docutils literal"><span class="pre">quorem(<pol.</span> <span class="pre">expr.>,</span> <pol. <span class="pre">expr.>)</span></span></a></p></li>
-<li><p><a class="reference internal" href="#quo-pol-expr-pol-expr" id="id57"><span class="docutils literal"><span class="pre">quo(<pol.</span> <span class="pre">expr.>,</span> <pol. <span class="pre">expr.>)</span></span></a></p></li>
-<li><p><a class="reference internal" href="#rem-pol-expr-pol-expr" id="id58"><span class="docutils literal"><span class="pre">rem(<pol.</span> <span class="pre">expr.>,</span> <pol. <span class="pre">expr.>)</span></span></a></p></li>
-<li><p><a class="reference internal" href="#prem-pol-expr-1-pol-expr-2" id="id59"><span class="docutils literal"><span class="pre">prem(<pol.</span> expr. 1>, <pol. expr. 2>)</span></a></p></li>
-<li><p><a class="reference internal" href="#divmod-pol-expr-1-pol-expr-2" id="id60"><span class="docutils literal"><span class="pre">divmod(<pol.</span> expr. 1>, <pol. expr. 2>)</span></a></p></li>
-<li><p><a class="reference internal" href="#mod-pol-expr-1-pol-expr-2" id="id61"><span class="docutils literal"><span class="pre">mod(<pol.</span> expr. 1>, <pol. expr. 2>)</span></a></p></li>
-<li><p><a class="reference internal" href="#polgcd-pol-expr-1-pol-expr-2" id="id62"><span class="docutils literal"><span class="pre">polgcd(<pol.</span> expr. 1>, <pol. expr. 2>, <span class="pre">...)</span></span></a></p></li>
-<li><p><a class="reference internal" href="#resultant-pol-expr-1-pol-expr-2" id="id63"><span class="docutils literal"><span class="pre">resultant(<pol.</span> expr. 1>, <pol. expr. 2>)</span></a></p></li>
-<li><p><a class="reference internal" href="#disc-pol-expr" id="id64"><span class="docutils literal"><span class="pre">disc(<pol.</span> <span class="pre">expr.>)</span></span></a></p></li>
-<li><p><a class="reference internal" href="#polpowmod-pol-expr-1-num-expr-pol-expr-2" id="id65"><span class="docutils literal"><span class="pre">polpowmod(<pol.</span> expr. 1>, <num. <span class="pre">expr.>,</span> <pol. expr. 2>)</span></a></p></li>
-<li><p><a class="reference internal" href="#rdcoeffs-pol-expr" id="id66"><span class="docutils literal"><span class="pre">rdcoeffs(<pol.</span> <span class="pre">expr.>)</span></span></a></p></li>
-<li><p><a class="reference internal" href="#rdzcoeffs-pol-expr" id="id67"><span class="docutils literal"><span class="pre">rdzcoeffs(<pol.</span> <span class="pre">expr.>)</span></span></a></p></li>
-<li><p><a class="reference internal" href="#diff1-pol-expr" id="id68"><span class="docutils literal"><span class="pre">diff1(<pol.</span> <span class="pre">expr.>)</span></span></a></p></li>
-<li><p><a class="reference internal" href="#diff2-pol-expr" id="id69"><span class="docutils literal"><span class="pre">diff2(<pol.</span> <span class="pre">expr.>)</span></span></a></p></li>
-<li><p><a class="reference internal" href="#diffn-pol-expr-p-num-expr-n" id="id70"><span class="docutils literal"><span class="pre">diffn(<pol.</span> expr. P>, <num. expr. n>)</span></a></p></li>
-<li><p><a class="reference internal" href="#antider-pol-expr-p" id="id71"><span class="docutils literal"><span class="pre">antider(<pol.</span> expr. P>)</span></a></p></li>
-<li><p><a class="reference internal" href="#intfrom-pol-expr-p-pol-expr-c" id="id72"><span class="docutils literal"><span class="pre">intfrom(<pol.</span> expr. P>, <pol. expr. c>)</span></a></p></li>
-<li><p><a class="reference internal" href="#integral-pol-expr-p-pol-expr-a-pol-expr-b" id="id73"><span class="docutils literal"><span class="pre">integral(<pol.</span> expr. P>, [<pol. expr. a>, <pol. expr. <span class="pre">b>])</span></span></a></p></li>
-</ul>
-</li>
-<li><p><a class="reference internal" href="#non-expandable-macros" id="id74">Non-expandable macros</a></p>
-<ul>
-<li><p><a class="reference internal" href="#poldef-polname-letter-expression-using-the-letter-as-indeterminate" id="id75"><span class="docutils literal">\poldef <span class="pre">polname(letter):=</span> expression using the letter as indeterminate;</span></a></p></li>
-<li><p><a class="reference internal" href="#poldef-letter-polname-expr-using-the-letter-as-indeterminate" id="id76"><span class="docutils literal"><span class="pre">\PolDef[<letter>]{<polname>}{<expr.</span> using the letter as indeterminate>}</span></a></p></li>
-<li><p><a class="reference internal" href="#polgenfloatvariant-polname" id="id77"><span class="docutils literal"><span class="pre">\PolGenFloatVariant{<polname>}</span></span></a></p></li>
-<li><p><a class="reference internal" href="#poltypeset-pol-expr" id="id78"><span class="docutils literal"><span class="pre">\PolTypeset{<pol.</span> <span class="pre">expr.>}</span></span></a></p>
-<ul>
-<li><p><a class="reference internal" href="#poltypesetcmd-raw-coeff" id="id79"><span class="docutils literal"><span class="pre">\PolTypesetCmd{<raw_coeff>}</span></span></a></p>
-<ul>
-<li><p><a class="reference internal" href="#polifcoeffisplusorminusone-t-f" id="id80"><span class="docutils literal"><span class="pre">\PolIfCoeffIsPlusOrMinusOne{T}{F}</span></span></a></p></li>
-</ul>
-</li>
-<li><p><a class="reference internal" href="#poltypesetone-raw-coeff" id="id81"><span class="docutils literal"><span class="pre">\PolTypesetOne{<raw_coeff>}</span></span></a></p></li>
-<li><p><a class="reference internal" href="#id9" id="id82"><span class="docutils literal">\PolTypesetMonomialCmd</span></a></p></li>
-<li><p><a class="reference internal" href="#poltypesetcmdprefix-raw-coeff" id="id83"><span class="docutils literal"><span class="pre">\PolTypesetCmdPrefix{<raw_coeff>}</span></span></a></p></li>
-</ul>
-</li>
-<li><p><a class="reference internal" href="#id11" id="id84"><span class="docutils literal"><span class="pre">\PolTypeset*{<pol.</span> <span class="pre">expr.>}</span></span></a></p></li>
-<li><p><a class="reference internal" href="#non-expandable-macros-related-to-the-root-localization-routines" id="id85">Non-expandable macros related to the root localization routines</a></p>
-<ul>
-<li><p><a class="reference internal" href="#poltosturm-polname-sturmname" id="id86"><span class="docutils literal"><span class="pre">\PolToSturm{<polname>}{<sturmname>}</span></span></a></p></li>
-<li><p><a class="reference internal" href="#id13" id="id87"><span class="docutils literal"><span class="pre">\PolToSturm*{<polname>}{<sturmname>}</span></span></a></p></li>
-<li><p><a class="reference internal" href="#polsturmisolatezeros-sturmname" id="id88"><span class="docutils literal"><span class="pre">\PolSturmIsolateZeros{<sturmname>}</span></span></a></p></li>
-<li><p><a class="reference internal" href="#id15" id="id89"><span class="docutils literal"><span class="pre">\PolSturmIsolateZeros*{<sturmname>}</span></span></a></p>
-<ul>
-<li><p><a class="reference internal" href="#polsturmisolatezerosandgetmultiplicities-sturmname" id="id90"><span class="docutils literal"><span class="pre">\PolSturmIsolateZerosAndGetMultiplicities{<sturmname>}</span></span></a></p></li>
-</ul>
-</li>
-<li><p><a class="reference internal" href="#id17" id="id91"><span class="docutils literal"><span class="pre">\PolSturmIsolateZeros**{<sturmname>}</span></span></a></p>
-<ul>
-<li><p><a class="reference internal" href="#polsturmisolatezerosgetmultiplicitiesandrationalroots-sturmname" id="id92"><span class="docutils literal"><span class="pre">\PolSturmIsolateZerosGetMultiplicitiesAndRationalRoots{<sturmname>}</span></span></a></p></li>
-</ul>
-</li>
-<li><p><a class="reference internal" href="#polsturmisolatezerosandfindrationalroots-sturmname" id="id93"><span class="docutils literal"><span class="pre">\PolSturmIsolateZerosAndFindRationalRoots{<sturmname>}</span></span></a></p></li>
-<li><p><a class="reference internal" href="#polrefineinterval-sturmname-index" id="id94"><span class="docutils literal"><span class="pre">\PolRefineInterval*{<sturmname>}{<index>}</span></span></a></p></li>
-<li><p><a class="reference internal" href="#polrefineinterval-n-sturmname-index" id="id95"><span class="docutils literal"><span class="pre">\PolRefineInterval[N]{<sturmname>}{<index>}</span></span></a></p></li>
-<li><p><a class="reference internal" href="#polensureintervallength-sturmname-index-exponent" id="id96"><span class="docutils literal"><span class="pre">\PolEnsureIntervalLength{<sturmname>}{<index>}{<exponent>}</span></span></a></p></li>
-<li><p><a class="reference internal" href="#polensureintervallengths-sturmname-exponent" id="id97"><span class="docutils literal"><span class="pre">\PolEnsureIntervalLengths{<sturmname>}{<exponent>}</span></span></a></p></li>
-<li><p><a class="reference internal" href="#polprintintervals-varname-sturmname" id="id98"><span class="docutils literal"><span class="pre">\PolPrintIntervals[<varname>]{<sturmname>}</span></span></a></p>
-<ul>
-<li><p><a class="reference internal" href="#polprintintervalsnorealroots" id="id99"><span class="docutils literal">\PolPrintIntervalsNoRealRoots</span></a></p></li>
-<li><p><a class="reference internal" href="#polprintintervalsbeginenv" id="id100"><span class="docutils literal">\PolPrintIntervalsBeginEnv</span></a></p></li>
-<li><p><a class="reference internal" href="#polprintintervalsendenv" id="id101"><span class="docutils literal">\PolPrintIntervalsEndEnv</span></a></p></li>
-<li><p><a class="reference internal" href="#polprintintervalsrowseparator" id="id102"><span class="docutils literal">\PolPrintIntervalsRowSeparator</span></a></p></li>
-<li><p><a class="reference internal" href="#polprintintervalsknownroot" id="id103"><span class="docutils literal">\PolPrintIntervalsKnownRoot</span></a></p></li>
-<li><p><a class="reference internal" href="#polprintintervalsunknownroot" id="id104"><span class="docutils literal">\PolPrintIntervalsUnknownRoot</span></a></p></li>
-<li><p><a class="reference internal" href="#id18" id="id105"><span class="docutils literal">\PolPrintIntervalsPrintExactZero</span></a></p></li>
-<li><p><a class="reference internal" href="#id19" id="id106"><span class="docutils literal">\PolPrintIntervalsPrintLeftEndPoint</span></a></p></li>
-<li><p><a class="reference internal" href="#id20" id="id107"><span class="docutils literal">\PolPrintIntervalsPrintRightEndPoint</span></a></p></li>
-</ul>
-</li>
-<li><p><a class="reference internal" href="#id22" id="id108"><span class="docutils literal"><span class="pre">\PolPrintIntervals*[<varname>]{<sturmname>}</span></span></a></p>
-<ul>
-<li><p><a class="reference internal" href="#polprintintervalsprintmultiplicity" id="id109"><span class="docutils literal">\PolPrintIntervalsPrintMultiplicity</span></a></p></li>
-</ul>
-</li>
-<li><p><a class="reference internal" href="#polsettosturmchainsignchangesat-foo-sturmname-value" id="id110"><span class="docutils literal"><span class="pre">\PolSetToSturmChainSignChangesAt{\foo}{<sturmname>}{<value>}</span></span></a></p></li>
-<li><p><a class="reference internal" href="#polsettonbofzeroswithin-foo-sturmname-value-left-value-right" id="id111"><span class="docutils literal"><span class="pre">\PolSetToNbOfZerosWithin{\foo}{<sturmname>}{<value_left>}{<value_right>}</span></span></a></p></li>
-</ul>
-</li>
-<li><p><a class="reference internal" href="#pollet-polname-2-polname-1" id="id112"><span class="docutils literal"><span class="pre">\PolLet{<polname_2>}={<polname_1>}</span></span></a></p></li>
-<li><p><a class="reference internal" href="#polgloballet-polname-2-polname-1" id="id113"><span class="docutils literal"><span class="pre">\PolGlobalLet{<polname_2>}={<polname_1>}</span></span></a></p></li>
-<li><p><a class="reference internal" href="#polassign-polname-toarray-macro" id="id114"><span class="docutils literal"><span class="pre">\PolAssign{<polname>}\toarray\macro</span></span></a></p></li>
-<li><p><a class="reference internal" href="#polget-polname-fromarray-macro" id="id115"><span class="docutils literal"><span class="pre">\PolGet{<polname>}\fromarray\macro</span></span></a></p></li>
-<li><p><a class="reference internal" href="#polfromcsv-polname-csv" id="id116"><span class="docutils literal"><span class="pre">\PolFromCSV{<polname>}{<csv>}</span></span></a></p></li>
-<li><p><a class="reference internal" href="#polmapcoeffs-macro-polname" id="id117"><span class="docutils literal"><span class="pre">\PolMapCoeffs{\macro}{<polname>}</span></span></a></p></li>
-<li><p><a class="reference internal" href="#polreducecoeffs-polname" id="id118"><span class="docutils literal"><span class="pre">\PolReduceCoeffs{<polname>}</span></span></a></p></li>
-<li><p><a class="reference internal" href="#id24" id="id119"><span class="docutils literal"><span class="pre">\PolReduceCoeffs*{<polname>}</span></span></a></p></li>
-<li><p><a class="reference internal" href="#polmakemonic-polname" id="id120"><span class="docutils literal"><span class="pre">\PolMakeMonic{<polname>}</span></span></a></p></li>
-<li><p><a class="reference internal" href="#polmakeprimitive-polname" id="id121"><span class="docutils literal"><span class="pre">\PolMakePrimitive{<polname>}</span></span></a></p></li>
-<li><p><a class="reference internal" href="#poldiff-polname-1-polname-2" id="id122"><span class="docutils literal"><span class="pre">\PolDiff{<polname_1>}{<polname_2>}</span></span></a></p></li>
-<li><p><a class="reference internal" href="#poldiff-n-polname-1-polname-2" id="id123"><span class="docutils literal"><span class="pre">\PolDiff[N]{<polname_1>}{<polname_2>}</span></span></a></p></li>
-<li><p><a class="reference internal" href="#polantidiff-polname-1-polname-2" id="id124"><span class="docutils literal"><span class="pre">\PolAntiDiff{<polname_1>}{<polname_2>}</span></span></a></p></li>
-<li><p><a class="reference internal" href="#polantidiff-n-polname-1-polname-2" id="id125"><span class="docutils literal"><span class="pre">\PolAntiDiff[N]{<polname_1>}{<polname_2>}</span></span></a></p></li>
-<li><p><a class="reference internal" href="#poldivide-polname-1-polname-2-polname-q-polname-r" id="id126"><span class="docutils literal"><span class="pre">\PolDivide{<polname_1>}{<polname_2>}{<polname_Q>}{<polname_R>}</span></span></a></p></li>
-<li><p><a class="reference internal" href="#polquo-polname-1-polname-2-polname-q" id="id127"><span class="docutils literal"><span class="pre">\PolQuo{<polname_1>}{<polname_2>}{<polname_Q>}</span></span></a></p></li>
-<li><p><a class="reference internal" href="#polrem-polname-1-polname-2-polname-r" id="id128"><span class="docutils literal"><span class="pre">\PolRem{<polname_1>}{<polname_2>}{<polname_R>}</span></span></a></p></li>
-<li><p><a class="reference internal" href="#polgcd-polname-1-polname-2-polname-gcd" id="id129"><span class="docutils literal"><span class="pre">\PolGCD{<polname_1>}{<polname_2>}{<polname_GCD>}</span></span></a></p></li>
-</ul>
-</li>
-<li><p><a class="reference internal" href="#expandable-macros" id="id130">Expandable macros</a></p>
-<ul>
-<li><p><a class="reference internal" href="#poltoexpr-pol-expr" id="id131"><span class="docutils literal"><span class="pre">\PolToExpr{<pol.</span> <span class="pre">expr.>}</span></span></a></p>
-<ul>
-<li><p><a class="reference internal" href="#id27" id="id132"><span class="docutils literal">\PolToExprVar</span></a></p></li>
-<li><p><a class="reference internal" href="#poltoexprinvar" id="id133"><span class="docutils literal">\PolToExprInVar</span></a></p></li>
-<li><p><a class="reference internal" href="#id28" id="id134"><span class="docutils literal">\PolToExprTimes</span></a></p></li>
-<li><p><a class="reference internal" href="#poltoexprcaret" id="id135"><span class="docutils literal">\PolToExprCaret</span></a></p></li>
-<li><p><a class="reference internal" href="#poltoexprcmd-raw-coeff" id="id136"><span class="docutils literal"><span class="pre">\PolToExprCmd{<raw_coeff>}</span></span></a></p></li>
-<li><p><a class="reference internal" href="#poltoexproneterm-raw-coeff-exponent" id="id137"><span class="docutils literal"><span class="pre">\PolToExprOneTerm{<raw_coeff>}{<exponent>}</span></span></a></p></li>
-<li><p><a class="reference internal" href="#poltoexpronetermstylea-raw-coeff-exponent" id="id138"><span class="docutils literal"><span class="pre">\PolToExprOneTermStyleA{<raw_coeff>}{<exponent>}</span></span></a></p></li>
-<li><p><a class="reference internal" href="#poltoexpronetermstyleb-raw-coeff-exponent" id="id139"><span class="docutils literal"><span class="pre">\PolToExprOneTermStyleB{<raw_coeff>}{<exponent>}</span></span></a></p></li>
-<li><p><a class="reference internal" href="#poltoexprtermprefix-raw-coeff" id="id140"><span class="docutils literal"><span class="pre">\PolToExprTermPrefix{<raw_coeff>}</span></span></a></p></li>
-</ul>
-</li>
-<li><p><a class="reference internal" href="#poltofloatexpr-pol-expr" id="id141"><span class="docutils literal"><span class="pre">\PolToFloatExpr{<pol.</span> <span class="pre">expr.>}</span></span></a></p>
-<ul>
-<li><p><a class="reference internal" href="#poltofloatexproneterm-raw-coeff-exponent" id="id142"><span class="docutils literal"><span class="pre">\PolToFloatExprOneTerm{<raw_coeff>}{<exponent>}</span></span></a></p></li>
-<li><p><a class="reference internal" href="#poltofloatexprcmd-raw-coeff" id="id143"><span class="docutils literal"><span class="pre">\PolToFloatExprCmd{<raw_coeff>}</span></span></a></p></li>
-</ul>
-</li>
-<li><p><a class="reference internal" href="#id30" id="id144"><span class="docutils literal"><span class="pre">\PolToExpr*{<pol.</span> <span class="pre">expr.>}</span></span></a></p></li>
-<li><p><a class="reference internal" href="#id32" id="id145"><span class="docutils literal"><span class="pre">\PolToFloatExpr*{<pol.</span> <span class="pre">expr.>}</span></span></a></p></li>
-<li><p><a class="reference internal" href="#polnthcoeff-polname-index" id="id146"><span class="docutils literal"><span class="pre">\PolNthCoeff{<polname>}{<index>}</span></span></a></p></li>
-<li><p><a class="reference internal" href="#polleadingcoeff-polname" id="id147"><span class="docutils literal"><span class="pre">\PolLeadingCoeff{<polname>}</span></span></a></p></li>
-<li><p><a class="reference internal" href="#poldegree-polname" id="id148"><span class="docutils literal"><span class="pre">\PolDegree{<polname>}</span></span></a></p></li>
-<li><p><a class="reference internal" href="#policontent-polname" id="id149"><span class="docutils literal"><span class="pre">\PolIContent{<polname>}</span></span></a></p></li>
-<li><p><a class="reference internal" href="#poltolist-polname" id="id150"><span class="docutils literal"><span class="pre">\PolToList{<polname>}</span></span></a></p></li>
-<li><p><a class="reference internal" href="#poltocsv-polname" id="id151"><span class="docutils literal"><span class="pre">\PolToCSV{<polname>}</span></span></a></p></li>
-<li><p><a class="reference internal" href="#poleval-polname-atexpr-num-expr" id="id152"><span class="docutils literal"><span class="pre">\PolEval{<polname>}\AtExpr{<num.</span> <span class="pre">expr.>}</span></span></a></p></li>
-<li><p><a class="reference internal" href="#poleval-polname-at-value" id="id153"><span class="docutils literal"><span class="pre">\PolEval{<polname>}\At{<value>}</span></span></a></p></li>
-<li><p><a class="reference internal" href="#polevalreduced-polname-atexpr-num-expr" id="id154"><span class="docutils literal"><span class="pre">\PolEvalReduced{<polname>}\AtExpr{<num.</span> <span class="pre">expr.>}</span></span></a></p></li>
-<li><p><a class="reference internal" href="#polevalreduced-polname-at-value" id="id155"><span class="docutils literal"><span class="pre">\PolEvalReduced{<polname>}\At{<value>}</span></span></a></p></li>
-<li><p><a class="reference internal" href="#polfloateval-polname-atexpr-num-expr" id="id156"><span class="docutils literal"><span class="pre">\PolFloatEval{<polname>}\AtExpr{<num.</span> <span class="pre">expr.>}</span></span></a></p></li>
-<li><p><a class="reference internal" href="#polfloateval-polname-at-value" id="id157"><span class="docutils literal"><span class="pre">\PolFloatEval{<polname>}\At{<value>}</span></span></a></p></li>
-<li><p><a class="reference internal" href="#expandable-macros-related-to-the-root-localization-routines" id="id158">Expandable macros related to the root localization routines</a></p>
-<ul>
-<li><p><a class="reference internal" href="#polsturmchainlength-sturmname" id="id159"><span class="docutils literal"><span class="pre">\PolSturmChainLength{<sturmname>}</span></span></a></p></li>
-<li><p><a class="reference internal" href="#polsturmifzeroexactlyknown-sturmname-index-t-f" id="id160"><span class="docutils literal"><span class="pre">\PolSturmIfZeroExactlyKnown{<sturmname>}{<index>}{T}{F}</span></span></a></p></li>
-<li><p><a class="reference internal" href="#polsturmisolatedzeroleft-sturmname-index" id="id161"><span class="docutils literal"><span class="pre">\PolSturmIsolatedZeroLeft{<sturmname>}{<index>}</span></span></a></p></li>
-<li><p><a class="reference internal" href="#polsturmisolatedzeroright-sturmname-index" id="id162"><span class="docutils literal"><span class="pre">\PolSturmIsolatedZeroRight{<sturmname>}{<index>}</span></span></a></p></li>
-<li><p><a class="reference internal" href="#polsturmisolatedzeromultiplicity-sturmname-index" id="id163"><span class="docutils literal"><span class="pre">\PolSturmIsolatedZeroMultiplicity{<sturmname>}{<index>}</span></span></a></p></li>
-<li><p><a class="reference internal" href="#polsturmnbofisolatedzeros-sturmname" id="id164"><span class="docutils literal"><span class="pre">\PolSturmNbOfIsolatedZeros{<sturmname>}</span></span></a></p></li>
-<li><p><a class="reference internal" href="#polsturmnbofrootsof-sturmname-lessthanorequalto-value" id="id165"><span class="docutils literal"><span class="pre">\PolSturmNbOfRootsOf{<sturmname>}\LessThanOrEqualTo{<value>}</span></span></a></p></li>
-<li><p><a class="reference internal" href="#polsturmnbofrootsof-sturmname-lessthanorequaltoexpr-num-expr" id="id166"><span class="docutils literal"><span class="pre">\PolSturmNbOfRootsOf{<sturmname>}\LessThanOrEqualToExpr{<num.</span> <span class="pre">expr.>}</span></span></a></p></li>
-<li><p><a class="reference internal" href="#polsturmnbwithmultofrootsof-sturmname-lessthanorequalto-value" id="id167"><span class="docutils literal"><span class="pre">\PolSturmNbWithMultOfRootsOf{<sturmname>}\LessThanOrEqualTo{<value>}</span></span></a></p></li>
-<li><p><a class="reference internal" href="#polsturmnbwithmultofrootsof-sturmname-lessthanorequaltoexpr-num-expr" id="id168"><span class="docutils literal"><span class="pre">\PolSturmNbWithMultOfRootsOf{<sturmname>}\LessThanOrEqualToExpr{<num.</span> <span class="pre">expr.>}</span></span></a></p></li>
-<li><p><a class="reference internal" href="#polsturmnbofrationalroots-sturmname" id="id169"><span class="docutils literal"><span class="pre">\PolSturmNbOfRationalRoots{<sturmname>}</span></span></a></p></li>
-<li><p><a class="reference internal" href="#polsturmnbofrationalrootswithmultiplicities-sturmname" id="id170"><span class="docutils literal"><span class="pre">\PolSturmNbOfRationalRootsWithMultiplicities{<sturmname>}</span></span></a></p></li>
-<li><p><a class="reference internal" href="#polsturmrationalroot-sturmname-k" id="id171"><span class="docutils literal"><span class="pre">\PolSturmRationalRoot{<sturmname>}{<k>}</span></span></a></p></li>
-<li><p><a class="reference internal" href="#polsturmrationalrootindex-sturmname-k" id="id172"><span class="docutils literal"><span class="pre">\PolSturmRationalRootIndex{<sturmname>}{<k>}</span></span></a></p></li>
-<li><p><a class="reference internal" href="#polsturmrationalrootmultiplicity-sturmname-k" id="id173"><span class="docutils literal"><span class="pre">\PolSturmRationalRootMultiplicity{<sturmname>}{<k>}</span></span></a></p></li>
-<li><p><a class="reference internal" href="#polintervalwidth-sturmname-index" id="id174"><span class="docutils literal"><span class="pre">\PolIntervalWidth{<sturmname>}{<index>}</span></span></a></p></li>
-<li><p><a class="reference internal" href="#expandable-macros-for-use-within-execution-of-polprintintervals" id="id175">Expandable macros for use within execution of <span class="docutils literal">\PolPrintIntervals</span></a></p></li>
-<li><p><a class="reference internal" href="#polprintintervalsthevar" id="id176"><span class="docutils literal">\PolPrintIntervalsTheVar</span></a></p></li>
-<li><p><a class="reference internal" href="#polprintintervalstheindex" id="id177"><span class="docutils literal">\PolPrintIntervalsTheIndex</span></a></p></li>
-<li><p><a class="reference internal" href="#polprintintervalsthesturmname" id="id178"><span class="docutils literal">\PolPrintIntervalsTheSturmName</span></a></p></li>
-<li><p><a class="reference internal" href="#polprintintervalstheleftendpoint" id="id179"><span class="docutils literal">\PolPrintIntervalsTheLeftEndPoint</span></a></p></li>
-<li><p><a class="reference internal" href="#polprintintervalstherightendpoint" id="id180"><span class="docutils literal">\PolPrintIntervalsTheRightEndPoint</span></a></p></li>
-<li><p><a class="reference internal" href="#polprintintervalsthemultiplicity" id="id181"><span class="docutils literal">\PolPrintIntervalsTheMultiplicity</span></a></p></li>
-</ul>
-</li>
-</ul>
-</li>
-<li><p><a class="reference internal" href="#booleans-with-default-setting-as-indicated" id="id182">Booleans (with default setting as indicated)</a></p>
-<ul>
-<li><p><a class="reference internal" href="#xintverbosefalse" id="id183"><span class="docutils literal">\xintverbosefalse</span></a></p></li>
-<li><p><a class="reference internal" href="#polnewpolverbosefalse" id="id184"><span class="docutils literal">\polnewpolverbosefalse</span></a></p></li>
-<li><p><a class="reference internal" href="#poltypesetallfalse" id="id185"><span class="docutils literal">\poltypesetallfalse</span></a></p></li>
-<li><p><a class="reference internal" href="#poltoexprallfalse" id="id186"><span class="docutils literal">\poltoexprallfalse</span></a></p></li>
-</ul>
-</li>
-<li><p><a class="reference internal" href="#utilies" id="id187">Utilies</a></p>
-<ul>
-<li><p><a class="reference internal" href="#poldectostring-decimal-number" id="id188"><span class="docutils literal">\PolDecToString{decimal number}</span></a></p></li>
-<li><p><a class="reference internal" href="#polexprsetup" id="id189"><span class="docutils literal">\polexprsetup</span></a></p></li>
-</ul>
-</li>
-<li><p><a class="reference internal" href="#technicalities" id="id190">Technicalities</a></p></li>
-<li><p><a class="reference internal" href="#change-log" id="id191">CHANGE LOG</a></p></li>
-<li><p><a class="reference internal" href="#acknowledgments" id="id192">Acknowledgments</a></p></li>
-</ul>
+defined by <code class="docutils literal notranslate"><span class="pre">polexpr</span></code> itself.</p>
+</section>
+<section id="license-is-lppl-1-3c">
+<h2>License is LPPL 1.3c</h2>
+<p>This work is distributed under the conditions of the
+LaTeX Project Public License version 1.3c.</p>
+<p>See README.md for details.</p>
+</section>
+<section id="in-memoriam-jurgen-gilg-1967-2022">
+<h2>In memoriam: Jürgen Gilg (1967-2022)</h2>
+<p>My first contact with Jürgen was in January 2018, and his <em>little
+question</em> about usage of <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a> for differentiating polynomials
+proved the direct cause for the <a class="reference internal" href="polexpr-changes.html#firstrelease"><span class="std std-ref">creation of polexpr</span></a>. His regular comments and questions (often, jointly
+with Thomas Söll) largely contributed to motivate the author into
+investing time and effort into the somewhat strange occupation of
+developing such unusual TeX/LaTeX packages. The topics of our
+discussions evolved over the years and were not limited to TeX, LaTeX,
+PSTricks or PostScript matters.</p>
+<p>I learned to discover and appreciate his unassuming and kind character.
+He was very conscientious in all his projects with others and was often
+overly generous in his appreciation of people’s contributions. On
+receiving the sad news of his unexpected and untimely death, I initially
+thought I had been knowing him for at least 10 years, but it is actually
+only a bit more than 4 years… I will sorely miss this friendship with
+a gentle soul from <em>over the Rhine</em>.</p>
+<p>I dedicate the work which has gone into <a class="reference external" href="https://www.ctan.org/pkg/polexpr">polexpr</a> to Jürgen’s memory.</p>
+<div class="toctree-wrapper compound">
</div>
-</div>
-<div class="section" id="quick-syntax-overview">
-<h1><a class="toc-backref" href="#id38">Quick syntax overview</a></h1>
-<p>The syntax to define a new polynomial is:</p>
-<pre class="literal-block">\poldef polname(x):= expression in variable x;</pre>
-<p>The package is focused on exact computations, so this expression will be
-parsed by the services of <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a> and accept arbitrarily big integers
-or fractions.</p>
-<p>If you are interested into numerical evaluations, for example for
-plotting, it is advisable to use the <span class="docutils literal"><span class="pre">\xintfloatexpr/\xintfloateval</span></span>
-context, as exact evaluations will quickly lead to manipulating numbers
-with dozens of digits (when the number of digits exceeds five hundreds,
-computation with <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a> will become noticeably too slow, if many
-evaluations need to be done). For the polynomial to be usable as a function in
-floating point context, an extra step beyond <span class="docutils literal">\poldef</span> is required:
-see <a class="reference internal" href="#polgenfloatvariant">\PolGenFloatVariant</a>.</p>
-<p>As a rule, the functionalities such as getting the degree, or getting
-one coefficient, or taking derivatives, etc..., i.e. anything which
-handles the polynomial as an entity and not only as a numerical
-function, are only available in the <span class="docutils literal"><span class="pre">\poldef/\xintexpr/\xinteval</span></span>
-context. The <a class="reference internal" href="#polgenfloatvariant">\PolGenFloatVariant</a> must be used each time the
-polynomial gets modified or a new polynomial created out of it, if
-continuing computations in <span class="docutils literal">\xintfloatexpr</span> are to follow. But (see
-<a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a> documentation) one can always use a sub-expression such as
-<span class="docutils literal">\xintexpr <span class="pre">deg(P)\relax</span></span> as sub-component inside a
-<span class="docutils literal"><span class="pre">\xintfloatexpr/\xintfloateval</span></span>.</p>
-<p>Conversely if perhaps the coefficients of your polynomial have become
-too gigantic and you would like to replace them with some approximation
-to keep on working in <span class="docutils literal">\xinteval</span>, not necessarily <span class="docutils literal">\xintfloateval</span>,
-see <a class="reference internal" href="#polmapcoeffs">\PolMapCoeffs</a> which can be used for example with <span class="docutils literal">\xintFloat</span>
-macro to make the float-rounding applied to the exact coefficients.</p>
+</section>
+</section>
+
+
+ <div class="clearer"></div>
+ </div>
+ </div>
+ </div>
+ <div class="sphinxsidebar" role="navigation" aria-label="main navigation">
+ <div class="sphinxsidebarwrapper"><h3>Contents of this page</h3>
<ul>
-<li><p>In place of <span class="docutils literal">x</span> an arbitrary <em>dummy variable</em> is authorized,
-i.e. per default one <span class="docutils literal">a, .., z, A, .., Z</span> (more letters can be declared
-under Unicode engines).</p></li>
-<li><p><span class="docutils literal">polname</span> consists of letters, digits, and the <span class="docutils literal">_</span> and <span class="docutils literal">'</span>
-characters. It <strong>must</strong> start with a letter: do not use the
-underscore <span class="docutils literal">_</span> as <em>first character</em> of a polynomial name (even
-if of catcode letter). No warning is emitted but dire consequences
-will result.</p>
-<div class="admonition hint">
-<p class="admonition-title">Hint</p>
-<p>The <span class="docutils literal">@</span> is usable too, independently of whether it is of catcode
-letter or other. This has always been the case, but was not
-documented by polexpr prior to <span class="docutils literal">0.8</span>, as the author has never
-found the time to provide some official guidelines on how to name
-temporary variables and the <span class="docutils literal">@</span> is used already as such internally
-to package; time has still not yet been found for <span class="docutils literal">0.8</span> to review
-the situation but it seems reasonable to recommend at any rate to
-restrict usage of <span class="docutils literal">@</span> to scratch variables of defined macros and
-to avoid using it to name document variable.</p>
-</div>
-</li>
-<li><p>The colon before the equality sign is optional and its (reasonable)
-catcode does not matter.</p></li>
-<li><p>The semi-colon at the end of the expression is mandatory. Some
-contexts (such as (pdf)LaTeX with babel+frenchb) modify its catcode.
-If at top level, <span class="docutils literal">\poldef</span> resets temporarily the semi-colon catcode
-before fetching the expression, so is immune to this. There is also
-naturally no problem either if <span class="docutils literal">\poldef</span> is used in the replacement
-text of some other macro which is defined at a time the <span class="docutils literal">;</span> has its
-standard catcode, as is the case in LaTeX in the document preamble,
-even with babel+french loaded.</p>
-<p>The semi-colon intervenes in certain <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a> syntax elements, within
-parentheses. This (except if the inner semi-colons are hidden within
-braces: <span class="docutils literal">{;}</span>) will break <span class="docutils literal">\poldef</span> which, contrarily to
-<a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a>'s <span class="docutils literal">\xintdefvar</span>, does not balance parentheses when
-fetching the semi-colon delimited polynomial expression.</p>
-</li>
+<li><a class="reference internal" href="#">Introduction to polexpr</a><ul>
+<li><a class="reference internal" href="#usage-via-xintsession">Usage via xintsession</a></li>
+<li><a class="reference internal" href="#license-is-lppl-1-3c">License is LPPL 1.3c</a></li>
+<li><a class="reference internal" href="#in-memoriam-jurgen-gilg-1967-2022">In memoriam: Jürgen Gilg (1967-2022)</a></li>
</ul>
-<p>Problems with the semi-colon are avoided via an alternative syntax:</p>
-<pre class="literal-block">\PolDef[optional letter]{<polname>}{<expr. using letter as indeterminate>}</pre>
-<p>The <span class="docutils literal">\PolDef</span> optional first argument defaults to <span class="docutils literal">x</span> and must be
-used as the indeterminate in the expression.</p>
-<p><span class="docutils literal">\poldef <span class="pre">f(x):=</span> 1 - x + quo(x^5,1 - x + x^2);</span></p>
-<dl>
-<dt><span class="docutils literal"><span class="pre">\PolDef{f}{1</span> - x + quo(x^5,1 - x + x^2)}</span></dt>
-<dd><p>Both parse the polynomial
-expression, and convert it internally (currently) to the list
-of its coefficients from the constant term to the highest degree
-term.</p>
-<p>The polynomial can then be used in further polynomial definitions or
-serve as argument to package macros, or as a variable in various
-functions which will be <a class="reference internal" href="#polexpr08">described later</a>.</p>
-</dd>
-</dl>
-<div class="admonition important">
-<p class="admonition-title">Important</p>
-<p>Euclidean quotient is mapped to the function <span class="docutils literal">quo()</span> (as shown
-in the example above), but
-for backwards compatibility one can currently still use the <span class="docutils literal">/</span>
-infix operator:</p>
-<pre class="literal-block">\poldef f(x):= 1 - x + x^5/(1 - x + x^2);</pre>
-<p>Due to precedence rules the first operand is <span class="docutils literal">x^5</span>, not of course
-<span class="docutils literal"><span class="pre">1-x+x^5</span></span>.</p>
-<p>Note that <span class="docutils literal"><span class="pre">(1-x^2)/(1-x)</span></span> produces <span class="docutils literal">1+x</span>
-but <span class="docutils literal"><span class="pre">(1/(1-x))*(1-x^2)</span></span> produces zero! One also has to be aware
-of some precedence rules, for example:</p>
-<pre class="literal-block">\poldef k(x):= (x-1)(x-2)(x-3)(x-4)/(x^2-5x+4);</pre>
-<p>does compute a degree 2 polynomial because the tacit multiplication
-ties more than the division operator.</p>
-<p>In short, it is safer to use the <span class="docutils literal">quo()</span> function which avoids
-surprises.</p>
-</div>
-<div class="admonition attention" id="warningtacit">
-<p class="admonition-title">Attention!</p>
-<p>Tacit multiplication means that
-<span class="docutils literal">1/2 x^2</span> skips the space and is treated like <span class="docutils literal"><span class="pre">1/(2*x^2)</span></span>.
-But then it gives zero!</p>
-<p>Thus one must use <span class="docutils literal">(1/2)x^2</span> or <span class="docutils literal">1/2*x^2</span> or
-<span class="docutils literal"><span class="pre">(1/2)*x^2</span></span> for disambiguation: <span class="docutils literal">x - 1/2*x^2 + <span class="pre">1/3*x^3...</span></span>. It is
-simpler to move the denominator to the right: <span class="docutils literal">x - x^2/2 + x^3/3 - ...</span>.</p>
-<p>It is worth noting that <span class="docutils literal"><span class="pre">1/2(x-1)(x-2)</span></span> suffers the same issue:
-<a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a>'s tacit multiplication always "ties more", hence this
-gets interpreted as <span class="docutils literal"><span class="pre">1/(2*(x-1)*(x-2))</span></span> which gives zero by
-polynomial division. Thus, use in such cases one of
-<span class="docutils literal"><span class="pre">(1/2)(x-1)(x-2)</span></span>, <span class="docutils literal"><span class="pre">1/2*(x-1)(x-2)</span></span> or <span class="docutils literal"><span class="pre">(x-1)(x-2)/2</span></span>.</p>
-</div>
-<div class="admonition warning">
-<p class="admonition-title">Warning</p>
-<p>The package does not currently know rational functions, but in order
-to leave open this as a future possibility, the usage of <span class="docutils literal">/</span> to stand
-for the
-euclidean quotient is <strong>deprecated</strong>.</p>
-<p>Please start using rather the <span class="docutils literal">quo()</span> function. It is possible
-that in a future major release <span class="docutils literal">A/B</span> with <span class="docutils literal">B</span> a non-scalar will
-raise an error. Or, who knows, rational functions will be
-implemented sometime during the next decades, and then <span class="docutils literal">A/B</span> will
-naturally be the rational function.</p>
-</div>
-<div class="admonition important">
-<p class="admonition-title">Important</p>
-<p><span class="docutils literal">\poldef <span class="pre">P(x):=...;</span></span> defines <span class="docutils literal">P</span> both as a <em>function</em>,
-to be used as:</p>
-<pre class="literal-block">P(..numeric or even polynomial expression..)</pre>
-<p>and as a <em>variable</em> which can used inside polynomial expressions or
-as argument to some polynomial specific functions such as <span class="docutils literal">deg()</span>
-or <span class="docutils literal">polgcd()</span> <a class="footnote-reference brackets" href="#id3" id="id2">1</a>.</p>
-<dl class="footnote brackets">
-<dt class="label" id="id3"><span class="brackets"><a class="fn-backref" href="#id2">1</a></span></dt>
-<dd><p>Functional syntax accepts expressions as arguments; but the
-TeX <strong>macros</strong> described in the documentation, even the
-expandable ones, work only (there are a few exceptions to the
-general rule) with arguments being <em>names of declared
-polynomials</em>.</p>
-</dd>
-</dl>
-<p>One needs to have a clear understanding of the difference between
-<span class="docutils literal">P</span> used a function and <span class="docutils literal">P</span> used as a variable: if <span class="docutils literal">P</span> and
-<span class="docutils literal">Q</span> are both declared polynomials then:</p>
-<pre class="literal-block">(P+Q)(3)% <--- attention!</pre>
-<p>is currently evaluated as <span class="docutils literal"><span class="pre">(P+Q)*3</span></span>, because <span class="docutils literal">P+Q</span> is not known
-as a <em>function</em>, but <em>only as a variable of polynomial type</em>.
-Even worse:</p>
-<pre class="literal-block">(P)(3)% <--- attention!</pre>
-<p>will compute <span class="docutils literal">P*3</span>, because one can not in current <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a> syntax
-enclose a function name in parentheses: consequently it is the variable
-which is used here. There is a <em>meager possibility</em> that in future
-some internal changes to <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a> would let <span class="docutils literal"><span class="pre">(P)(3)</span></span> actually
-compute <span class="docutils literal">P(3)</span> and <span class="docutils literal"><span class="pre">(P+Q)(3)</span></span> compute <span class="docutils literal">P(3) + Q(3)</span>, but note
-that <span class="docutils literal"><span class="pre">(P)(P)</span></span> will then do <span class="docutils literal">P(P)</span> and not <span class="docutils literal">P*P</span>,
-the latter, current interpretation, looking more
-intuitive. Anyway, do not rely too extensively on tacit <span class="docutils literal">*</span> and use
-explicit <span class="docutils literal"><span class="pre">(P+Q)*(1+2)</span></span> if this is what is intended.</p>
-<p>As an alternative to explicit <span class="docutils literal"><span class="pre">P(3)+Q(3)</span></span> there is <span class="docutils literal">evalp(P+Q,3)</span>.</p>
-</div>
-<dl>
-<dt><span class="docutils literal"><span class="pre">\PolLet{g}={f}</span></span></dt>
-<dd><p>saves a copy of <span class="docutils literal">f</span> under name <span class="docutils literal">g</span>. Also usable without <span class="docutils literal">=</span>.</p>
-<p>Has exactly the same effect as <span class="docutils literal">\poldef <span class="pre">g(x):=f;</span></span> or <span class="docutils literal">\poldef <span class="pre">g(w):=f(w);</span></span>.</p>
-</dd>
-<dt><span class="docutils literal">\poldef <span class="pre">f(z):=</span> f^2;</span></dt>
-<dd><p>redefines <span class="docutils literal">f</span> in terms of itself. Prior to <span class="docutils literal">0.8</span> one needed
-the right hand side to be <span class="docutils literal"><span class="pre">f(z)^2</span></span>. Also, now <span class="docutils literal">sqr(f)</span> is
-possible (also <span class="docutils literal">sqr(f(x))</span> but not <span class="docutils literal"><span class="pre">sqr(f)(x)</span></span>).</p>
-<p>It may look strange that an indeterminate variable is used on
-left-hand-side even though it may be absent of right-hand-side, as
-it seems to define <span class="docutils literal">f</span> always as a polynomial function.</p>
-<p>This is a legacy of pre-<span class="docutils literal">0.8</span> context.</p>
-</dd>
-</dl>
-<div class="admonition important">
-<p class="admonition-title">Important</p>
-<p>Note that <span class="docutils literal">f^2(z)</span> or <span class="docutils literal"><span class="pre">sqr(f)(z)</span></span> will give a logical but
-perhaps unexpected result: first <span class="docutils literal">f^2</span> is computed, then the
-opening parenthesis is seen which inserts a tacit multiplication
-<span class="docutils literal">*</span>, so in the end it is as if the input had been <span class="docutils literal">f^2 * z</span>.
-Although <span class="docutils literal">f</span> is both a variable and a function, <span class="docutils literal">f^2</span> is
-computed as a polynomial <em>variable</em> and ceases being a function.</p>
-</div>
-<dl>
-<dt><span class="docutils literal">\poldef <span class="pre">f(T):=</span> f(f);</span></dt>
-<dd><p>again modifies <span class="docutils literal">f</span>. Here it is used both as variable and as
-a function. Prior to <span class="docutils literal">0.8</span> it needed to be <span class="docutils literal">f(f(T))</span>.</p>
-</dd>
-<dt><span class="docutils literal">\poldef <span class="pre">k(z):=</span> <span class="pre">f-g(g^2)^2;</span></span></dt>
-<dd><p>if everybody followed, this should now define the zero polynomial...
-And <span class="docutils literal"><span class="pre">f-sqr(g(sqr(g)))</span></span> computes the same thing.</p>
-<p>We can check this in a typeset document like this:</p>
-<pre class="literal-block">\poldef f(x):= 1 - x + quo(x^5,1 - x + x^2);%
-\PolLet{g}={f}%
-\poldef f(z):= f^2;%
-\poldef f(T):= f(f);%
-\poldef k(w):= f-sqr(g(sqr(g)));%
-$$f(x) = \vcenter{\hsize10cm \PolTypeset{f}} $$
-$$g(z) = \PolTypeset{g} $$
-$$k(z) = \PolTypeset{k} $$
-\immediate\write128{f(x)=\PolToExpr{f}}% ah, here we see it also</pre>
-</dd>
-<dt><span class="docutils literal">\poldef <span class="pre">f'(x):=</span> diff1(f);</span></dt>
-<dd><p>(new at <span class="docutils literal">0.8</span>)</p>
-</dd>
-<dt><span class="docutils literal"><span class="pre">\PolDiff{f}{f'}</span></span></dt>
-<dd><p>Both set <span class="docutils literal">f'</span> (or any other chosen name) to the derivative
-of <span class="docutils literal">f</span>.</p>
-</dd>
-</dl>
-<div class="admonition important">
-<p class="admonition-title">Important</p>
-<p>This is not done automatically. If some new definition needs to use
-the derivative of some available polynomial, that derivative
-polynomial must have been previously defined: something such as
-<span class="docutils literal"><span class="pre">f'(3)^2</span></span> will not work without a prior definition of <span class="docutils literal">f'</span>.</p>
-<p>But one can now use <span class="docutils literal">diff1(f)</span> for on-the-spot construction with no
-permanent declaration, so here <span class="docutils literal"><span class="pre">evalp(diff1(f),3)^2</span></span>. And
-<span class="docutils literal"><span class="pre">diff1(f)^2</span></span> is same as <span class="docutils literal"><span class="pre">f'^2</span></span>, assuming here <span class="docutils literal">f'</span> was declared
-to be the derived polynomial.</p>
-<p>Notice that the name <span class="docutils literal">diff1()</span> is experimental and may change. Use
-<span class="docutils literal"><span class="pre">\PolDiff{f}{f'}</span></span> as the stable interface.</p>
-</div>
-<dl>
-<dt><span class="docutils literal">\PolTypeset{P}</span></dt>
-<dd><p>Typesets (switching to math mode if in text mode):</p>
-<pre class="literal-block">\poldef f(x):=(3+x)^5;%
-\PolDiff{f}{f'}\PolDiff{f'}{f''}\PolDiff{f''}{f'''}%
-$$f(z) = \PolTypeset[z]{f} $$
-$$f'(z) = \PolTypeset[z]{f'} $$
-$$f''(z) = \PolTypeset[z]{f''} $$
-$$f'''(z)= \PolTypeset[z]{f'''} $$</pre>
-<p>See <a class="reference internal" href="#poltypeset">the documentation</a> for the configurability
-via macros.</p>
-<p>Since <span class="docutils literal">0.8</span> <a class="reference internal" href="#poltypeset">\PolTypeset</a> accepts directly an
-expression, it does not have to be a pre-declared polynomial name:</p>
-<pre class="literal-block">\PolTypeset{mul(x-i,i=1..5)}</pre>
-</dd>
-<dt><span class="docutils literal">\PolToExpr{P}</span></dt>
-<dd><p>Expandably (contrarily to <a class="reference internal" href="#poltypeset">\PolTypeset</a>)
-produces <span class="docutils literal">c_n*x^n + ... + c_0</span> starting from the leading
-coefficient. The <span class="docutils literal">+</span> signs are omitted if followed by negative
-coefficients.</p>
-<p>This is useful for console or file output. This syntax is Maple and
-PSTricks <span class="docutils literal">\psplot[algebraic]</span> compatible; and also it is
-compatible with <span class="docutils literal">\poldef</span> input syntax, of course. See
-<a class="reference internal" href="#poltoexprcaret">\PolToExprCaret</a> for configuration of the <span class="docutils literal">^</span>, for example to
-use rather <span class="docutils literal">**</span> for Python syntax compliance.</p>
-<p>Changed at <span class="docutils literal">0.8</span>: the <span class="docutils literal">^</span> in output is by default of catcode 12
-so in a draft document one can use <span class="docutils literal">\PolToExpr{P}</span> inside the
-typesetting flow (without requiring math mode, where the <span class="docutils literal">*</span> would
-be funny and <span class="docutils literal">^12</span> would only put the <span class="docutils literal">1</span> as exponent anyhow;
-but arguably in text mode the <span class="docutils literal">+</span> and <span class="docutils literal">-</span> are not satisfactory
-for math, except sometimes in monospace typeface, and anyhow TeX is
-unable to break the expression across lines, barring special help).</p>
-<p>See <a class="reference internal" href="#poltoexpr-pol-expr">\PolToExpr{<pol. expr.>}</a> and related macros for customization.</p>
-<p>Extended at <span class="docutils literal">0.8</span> to accept as argument not only the name of a
-polynomial variable but more generally any polynomial expression.</p>
-</dd>
-</dl>
-</div>
-<div class="section" id="the-polexpr-0-8-extensions-to-the-xintexpr-syntax">
-<span id="polexpr08"></span><h1><a class="toc-backref" href="#id39">The polexpr <span class="docutils literal">0.8</span> extensions to the <span class="docutils literal">\xintexpr</span> syntax</a></h1>
-<p>All the syntax elements described in this section can be used in the
-<span class="docutils literal"><span class="pre">\xintexpr/\xinteval</span></span> context (where polynomials can be obtained from
-the <span class="docutils literal"><span class="pre">pol([])</span></span> constructor, once polexpr is loaded): their usage is
-not limited to only <span class="docutils literal">\poldef</span> context.</p>
-<div class="admonition note">
-<p class="admonition-title">Note</p>
-<p>If a variable <span class="docutils literal">myPol</span> defined via <span class="docutils literal">\xintdefvar</span> turns out
-to be a polynomial, the difference with those declared via <span class="docutils literal">\poldef</span>
-will be:</p>
-<ol class="arabic">
-<li><p><span class="docutils literal">myPol</span> is not usable as <em>function</em>, but only as a variable.
-Attention that <span class="docutils literal">f(x)</span> if <span class="docutils literal">f</span> is only a variable (even a
-polynomial one) will actually compute <span class="docutils literal">f * x</span>.</p></li>
-<li><p><span class="docutils literal">myPol</span> is not known to the polexpr package, hence for example the
-macros to achieve localization of its roots are unavailable.</p>
-<p>In a parallel universe I perhaps have implemented this expandably
-which means it could then be accessible with syntax such as
-<span class="docutils literal"><span class="pre">rightmostroot(pol([42,1,34,2,-8,1]))</span></span> but...</p>
</li>
-</ol>
-</div>
-<div class="section" id="warning-about-unstability-of-the-new-syntax">
-<h2><a class="toc-backref" href="#id40">Warning about unstability of the new syntax</a></h2>
-<div class="admonition warning">
-<p class="admonition-title">Warning</p>
-<p>Consider the entirety of this section as <strong>UNSTABLE</strong> and
-<strong>EXPERIMENTAL</strong> (except perhaps regarding <span class="docutils literal">+</span>, <span class="docutils literal">-</span> and <span class="docutils literal">*</span>).</p>
-<p>And this applies even to items not explicitly flagged with one of
-<strong>unstable</strong>, <strong>Unstable</strong>, or <strong>UNSTABLE</strong> which only reflect that
-documentation was written over a period of time exceeding one minute,
-enough for the author mood changes to kick in.</p>
-<p>It is hard to find good names at the start of a life-long extension
-program of functionalities, and perhaps in future it will be
-preferred to rename everything or give to some functions other
-meanings. Such quasi-complete renamings happened already a few times
-during the week devoted to development.</p>
-</div>
-</div>
-<div class="section" id="infix-operators">
-<h2><a class="toc-backref" href="#id41">Infix operators <span class="docutils literal">+, <span class="pre">-,</span> *, /, **, ^</span></a></h2>
-<blockquote>
-<p>As has been explained in the <a class="reference internal" href="#quick-syntax-overview">Quick syntax overview</a> these infix
-operators have been made polynomial aware, not only in the
-<span class="docutils literal">\poldef</span> context, but generally in any <span class="docutils literal"><span class="pre">\xintexpr/\xinteval</span></span>
-context, inclusive of <span class="docutils literal">\xintdeffunc</span>.</p>
-<p>Conversely functions declared via <span class="docutils literal">\xintdeffunc</span> and making use of
-these operators will automatically be able to accept polynomials
-declared from <span class="docutils literal">\poldef</span> as variables.</p>
-<p>Usage of <span class="docutils literal">/</span> for euclidean division of polynomials is <strong>deprecated</strong>.
-Only in case of a scalar denominator is it to be considered stable.
-Please use rather <span class="docutils literal">quo()</span>.</p>
-</blockquote>
-</div>
-<div class="section" id="experimental-infix-operators">
-<h2><a class="toc-backref" href="#id42">Experimental infix operators <span class="docutils literal">//, /:</span></a></h2>
-<blockquote>
-<p>Here is the tentative behaviour of <span class="docutils literal"><span class="pre">A//B</span></span> according to types:</p>
-<ul class="simple">
-<li><p><span class="docutils literal">A</span> non scalar and <span class="docutils literal">B</span> non scalar: euclidean quotient,</p></li>
-<li><p><span class="docutils literal">A</span> scalar and <span class="docutils literal">B</span> scalar: floored division,</p></li>
-<li><p><span class="docutils literal">A</span> scalar and <span class="docutils literal">B</span> non scalar: produces zero,</p></li>
-<li><p><span class="docutils literal">A</span> non scalar and <span class="docutils literal">B</span> scalar: coefficient per
-coefficient floored division.</p></li>
</ul>
-<p>This is an <strong>experimental</strong> overloading of the <span class="docutils literal">//</span> and <span class="docutils literal">/:</span>
-from <span class="docutils literal">\xintexpr</span>.</p>
-<p>The behaviour in the last case, but not only, is to be considerd
-<strong>unstable</strong>. The alternative would be for <span class="docutils literal"><span class="pre">A//B</span></span> with <span class="docutils literal">B</span>
-scalar to act as <span class="docutils literal">quo(A,B)</span>. But, we have currently chosen to let
-<span class="docutils literal">//B</span> for a scalar <span class="docutils literal">B</span> act coefficient-wise on the numerator.
-Beware that it thus means it can be employed with the idea of doing
-euclidean division only by checking that <span class="docutils literal">B</span> is non-scalar.</p>
-<p>The <span class="docutils literal">/:</span> operator provides the associated remainder so always
-<span class="docutils literal">A</span> is reconstructed from <span class="docutils literal"><span class="pre">(A//B)*B</span> + <span class="pre">A/:B</span></span>.</p>
-<p>If <span class="docutils literal">:</span> is active character use <span class="docutils literal">/\string:</span> (it is safer to use
-<span class="docutils literal">/\string :</span> if it is not known if <span class="docutils literal">:</span> has catcode other, letter,
-or is active, but note that <span class="docutils literal">/:</span> is fine and needs no precaution if
-<span class="docutils literal">:</span> has catcode letter, it is only an active <span class="docutils literal">:</span> which is
-problematic, like for all other characters possibly used in an
-expression).</p>
-<blockquote>
-<p><strong>UNSTABLE</strong></p>
-<p>As explained above, there are (among other things) hesitations
-about behaviour with <span class="docutils literal">pol2</span> a scalar.</p>
-</blockquote>
-</blockquote>
-</div>
-<div class="section" id="comparison-operators">
-<h2><a class="toc-backref" href="#id43">Comparison operators <span class="docutils literal"><, >, <=, >=, ==, !=</span></a></h2>
-<blockquote>
-<p><strong>NOT YET IMPLEMENTED</strong></p>
-<p>As the internal representation by <a class="reference external" href="https://www.ctan.org/pkg/xint">xintfrac</a> and <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a> of
-fractions does not currently require them to be in reduced terms,
-such operations would be a bit costly as they could not benefit from
-the <span class="docutils literal">\pdfstrcmp</span> engine primitive. In fact <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a> does not use
-it yet anywhere, even for normalized pure integers, although it could
-speed up signifcantly certain aspects of core arithmetic.</p>
-<p>Equality of polynomials can currently be tested by computing the
-difference, which is a bit costly. And of course the <span class="docutils literal">deg()</span>
-function allows comparing degrees. In this context note the
-following syntax:</p>
-<pre class="literal-block">(deg(Q)) ?? { zero } { non-zero scalar } { non-scalar }</pre>
-<p>for branching.</p>
-</blockquote>
-</div>
-<div class="section" id="pol-nutple-expression">
-<h2><a class="toc-backref" href="#id44"><span class="docutils literal"><span class="pre">pol(<nutple</span> expression>)</span></a></h2>
-<blockquote>
-<p>This converts a nutple <span class="docutils literal"><span class="pre">[c0,c1,...,cN]</span></span> into the polynomial
-variable having these coefficients. Attention that the square
-brackets are <strong>mandatory</strong>, except of course if the argument is
-actually an expression producing such a "nutple".</p>
-<blockquote>
-<p>Currently, this process will not normalize the coefficients (such
-as reducing to lowest terms), it only trims out the leading zero
-coefficients.</p>
-</blockquote>
-<p>Inside <span class="docutils literal">\xintexpr</span>, this is the only (allowed) way to create ex
-nihilo a polynomial variable; inside <span class="docutils literal">\poldef</span> it is an alternative
-input syntax which is more efficient than typing <span class="docutils literal">c0 + c1 * x + c2 * x^2 + ...</span>.</p>
-</blockquote>
-<div class="admonition important">
-<p class="admonition-title">Important</p>
-<p>Whenever an expression with polynomials collapses to a constant, it
-becomes a scalar. There is currently no distinction during the
-parsing of expressions by <span class="docutils literal">\poldef</span>
-or <span class="docutils literal">\xintexpr</span> between constant polynomial variables and scalar
-variables.</p>
-<p>Naturally, <span class="docutils literal">\poldef</span> can be used to declare a constant polynomial
-<span class="docutils literal">P</span>, then <span class="docutils literal">P</span> can also be used as function having a value
-independent of argument, but as a variable, it is non-distinguishable
-from a scalar (of course functions such as <span class="docutils literal">deg()</span> tacitly
-consider scalars to be constant polynomials).</p>
-<p>Notice that we tend to use the vocable "variable" to refer to
-arbitrary expressions used as function arguments, without implying
-that we are actually referring to pre-declared variables in the sense
-of <span class="docutils literal">\xintdefvar</span>.</p>
-</div>
-</div>
-<div class="section" id="lpol-nutple-expression">
-<span id="lpol"></span><h2><a class="toc-backref" href="#id45"><span class="docutils literal"><span class="pre">lpol(<nutple</span> expression>)</span></a></h2>
-<blockquote>
-<p>This converts a nutple <span class="docutils literal"><span class="pre">[cN,...,c1,c0]</span></span> into the polynomial
-variable having these coefficients, with leading coefficients coming
-first in the input. Attention that the square brackets are
-<strong>mandatory</strong>, except of course if the argument is actually an
-expression producing such a "nutple".</p>
-<blockquote>
-<p>Currently, this process will not normalize the coefficients (such
-as reducing to lowest terms), it only trims out the leading zero
-coefficients.</p>
-<p><strong>NAME UNSTABLE</strong></p>
-</blockquote>
-<p>It can be used in <span class="docutils literal">\poldef</span> as an alternative input syntax, which
-is more efficient than using the algebraic notation with monomials.</p>
-<p>(new with <span class="docutils literal">0.8.1</span>, an empty nutple will cause breakage)</p>
-</blockquote>
-</div>
-<div class="section" id="xinteval-pol-expr">
-<h2><a class="toc-backref" href="#id46"><span class="docutils literal"><span class="pre">\xinteval{<pol.</span> <span class="pre">expr.>}</span></span></a></h2>
-<blockquote>
-<p>This is documented here for lack of a better place: it evaluates the
-polynomial expression then outputs the "string" <span class="docutils literal"><span class="pre">pol([c0,</span> c1, <span class="pre">...,</span> cN])</span>
-if the degree <span class="docutils literal">N</span> is at least one (and the usual scalar output else).</p>
-<p>The "pol" word uses letter catcodes, which is actually mandatory for
-this output to be usable as input, but it does not make sense to use
-this inside <span class="docutils literal">\poldef</span> or <span class="docutils literal">\xintexpr</span> at it means basically
-executing <span class="docutils literal"><span class="pre">pol(coeffs(..expression..))</span></span> which is but a convoluted
-way to obtain the same result as <span class="docutils literal"><span class="pre">(..expression..)</span></span> (the
-parentheses delimiting the polynomial expression).</p>
-<p>For example, <span class="docutils literal"><span class="pre">\xinteval{(1+pol([0,1]))^10}</span></span> expands (in two steps)
-to:</p>
-<pre class="literal-block">pol([1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1])</pre>
-<p>You do need loading polexpr for this, else of course <span class="docutils literal"><span class="pre">pol([])</span></span>
-remains unknown to <span class="docutils literal">\xinteval{}</span> as well as the polynomial algebra !
-This example can also be done as
-<span class="docutils literal"><span class="pre">\xinteval{subs((1+x)^10,x=pol([0,1]))}</span></span>.</p>
-<p>I hesitated using as output the polynomial notation as produced by
-<a class="reference internal" href="#poltoexpr">\PolToExpr{}</a>, but finally opted for this.</p>
-</blockquote>
-</div>
-<div class="section" id="evalp-pol-expr-pol-expr">
-<h2><a class="toc-backref" href="#id47"><span class="docutils literal"><span class="pre">evalp(<pol.</span> <span class="pre">expr.>,</span> <pol. expr>)</span></a></h2>
-<blockquote>
-<p>Evaluates the first argument as a polynomial function of the
-second. Usually the second argument will be scalar, but this is not
-required:</p>
-<pre class="literal-block">\poldef K(x):= evalp(-3x^3-5x+1,-27x^4+5x-2);</pre>
-<p>If the first argument is an already declared polynomial <span class="docutils literal">P</span>, use
-rather the functional form <span class="docutils literal">P()</span> (which can accept a numerical as
-well as polynomial argument) as it is more efficient.</p>
-<p>One can also use <span class="docutils literal">subs()</span> syntax <a class="footnote-reference brackets" href="#id5" id="id4">2</a> (see <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a> documentation):</p>
-<pre class="literal-block">\poldef K(x):= subs(-3y^3-5y+1, y = -27x^4+5x-2);</pre>
-<p>but the <span class="docutils literal">evalp()</span> will use a Horner evaluation scheme which is
-usually more efficient.</p>
-<dl class="footnote brackets">
-<dt class="label" id="id5"><span class="brackets"><a class="fn-backref" href="#id4">2</a></span></dt>
-<dd><p>by the way Maple uses the opposite, hence wrong, order
-<span class="docutils literal"><span class="pre">subs(x=...,</span> P)</span> but was written before computer science
-reached the <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a> heights. However it makes validating
-Maple results by polexpr sometimes cumbersome, but perhaps
-they will update it at some point.</p>
-</dd>
-</dl>
-<blockquote>
-<p><strong>name unstable</strong></p>
-<p><span class="docutils literal">poleval</span>? <span class="docutils literal">evalpol</span>? <span class="docutils literal">peval</span>? <span class="docutils literal">evalp</span>? <span class="docutils literal">value</span>?
-<span class="docutils literal">eval</span>? <span class="docutils literal">evalat</span>? <span class="docutils literal">eval1at2</span>? <span class="docutils literal">evalat2nd</span>?</p>
-<p>Life is so complicated when one asks questions. Not everybody does,
-though, as is amply demonstrated these days.</p>
-<p><strong>syntax unstable</strong></p>
-<p>I am hesitating about permuting the order of the arguments.</p>
-</blockquote>
-</blockquote>
-</div>
-<div class="section" id="deg-pol-expr">
-<h2><a class="toc-backref" href="#id48"><span class="docutils literal"><span class="pre">deg(<pol.</span> <span class="pre">expr.>)</span></span></a></h2>
-<blockquote>
-<p>Computes the degree.</p>
-</blockquote>
-<div class="admonition important">
-<p class="admonition-title">Important</p>
-<p>As <span class="docutils literal">\xintexpr</span> does not yet support infinities, the degree of
-the zero polynomial is <span class="docutils literal"><span class="pre">-1</span></span>. Beware that this breaks additivity
-of degrees, but <span class="docutils literal"><span class="pre">deg(P)<0</span></span> correctly detects the zero polynomial,
-and <span class="docutils literal"><span class="pre">deg(P)<=0</span></span> detects scalars.</p>
-</div>
-</div>
-<div class="section" id="coeffs-pol-expr">
-<h2><a class="toc-backref" href="#id49"><span class="docutils literal"><span class="pre">coeffs(<pol.</span> <span class="pre">expr.>)</span></span></a></h2>
-<blockquote>
-<p>Produces the nutple <span class="docutils literal"><span class="pre">[c0,c1,...,cN]</span></span> of coefficients. The highest
-degree coefficient is always non zero (except for the zero
-polynomial...).</p>
-<blockquote>
-<p><strong>name unstable</strong></p>
-<p>I am considering in particular using <span class="docutils literal">polcoeffs()</span> to avoid
-having to overload <span class="docutils literal">coeffs()</span> in future when matrix type
-will be added to <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a>.</p>
-</blockquote>
-</blockquote>
-</div>
-<div class="section" id="lcoeffs-pol-expr">
-<span id="lcoeffs"></span><h2><a class="toc-backref" href="#id50"><span class="docutils literal"><span class="pre">lcoeffs(<pol.</span> <span class="pre">expr.>)</span></span></a></h2>
-<blockquote>
-<p>Produces the nutple <span class="docutils literal"><span class="pre">[cN,....,c1,c0]</span></span> of coefficients, starting
-with the highest degree coefficient.</p>
-<p>(new with <span class="docutils literal">0.8.1</span>)</p>
-</blockquote>
-</div>
-<div class="section" id="coeff-pol-expr-num-expr">
-<h2><a class="toc-backref" href="#id51"><span class="docutils literal"><span class="pre">coeff(<pol.</span> <span class="pre">expr.>,</span> <num. <span class="pre">expr.>)</span></span></a></h2>
-<blockquote>
-<p>As expected. Produces zero if the numerical index is negative or
-higher than the degree.</p>
-<blockquote>
-<p><strong>name, syntax and output unstable</strong></p>
-<p>I am hesitating with <span class="docutils literal">coeff(n,pol)</span> syntax and also perhaps using
-<span class="docutils literal">polcoeff()</span> in order to avoid having to overload <span class="docutils literal">coeff()</span>
-when matrix type will be added to <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a>.</p>
-<p>The current behaviour is at odds with legacy
-<a class="reference internal" href="#polnthcoeff-polname-index">\PolNthCoeff{<polname>}{<index>}</a> regarding negative indices.
-Accessing leading or sub-leading coefficients can be done with
-other syntax, see <a class="reference internal" href="#lc-pol-expr">lc(<pol. expr.>)</a>, and in some contexts it
-is useful to be able to rely on the fact that coefficients with
-negative indices do vanish, so I am for time being maintaining this.</p>
-</blockquote>
-</blockquote>
-</div>
-<div class="section" id="lc-pol-expr">
-<span id="lc"></span><h2><a class="toc-backref" href="#id52"><span class="docutils literal"><span class="pre">lc(<pol.</span> <span class="pre">expr.>)</span></span></a></h2>
-<blockquote>
-<p>The leading coefficient. The same result can be obtained from
-<span class="docutils literal"><span class="pre">coeffs(pol)[-1]</span></span>, which shows also how to generalize to access
-sub-leading coefficients. See the <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a> documentation for
-Python-like indexing syntax.</p>
-</blockquote>
-</div>
-<div class="section" id="monicpart-pol-expr">
-<h2><a class="toc-backref" href="#id53"><span class="docutils literal"><span class="pre">monicpart(<pol.</span> <span class="pre">expr.>)</span></span></a></h2>
-<blockquote>
-<p>Divides by the leading coefficient, except that <span class="docutils literal"><span class="pre">monicpart(0)==0</span></span>.</p>
-<blockquote>
-<p><strong>unstable</strong></p>
-<p>Currently the coefficients are reduced to lowest terms (contrarily
-to legacy behaviour of <a class="reference internal" href="#polmakemonic">\PolMakeMonic</a>), and
-additionally the <a class="reference external" href="https://www.ctan.org/pkg/xint">xintfrac</a> <span class="docutils literal">\xintREZ</span> macro is applied which
-extracts powers of ten from numerator or denominator and stores
-them internally separately. This is generally beneficial to
-efficiency of multiplication.</p>
-</blockquote>
-</blockquote>
-</div>
-<div class="section" id="cont-pol-expr">
-<span id="cont"></span><h2><a class="toc-backref" href="#id54"><span class="docutils literal"><span class="pre">cont(<pol.</span> <span class="pre">expr.>)</span></span></a></h2>
-<blockquote>
-<p>The (fractional) greatest common divisor of the polynomial
-coefficients. It is always produced as an irreducible (non-negative)
-fraction. According to Gauss theorem the content of a product is the
-product of the contents.</p>
-<blockquote>
-<p><strong>name and syntax unstable</strong></p>
-<p>At <span class="docutils literal">0.8</span> it was created as <span class="docutils literal">icontent()</span> to match the legacy
-macro <a class="reference internal" href="#policontent">\PolIContent</a>, whose name in 2018 was
-chosen in relation to Maple's function <span class="docutils literal">icontent()</span>, possibly
-because at that time I had not seen that Maple also had a
-<span class="docutils literal">content()</span> function. Name changed at <span class="docutils literal">0.8.1</span>.</p>
-<p>It will change syntax if in future multivariate polynomials are
-supported, and <span class="docutils literal">icontent()</span> will then make a come-back.</p>
-</blockquote>
-</blockquote>
-</div>
-<div class="section" id="primpart-pol-expr">
-<h2><a class="toc-backref" href="#id55"><span class="docutils literal"><span class="pre">primpart(<pol.</span> <span class="pre">expr.>)</span></span></a></h2>
-<blockquote>
-<p>The quotient (except for the zero polynomial) by
-<span class="docutils literal"><span class="pre">cont(<pol.</span> <span class="pre">expr.>)</span></span>. This is thus a polynomial with
-integer coefficients having <span class="docutils literal">1</span> as greatest common divisor. The
-sign of the leading coefficient is the same as in the original.</p>
-<p>And <span class="docutils literal"><span class="pre">primpart(0)==0</span></span>.</p>
-<p>The trailing zeros of the integer coefficients are extracted
-into a power of ten exponent part, in the internal representation.</p>
-</blockquote>
-</div>
-<div class="section" id="quorem-pol-expr-pol-expr">
-<h2><a class="toc-backref" href="#id56"><span class="docutils literal"><span class="pre">quorem(<pol.</span> <span class="pre">expr.>,</span> <pol. <span class="pre">expr.>)</span></span></a></h2>
-<blockquote>
-<p>Produces a nutple <span class="docutils literal">[Q,R]</span> with <span class="docutils literal">Q</span> the euclidean quotient and
-<span class="docutils literal">R</span> the remainder.</p>
-<blockquote>
-<p><strong>name unstable</strong></p>
-<p><span class="docutils literal">poldiv()</span>?</p>
-</blockquote>
-</blockquote>
-</div>
-<div class="section" id="quo-pol-expr-pol-expr">
-<h2><a class="toc-backref" href="#id57"><span class="docutils literal"><span class="pre">quo(<pol.</span> <span class="pre">expr.>,</span> <pol. <span class="pre">expr.>)</span></span></a></h2>
-<blockquote>
-<p>The euclidean quotient.</p>
-<p>The deprecated <span class="docutils literal">pol1/pol2</span> syntax computes the same polynomial.</p>
-</blockquote>
-</div>
-<div class="section" id="rem-pol-expr-pol-expr">
-<h2><a class="toc-backref" href="#id58"><span class="docutils literal"><span class="pre">rem(<pol.</span> <span class="pre">expr.>,</span> <pol. <span class="pre">expr.>)</span></span></a></h2>
-<blockquote>
-<p>The euclidean remainder. If <span class="docutils literal">pol2</span> is a (non-zero) scalar, this is
-zero.</p>
-<p>There is no infix operator associated to this, for lack of evident
-notation. Please advise.</p>
-<p><span class="docutils literal">/:</span> can be used if one is certain that <span class="docutils literal">pol2</span> is of
-degree at least one. But read the warning about it being unstable
-even in that case.</p>
-</blockquote>
-</div>
-<div class="section" id="prem-pol-expr-1-pol-expr-2">
-<span id="prem"></span><h2><a class="toc-backref" href="#id59"><span class="docutils literal"><span class="pre">prem(<pol.</span> expr. 1>, <pol. expr. 2>)</span></a></h2>
-<blockquote>
-<p>Produces a nutple <span class="docutils literal">[m, spR]</span> where <span class="docutils literal">spR</span> is the (special) pseudo
-Euclidean remainder. Its description is:</p>
+
+ <div role="note" aria-label="source link">
+ <h3>This Page</h3>
+ <ul class="this-page-menu">
+ <li><a href="polexpr.rst.txt"
+ rel="nofollow">Show Source</a></li>
+ </ul>
+ </div>
+ <div>
+ <h4>Next topic</h4>
+ <p class="topless"><a href="polexpr-ref.html"
+ title="next chapter">polexpr reference</a></p>
+ </div>
+<h3><a href="#">Table of Contents</a></h3>
<ul>
-<li><p>the standard euclidean remainder <span class="docutils literal">R</span> is <span class="docutils literal">spR/m</span></p></li>
-<li><p><span class="docutils literal">m = b^f</span> with <span class="docutils literal">b</span> equal to the <strong>absolute value</strong> of the
-leading coefficient of <span class="docutils literal">pol2</span>,</p></li>
-<li><p><span class="docutils literal">f</span> is the number of non-zero coefficients in the euclidean
-quotient, if <span class="docutils literal"><span class="pre">deg(pol2)>0</span></span> (even if the remainder vanishes).</p>
-<p>If <span class="docutils literal">pol2</span> is a scalar however, the function outputs <span class="docutils literal">[1,0]</span>.</p>
-</li>
+<li class="toctree-l1"><a class="reference internal" href="polexpr-ref.html">polexpr reference</a></li>
+<li class="toctree-l1"><a class="reference internal" href="polexpr-changes.html">CHANGES</a></li>
</ul>
-<p>With these definitions one can show that if both <span class="docutils literal">pol1</span> and
-<span class="docutils literal">pol2</span> have integer coefficients, then this is also the case of
-<span class="docutils literal">spR</span>, which makes its interest (and also <span class="docutils literal">m*Q</span> has integer
-coefficients, with <span class="docutils literal">Q</span> the euclidean quotient, if <span class="docutils literal"><span class="pre">deg(pol2)>0</span></span>).
-Also, <span class="docutils literal">prem()</span> is computed faster than <span class="docutils literal">rem()</span> for such integer
-coefficients polynomials.</p>
-<div class="admonition hint">
-<p class="admonition-title">Hint</p>
-<p>If you want the euclidean quotient <span class="docutils literal">R</span> evaluated via <span class="docutils literal">spR/m</span>
-(which may be faster, even with non integer coefficients) use
-<span class="docutils literal"><span class="pre">subs(last(x)/first(x),x=prem(P,Q))</span></span> syntax as it avoids
-computing <span class="docutils literal">prem(P,Q)</span> twice. This does the trick both in
-<span class="docutils literal">\poldef</span> or in <span class="docutils literal">\xintdefvar</span>.</p>
-<p>However, as is explained in the <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a> documentation, using
-such syntax in an <span class="docutils literal">\xintdeffunc</span> is (a.t.t.o.w) illusory, due to
-technicalities of how <span class="docutils literal">subs()</span> gets converted into nested
-expandable macros. One needs an auxiliary function like this:</p>
-<pre class="literal-block">\xintdeffunc lastoverfirst(x):=last(x)/first(x);
-\xintdeffunc myR(x)=lastoverfirst(prem(x));</pre>
-<p>Then, <span class="docutils literal">myR(pol1,pol2)</span> will evaluate <span class="docutils literal">prem(pol1,pol2)</span> only
-once and compute a polynomial identical to the euclidean
-remainder (internal representations of coefficients may differ).</p>
-</div>
-<p>In this case of integer coefficients polynomials, the polexpr
-internal representation of the integer coefficients in the pseudo
-remainder will be with unit denominators only if that was already the
-case for those of <span class="docutils literal">pol1</span> and <span class="docutils literal">pol2</span> (no automatic reduction to
-lowest terms is made prior or after computation).</p>
-<p>Pay attention here that <span class="docutils literal">b</span> is the <strong>absolute value</strong> of the
-leading coefficient of <span class="docutils literal">pol2</span>. Thus the coefficients of the
-pseudo-remainder have the same signs as those of the standard
-remainder. This diverges from Maple's function with the same name.</p>
-</blockquote>
-</div>
-<div class="section" id="divmod-pol-expr-1-pol-expr-2">
-<h2><a class="toc-backref" href="#id60"><span class="docutils literal"><span class="pre">divmod(<pol.</span> expr. 1>, <pol. expr. 2>)</span></a></h2>
-<blockquote>
-<p>Overloads the scalar <span class="docutils literal">divmod()</span> and associates it with the
-experimental <span class="docutils literal">//</span> and <span class="docutils literal">/:</span> as extended to the polynomial type.</p>
-<p>In particular when both <span class="docutils literal">pol1</span> and <span class="docutils literal">pol2</span> are scalars, this is
-the usual <span class="docutils literal">divmod()</span> (as in Python) and for <span class="docutils literal">pol1</span> and <span class="docutils literal">pol2</span>
-non constant polynomials, this is the same as <span class="docutils literal">quorem()</span>.</p>
-<blockquote>
-<p><strong>Highly unstable</strong> overloading of <span class="docutils literal">\xinteval</span>'s <span class="docutils literal">divmod()</span>.</p>
-</blockquote>
-</blockquote>
-</div>
-<div class="section" id="mod-pol-expr-1-pol-expr-2">
-<h2><a class="toc-backref" href="#id61"><span class="docutils literal"><span class="pre">mod(<pol.</span> expr. 1>, <pol. expr. 2>)</span></a></h2>
-<blockquote>
-<p>The <span class="docutils literal">R</span> of the <span class="docutils literal">divmod()</span> output. Same as <span class="docutils literal">R</span> of <span class="docutils literal">quorem()</span>
-when the second argument <span class="docutils literal">pol2</span> is of degree at least one.</p>
-<blockquote>
-<p><strong>Highly unstable</strong> overloading of <span class="docutils literal">\xinteval</span>'s <span class="docutils literal">mod()</span>.</p>
-</blockquote>
-</blockquote>
-</div>
-<div class="section" id="polgcd-pol-expr-1-pol-expr-2">
-<h2><a class="toc-backref" href="#id62"><span class="docutils literal"><span class="pre">polgcd(<pol.</span> expr. 1>, <pol. expr. 2>, <span class="pre">...)</span></span></a></h2>
-<blockquote>
-<p>Evaluates to the greatest common polynomial divisor of all the
-polynomial inputs. The output is a <strong>primitive</strong> (in particular,
-with integer coefficients) polynomial. It is zero if and only if all
-inputs vanish.</p>
-<p>Attention, there must be either at least two polynomial variables, or
-alternatively, only one argument which then must be a bracketed list
-or some expression or variable evaluating to such a "nutple" whose
-items are polynomials (see the documentation of the scalar <span class="docutils literal">gcd()</span>
-in <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a>).</p>
-<blockquote>
-<p>The two variable case could (and was, during development) have been
-defined at user level like this:</p>
-<pre class="literal-block">\xintdeffunc polgcd_(P,Q):=
- (deg(Q))??{P}{1}{polgcd_(Q,primpart(last(prem(P,Q))))};
-\xintdeffunc polgcd(P,Q):=polgcd_(primpart(P),primpart(Q));%</pre>
-<p>This is basically what is done internally for two polynomials, up
-to some internal optimizations.</p>
-</blockquote>
-<p><strong>UNSTABLE</strong></p>
-<p>I hesitate between returning a <em>primitive</em> or a <em>monic</em> polynomial.
-Maple returns a primitive polynomial if all inputs <a class="footnote-reference brackets" href="#id7" id="id6">3</a> have integer
-coefficients, else it returns a monic polynomial, but this is
-complicated technically for us to add such a check and would add
-serious overhead.</p>
-<p>Internally, computations are done using primitive
-integer-coefficients polynomials (as can be seen in the function
-template above). So I decided finally to output a primitive
-polynomial, as one can always apply <span class="docutils literal">monicpart()</span> to it.</p>
-<p>Attention that this is at odds with behaviour of the legacy
-<a class="reference internal" href="#polgcd">\PolGCD</a> (non expandable) macro.</p>
-<dl class="footnote brackets">
-<dt class="label" id="id7"><span class="brackets"><a class="fn-backref" href="#id6">3</a></span></dt>
-<dd><p>actually, only two polynomial arguments are allowed by Maple's
-<span class="docutils literal">gcd()</span> as far as I know.</p>
-</dd>
-</dl>
-</blockquote>
-</div>
-<div class="section" id="resultant-pol-expr-1-pol-expr-2">
-<h2><a class="toc-backref" href="#id63"><span class="docutils literal"><span class="pre">resultant(<pol.</span> expr. 1>, <pol. expr. 2>)</span></a></h2>
-<blockquote>
-<p>The resultant.</p>
-<blockquote>
-<p><strong>NOT YET IMPLEMENTED</strong></p>
-</blockquote>
-</blockquote>
-</div>
-<div class="section" id="disc-pol-expr">
-<h2><a class="toc-backref" href="#id64"><span class="docutils literal"><span class="pre">disc(<pol.</span> <span class="pre">expr.>)</span></span></a></h2>
-<blockquote>
-<p>The discriminant.</p>
-<blockquote>
-<p><strong>NOT YET IMPLEMENTED</strong></p>
-</blockquote>
-</blockquote>
-</div>
-<div class="section" id="polpowmod-pol-expr-1-num-expr-pol-expr-2">
-<h2><a class="toc-backref" href="#id65"><span class="docutils literal"><span class="pre">polpowmod(<pol.</span> expr. 1>, <num. <span class="pre">expr.>,</span> <pol. expr. 2>)</span></a></h2>
-<blockquote>
-<p>Modular exponentiation: <span class="docutils literal">mod(pol1^N, pol2)</span> in a more efficient
-manner than first computing <span class="docutils literal">pol1^N</span> then reducing modulo <span class="docutils literal">pol2</span>.</p>
-<p>Attention that this is using the <span class="docutils literal">mod()</span> operation, whose current
-experimental status is as follows:</p>
-<ul class="simple">
-<li><p>if <span class="docutils literal"><span class="pre">deg(pol2)>0</span></span>, the euclidean remainder operation,</p></li>
-<li><p>if <span class="docutils literal">pol2</span> is a scalar, coefficient-wise reduction modulo <span class="docutils literal">pol2</span>.</p></li>
-</ul>
-<p><strong>UNSTABLE</strong></p>
-<blockquote>
-<p>This is currently implemented at high level via <span class="docutils literal">\xintdeffunc</span> and
-recursive definitions, which were copied over from a scalar example
-in the <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a> manual:</p>
-<pre class="literal-block">\xintdeffunc polpowmod_(P, m, Q) :=
- isone(m)?
- % m=1: return P modulo Q
- { mod(P,Q) }
- % m > 1: test if odd or even and do recursive call
- { odd(m)? { mod(P*sqr(polpowmod_(P, m//2, Q)), Q) }
- { mod( sqr(polpowmod_(P, m//2, Q)), Q) }
- }
- ;%
-\xintdeffunc polpowmod(P, m, Q) := (m)?{polpowmod_(P, m, Q)}{1};%</pre>
-<p>Negative exponents are not currently implemented.</p>
-<p>For example:</p>
-<pre class="literal-block">\xinteval{subs(polpowmod(1+x,100,x^7),x=pol([0,1]))}
-\xinteval{subs(polpowmod(1+x,20,10), x=pol([0,1]))}</pre>
-<p>produce respectively:</p>
-<pre class="literal-block">pol([1, 100, 4950, 161700, 3921225, 75287520, 1192052400])
-pol([1, 0, 0, 0, 5, 4, 0, 0, 0, 0, 6, 0, 0, 0, 0, 4, 5, 0, 0, 0, 1])</pre>
-</blockquote>
-</blockquote>
-</div>
-<div class="section" id="rdcoeffs-pol-expr">
-<h2><a class="toc-backref" href="#id66"><span class="docutils literal"><span class="pre">rdcoeffs(<pol.</span> <span class="pre">expr.>)</span></span></a></h2>
-<blockquote>
-<p>This operates on the internal representation of the coefficients,
-reducing them to lowest terms.</p>
-<blockquote>
-<p><strong>name HIGHLY undecided</strong></p>
-</blockquote>
-</blockquote>
-</div>
-<div class="section" id="rdzcoeffs-pol-expr">
-<h2><a class="toc-backref" href="#id67"><span class="docutils literal"><span class="pre">rdzcoeffs(<pol.</span> <span class="pre">expr.>)</span></span></a></h2>
-<blockquote>
-<p>This operates on the internal representation of the coefficients,
-reducing them to lowest terms then extracting from numerator
-or denominator the maximal power of ten to store as a decimal
-exponent.</p>
-<p>This is sometimes favourable to more efficient polynomial algebra
-computations.</p>
-<blockquote>
-<p><strong>name HIGHLY undecided</strong></p>
-</blockquote>
-</blockquote>
-</div>
-<div class="section" id="diff1-pol-expr">
-<h2><a class="toc-backref" href="#id68"><span class="docutils literal"><span class="pre">diff1(<pol.</span> <span class="pre">expr.>)</span></span></a></h2>
-<blockquote>
-<p>The first derivative.</p>
-<blockquote>
-<p><strong>name UNSTABLE</strong></p>
-<p>This name may be used in future to be the partial derivative with
-respect to a first variable.</p>
-</blockquote>
-</blockquote>
-</div>
-<div class="section" id="diff2-pol-expr">
-<h2><a class="toc-backref" href="#id69"><span class="docutils literal"><span class="pre">diff2(<pol.</span> <span class="pre">expr.>)</span></span></a></h2>
-<blockquote>
-<p>The second derivative.</p>
-<blockquote>
-<p><strong>name UNSTABLE</strong></p>
-<p>This name may be used in future to be the partial derivative with
-respect to a second variable.</p>
-</blockquote>
-</blockquote>
-</div>
-<div class="section" id="diffn-pol-expr-p-num-expr-n">
-<h2><a class="toc-backref" href="#id70"><span class="docutils literal"><span class="pre">diffn(<pol.</span> expr. P>, <num. expr. n>)</span></a></h2>
-<blockquote>
-<p>The <span class="docutils literal">n</span>th derivative of <span class="docutils literal">P</span>. For <span class="docutils literal">n<0</span> computes iterated primitives
-vanishing at the origin.</p>
-<p>The coefficients are not reduced to lowest terms.</p>
-<blockquote>
-<p><strong>name and syntax UNSTABLE</strong></p>
-<p>I am also considering reversing the order of the arguments.</p>
-</blockquote>
-</blockquote>
-</div>
-<div class="section" id="antider-pol-expr-p">
-<h2><a class="toc-backref" href="#id71"><span class="docutils literal"><span class="pre">antider(<pol.</span> expr. P>)</span></a></h2>
-<blockquote>
-<p>The primitive of <span class="docutils literal">P</span> with no constant term. Same as <span class="docutils literal"><span class="pre">diffn(P,-1)</span></span>.</p>
-</blockquote>
-</div>
-<div class="section" id="intfrom-pol-expr-p-pol-expr-c">
-<h2><a class="toc-backref" href="#id72"><span class="docutils literal"><span class="pre">intfrom(<pol.</span> expr. P>, <pol. expr. c>)</span></a></h2>
-<blockquote>
-<p>The primitive of <span class="docutils literal">P</span> vanishing at <span class="docutils literal">c</span>, i.e. <span class="docutils literal">\int_c^x P(t)dt</span>.</p>
-<p>Also <span class="docutils literal">c</span> can be a polynomial... so if <span class="docutils literal">c</span> is monomial <span class="docutils literal">x</span>
-this will give zero!</p>
-<blockquote>
-<p><strong>UNSTABLE</strong></p>
-<p>Allowing general polynomial variable for <span class="docutils literal">c</span> adds a bit of
-overhead to the case of a pure scalar. So I am hesitating
-maintaining this feature whose interest appears dubious.</p>
-</blockquote>
-</blockquote>
-</div>
-<div class="section" id="integral-pol-expr-p-pol-expr-a-pol-expr-b">
-<h2><a class="toc-backref" href="#id73"><span class="docutils literal"><span class="pre">integral(<pol.</span> expr. P>, [<pol. expr. a>, <pol. expr. <span class="pre">b>])</span></span></a></h2>
-<blockquote>
-<p><span class="docutils literal">\int_a^b P(t)dt</span>.</p>
-<div class="admonition warning">
-<p class="admonition-title">Warning</p>
-<p>The brackets here are not denoting an optional argument
-but a <em>mandatory</em> nutple argument <span class="docutils literal">[a, b]</span> with <em>two items</em>.</p>
-</div>
-<p><span class="docutils literal">a</span> and <span class="docutils literal">b</span> are not restricted to be scalars, they are allowed to
-be themselves polynomial variables or even polynomial expressions.</p>
-<blockquote>
-<p>To compute <span class="docutils literal"><span class="pre">\int_{x-1}^x</span> P(t)dt</span> it is more efficient to use
-<span class="docutils literal"><span class="pre">intfrom(x-1)</span></span>.</p>
-<p>Similary to compute <span class="docutils literal"><span class="pre">\int_x^{x+1}</span> P(t)dt</span>, use <span class="docutils literal"><span class="pre">-intfrom(x+1)</span></span>.</p>
-<p><strong>UNSTABLE</strong></p>
-<p>Am I right to allow general polynomials <span class="docutils literal">a</span> and <span class="docutils literal">b</span> hence add
-overhead to the pure scalar case ?</p>
-</blockquote>
-</blockquote>
-</div>
-</div>
-<div class="section" id="non-expandable-macros">
-<h1><a class="toc-backref" href="#id74">Non-expandable macros</a></h1>
-<div class="admonition note">
-<p class="admonition-title">Note</p>
-<p>At <span class="docutils literal">0.8</span> <span class="docutils literal">polexpr</span> is usable with Plain TeX and not only with
-LaTeX. Some examples given in this section may be using LaTeX syntax
-such as <span class="docutils literal">\renewcommand</span>.</p>
-</div>
-<div class="section" id="poldef-polname-letter-expression-using-the-letter-as-indeterminate">
-<span id="poldef"></span><h2><a class="toc-backref" href="#id75"><span class="docutils literal">\poldef <span class="pre">polname(letter):=</span> expression using the letter as indeterminate;</span></a></h2>
-<blockquote>
-<p>This evaluates the <em>polynomial expression</em> and stores the
-coefficients in a private structure accessible later via other
-package macros, used with argument <span class="docutils literal">polname</span>. Of course the
-<em>expression</em> can make use of previously defined polynomials.</p>
-<p>Polynomial names must start with a letter and are constituted of
-letters, digits, underscores and the right tick <span class="docutils literal">'</span>.</p>
-<p>The whole <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a> syntax is authorized, as long as the final
-result is of polynomial type:</p>
-<pre class="literal-block">\poldef polname(z) := add((-1)^i z^(2i+1)/(2i+1)!, i = 0..10);</pre>
-<p>With fractional coefficients, beware the <a class="reference internal" href="#warningtacit">tacit multiplication issue</a>.</p>
-<p>Furthermore:</p>
-<ul class="simple">
-<li><p>a variable <span class="docutils literal">polname</span> is defined which can be used in <span class="docutils literal">\poldef</span>
-as well as in <span class="docutils literal">\xinteval</span> for algebraic computations or as
-argument to polynomial aware functions,</p></li>
-<li><p>a function <span class="docutils literal">polname()</span> is defined which can be used in <span class="docutils literal">\poldef</span>
-as well as in <span class="docutils literal">\xinteval</span>. It accepts there as argument scalars
-and also other polynomials (via their names, thanks to previous
-item).</p></li>
-</ul>
-<p>Notice that any function defined via <span class="docutils literal">\xintdeffunc</span> and using
-only algebraic operations (and ople indexing or slicing operations)
-should work fine in <span class="docutils literal"><span class="pre">\xintexpr/\xinteval</span></span> with such polynomial
-names as argument.</p>
-<p>In the case of a constant polynomial, the <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a> variable (not the
-internal data structure on which the package macros operate)
-associated to it is indistinguishable from a scalar, it is actually
-a scalar and has lost all traces from its origins as a polynomial
-(so for example can be used as argument to the <span class="docutils literal">cos()</span> function).</p>
-<p>The <em>function</em> on the other hand remains a one-argument function,
-which simply has a constant value.</p>
-<div class="admonition attention">
-<p class="admonition-title">Attention!</p>
-<p>The function <span class="docutils literal">polname()</span> is defined <strong>only</strong> for
-<span class="docutils literal"><span class="pre">\xintexpr/\xinteval</span></span>
-context. It will be unknown to <span class="docutils literal">\xintfloateval</span>.</p>
-<p>Worse, a
-previously existing floating point function of the same name will
-be let undefined again, to avoid hard to debug mismatches between
-exact and floating point polynomials. This also applies when the
-polynomial is produced not via <span class="docutils literal">\poldef</span> or <span class="docutils literal">\PolDef</span> but
-as result of usage of the other package macros.</p>
-<p>See <a class="reference internal" href="#polgenfloatvariant-polname">\PolGenFloatVariant{<polname>}</a> to generate a <strong>function</strong>
-usable in <span class="docutils literal">\xintfloateval</span>.</p>
-</div>
-<div class="admonition attention">
-<p class="admonition-title">Attention!</p>
-<p>Using the <strong>variable</strong> <span class="docutils literal">mypol</span> inside <span class="docutils literal">\xintfloateval</span> will
-generate low-level errors because the infix operators there are
-not polynomial-aware, and the polynomial specific functions such
-as <span class="docutils literal">deg()</span> are only defined for usage inside <span class="docutils literal">\xintexpr</span>.</p>
-<p>In short, currently polynomials defined via <span class="docutils literal">polexpr</span> can
-be used in floating point context only for numerical evaluations,
-via <strong>functions</strong> obtained from <a class="reference internal" href="#polgenfloatvariant-polname">\PolGenFloatVariant{<polname>}</a>
-usage.</p>
-<p>Changes to the original polynomial via package macros are not
-automatically mapped to the numerical floating point evaluator
-which must be manually updated as necessary when the original
-rational coefficient polynomial is modified.</p>
-</div>
-<p>The original expression is lost after parsing, and in particular the
-package provides no way to typeset it (of course the package
-provides macros to typeset the computed polynomial). Typesetting
-the original expression has to be done manually, if needed.</p>
-</blockquote>
-</div>
-<div class="section" id="poldef-letter-polname-expr-using-the-letter-as-indeterminate">
-<span id="id8"></span><h2><a class="toc-backref" href="#id76"><span class="docutils literal"><span class="pre">\PolDef[<letter>]{<polname>}{<expr.</span> using the letter as indeterminate>}</span></a></h2>
-<blockquote>
-<p>Does the same as <a class="reference internal" href="#poldef">\poldef</a> in an undelimited macro
-format, the main interest is to avoid potential problems with the
-catcode of the semi-colon in presence of some packages. In absence
-of a <span class="docutils literal">[<letter>]</span> optional argument, the variable is assumed to be
-<span class="docutils literal">x</span>.</p>
-</blockquote>
-</div>
-<div class="section" id="polgenfloatvariant-polname">
-<span id="polgenfloatvariant"></span><h2><a class="toc-backref" href="#id77"><span class="docutils literal"><span class="pre">\PolGenFloatVariant{<polname>}</span></span></a></h2>
-<blockquote>
-<p>Makes the polynomial also usable in the
-<span class="docutils literal"><span class="pre">\xintfloatexpr/\xintfloateval</span></span> parser. It will therein evaluates
-via an Horner scheme using polynomial coefficients already
-pre-rounded to the float precision.</p>
-<p>See also <a class="reference internal" href="#poltofloatexpr-pol-expr">\PolToFloatExpr{<pol. expr.>}</a>.</p>
-<div class="admonition attention">
-<p class="admonition-title">Attention!</p>
-<p>Any operation, for example generating the derivative polynomial,
-or dividing two polynomials or using the <span class="docutils literal">\PolLet</span>, must be
-followed by explicit usage of <span class="docutils literal"><span class="pre">\PolGenFloatVariant{<polname>}</span></span> if
-the new polynomial is to be used in <span class="docutils literal">\xintfloateval</span>.</p>
-</div>
-</blockquote>
-</div>
-<div class="section" id="poltypeset-pol-expr">
-<span id="poltypeset"></span><h2><a class="toc-backref" href="#id78"><span class="docutils literal"><span class="pre">\PolTypeset{<pol.</span> <span class="pre">expr.>}</span></span></a></h2>
-<blockquote>
-<p>Typesets in descending powers, switching to math mode if in text
-mode, after evaluating the polynomial expression:</p>
-<pre class="literal-block">\PolTypeset{mul(x-i,i=1..5)}% possible since polexpr 0.8</pre>
-<p>The letter used in the input expression is by default <span class="docutils literal">x</span>,
-but can be modified by a redefinition of <a class="reference internal" href="#poltoexprinvar">\PolToExprInVar</a>.</p>
-<p>It uses also by default the letter <span class="docutils literal">x</span> on output but this one can
-be changed via an optional argument:</p>
-<pre class="literal-block">\PolTypeset[z]{polname or polynomial expression}</pre>
-<p>By default zero coefficients are skipped (use <span class="docutils literal">\poltypesetalltrue</span>
-to get all of them in output).</p>
-<p>The following macros (whose meanings will be found in the package code)
-can be re-defined for customization. Their default definitions are
-expandable, but this is not a requirement.</p>
-</blockquote>
-<div class="section" id="poltypesetcmd-raw-coeff">
-<span id="poltypesetcmd"></span><h3><a class="toc-backref" href="#id79"><span class="docutils literal"><span class="pre">\PolTypesetCmd{<raw_coeff>}</span></span></a></h3>
-<blockquote>
-<p>Its package definition checks if the coefficient is <span class="docutils literal">1</span> or <span class="docutils literal"><span class="pre">-1</span></span>
-and then skips printing the <span class="docutils literal">1</span>, except for the coefficient of
-degree zero. Also it sets the conditional deciding behaviour of
-<a class="reference internal" href="#polifcoeffisplusorminusone-t-f">\PolIfCoeffIsPlusOrMinusOne{T}{F}</a>.</p>
-<p>The actual printing of the coefficients, when not equal to plus or
-minus one, is handled by <a class="reference internal" href="#poltypesetone-raw-coeff">\PolTypesetOne{<raw_coeff>}</a>.</p>
-</blockquote>
-<div class="section" id="polifcoeffisplusorminusone-t-f">
-<span id="polifcoeffisplusorminusone"></span><h4><a class="toc-backref" href="#id80"><span class="docutils literal"><span class="pre">\PolIfCoeffIsPlusOrMinusOne{T}{F}</span></span></a></h4>
-<blockquote>
-<p>This macro is a priori undefined.</p>
-<p>It is defined via the default <a class="reference internal" href="#poltypesetcmd-raw-coeff">\PolTypesetCmd{<raw_coeff>}</a> to be
-used if needed in the execution of <a class="reference internal" href="#poltypesetmonomialcmd">\PolTypesetMonomialCmd</a>,
-e.g. to insert a <span class="docutils literal">\cdot</span> in front of <span class="docutils literal"><span class="pre">\PolVar^{\PolIndex}</span></span> if
-the coefficient is not plus or minus one.</p>
-<p>The macro will execute <span class="docutils literal">T</span> if the coefficient has been found to be
-plus or minus one, and <span class="docutils literal">F</span> if not. It chooses expandably between
-<span class="docutils literal">T</span> and <span class="docutils literal">F</span>.</p>
-</blockquote>
-</div>
-</div>
-<div class="section" id="poltypesetone-raw-coeff">
-<span id="poltypesetone"></span><h3><a class="toc-backref" href="#id81"><span class="docutils literal"><span class="pre">\PolTypesetOne{<raw_coeff>}</span></span></a></h3>
-<blockquote>
-<p>Defaults to <span class="docutils literal">\xintTeXsignedFrac</span> (LaTeX) or <span class="docutils literal">\xintTeXsignedOver</span>
-(else). But these <a class="reference external" href="https://www.ctan.org/pkg/xint">xintfrac</a> old legacy macros are a bit
-annoying as they insist in exhibiting a power of ten rather than
-using simpler decimal notation.</p>
-<p>As alternative, one can do definitions such as:</p>
-<pre class="literal-block">\def\PolTypesetOne#1{\xintDecToString{\xintREZ{#1}}}
-% or with LaTeX+siunitx for example
-\renewcommand\PolTypesetOne[1]{\num{\xintPFloat[5]{#1}}}
-% (as \num of siunitx understands floating point notation)
-\renewcommand\PolTypesetOne[1]{\num{\xintRound{4}{#1}}}</pre>
-</blockquote>
-</div>
-<div class="section" id="id9">
-<span id="poltypesetmonomialcmd"></span><h3><a class="toc-backref" href="#id82"><span class="docutils literal">\PolTypesetMonomialCmd</span></a></h3>
-<blockquote>
-<p>This decides how a monomial (in variable <span class="docutils literal">\PolVar</span> and with
-exponent <span class="docutils literal">\PolIndex</span>) is to be printed. The default does nothing
-for the constant term, <span class="docutils literal">\PolVar</span> for the first degree and
-<span class="docutils literal"><span class="pre">\PolVar^{\PolIndex}</span></span> for higher degrees monomials. Beware that
-<span class="docutils literal">\PolIndex</span> expands to digit tokens and needs termination in
-<span class="docutils literal">\ifnum</span> tests.</p>
-</blockquote>
-</div>
-<div class="section" id="poltypesetcmdprefix-raw-coeff">
-<span id="poltypesetcmdprefix"></span><h3><a class="toc-backref" href="#id83"><span class="docutils literal"><span class="pre">\PolTypesetCmdPrefix{<raw_coeff>}</span></span></a></h3>
-<blockquote>
-<p>Expands to a <span class="docutils literal">+</span> if the <span class="docutils literal">raw_coeff</span> is zero or positive, and to
-nothing if <span class="docutils literal">raw_coeff</span> is negative, as in latter case the
-<span class="docutils literal">\xintTeXsignedFrac</span> (or <span class="docutils literal">\xintTeXsignedOver</span>) used by
-<a class="reference internal" href="#poltypesetcmd-raw-coeff">\PolTypesetCmd{<raw_coeff>}</a> will put the <span class="docutils literal">-</span> sign in front of
-the fraction (if it is a fraction) and this will thus serve as
-separator in the typeset formula. Not used for the first term.</p>
-</blockquote>
-</div>
-</div>
-<div class="section" id="id11">
-<span id="id10"></span><h2><a class="toc-backref" href="#id84"><span class="docutils literal"><span class="pre">\PolTypeset*{<pol.</span> <span class="pre">expr.>}</span></span></a></h2>
-<blockquote>
-<p>Typesets in ascending powers. Use <span class="docutils literal">[<letter>]</span> optional argument
-(after the <span class="docutils literal">*</span>) to use another letter than <span class="docutils literal">x</span>.</p>
-<p>Extended at <span class="docutils literal">0.8</span> to accept general expressions and not only
-polynomial names. Redefine <a class="reference internal" href="#poltoexprinvar">\PolToExprInVar</a> to use in the
-expression another letter than default <span class="docutils literal">x</span>.</p>
-</blockquote>
-</div>
-<div class="section" id="non-expandable-macros-related-to-the-root-localization-routines">
-<h2><a class="toc-backref" href="#id85">Non-expandable macros related to the root localization routines</a></h2>
-<p>As <a class="reference internal" href="#poltosturm-polname-sturmname">\PolToSturm{<polname>}{<sturmname>}</a> and
-<a class="reference internal" href="#polsturmisolatezeros-sturmname">\PolSturmIsolateZeros{<sturmname>}</a> and variants declare
-additional polynomial or scalar variables with names based on <span class="docutils literal"><sturmname></span> as
-prefix, it is advisable to keep the <span class="docutils literal"><sturmname></span> namespace separate from
-the one applying to <span class="docutils literal">\xintexpr</span> variables generally, or to polynomials.</p>
-<div class="section" id="poltosturm-polname-sturmname">
-<span id="poltosturm"></span><h3><a class="toc-backref" href="#id86"><span class="docutils literal"><span class="pre">\PolToSturm{<polname>}{<sturmname>}</span></span></a></h3>
-<blockquote>
-<p>With <span class="docutils literal"><polname></span> being for example <span class="docutils literal">P</span>, and <span class="docutils literal"><sturmname></span> being
-for example <span class="docutils literal">S</span>, the macro starts by computing the derivative
-<span class="docutils literal">P'</span>, then computes the opposite of the remainder in the euclidean
-division of <span class="docutils literal">P</span> by <span class="docutils literal">P'</span>, then the opposite of the remainder in
-the euclidean division of <span class="docutils literal">P'</span> by the first obtained polynomial,
-etc... Up to signs following the <span class="docutils literal"><span class="pre">--++--++...</span></span> pattern, these are
-the same remainders as in the Euclide algorithm applied to the
-computation of the GCD of <span class="docutils literal">P</span> and <span class="docutils literal">P'</span>.</p>
-<p>The precise process differs from the above description: the
-algorithm first sets <span class="docutils literal">S_0_</span> to be the <em>primitive part</em> of <span class="docutils literal">P</span> and
-<span class="docutils literal">S_1_</span> to be the <em>primitive part</em> of <span class="docutils literal">P'</span> (see
-<a class="reference internal" href="#policontent-polname">\PolIContent{<polname>}</a>), then at each step the remainder is made
-primitive and stored for internal reference as <span class="docutils literal">S_k_</span>, so only
-integer-coefficients polynomials are manipulated.</p>
-<div class="admonition warning">
-<p class="admonition-title">Warning</p>
-<p>This exact procedure will perhaps in future be replaced by a
-<em>sub-resultant algorithm</em>, which may bring some speed gain in
-obtaining a pseudo-Sturm sequence, but some experimenting is
-needed, in the context of realistically realizable computations
-by the package; primitive polynomials although a bit costly
-have the smallest coefficients hence are the best for the kind of
-computations done for root localization, after having computed a
-Sturm sequence.</p>
-</div>
-<p>The last non-zero primitivized remainder <span class="docutils literal">S_N_</span> is, up to sign,
-the primitive part of the GCD of <span class="docutils literal">P</span> and <span class="docutils literal">P'</span>. Its roots (real
-and complex) are the multiple roots of the original <span class="docutils literal">P</span>. The
-original <span class="docutils literal">P</span> was "square-free" (i.e. did not have multiple real
-or complex roots) if and only if <span class="docutils literal">S_N_</span> is a constant, which is
-then <span class="docutils literal">+1</span> or <span class="docutils literal"><span class="pre">-1</span></span> (its value before primitivization is lost).</p>
-<p>The macro then divides each <span class="docutils literal">S_k_</span> by <span class="docutils literal">S_N_</span> and declares the
-quotients <span class="docutils literal">S_k</span> as user polynomials for future use. By Gauss
-theorem about the contents of integer-coefficients polynomials,
-these <span class="docutils literal">S_k</span> also are primitive integer-coefficients polynomials.</p>
-<p>This step will be referred to as <em>normalization</em>, and in this
-documentation the obtained polynomials are said to constitute the
-"Sturm chain" (or "Sturm sequence"), i.e. by convention the "Sturm
-chain polynomials" are square-free and primitive. The possibly
-non-square-free ones are referred to as <em>non-normalized</em>.</p>
-<p>As an exception to the rule, if the original <span class="docutils literal">P</span> was "square-free"
-(i.e. did not have multiple real or complex roots) then
-normalization is skipped (in that case <span class="docutils literal">S_N_</span> is either <span class="docutils literal">+1</span> or
-<span class="docutils literal"><span class="pre">-1</span></span>), so <span class="docutils literal">S_0_</span> is exactly the primitive part of starting
-polynomial <span class="docutils literal">P</span>, in the "square-free" case.</p>
-<p>The next logical step is to execute <a class="reference internal" href="#polsturmisolatezeros">\PolSturmIsolateZeros{S}</a> or one of its variants. Be careful not to
-use the names <span class="docutils literal">sturmname_0</span>, <span class="docutils literal">sturmname_1</span>, etc... for defining
-other polynomials after having done
-<span class="docutils literal"><span class="pre">\PolToSturm{<polname>}{<sturmname>}</span></span> and before executing
-<span class="docutils literal"><span class="pre">\PolSturmIsolateZeros{<sturmname>}</span></span> or its variants else the
-latter will behave erroneously.</p>
-<div class="admonition note">
-<p class="admonition-title">Note</p>
-<p>The declaration of the <span class="docutils literal">S_k</span>'s will overwrite
-with no warning previously declared polynomials with identical
-names <span class="docutils literal">S_k</span>. This is original reason why the macro expects two
-names: <span class="docutils literal"><polname></span> and <span class="docutils literal"><sturmname></span>.</p>
-<p>It is allowed to use the polynomial name <span class="docutils literal">P</span> as Sturm chain
-name <span class="docutils literal">S</span>: <span class="docutils literal"><span class="pre">\PolToSturm{f}(f}</span></span>, but of course fusing the
-namespaces is slightly dangerous. And, also <a class="reference internal" href="#polsturmisolatezeros">\PolSturmIsolateZeros</a> creates variables sharing
-the <span class="docutils literal"><sturmname></span> prefix, which must be taken into account to
-avoid name clashes.</p>
-</div>
-<div class="admonition warning">
-<p class="admonition-title">Warning</p>
-<p>The reason why the <span class="docutils literal">S_k</span>'s are declared as polynomials is
-that the associated polynomial functions are needed to compute
-the sign changes in the Sturm sequence evaluated at a given
-location, as this is the basis mechanism of <a class="reference internal" href="#polsturmisolatezeros">\PolSturmIsolateZeros</a> (on the basis of the <a class="reference external" href="https://en.wikipedia.org/wiki/Sturm%27s_theorem">Sturm theorem</a>).</p>
-<p>It is possible that in future the package will only internally
-construct such polynomial functions and only the starred variant
-will make the normalized (i.e. square-free) Sturm sequence public.</p>
-</div>
-<p>The integer <span class="docutils literal">N</span> giving the length of the Sturm chain <span class="docutils literal">S_0</span>,
-<span class="docutils literal">S_1</span>, ..., <span class="docutils literal">S_N</span> is available as
-<a class="reference internal" href="#polsturmchainlength-sturmname">\PolSturmChainLength{<sturmname>}</a>. If all roots of original <span class="docutils literal">P</span>
-are real, then <span class="docutils literal">N</span> is both the number of distinct real roots and
-the degree of <span class="docutils literal">S_0</span>. In the case of existence of complex roots,
-the number of distinct real roots is at most <span class="docutils literal">N</span> and <span class="docutils literal">N</span> is at
-most the degree of <span class="docutils literal">S_0</span>.</p>
-</blockquote>
-</div>
-<div class="section" id="id13">
-<span id="id12"></span><h3><a class="toc-backref" href="#id87"><span class="docutils literal"><span class="pre">\PolToSturm*{<polname>}{<sturmname>}</span></span></a></h3>
-<blockquote>
-<p>Does the same as <a class="reference internal" href="#poltosturm">un-starred version</a> and additionally it
-keeps for user usage the memory of the <em>un-normalized</em> (but still
-made primitive) Sturm chain
-polynomials <span class="docutils literal">sturmname_k_</span>, <span class="docutils literal">k=0,1, <span class="pre">...,</span> N</span>, with
-<span class="docutils literal">N</span> being <a class="reference internal" href="#polsturmchainlength-sturmname">\PolSturmChainLength{<sturmname>}</a>.</p>
-</blockquote>
-</div>
-<div class="section" id="polsturmisolatezeros-sturmname">
-<span id="polsturmisolatezeros"></span><h3><a class="toc-backref" href="#id88"><span class="docutils literal"><span class="pre">\PolSturmIsolateZeros{<sturmname>}</span></span></a></h3>
-<blockquote>
-<p>The macro locates, using the <a class="reference external" href="https://en.wikipedia.org/wiki/Sturm%27s_theorem">Sturm Theorem</a>, as many disjoint
-intervals as there are distinct real roots.</p>
-<div class="admonition important">
-<p class="admonition-title">Important</p>
-<p>The Sturm chain must have been produced by an earlier
-<a class="reference internal" href="#poltosturm-polname-sturmname">\PolToSturm{<polname>}{<sturmname>}</a>.</p>
-</div>
-<p>After its execution they are two types of such intervals (stored in
-memory and accessible via macros or <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a> variables, see below):</p>
-<ul class="simple">
-<li><p>singleton <span class="docutils literal">{a}</span>: then <span class="docutils literal">a</span> is a root, (necessarily a decimal
-number, but not all such decimal numbers are exactly identified yet).</p></li>
-<li><p>open intervals <span class="docutils literal">(a,b)</span>: then there is exactly one root <span class="docutils literal">z</span>
-such that <span class="docutils literal">a < z < b</span>, and the end points are guaranteed to not
-be roots.</p></li>
-</ul>
-<p>The interval boundaries are decimal numbers, originating
-in iterated decimal subdivision from initial intervals
-<span class="docutils literal"><span class="pre">(-10^E,</span> 0)</span> and <span class="docutils literal">(0, 10^E)</span> with <span class="docutils literal">E</span> chosen initially large
-enough so that all roots are enclosed; if zero is a root it is always
-identified as such. The non-singleton intervals are of the
-type <span class="docutils literal">(a/10^f, <span class="pre">(a+1)/10^f)</span></span> with <span class="docutils literal">a</span> an integer, which is
-neither <span class="docutils literal">0</span> nor <span class="docutils literal"><span class="pre">-1</span></span>. Hence either <span class="docutils literal">a</span> and <span class="docutils literal">a+1</span> are both positive
-or they are both negative.</p>
-<p>One does not <em>a priori</em> know what will be the lengths of these
-intervals (except that they are always powers of ten), they
-vary depending on how many digits two successive roots have in
-common in their respective decimal expansions.</p>
-<div class="admonition important">
-<p class="admonition-title">Important</p>
-<p>If some two consecutive intervals share an end-point, no
-information is yet gained about the separation between the two
-roots which could at this stage be arbitrarily small.</p>
-<p>See <a class="reference internal" href="#polrefineinterval-sturmname-index">\PolRefineInterval*{<sturmname>}{<index>}</a> which addresses
-this issue.</p>
-</div>
-<p>Let us suppose <span class="docutils literal"><sturmname></span> is <span class="docutils literal">S</span>.</p>
-<p>The interval boundaries (and exactly found roots) are made available
-for future computations in <span class="docutils literal">\xintexpr/xinteval</span> or <span class="docutils literal">\poldef</span> as
-variables <span class="docutils literal">SL_1</span>, <span class="docutils literal">SL_2</span>, etc..., for the left end-points and
-<span class="docutils literal">SR_1</span>, <span class="docutils literal">SR_2</span>, ..., for the right end-points.</p>
-<p>Additionally, <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a> variable <span class="docutils literal">SZ_1_isknown</span> will have value
-<span class="docutils literal">1</span> if the root in the first interval is known, and <span class="docutils literal">0</span>
-otherwise. And similarly for the other intervals.</p>
-<div class="admonition important">
-<p class="admonition-title">Important</p>
-<p>The variable declarations are done with no check of existence of
-previously existing variables with identical names.</p>
-</div>
-<p>Also, macros <a class="reference internal" href="#polsturmisolatedzeroleft">\PolSturmIsolatedZeroLeft{<sturmname>}{<index>}</a> and
-<a class="reference internal" href="#polsturmisolatedzeroright-sturmname-index">\PolSturmIsolatedZeroRight{<sturmname>}{<index>}</a> are provided which
-expand to these same values, written in decimal notation (i.e.
-pre-processed by <a class="reference internal" href="#poldectostring">\PolDecToString</a>.) And there
-is also <a class="reference internal" href="#polsturmifzeroexactlyknown-sturmname-index-t-f">\PolSturmIfZeroExactlyKnown{<sturmname>}{<index>}{T}{F}</a>.</p>
-<div class="admonition important">
-<p class="admonition-title">Important</p>
-<p>Trailing zeroes in the stored decimal numbers accessible via the
-macros are significant: they are also present in the decimal
-expansion of the exact root, so as to be able for example to
-print out bounds of real roots with as many digits as is
-significant, even if the digits are zeros.</p>
-</div>
-<p>The start of the decimal expansion of the <span class="docutils literal"><index></span>-th root is given by
-<a class="reference internal" href="#polsturmisolatedzeroleft">\PolSturmIsolatedZeroLeft{<sturmname>}{<index>}</a> if the root is positive, and by
-<a class="reference internal" href="#polsturmisolatedzeroright">PolSturmIsolatedZeroRight{<sturmname>}{<index>}</a> if the root is neagtive. These two
-decimal numbers are either both zero or both of the same sign.</p>
-<p>The number of distinct roots is obtainable expandably as
-<a class="reference internal" href="#polsturmnbofisolatedzeros-sturmname">\PolSturmNbOfIsolatedZeros{<sturmname>}</a>.</p>
-<p>Furthermore
-<a class="reference internal" href="#polsturmnbofrootsof-sturmname-lessthanorequalto-value">\PolSturmNbOfRootsOf{<sturmname>}\LessThanOrEqualTo{<value>}</a> and
-<a class="reference internal" href="#polsturmnbofrootsof-sturmname-lessthanorequaltoexpr-num-expr">\PolSturmNbOfRootsOf{<sturmname>}\LessThanOrEqualToExpr{<num. expr.>}</a>.
-will expandably compute respectively the number of real roots at
-most equal to <span class="docutils literal">value</span> or <span class="docutils literal">expression</span>, and the same but with
-multiplicities.</p>
-<p>These variables and macros are automatically updated in case of
-subsequent usage of <a class="reference internal" href="#polrefineinterval-sturmname-index">\PolRefineInterval*{<sturmname>}{<index>}</a> or
-other localization improving macros.</p>
-<div class="admonition note">
-<p class="admonition-title">Note</p>
-<p>The current polexpr implementation defines the <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a> variables
-and <a class="reference external" href="https://www.ctan.org/pkg/xint">xinttools</a> arrays as described above with global scope. On the
-other hand the Sturm sequence polynomials obey the current scope.</p>
-<p>This is perhaps a bit inconsistent and may change in future.</p>
-</div>
-<div class="admonition note">
-<p class="admonition-title">Note</p>
-<p>The results are exact
-bounds for the mathematically exact real roots.</p>
-<p>Future releases will perhaps also provide macros based on Newton
-or Regula Falsi methods. Exact computations with such methods
-lead however quickly to very big fractions, and this forces usage
-of some rounding scheme for the abscissas if computation times
-are to remain reasonable. This raises issues of its own, which
-are studied in numerical mathematics.</p>
-</div>
-</blockquote>
-</div>
-<div class="section" id="id15">
-<span id="id14"></span><h3><a class="toc-backref" href="#id89"><span class="docutils literal"><span class="pre">\PolSturmIsolateZeros*{<sturmname>}</span></span></a></h3>
-<blockquote>
-<p>The macro does the same as <a class="reference internal" href="#polsturmisolatezeros-sturmname">\PolSturmIsolateZeros{<sturmname>}</a> and
-then in addition it does the extra work to determine all
-multiplicities of the real roots.</p>
-<p>After execution,
-<a class="reference internal" href="#polsturmisolatedzeromultiplicity-sturmname-index">\PolSturmIsolatedZeroMultiplicity{<sturmname>}{<index>}</a> expands
-to the multiplicity of the root located in the <span class="docutils literal">index</span>-th
-interval (intervals are enumerated from left to right, with index
-starting at <span class="docutils literal">1</span>).</p>
-<p>Furthermore, if for example the <span class="docutils literal"><sturmname></span> is <span class="docutils literal">S</span>, <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a>
-variables <span class="docutils literal">SM_1</span>, <span class="docutils literal">SM_2</span>... hold the multiplicities thus
-computed.</p>
-<div class="admonition note">
-<p class="admonition-title">Note</p>
-<p>Somewhat counter-intuitively, it is not necessary to have
-executed the <a class="reference internal" href="#id12">\PolToSturm*</a> starred variant: during its
-execution, <a class="reference internal" href="#poltosturm">\PolToSturm</a>, even though it does not declare the
-non-square-free Sturm chain polynomials as user-level genuine
-polynomials, stores their data in private macros.</p>
-</div>
-<p>See <span class="docutils literal">The degree nine polynomial with 0.99, 0.999, 0.9999 as triple roots</span> example in <span class="docutils literal"><span class="pre">polexpr-examples.pdf</span></span>.</p>
-</blockquote>
-<div class="section" id="polsturmisolatezerosandgetmultiplicities-sturmname">
-<span id="polsturmisolatezerosandgetmultiplicities"></span><h4><a class="toc-backref" href="#id90"><span class="docutils literal"><span class="pre">\PolSturmIsolateZerosAndGetMultiplicities{<sturmname>}</span></span></a></h4>
-<blockquote>
-<p>This is another name for <a class="reference internal" href="#id15">\PolSturmIsolateZeros*{<sturmname>}</a>.</p>
-</blockquote>
-</div>
-</div>
-<div class="section" id="id17">
-<span id="id16"></span><h3><a class="toc-backref" href="#id91"><span class="docutils literal"><span class="pre">\PolSturmIsolateZeros**{<sturmname>}</span></span></a></h3>
-<blockquote>
-<p>The macro does the same as <a class="reference internal" href="#id15">\PolSturmIsolateZeros*{<sturmname>}</a> and
-in addition it does the extra work to determine all the <em>rational</em>
-roots.</p>
-<div class="admonition note">
-<p class="admonition-title">Note</p>
-<p>After execution of this macro, a root is "known" if and only if
-it is rational.</p>
-</div>
-<p>Furthermore, primitive polynomial <span class="docutils literal">sturmname_sqf_norr</span> is created
-to match the (square-free) <span class="docutils literal">sturmname_0</span> from which all rational
-roots have been removed (see <a class="reference internal" href="#polexprsetup">\polexprsetup</a> for customizing this
-name). The number of distinct rational roots is thus the difference
-between the degrees of these two polynomials (see also
-<a class="reference internal" href="#polsturmnbofrationalroots-sturmname">\PolSturmNbOfRationalRoots{<sturmname>}</a>).</p>
-<p>And <span class="docutils literal">sturmname_norr</span> is <span class="docutils literal">sturmname_0_</span> from which all rational
-roots have been removed (see <a class="reference internal" href="#polexprsetup">\polexprsetup</a>), i.e. it contains
-the irrational roots of the original polynomial, with the same
-multiplicities.</p>
-<p>See <span class="docutils literal">A degree five polynomial with three rational roots</span> in <span class="docutils literal"><span class="pre">polexpr-examples.pdf</span></span>.</p>
-</blockquote>
-<div class="section" id="polsturmisolatezerosgetmultiplicitiesandrationalroots-sturmname">
-<span id="polsturmisolatezerosgetmultiplicitiesandrationalroots"></span><h4><a class="toc-backref" href="#id92"><span class="docutils literal"><span class="pre">\PolSturmIsolateZerosGetMultiplicitiesAndRationalRoots{<sturmname>}</span></span></a></h4>
-<blockquote>
-<p>This is another name for <a class="reference internal" href="#id17">\PolSturmIsolateZeros**{<sturmname>}</a>.</p>
-</blockquote>
-</div>
-</div>
-<div class="section" id="polsturmisolatezerosandfindrationalroots-sturmname">
-<h3><a class="toc-backref" href="#id93"><span class="docutils literal"><span class="pre">\PolSturmIsolateZerosAndFindRationalRoots{<sturmname>}</span></span></a></h3>
-<blockquote>
-<p>This works exactly like <a class="reference internal" href="#id17">\PolSturmIsolateZeros**{<sturmname>}</a>
-(inclusive of declaring the polynomials <span class="docutils literal">sturmname_sqf_norr</span> and
-<span class="docutils literal">sturmname_norr</span> with no rational roots) except that it does <em>not</em>
-compute the multiplicities of the <em>non-rational</em> roots.</p>
-<div class="admonition note">
-<p class="admonition-title">Note</p>
-<p>There is no macro to find the rational roots but not compute
-their multiplicities at the same time.</p>
-</div>
-<div class="admonition attention">
-<p class="admonition-title">Attention!</p>
-<p>This macro does <em>not</em> define <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a> variables
-<span class="docutils literal">sturmnameM_1</span>, <span class="docutils literal">sturmnameM_2</span>, ... holding the
-multiplicities and it leaves the multiplicity array (whose accessor
-is <a class="reference internal" href="#polsturmisolatedzeromultiplicity-sturmname-index">\PolSturmIsolatedZeroMultiplicity{<sturmname>}{<index>}</a>) into
-a broken state, as all non-rational roots will supposedly have
-multiplicity one. This means that the output of
-<a class="reference internal" href="#id21">\PolPrintIntervals*</a> will be
-erroneous regarding the multiplicities of irrational roots.</p>
-<p>I decided to document it because finding multiplicities of the
-non rational roots is somewhat costly, and one may be interested
-only into finding the rational roots (of course random
-polynomials with integer coefficients will not have <em>any</em>
-rational root anyhow).</p>
-</div>
-</blockquote>
-</div>
-<div class="section" id="polrefineinterval-sturmname-index">
-<span id="polrefineinterval"></span><h3><a class="toc-backref" href="#id94"><span class="docutils literal"><span class="pre">\PolRefineInterval*{<sturmname>}{<index>}</span></span></a></h3>
-<blockquote>
-<p>The <span class="docutils literal">index</span>-th interval (starting indexing at one) is further
-subdivided as many times as is necessary in order for the newer
-interval to have both its end-points distinct from the end-points of
-the original interval. As a consequence, the <span class="docutils literal">k</span>th root is then
-strictly separated from the other roots.</p>
-</blockquote>
-</div>
-<div class="section" id="polrefineinterval-n-sturmname-index">
-<span id="polrefineinterval-n"></span><h3><a class="toc-backref" href="#id95"><span class="docutils literal"><span class="pre">\PolRefineInterval[N]{<sturmname>}{<index>}</span></span></a></h3>
-<blockquote>
-<p>The <span class="docutils literal">index</span>-th interval (starting count at one) is further
-subdivided once, reducing its length by a factor of 10. This is done
-<span class="docutils literal">N</span> times if the optional argument <span class="docutils literal">[N]</span> is present.</p>
-</blockquote>
-</div>
-<div class="section" id="polensureintervallength-sturmname-index-exponent">
-<span id="polensureintervallength"></span><h3><a class="toc-backref" href="#id96"><span class="docutils literal"><span class="pre">\PolEnsureIntervalLength{<sturmname>}{<index>}{<exponent>}</span></span></a></h3>
-<blockquote>
-<p>The <span class="docutils literal">index</span>-th interval is subdivided until its length becomes at
-most <span class="docutils literal">10^E</span>. This means (for <span class="docutils literal">E<0</span>) that the first <span class="docutils literal"><span class="pre">-E</span></span> digits
-after decimal mark of the <span class="docutils literal">k</span>th root will then be known exactly.</p>
-</blockquote>
-</div>
-<div class="section" id="polensureintervallengths-sturmname-exponent">
-<span id="polensureintervallengths"></span><h3><a class="toc-backref" href="#id97"><span class="docutils literal"><span class="pre">\PolEnsureIntervalLengths{<sturmname>}{<exponent>}</span></span></a></h3>
-<blockquote>
-<p>The intervals as obtained from <span class="docutils literal">\PolSturmIsolateZeros</span> are (if
-necessary) subdivided further by (base 10) dichotomy in order for
-each of them to have length at most <span class="docutils literal">10^E</span>.</p>
-<p>This means that decimal expansions of all roots will be known with
-<span class="docutils literal"><span class="pre">-E</span></span> digits (for <span class="docutils literal">E<0</span>) after decimal mark.</p>
-</blockquote>
-</div>
-<div class="section" id="polprintintervals-varname-sturmname">
-<span id="polprintintervals"></span><h3><a class="toc-backref" href="#id98"><span class="docutils literal"><span class="pre">\PolPrintIntervals[<varname>]{<sturmname>}</span></span></a></h3>
-<blockquote>
-<p>This is a convenience macro which prints the bounds for the roots
-<span class="docutils literal">Z_1</span>, <span class="docutils literal">Z_2</span>, ... (the optional argument <span class="docutils literal">varname</span> allows to
-specify a replacement for the default <span class="docutils literal">Z</span>). This will be done (by
-default) in a
-math mode <span class="docutils literal">array</span>, one interval per row, and pattern <span class="docutils literal">rcccl</span>,
-where the second and fourth column hold the <span class="docutils literal"><</span> sign, except when
-the interval reduces to a singleton, which means the root is known
-exactly.</p>
-<div class="admonition note">
-<p class="admonition-title">Note</p>
-<p>The explanations here and in this section are for LaTeX. With
-other TeX macro formats, the LaTeX syntax such as for example
-<span class="docutils literal"><span class="pre">\begin{array}{rcccl}</span></span> which appears in the documentation here
-is actually replaced with quasi-equivalent direct use of TeX
-primitives.</p>
-</div>
-<p>See next macros which govern its output.</p>
-</blockquote>
-<div class="section" id="polprintintervalsnorealroots">
-<h4><a class="toc-backref" href="#id99"><span class="docutils literal">\PolPrintIntervalsNoRealRoots</span></a></h4>
-<blockquote>
-<p>Executed in place of an <span class="docutils literal">array</span> environment, when there are no
-real roots. Default definition:</p>
-<pre class="literal-block">\newcommand\PolPrintIntervalsNoRealRoots{}</pre>
-</blockquote>
-</div>
-<div class="section" id="polprintintervalsbeginenv">
-<h4><a class="toc-backref" href="#id100"><span class="docutils literal">\PolPrintIntervalsBeginEnv</span></a></h4>
-<blockquote>
-<p>Default definition (given here for LaTeX, Plain has a variant):</p>
-<pre class="literal-block">\newcommand\PolPrintIntervalsBeginEnv{\[\begin{array}{rcccl}}</pre>
-<p>A simpler <span class="docutils literal">center</span> environment provides a straightforward way to
-obtain a display allowing pagebreaks. Of course redefinitions must
-at any rate be kept in sync with <a class="reference internal" href="#polprintintervalsknownroot">\PolPrintIntervalsKnownRoot</a> and
-<a class="reference internal" href="#polprintintervalsunknownroot">\PolPrintIntervalsUnknownRoot</a>.</p>
-<p>Prior to <span class="docutils literal">0.8.6</span> it was not possible to use here for example
-<span class="docutils literal">\begin{align}</span> due to the latter executing twice in contents.</p>
-</blockquote>
-</div>
-<div class="section" id="polprintintervalsendenv">
-<h4><a class="toc-backref" href="#id101"><span class="docutils literal">\PolPrintIntervalsEndEnv</span></a></h4>
-<blockquote>
-<p>Default definition:</p>
-<pre class="literal-block">\newcommand\PolPrintIntervalsEndEnv{\end{array}\]}</pre>
-</blockquote>
-</div>
-<div class="section" id="polprintintervalsrowseparator">
-<h4><a class="toc-backref" href="#id102"><span class="docutils literal">\PolPrintIntervalsRowSeparator</span></a></h4>
-<blockquote>
-<p>Expands by default to <span class="docutils literal">\\</span> with LaTeX and to <span class="docutils literal">\cr</span> with Plain</p>
-<p>Added at <span class="docutils literal">0.8.6</span>.</p>
-</blockquote>
-</div>
-<div class="section" id="polprintintervalsknownroot">
-<h4><a class="toc-backref" href="#id103"><span class="docutils literal">\PolPrintIntervalsKnownRoot</span></a></h4>
-<blockquote>
-<p>Default definition:</p>
-<pre class="literal-block">\newcommand\PolPrintIntervalsKnownRoot{%
- &&\PolPrintIntervalsTheVar_{\PolPrintIntervalsTheIndex}%
- &=&\PolPrintIntervalsPrintExactZero
-}</pre>
-</blockquote>
-</div>
-<div class="section" id="polprintintervalsunknownroot">
-<h4><a class="toc-backref" href="#id104"><span class="docutils literal">\PolPrintIntervalsUnknownRoot</span></a></h4>
-<blockquote>
-<p>Default definition:</p>
-<pre class="literal-block">\newcommand\PolPrintIntervalsUnknownRoot{%
- \PolPrintIntervalsPrintLeftEndPoint&<&%
- \PolPrintIntervalsTheVar_{\PolPrintIntervalsTheIndex}&<&%
- \PolPrintIntervalsPrintRightEndPoint
-}</pre>
-</blockquote>
-</div>
-<div class="section" id="id18">
-<span id="polprintintervalsprintexactzero"></span><h4><a class="toc-backref" href="#id105"><span class="docutils literal">\PolPrintIntervalsPrintExactZero</span></a></h4>
-<blockquote>
-<p>Default definition:</p>
-<pre class="literal-block">\newcommand\PolPrintIntervalsPrintExactZero{\PolPrintIntervalsTheLeftEndPoint}</pre>
-</blockquote>
-</div>
-<div class="section" id="id19">
-<span id="polprintintervalsprintleftendpoint"></span><h4><a class="toc-backref" href="#id106"><span class="docutils literal">\PolPrintIntervalsPrintLeftEndPoint</span></a></h4>
-<blockquote>
-<p>Default definition:</p>
-<pre class="literal-block">\newcommand\PolPrintIntervalsPrintLeftEndPoint{\PolPrintIntervalsTheLeftEndPoint}</pre>
-</blockquote>
-</div>
-<div class="section" id="id20">
-<span id="polprintintervalsprintrightendpoint"></span><h4><a class="toc-backref" href="#id107"><span class="docutils literal">\PolPrintIntervalsPrintRightEndPoint</span></a></h4>
-<blockquote>
-<p>Default definition is:</p>
-<pre class="literal-block">\newcommand\PolPrintIntervalsPrintRightEndPoint{\PolPrintIntervalsTheRightEndPoint}</pre>
-</blockquote>
-</div>
-</div>
-<div class="section" id="id22">
-<span id="id21"></span><h3><a class="toc-backref" href="#id108"><span class="docutils literal"><span class="pre">\PolPrintIntervals*[<varname>]{<sturmname>}</span></span></a></h3>
-<blockquote>
-<p>This starred variant produces an alternative output (which
-displays the root multiplicity), and is provided as an
-example of customization.</p>
-<p>As replacement for <a class="reference internal" href="#polprintintervalsknownroot">\PolPrintIntervalsKnownRoot</a>,
-<a class="reference internal" href="#polprintintervalsprintexactzero">\PolPrintIntervalsPrintExactZero</a>,
-<a class="reference internal" href="#polprintintervalsunknownroot">\PolPrintIntervalsUnknownRoot</a> it uses its own
-<span class="docutils literal"><span class="pre">\POL@@PrintIntervals...</span></span> macros. We only reproduce here one
-definition:</p>
-<pre class="literal-block">\newcommand\POL@@PrintIntervalsPrintExactZero{%
- \displaystyle
- \xintTeXsignedFrac{\PolPrintIntervalsTheLeftEndPoint}%
-}%</pre>
-<p>Multiplicities are printed using this auxiliary macro:</p>
-</blockquote>
-<div class="section" id="polprintintervalsprintmultiplicity">
-<h4><a class="toc-backref" href="#id109"><span class="docutils literal">\PolPrintIntervalsPrintMultiplicity</span></a></h4>
-<blockquote>
-<p>whose default definition is:</p>
-<pre class="literal-block">\newcommand\PolPrintIntervalsPrintMultiplicity{(\mbox{mult. }\PolPrintIntervalsTheMultiplicity)}</pre>
-</blockquote>
-</div>
-</div>
-<div class="section" id="polsettosturmchainsignchangesat-foo-sturmname-value">
-<span id="polsettosturmchainsignchangesat"></span><h3><a class="toc-backref" href="#id110"><span class="docutils literal"><span class="pre">\PolSetToSturmChainSignChangesAt{\foo}{<sturmname>}{<value>}</span></span></a></h3>
-<blockquote>
-<p>Sets macro <span class="docutils literal">\foo</span> to store the number of sign changes in the
-already computed normalized Sturm chain with name prefix
-<span class="docutils literal"><sturmname></span>, at location <span class="docutils literal"><value></span> (which must be in format as
-acceptable by the <a class="reference external" href="https://www.ctan.org/pkg/xint">xintfrac</a> macros.)</p>
-<p>The definition is made with global scope. For local scope, use
-<span class="docutils literal">[\empty]</span> as extra optional argument.</p>
-<p>One can use this immediately after creation of the Sturm chain.</p>
-</blockquote>
-</div>
-<div class="section" id="polsettonbofzeroswithin-foo-sturmname-value-left-value-right">
-<span id="polsettonbofzeroswithin"></span><h3><a class="toc-backref" href="#id111"><span class="docutils literal"><span class="pre">\PolSetToNbOfZerosWithin{\foo}{<sturmname>}{<value_left>}{<value_right>}</span></span></a></h3>
-<blockquote>
-<p>Sets, assuming the normalized Sturm chain has been already computed,
-macro <span class="docutils literal">\foo</span> to store the number of roots of <span class="docutils literal">sturmname_0</span> in
-the interval <span class="docutils literal">(value_left, value_right]</span>. The macro first
-re-orders end-points if necessary for <span class="docutils literal">value_left <= value_right</span>
-to hold.</p>
-<p>In accordance to <a class="reference external" href="https://en.wikipedia.org/wiki/Sturm%27s_theorem">Sturm Theorem</a> this is computed as the difference
-between the number of sign changes of the Sturm chain at <span class="docutils literal">value_right</span>
-and the one at <span class="docutils literal">value_left</span>.</p>
-<p>The definition is made with global scope. For local scope, use
-<span class="docutils literal">[\empty]</span> as extra optional argument.</p>
-<p>One can use this immediately after creation of a Sturm chain.</p>
-<p>See also the expandable
-<a class="reference internal" href="#polsturmnbofrootsof-sturmname-lessthanorequalto-value">\PolSturmNbOfRootsOf{<sturmname>}\LessThanOrEqualTo{<value>}</a>,
-which however requires prior execution of <a class="reference internal" href="#polsturmisolatezeros">\PolSturmIsolateZeros</a>.</p>
-<p>See also the expandable
-<a class="reference internal" href="#polsturmnbwithmultofrootsof-sturmname-lessthanorequalto-value">\PolSturmNbWithMultOfRootsOf{<sturmname>}\LessThanOrEqualTo{<value>}</a>
-which requires prior execution of
-<a class="reference internal" href="#id14">\PolSturmIsolateZeros*</a>.</p>
-</blockquote>
-</div>
-</div>
-<div class="section" id="pollet-polname-2-polname-1">
-<span id="pollet"></span><h2><a class="toc-backref" href="#id112"><span class="docutils literal"><span class="pre">\PolLet{<polname_2>}={<polname_1>}</span></span></a></h2>
-<blockquote>
-<p>Makes a copy of the already defined polynomial <span class="docutils literal">polname_1</span> to a
-new one <span class="docutils literal">polname_2</span>. This has the same effect as
-<span class="docutils literal"><span class="pre">\PolDef{<polname_2>}{<polname_1>(x)}</span></span> or (better)
-<span class="docutils literal"><span class="pre">\PolDef{<polname_2>}{<polname_1>}</span></span> but with less overhead. The
-<span class="docutils literal">=</span> is optional.</p>
-</blockquote>
-</div>
-<div class="section" id="polgloballet-polname-2-polname-1">
-<span id="polgloballet"></span><h2><a class="toc-backref" href="#id113"><span class="docutils literal"><span class="pre">\PolGlobalLet{<polname_2>}={<polname_1>}</span></span></a></h2>
-<blockquote>
-<p>Acts globally.</p>
-</blockquote>
-</div>
-<div class="section" id="polassign-polname-toarray-macro">
-<span id="polassign"></span><h2><a class="toc-backref" href="#id114"><span class="docutils literal"><span class="pre">\PolAssign{<polname>}\toarray\macro</span></span></a></h2>
-<blockquote>
-<p>Defines a one-argument expandable macro <span class="docutils literal"><span class="pre">\macro{#1}</span></span> which expands
-to the (raw) #1th polynomial coefficient.</p>
-<ul class="simple">
-<li><p>Attention, coefficients here are indexed starting at 1. This is
-an unfortunate legacy situation related to the original indexing
-convention in <a class="reference external" href="https://www.ctan.org/pkg/xint">xinttools</a> arrays.</p></li>
-<li><p>With #1=-1, -2, ..., <span class="docutils literal"><span class="pre">\macro{#1}</span></span> returns leading coefficients.</p></li>
-<li><p>With #1=0, returns the number of coefficients, i.e. <span class="docutils literal">1 + deg f</span>
-for non-zero polynomials.</p></li>
-<li><p>Out-of-range #1's return <span class="docutils literal">0/1[0]</span>.</p></li>
-</ul>
-<p>See also <a class="reference internal" href="#polnthcoeff-polname-index">\PolNthCoeff{<polname>}{<index>}</a>.</p>
-</blockquote>
-</div>
-<div class="section" id="polget-polname-fromarray-macro">
-<span id="polget"></span><h2><a class="toc-backref" href="#id115"><span class="docutils literal"><span class="pre">\PolGet{<polname>}\fromarray\macro</span></span></a></h2>
-<blockquote>
-<p>Does the converse operation to
-<span class="docutils literal"><span class="pre">\PolAssign{<polname>}\toarray\macro</span></span>. Each individual
-<span class="docutils literal"><span class="pre">\macro{<value>}</span></span> gets expanded in an <span class="docutils literal">\edef</span> and then normalized
-via <a class="reference external" href="https://www.ctan.org/pkg/xint">xintfrac</a>'s macro <span class="docutils literal">\xintRaw</span>.</p>
-<p>The leading zeros are removed from the polynomial.</p>
-<p>(contrived) Example:</p>
-<pre class="literal-block">\xintAssignArray{1}{-2}{5}{-3}\to\foo
-\PolGet{f}\fromarray\foo</pre>
-<p>This will define <span class="docutils literal">f</span> as would have <span class="docutils literal">\poldef <span class="pre">f(x):=1-2x+5x^2-3x^3;</span></span>.</p>
-</blockquote>
-</div>
-<div class="section" id="polfromcsv-polname-csv">
-<span id="polfromcsv"></span><h2><a class="toc-backref" href="#id116"><span class="docutils literal"><span class="pre">\PolFromCSV{<polname>}{<csv>}</span></span></a></h2>
-<blockquote>
-<p>Defines a polynomial directly from the comma separated list of values
-(or a macro expanding to such a list) of its coefficients, the <em>first
-item</em> gives the constant term, the <em>last item</em> gives the leading
-coefficient, except if zero, then it is dropped (iteratively). List
-items are each expanded in an <span class="docutils literal">\edef</span> and then put into normalized
-form via <a class="reference external" href="https://www.ctan.org/pkg/xint">xintfrac</a>'s macro <span class="docutils literal">\xintRaw</span>.</p>
-<p>As leading zero coefficients are removed:</p>
-<pre class="literal-block">\PolFromCSV{f}{0, 0, 0, 0, 0, 0, 0, 0, 0, 0}</pre>
-<p>defines the zero polynomial, which holds only one coefficient.</p>
-<p>See also expandable macro <a class="reference internal" href="#poltocsv-polname">\PolToCSV{<polname>}</a>.</p>
-</blockquote>
-</div>
-<div class="section" id="polmapcoeffs-macro-polname">
-<span id="polmapcoeffs"></span><h2><a class="toc-backref" href="#id117"><span class="docutils literal"><span class="pre">\PolMapCoeffs{\macro}{<polname>}</span></span></a></h2>
-<blockquote>
-<p>It modifies ('in-place': original coefficients get lost) each
-coefficient of the defined polynomial via the <em>expandable</em> macro
-<span class="docutils literal">\macro</span>. The degree is adjusted as necessary if some leading
-coefficients vanish after the operation.</p>
-<p>In the replacement text of <span class="docutils literal">\macro</span>, <span class="docutils literal">\index</span> expands to the
-coefficient index (starting at zero for the constant term).</p>
-<p>Notice that <span class="docutils literal">\macro</span> will have to handle inputs in the <a class="reference external" href="https://www.ctan.org/pkg/xint">xintfrac</a>
-internal format. This means that it probably will have to be
-expressed in terms of macros from the <a class="reference external" href="https://www.ctan.org/pkg/xint">xintfrac</a> package.</p>
-<p>Example:</p>
-<pre class="literal-block">\def\foo#1{\xintMul{#1}{\the\numexpr\index*\index\relax}}</pre>
-<p>(or with <span class="docutils literal"><span class="pre">\xintSqr{\index}</span></span>) to replace <span class="docutils literal">n</span>-th coefficient
-<span class="docutils literal">f_n</span> by <span class="docutils literal">f_n*n^2</span>.</p>
-</blockquote>
-</div>
-<div class="section" id="polreducecoeffs-polname">
-<span id="polreducecoeffs"></span><h2><a class="toc-backref" href="#id118"><span class="docutils literal"><span class="pre">\PolReduceCoeffs{<polname>}</span></span></a></h2>
-<blockquote>
-<p>Reduces the internal representations of the coefficients to
-their lowest terms.</p>
-</blockquote>
-</div>
-<div class="section" id="id24">
-<span id="id23"></span><h2><a class="toc-backref" href="#id119"><span class="docutils literal"><span class="pre">\PolReduceCoeffs*{<polname>}</span></span></a></h2>
-<blockquote>
-<p>Reduces the internal representations of the coefficients to their
-lowest terms, but ignoring a possible separated "power of ten part".</p>
-<p>For example, <a class="reference external" href="https://www.ctan.org/pkg/xint">xintfrac</a> stores an <span class="docutils literal">30e2/50</span> input as <span class="docutils literal">30/50</span> with
-a separate <span class="docutils literal">10^2</span> part. This will thus get replaced by <span class="docutils literal">3e^2/5</span>
-(or rather whatever <a class="reference external" href="https://www.ctan.org/pkg/xint">xintfrac</a> uses for internal representation), and
-not by <span class="docutils literal">60</span> as would result from complete reduction.</p>
-<p>Evaluations with polynomials treated by this can be much faster than
-with those handled by the non-starred variant
-<a class="reference internal" href="#polreducecoeffs-polname">\PolReduceCoeffs{<polname>}</a>: as the numerators and denominators
-remain generally smaller.</p>
-</blockquote>
-</div>
-<div class="section" id="polmakemonic-polname">
-<span id="polmakemonic"></span><h2><a class="toc-backref" href="#id120"><span class="docutils literal"><span class="pre">\PolMakeMonic{<polname>}</span></span></a></h2>
-<blockquote>
-<p>Divides by the leading coefficient. It is recommended to execute
-<a class="reference internal" href="#id24">\PolReduceCoeffs*{<polname>}</a> immediately afterwards. This is not
-done automatically, in case the original polynomial had integer
-coefficients and the user wants to keep the leading one as common
-denominator for typesetting purposes.</p>
-</blockquote>
-</div>
-<div class="section" id="polmakeprimitive-polname">
-<span id="polmakeprimitive"></span><h2><a class="toc-backref" href="#id121"><span class="docutils literal"><span class="pre">\PolMakePrimitive{<polname>}</span></span></a></h2>
-<blockquote>
-<p>Divides by the integer content see (<a class="reference internal" href="#policontent">\PolIContent</a>).
-This thus produces a polynomial with integer
-coefficients having no common factor. The sign of the leading
-coefficient is not modified.</p>
-</blockquote>
-</div>
-<div class="section" id="poldiff-polname-1-polname-2">
-<span id="poldiff"></span><h2><a class="toc-backref" href="#id122"><span class="docutils literal"><span class="pre">\PolDiff{<polname_1>}{<polname_2>}</span></span></a></h2>
-<blockquote>
-<p>This sets <span class="docutils literal">polname_2</span> to the first derivative of <span class="docutils literal">polname_1</span>. It
-is allowed to issue <span class="docutils literal"><span class="pre">\PolDiff{f}{f}</span></span>, effectively replacing <span class="docutils literal">f</span>
-by <span class="docutils literal">f'</span>.</p>
-<p>Coefficients of the result <span class="docutils literal">polname_2</span> are irreducible fractions
-(see <a class="reference internal" href="#technicalities">Technicalities</a> for the whole story.)</p>
-</blockquote>
-</div>
-<div class="section" id="poldiff-n-polname-1-polname-2">
-<span id="poldiff-n"></span><h2><a class="toc-backref" href="#id123"><span class="docutils literal"><span class="pre">\PolDiff[N]{<polname_1>}{<polname_2>}</span></span></a></h2>
-<blockquote>
-<p>This sets <span class="docutils literal">polname_2</span> to the <span class="docutils literal">N</span>-th derivative of <span class="docutils literal">polname_1</span>.
-Identical arguments is allowed. With <span class="docutils literal">N=0</span>, same effect as
-<span class="docutils literal"><span class="pre">\PolLet{<polname_2>}={<polname_1>}</span></span>. With negative <span class="docutils literal">N</span>, switches to
-using <span class="docutils literal">\PolAntiDiff</span>.</p>
-</blockquote>
-</div>
-<div class="section" id="polantidiff-polname-1-polname-2">
-<span id="polantidiff"></span><h2><a class="toc-backref" href="#id124"><span class="docutils literal"><span class="pre">\PolAntiDiff{<polname_1>}{<polname_2>}</span></span></a></h2>
-<blockquote>
-<p>This sets <span class="docutils literal">polname_2</span> to the primitive of <span class="docutils literal">polname_1</span> vanishing
-at zero.</p>
-<p>Coefficients of the result <span class="docutils literal">polname_2</span> are irreducible fractions
-(see <a class="reference internal" href="#technicalities">Technicalities</a> for the whole story.)</p>
-</blockquote>
-</div>
-<div class="section" id="polantidiff-n-polname-1-polname-2">
-<span id="polantidiff-n"></span><h2><a class="toc-backref" href="#id125"><span class="docutils literal"><span class="pre">\PolAntiDiff[N]{<polname_1>}{<polname_2>}</span></span></a></h2>
-<blockquote>
-<p>This sets <span class="docutils literal">polname_2</span> to the result of <span class="docutils literal">N</span> successive integrations on
-<span class="docutils literal">polname_1</span>. With negative <span class="docutils literal">N</span>, it switches to using <span class="docutils literal">\PolDiff</span>.</p>
-</blockquote>
-</div>
-<div class="section" id="poldivide-polname-1-polname-2-polname-q-polname-r">
-<span id="poldivide"></span><h2><a class="toc-backref" href="#id126"><span class="docutils literal"><span class="pre">\PolDivide{<polname_1>}{<polname_2>}{<polname_Q>}{<polname_R>}</span></span></a></h2>
-<blockquote>
-<p>This sets <span class="docutils literal">polname_Q</span> and <span class="docutils literal">polname_R</span> to be the quotient and
-remainder in the Euclidean division of <span class="docutils literal">polname_1</span> by
-<span class="docutils literal">polname_2</span>.</p>
-</blockquote>
-</div>
-<div class="section" id="polquo-polname-1-polname-2-polname-q">
-<span id="polquo"></span><h2><a class="toc-backref" href="#id127"><span class="docutils literal"><span class="pre">\PolQuo{<polname_1>}{<polname_2>}{<polname_Q>}</span></span></a></h2>
-<blockquote>
-<p>This sets <span class="docutils literal">polname_Q</span> to be the quotient in the Euclidean division
-of <span class="docutils literal">polname_1</span> by <span class="docutils literal">polname_2</span>.</p>
-</blockquote>
-</div>
-<div class="section" id="polrem-polname-1-polname-2-polname-r">
-<span id="polrem"></span><h2><a class="toc-backref" href="#id128"><span class="docutils literal"><span class="pre">\PolRem{<polname_1>}{<polname_2>}{<polname_R>}</span></span></a></h2>
-<blockquote>
-<p>This sets <span class="docutils literal">polname_R</span> to be the remainder in the Euclidean division
-of <span class="docutils literal">polname_1</span> by <span class="docutils literal">polname_2</span>.</p>
-</blockquote>
-</div>
-<div class="section" id="polgcd-polname-1-polname-2-polname-gcd">
-<span id="polgcd"></span><h2><a class="toc-backref" href="#id129"><span class="docutils literal"><span class="pre">\PolGCD{<polname_1>}{<polname_2>}{<polname_GCD>}</span></span></a></h2>
-<blockquote>
-<p>This sets <span class="docutils literal">polname_GCD</span> to be the (monic) GCD of <span class="docutils literal">polname_1</span>
-and <span class="docutils literal">polname_2</span>. It is a unitary polynomial except if both
-<span class="docutils literal">polname_1</span> and <span class="docutils literal">polname_2</span> vanish, then <span class="docutils literal">polname_GCD</span> is the
-zero polynomial.</p>
-</blockquote>
-</div>
-</div>
-<div class="section" id="expandable-macros">
-<h1><a class="toc-backref" href="#id130">Expandable macros</a></h1>
-<div class="admonition note">
-<p class="admonition-title">Note</p>
-<p>At <span class="docutils literal">0.8</span> <span class="docutils literal">polexpr</span> is usable with Plain TeX and not only with
-LaTeX. Some examples given in this section may be using LaTeX syntax
-such as <span class="docutils literal">\renewcommand</span>. Convert to TeX primitives as appropriate
-if testing with a non LaTeX macro format.</p>
-</div>
-<p>These macros expand completely in two steps except <span class="docutils literal">\PolToExpr</span> and
-<span class="docutils literal">\PolToFloatExpr</span> which need a <span class="docutils literal">\write</span>, <span class="docutils literal">\edef</span> or a
-<span class="docutils literal"><span class="pre">\csname...\endcsname</span></span> context.</p>
-<div class="section" id="poltoexpr-pol-expr">
-<span id="poltoexpr"></span><h2><a class="toc-backref" href="#id131"><span class="docutils literal"><span class="pre">\PolToExpr{<pol.</span> <span class="pre">expr.>}</span></span></a></h2>
-<blockquote>
-<p>Produces expandably <a class="footnote-reference brackets" href="#id26" id="id25">4</a> the string <span class="docutils literal"><span class="pre">coeff_N*x^N+...</span></span>, i.e. the
-polynomial is using descending powers.</p>
-<dl class="footnote brackets">
-<dt class="label" id="id26"><span class="brackets"><a class="fn-backref" href="#id25">4</a></span></dt>
-<dd><p>requires exhaustive expansion, for example as triggered by
-<span class="docutils literal">\write</span> or <span class="docutils literal">\edef</span>.</p>
-</dd>
-</dl>
-<p>Since <span class="docutils literal">0.8</span> the input is not restricted to be a polynomial name but
-is allowed to be an arbitrary expression. Then <span class="docutils literal">x</span> is expected as
-indeterminate but this can be customized via <a class="reference internal" href="#poltoexprinvar">\PolToExprInVar</a>.</p>
-<p>The output uses the letter <span class="docutils literal">x</span> by default, this is customizable
-via <a class="reference internal" href="#poltoexprvar">\PolToExprVar</a>. The default output is compatible both with</p>
-<ul class="simple">
-<li><p>the Maple's input format,</p></li>
-<li><p>and the PSTricks <span class="docutils literal">\psplot[algebraic]</span> input format.</p></li>
-</ul>
-<p>Attention that it is not compatible with Python, see further
-<a class="reference internal" href="#poltoexprcaret">\PolToExprCaret</a> in this context.</p>
-<p>The following applies:</p>
-<ul class="simple">
-<li><p>vanishing coefficients are skipped (issue <span class="docutils literal">\poltoexpralltrue</span> to
-override this and produce output such as <span class="docutils literal">x^3+0*x^2+0*x^1+0</span>),</p></li>
-<li><p>negative coefficients are not prefixed by a <span class="docutils literal">+</span> sign (else,
-Maple would not be happy),</p></li>
-<li><p>coefficients numerically equal to <span class="docutils literal">1</span> (or <span class="docutils literal"><span class="pre">-1</span></span>) are present
-only via their sign,</p></li>
-<li><p>the letter <span class="docutils literal">x</span> is used and the degree one monomial is output as
-<span class="docutils literal">x</span>, not as <span class="docutils literal">x^1</span>.</p></li>
-<li><p>(<span class="docutils literal">0.8</span>) the caret <span class="docutils literal">^</span> is of catcode 12. This means that one
-can for convenience typeset in regular text mode, for example
-using <span class="docutils literal">\texttt</span> (in LaTeX). But TeX will not know how to break
-the expression across end-of-lines anyhow. Formerly <span class="docutils literal">^</span> was
-suitable for math mode but as the exponent is not braced this
-worked only for polynomials of degrees at most 9. Anyhow this
-is not supposed to be a typesetting macro.</p></li>
-</ul>
-<p>Complete customization is possible, see the next macros. Any user
-redefinition must maintain the expandability property.</p>
-</blockquote>
-<div class="section" id="id27">
-<span id="poltoexprvar"></span><h3><a class="toc-backref" href="#id132"><span class="docutils literal">\PolToExprVar</span></a></h3>
-<blockquote>
-<p>Defaults to <span class="docutils literal">x</span>. The letter used in the macro output.</p>
-</blockquote>
-</div>
-<div class="section" id="poltoexprinvar">
-<h3><a class="toc-backref" href="#id133"><span class="docutils literal">\PolToExprInVar</span></a></h3>
-<blockquote>
-<p>Defaults to <span class="docutils literal">x</span>: the letter used as the polynomial indeterminate
-in the macro input.</p>
-<p>Recall that declared polynomials are more efficiently used in
-algebraic expressions without the <span class="docutils literal">(x)</span>, i.e. <span class="docutils literal">P*Q</span> is better
-than <span class="docutils literal"><span class="pre">P(x)*Q(x)</span></span>. Thus the input, even if an expression, does not
-have to contain any <span class="docutils literal">x</span>.</p>
-<p>(new with <span class="docutils literal">0.8</span>)</p>
-</blockquote>
-</div>
-<div class="section" id="id28">
-<span id="poltoexprtimes"></span><h3><a class="toc-backref" href="#id134"><span class="docutils literal">\PolToExprTimes</span></a></h3>
-<blockquote>
-<p>Defaults to <span class="docutils literal">*</span>.</p>
-</blockquote>
-</div>
-<div class="section" id="poltoexprcaret">
-<h3><a class="toc-backref" href="#id135"><span class="docutils literal">\PolToExprCaret</span></a></h3>
-<blockquote>
-<p>Defaults to <span class="docutils literal">^</span> of catcode 12. Set it to
-expand to <span class="docutils literal">**</span> for Python compatible output.</p>
-<p>(new with <span class="docutils literal">0.8</span>)</p>
-</blockquote>
-</div>
-<div class="section" id="poltoexprcmd-raw-coeff">
-<span id="poltoexprcmd"></span><h3><a class="toc-backref" href="#id136"><span class="docutils literal"><span class="pre">\PolToExprCmd{<raw_coeff>}</span></span></a></h3>
-<blockquote>
-<p>Defaults to <span class="docutils literal"><span class="pre">\xintPRaw{\xintRawWithZeros{#1}}</span></span>.</p>
-<p>This means that the coefficient value is printed-out as a fraction
-<span class="docutils literal">a/b</span>, skipping the <span class="docutils literal">/b</span> part if <span class="docutils literal">b</span> turns out to be one.</p>
-<p>Configure it to be <span class="docutils literal"><span class="pre">\xintPRaw{\xintIrr{#1}}</span></span> if the fractions
-must be in irreducible terms.</p>
-<p>An alternative is <span class="docutils literal"><span class="pre">\xintDecToString{\xintREZ{#1}}</span></span> which uses
-integer or decimal fixed point format such as <span class="docutils literal">23.0071</span> if the
-internal representation of the number only has a power of ten as
-denominator (the effect of <span class="docutils literal">\xintREZ</span> here is to remove trailing
-decimal zeros). The behaviour of <span class="docutils literal">\xintDecToString</span> is not yet
-stable for other cases, and for example at time of writing no
-attempt is made to identify inputs having a finite decimal expansion
-so for example <span class="docutils literal">23.007/2</span> or <span class="docutils literal">23.007/25</span> can appear in output
-and not their finite decimal expansion with no denominator.</p>
-</blockquote>
-</div>
-<div class="section" id="poltoexproneterm-raw-coeff-exponent">
-<span id="poltoexproneterm"></span><h3><a class="toc-backref" href="#id137"><span class="docutils literal"><span class="pre">\PolToExprOneTerm{<raw_coeff>}{<exponent>}</span></span></a></h3>
-<blockquote>
-<p>This is the macro which from the coefficient and the exponent
-produces the corresponding term in output, such as <span class="docutils literal">2/3*x^7</span>.</p>
-<p>For its default definition, see the source code. It uses
-<a class="reference internal" href="#poltoexprcmd">\PolToExprCmd</a>, <a class="reference internal" href="#poltoexprtimes">\PolToExprTimes</a>, <a class="reference internal" href="#poltoexprvar">\PolToExprVar</a> and
-<a class="reference internal" href="#poltoexprcaret">\PolToExprCaret</a>.</p>
-</blockquote>
-</div>
-<div class="section" id="poltoexpronetermstylea-raw-coeff-exponent">
-<span id="poltoexpronetermstylea"></span><h3><a class="toc-backref" href="#id138"><span class="docutils literal"><span class="pre">\PolToExprOneTermStyleA{<raw_coeff>}{<exponent>}</span></span></a></h3>
-<blockquote>
-<p>This holds the default package meaning of <span class="docutils literal">\PolToExprOneTerm</span>.</p>
-</blockquote>
-</div>
-<div class="section" id="poltoexpronetermstyleb-raw-coeff-exponent">
-<span id="poltoexpronetermstyleb"></span><h3><a class="toc-backref" href="#id139"><span class="docutils literal"><span class="pre">\PolToExprOneTermStyleB{<raw_coeff>}{<exponent>}</span></span></a></h3>
-<blockquote>
-<p>This holds an alternative meaning, which puts the fractional part of
-a coefficient after the monomial, i.e. like this:</p>
-<pre class="literal-block">2*x^11/3+3*x^8/7-x^5-x^4/4-x^3-x^2/2-2*x+1</pre>
-<p><a class="reference internal" href="#poltoexprcmd">\PolToExprCmd</a> isn't used at all in this style. But
-<a class="reference internal" href="#poltoexprtimes">\PolToExprTimes</a>, <a class="reference internal" href="#poltoexprvar">\PolToExprVar</a> and <a class="reference internal" href="#poltoexprcaret">\PolToExprCaret</a> are obeyed.</p>
-<p>To activate it use <span class="docutils literal">\let\PolToExprOneTerm\PolToExprOneTermStyleB</span>.
-To revert to the package default behaviour, issue
-<span class="docutils literal">\let\PolToExprOneTerm\PolToExprOneTermStyleA</span>.</p>
-</blockquote>
-</div>
-<div class="section" id="poltoexprtermprefix-raw-coeff">
-<span id="poltoexprtermprefix"></span><h3><a class="toc-backref" href="#id140"><span class="docutils literal"><span class="pre">\PolToExprTermPrefix{<raw_coeff>}</span></span></a></h3>
-<blockquote>
-<p>It receives as argument the coefficient. Its default behaviour is
-to produce a <span class="docutils literal">+</span> if the coefficient is positive, which will thus
-serve to separate the monomials in the output. This is to match
-the default for <a class="reference internal" href="#poltoexprcmd-raw-coeff">\PolToExprCmd{<raw_coeff>}</a> which in case of a
-positive coefficient does not output an explicit <span class="docutils literal">+</span> prefix.</p>
-</blockquote>
-</div>
-</div>
-<div class="section" id="poltofloatexpr-pol-expr">
-<span id="poltofloatexpr"></span><h2><a class="toc-backref" href="#id141"><span class="docutils literal"><span class="pre">\PolToFloatExpr{<pol.</span> <span class="pre">expr.>}</span></span></a></h2>
-<blockquote>
-<p>Similar to <a class="reference internal" href="#poltoexpr-pol-expr">\PolToExpr{<pol. expr.>}</a> but using
-<a class="reference internal" href="#poltofloatexprcmd-raw-coeff">\PolToFloatExprCmd{<raw_coeff>}</a> which by default rounds and
-converts the coefficients to floating point format.</p>
-<div class="admonition note">
-<p class="admonition-title">Note</p>
-<p>This is unrelated to <a class="reference internal" href="#polgenfloatvariant-polname">\PolGenFloatVariant{<polname>}</a>:
-<a class="reference internal" href="#poltofloatexprcmd-raw-coeff">\PolToFloatExprCmd{<raw_coeff>}</a> operates on the <em>exact</em>
-coefficients anew (and may thus produce something else than
-the coefficients of the polynomial function acting
-in <span class="docutils literal">\xintfloateval</span> if the floating point precision was changed
-in between).</p>
-</div>
-<p>Extended at <span class="docutils literal">0.8</span> to accept general expressions as input.</p>
-</blockquote>
-<div class="section" id="poltofloatexproneterm-raw-coeff-exponent">
-<span id="poltofloatexproneterm"></span><h3><a class="toc-backref" href="#id142"><span class="docutils literal"><span class="pre">\PolToFloatExprOneTerm{<raw_coeff>}{<exponent>}</span></span></a></h3>
-<blockquote>
-<p>Similar to <a class="reference internal" href="#poltoexproneterm-raw-coeff-exponent">\PolToExprOneTerm{<raw_coeff>}{<exponent>}</a>. But does not treat
-especially coefficients equal to plus or minus one.</p>
-</blockquote>
-</div>
-<div class="section" id="poltofloatexprcmd-raw-coeff">
-<span id="poltofloatexprcmd"></span><h3><a class="toc-backref" href="#id143"><span class="docutils literal"><span class="pre">\PolToFloatExprCmd{<raw_coeff>}</span></span></a></h3>
-<blockquote>
-<p>The one-argument macro used by <span class="docutils literal">\PolToFloatExprOneTerm</span>.
-It defaults to <span class="docutils literal"><span class="pre">\xintPFloat{#1}</span></span>, which trims trailing
-zeroes.</p>
-<p><em>changed at 0.8.2</em> Formerly it was using <span class="docutils literal">\xintFloat</span>.</p>
-</blockquote>
-</div>
-</div>
-<div class="section" id="id30">
-<span id="id29"></span><h2><a class="toc-backref" href="#id144"><span class="docutils literal"><span class="pre">\PolToExpr*{<pol.</span> <span class="pre">expr.>}</span></span></a></h2>
-<blockquote>
-<p>Ascending powers: <span class="docutils literal"><span class="pre">coeff_0+coeff_1*x+coeff_2*x^2+...</span></span>.</p>
-<p>Extended at <span class="docutils literal">0.8</span> to accept general expressions as input.</p>
-<p>Customizable with the same macros as for
-<a class="reference internal" href="#poltoexpr-pol-expr">\PolToExpr{<pol. expr.>}</a>.</p>
-</blockquote>
-</div>
-<div class="section" id="id32">
-<span id="id31"></span><h2><a class="toc-backref" href="#id145"><span class="docutils literal"><span class="pre">\PolToFloatExpr*{<pol.</span> <span class="pre">expr.>}</span></span></a></h2>
-<blockquote>
-<p>Ascending powers.</p>
-<p>Extended at <span class="docutils literal">0.8</span> to accept general expressions as input.</p>
-</blockquote>
-</div>
-<div class="section" id="polnthcoeff-polname-index">
-<span id="polnthcoeff"></span><h2><a class="toc-backref" href="#id146"><span class="docutils literal"><span class="pre">\PolNthCoeff{<polname>}{<index>}</span></span></a></h2>
-<blockquote>
-<p>It expands to the raw <span class="docutils literal">N</span>-th coefficient (<span class="docutils literal">N=0</span> corresponds to
-the constant coefficient). If <span class="docutils literal">N</span> is out of range, zero (in its
-default <a class="reference external" href="https://www.ctan.org/pkg/xint">xintfrac</a> format <span class="docutils literal">0/1[0]</span>) is returned.</p>
-<p>Negative indices <span class="docutils literal"><span class="pre">N=-1</span></span>, <span class="docutils literal"><span class="pre">-2</span></span>, ... return the leading
-coefficient, sub-leading coefficient, ..., and finally <span class="docutils literal">0/1[0]</span>
-for <span class="docutils literal"><span class="pre">N<-1-degree</span></span>.</p>
-</blockquote>
-</div>
-<div class="section" id="polleadingcoeff-polname">
-<span id="polleadingcoeff"></span><h2><a class="toc-backref" href="#id147"><span class="docutils literal"><span class="pre">\PolLeadingCoeff{<polname>}</span></span></a></h2>
-<blockquote>
-<p>Expands to the leading coefficient.</p>
-</blockquote>
-</div>
-<div class="section" id="poldegree-polname">
-<span id="poldegree"></span><h2><a class="toc-backref" href="#id148"><span class="docutils literal"><span class="pre">\PolDegree{<polname>}</span></span></a></h2>
-<blockquote>
-<p>It expands to the degree. This is <span class="docutils literal"><span class="pre">-1</span></span> if zero polynomial but this
-may change in future. Should it then expand to <span class="docutils literal"><span class="pre">-\infty</span></span> ?</p>
-</blockquote>
-</div>
-<div class="section" id="policontent-polname">
-<span id="policontent"></span><h2><a class="toc-backref" href="#id149"><span class="docutils literal"><span class="pre">\PolIContent{<polname>}</span></span></a></h2>
-<blockquote>
-<p>It expands to the contents of the polynomial, i.e. to the positive
-fraction such that dividing by this fraction produces a polynomial
-with integer coefficients having no common prime divisor.</p>
-<p>See <a class="reference internal" href="#polmakeprimitive">\PolMakePrimitive</a>.</p>
-</blockquote>
-</div>
-<div class="section" id="poltolist-polname">
-<span id="poltolist"></span><h2><a class="toc-backref" href="#id150"><span class="docutils literal"><span class="pre">\PolToList{<polname>}</span></span></a></h2>
-<blockquote>
-<p>Expands to <span class="docutils literal"><span class="pre">{coeff_0}{coeff_1}...{coeff_N}</span></span> with <span class="docutils literal">N</span> = degree, and
-<span class="docutils literal">coeff_N</span> the leading coefficient
-(the zero polynomial does give <span class="docutils literal">{0/1[0]}</span> and not an
-empty output.)</p>
-</blockquote>
-</div>
-<div class="section" id="poltocsv-polname">
-<span id="poltocsv"></span><h2><a class="toc-backref" href="#id151"><span class="docutils literal"><span class="pre">\PolToCSV{<polname>}</span></span></a></h2>
-<blockquote>
-<p>Expands to <span class="docutils literal">coeff_0, coeff_1, coeff_2, <span class="pre">.....,</span> coeff_N</span>, starting
-with constant term and ending with leading coefficient. Converse
-to <a class="reference internal" href="#polfromcsv-polname-csv">\PolFromCSV{<polname>}{<csv>}</a>.</p>
-</blockquote>
-</div>
-<div class="section" id="poleval-polname-atexpr-num-expr">
-<span id="polevalatexpr"></span><h2><a class="toc-backref" href="#id152"><span class="docutils literal"><span class="pre">\PolEval{<polname>}\AtExpr{<num.</span> <span class="pre">expr.>}</span></span></a></h2>
-<blockquote>
-<p>Same output as
-<span class="docutils literal">\xinteval{polname(numerical expression)}</span>.</p>
-</blockquote>
-</div>
-<div class="section" id="poleval-polname-at-value">
-<span id="polevalat"></span><h2><a class="toc-backref" href="#id153"><span class="docutils literal"><span class="pre">\PolEval{<polname>}\At{<value>}</span></span></a></h2>
-<blockquote>
-<p>Evaluates the polynomial at the given value which must be in (or
-expand to) a format acceptable to the <a class="reference external" href="https://www.ctan.org/pkg/xint">xintfrac</a> macros.</p>
-</blockquote>
-</div>
-<div class="section" id="polevalreduced-polname-atexpr-num-expr">
-<span id="polevalreducedatexpr"></span><h2><a class="toc-backref" href="#id154"><span class="docutils literal"><span class="pre">\PolEvalReduced{<polname>}\AtExpr{<num.</span> <span class="pre">expr.>}</span></span></a></h2>
-<blockquote>
-<p>Same output as <span class="docutils literal">\xinteval{reduce(polname(numerical <span class="pre">expression))}</span></span>.</p>
-</blockquote>
-</div>
-<div class="section" id="polevalreduced-polname-at-value">
-<span id="polevalreducedat"></span><h2><a class="toc-backref" href="#id155"><span class="docutils literal"><span class="pre">\PolEvalReduced{<polname>}\At{<value>}</span></span></a></h2>
-<blockquote>
-<p>Evaluates the polynomial at the value which must be in (or expand
-to) a format acceptable to the <a class="reference external" href="https://www.ctan.org/pkg/xint">xintfrac</a> macros, and outputs an
-irreducible fraction.</p>
-</blockquote>
-</div>
-<div class="section" id="polfloateval-polname-atexpr-num-expr">
-<span id="polfloatevalatexpr"></span><h2><a class="toc-backref" href="#id156"><span class="docutils literal"><span class="pre">\PolFloatEval{<polname>}\AtExpr{<num.</span> <span class="pre">expr.>}</span></span></a></h2>
-<blockquote>
-<p>Same output as <span class="docutils literal">\xintfloateval{polname(numerical expression)}</span>.</p>
-<div class="admonition attention">
-<p class="admonition-title">Attention!</p>
-<p><a class="reference internal" href="#polgenfloatvariant">\PolGenFloatVariant</a> must have
-been issued before.</p>
-</div>
-<p>To use the <em>exact coefficients</em> with <em>exactly executed</em> additions
-and multiplications and do the rounding only as the final last step,
-the following syntax can be used: <a class="footnote-reference brackets" href="#id34" id="id33">5</a></p>
-<pre class="literal-block">\xintfloateval{3.27*\xintexpr f(2.53)\relax^2}</pre>
-<dl class="footnote brackets">
-<dt class="label" id="id34"><span class="brackets"><a class="fn-backref" href="#id33">5</a></span></dt>
-<dd><p>Cf. <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a> documentation about nested expressions.</p>
-</dd>
-</dl>
-</blockquote>
-</div>
-<div class="section" id="polfloateval-polname-at-value">
-<span id="polfloatevalat"></span><h2><a class="toc-backref" href="#id157"><span class="docutils literal"><span class="pre">\PolFloatEval{<polname>}\At{<value>}</span></span></a></h2>
-<blockquote>
-<p>Evaluates the polynomial at the value which must be in (or expand
-to) a format acceptable to the <a class="reference external" href="https://www.ctan.org/pkg/xint">xintfrac</a> macros.</p>
-</blockquote>
-</div>
-<div class="section" id="expandable-macros-related-to-the-root-localization-routines">
-<h2><a class="toc-backref" href="#id158">Expandable macros related to the root localization routines</a></h2>
-<div class="section" id="polsturmchainlength-sturmname">
-<span id="polsturmchainlength"></span><h3><a class="toc-backref" href="#id159"><span class="docutils literal"><span class="pre">\PolSturmChainLength{<sturmname>}</span></span></a></h3>
-<blockquote>
-<p>Returns the integer <span class="docutils literal">N</span> such that <span class="docutils literal">sturmname_N</span> is the last one
-in the Sturm chain <span class="docutils literal">sturmname_0</span>, <span class="docutils literal">sturmname_1</span>, ...</p>
-<p>See <a class="reference internal" href="#poltosturm-polname-sturmname">\PolToSturm{<polname>}{<sturmname>}</a>.</p>
-</blockquote>
-</div>
-<div class="section" id="polsturmifzeroexactlyknown-sturmname-index-t-f">
-<span id="polsturmifzeroexactlyknown"></span><h3><a class="toc-backref" href="#id160"><span class="docutils literal"><span class="pre">\PolSturmIfZeroExactlyKnown{<sturmname>}{<index>}{T}{F}</span></span></a></h3>
-<blockquote>
-<p>Executes <span class="docutils literal">T</span> if the <span class="docutils literal">index</span>-th interval reduces to a singleton,
-i.e. the root is known exactly, else <span class="docutils literal">F</span>.</p>
-</blockquote>
-</div>
-<div class="section" id="polsturmisolatedzeroleft-sturmname-index">
-<span id="polsturmisolatedzeroleft"></span><h3><a class="toc-backref" href="#id161"><span class="docutils literal"><span class="pre">\PolSturmIsolatedZeroLeft{<sturmname>}{<index>}</span></span></a></h3>
-<blockquote>
-<p>Expands to the left end-point for the <span class="docutils literal">index</span>-th interval, as
-computed by some earlier <a class="reference internal" href="#polsturmisolatezeros-sturmname">\PolSturmIsolateZeros{<sturmname>}</a>.</p>
-<div class="admonition note">
-<p class="admonition-title">Note</p>
-<p>Execution of this macro after some
-<a class="reference internal" href="#polrefineinterval-n">\PolRefineInterval{<sturmname>}{<index>}</a>
-will take into account the now known tighter bounds.</p>
-</div>
-<p>The value is pre-formatted using <a class="reference internal" href="#poldectostring">\PolDecTostring</a>.</p>
-</blockquote>
-</div>
-<div class="section" id="polsturmisolatedzeroright-sturmname-index">
-<span id="polsturmisolatedzeroright"></span><h3><a class="toc-backref" href="#id162"><span class="docutils literal"><span class="pre">\PolSturmIsolatedZeroRight{<sturmname>}{<index>}</span></span></a></h3>
-<blockquote>
-<p>Expands to the right end-point for the <span class="docutils literal">index</span>-th interval as
-computed by some earlier <a class="reference internal" href="#polsturmisolatezeros-sturmname">\PolSturmIsolateZeros{<sturmname>}</a> and
-possibly refined afterwards.</p>
-<p>The value is pre-formatted using <a class="reference internal" href="#poldectostring">\PolDecTostring</a>.</p>
-</blockquote>
-</div>
-<div class="section" id="polsturmisolatedzeromultiplicity-sturmname-index">
-<span id="polsturmisolatedzeromultiplicity"></span><h3><a class="toc-backref" href="#id163"><span class="docutils literal"><span class="pre">\PolSturmIsolatedZeroMultiplicity{<sturmname>}{<index>}</span></span></a></h3>
-<blockquote>
-<p>Expands to the multiplicity of the unique root contained in the
-<span class="docutils literal">index</span>-th interval.</p>
-<div class="admonition attention">
-<p class="admonition-title">Attention!</p>
-<p>A prior execution of <a class="reference internal" href="#id15">\PolSturmIsolateZeros*{<sturmname>}</a> is mandatory.</p>
-</div>
-<p>See <span class="docutils literal">The degree nine polynomial with 0.99, 0.999, 0.9999 as triple roots</span> in <span class="docutils literal"><span class="pre">polexpr-examples.pdf</span></span>.</p>
-</blockquote>
-</div>
-<div class="section" id="polsturmnbofisolatedzeros-sturmname">
-<span id="polsturmnbofisolatedzeros"></span><h3><a class="toc-backref" href="#id164"><span class="docutils literal"><span class="pre">\PolSturmNbOfIsolatedZeros{<sturmname>}</span></span></a></h3>
-<blockquote>
-<p>Expands to the number of real roots of the polynomial
-<span class="docutils literal"><sturmname>_0</span>, i.e. the number of distinct real roots of the
-polynomial originally used to create the Sturm chain via
-<a class="reference internal" href="#poltosturm-polname-sturmname">\PolToSturm{<polname>}{<sturmname>}</a>.</p>
-</blockquote>
-<div class="admonition warning">
-<p class="admonition-title">Warning</p>
-<p>The next few macros counting roots, with or without multiplicities,
-less than or equal to some value, are under evaluation and may be
-removed from the package if their utility is judged to be not high
-enough. They can be re-coded at user level on the basis of the other
-documented package macros anyway.</p>
-</div>
-</div>
-<div class="section" id="polsturmnbofrootsof-sturmname-lessthanorequalto-value">
-<h3><a class="toc-backref" href="#id165"><span class="docutils literal"><span class="pre">\PolSturmNbOfRootsOf{<sturmname>}\LessThanOrEqualTo{<value>}</span></span></a></h3>
-<blockquote>
-<p>Expands to the number of distinct roots (of the polynomial used to
-create the Sturm chain) less than or equal to the <span class="docutils literal">value</span> (i.e. a
-number of fraction recognizable by the <a class="reference external" href="https://www.ctan.org/pkg/xint">xintfrac</a> macros).</p>
-<div class="admonition attention">
-<p class="admonition-title">Attention!</p>
-<p><a class="reference internal" href="#polsturmisolatezeros-sturmname">\PolSturmIsolateZeros{<sturmname>}</a> must have been executed
-beforehand.</p>
-<p>And the argument is a <span class="docutils literal"><sturmname></span>, not a <span class="docutils literal"><polname></span> (this is
-why the macro contains Sturm in its name), simply to be reminded
-of the above constraint.</p>
-</div>
-</blockquote>
-</div>
-<div class="section" id="polsturmnbofrootsof-sturmname-lessthanorequaltoexpr-num-expr">
-<span id="polsturmnbofrootsof"></span><h3><a class="toc-backref" href="#id166"><span class="docutils literal"><span class="pre">\PolSturmNbOfRootsOf{<sturmname>}\LessThanOrEqualToExpr{<num.</span> <span class="pre">expr.>}</span></span></a></h3>
-<blockquote>
-<p>Expands to the number of distinct roots (of the polynomial
-used to create the Sturm chain) which are less than or equal to the
-given numerical expression.</p>
-<div class="admonition attention">
-<p class="admonition-title">Attention!</p>
-<p><a class="reference internal" href="#polsturmisolatezeros-sturmname">\PolSturmIsolateZeros{<sturmname>}</a> must have been executed
-beforehand.</p>
-</div>
-</blockquote>
-</div>
-<div class="section" id="polsturmnbwithmultofrootsof-sturmname-lessthanorequalto-value">
-<h3><a class="toc-backref" href="#id167"><span class="docutils literal"><span class="pre">\PolSturmNbWithMultOfRootsOf{<sturmname>}\LessThanOrEqualTo{<value>}</span></span></a></h3>
-<blockquote>
-<p>Expands to the number counted with multiplicities of the roots (of
-the polynomial used to create the Sturm chain) which are less than
-or equal to the given <span class="docutils literal">value</span>.</p>
-<div class="admonition attention">
-<p class="admonition-title">Attention!</p>
-<p><a class="reference internal" href="#id15">\PolSturmIsolateZeros*{<sturmname>}</a> (or the double starred
-variant) must have been executed beforehand.</p>
-</div>
-</blockquote>
-</div>
-<div class="section" id="polsturmnbwithmultofrootsof-sturmname-lessthanorequaltoexpr-num-expr">
-<h3><a class="toc-backref" href="#id168"><span class="docutils literal"><span class="pre">\PolSturmNbWithMultOfRootsOf{<sturmname>}\LessThanOrEqualToExpr{<num.</span> <span class="pre">expr.>}</span></span></a></h3>
-<blockquote>
-<p>Expands to the total number of roots (counted with multiplicities)
-which are less than or equal to the given <span class="docutils literal">expression</span>.</p>
-<div class="admonition attention">
-<p class="admonition-title">Attention!</p>
-<p><a class="reference internal" href="#id15">\PolSturmIsolateZeros*{<sturmname>}</a> (or the double starred
-variant) must have been executed beforehand.</p>
-</div>
-</blockquote>
-</div>
-<div class="section" id="polsturmnbofrationalroots-sturmname">
-<h3><a class="toc-backref" href="#id169"><span class="docutils literal"><span class="pre">\PolSturmNbOfRationalRoots{<sturmname>}</span></span></a></h3>
-<blockquote>
-<p>Expands to the number of rational roots (without multiplicities).</p>
-<div class="admonition attention">
-<p class="admonition-title">Attention!</p>
-<p><a class="reference internal" href="#id17">\PolSturmIsolateZeros**{<sturmname>}</a> must have been executed
-beforehand.</p>
-</div>
-</blockquote>
-</div>
-<div class="section" id="polsturmnbofrationalrootswithmultiplicities-sturmname">
-<h3><a class="toc-backref" href="#id170"><span class="docutils literal"><span class="pre">\PolSturmNbOfRationalRootsWithMultiplicities{<sturmname>}</span></span></a></h3>
-<blockquote>
-<p>Expands to the number of rational roots (counted with multiplicities).</p>
-<div class="admonition attention">
-<p class="admonition-title">Attention!</p>
-<p><a class="reference internal" href="#id17">\PolSturmIsolateZeros**{<sturmname>}</a> must have been executed
-beforehand.</p>
-</div>
-</blockquote>
-</div>
-<div class="section" id="polsturmrationalroot-sturmname-k">
-<h3><a class="toc-backref" href="#id171"><span class="docutils literal"><span class="pre">\PolSturmRationalRoot{<sturmname>}{<k>}</span></span></a></h3>
-<blockquote>
-<p>Expands to the k-th rational root. They are enumerated from left to
-right starting at index value <span class="docutils literal">1</span>.</p>
-<div class="admonition attention">
-<p class="admonition-title">Attention!</p>
-<p><a class="reference internal" href="#id17">\PolSturmIsolateZeros**{<sturmname>}</a> must have been executed
-beforehand.</p>
-</div>
-</blockquote>
-</div>
-<div class="section" id="polsturmrationalrootindex-sturmname-k">
-<h3><a class="toc-backref" href="#id172"><span class="docutils literal"><span class="pre">\PolSturmRationalRootIndex{<sturmname>}{<k>}</span></span></a></h3>
-<blockquote>
-<p>Expands to the index of the <span class="docutils literal">k</span>th rational root as part of the
-ordered real roots (counted without multiplicities). So
-<a class="reference internal" href="#polsturmrationalroot-sturmname-k">\PolSturmRationalRoot{<sturmname>}{<k>}</a> is equivalent to
-this nested call:</p>
-<pre class="literal-block">\PolSturmIsolatedZeroLeft{<sturmname>}{\PolSturmRationalRootIndex{<sturmname>}{<k>}}</pre>
-<div class="admonition attention">
-<p class="admonition-title">Attention!</p>
-<p><a class="reference internal" href="#id17">\PolSturmIsolateZeros**{<sturmname>}</a> must have been executed
-beforehand.</p>
-</div>
-</blockquote>
-</div>
-<div class="section" id="polsturmrationalrootmultiplicity-sturmname-k">
-<h3><a class="toc-backref" href="#id173"><span class="docutils literal"><span class="pre">\PolSturmRationalRootMultiplicity{<sturmname>}{<k>}</span></span></a></h3>
-<blockquote>
-<p>Expands to the multiplicity of the <span class="docutils literal">k</span>th rational root.</p>
-<div class="admonition attention">
-<p class="admonition-title">Attention!</p>
-<p><a class="reference internal" href="#id17">\PolSturmIsolateZeros**{<sturmname>}</a> must have been executed
-beforehand.</p>
-</div>
-</blockquote>
-</div>
-<div class="section" id="polintervalwidth-sturmname-index">
-<span id="polintervalwidth"></span><h3><a class="toc-backref" href="#id174"><span class="docutils literal"><span class="pre">\PolIntervalWidth{<sturmname>}{<index>}</span></span></a></h3>
-<blockquote>
-<p>The <span class="docutils literal">10^E</span> width of the current <span class="docutils literal">index</span>-th root localization
-interval. Output is in <a class="reference external" href="https://www.ctan.org/pkg/xint">xintfrac</a> raw <span class="docutils literal">1/1[E]</span> format (if not zero).</p>
-</blockquote>
-</div>
-<div class="section" id="expandable-macros-for-use-within-execution-of-polprintintervals">
-<h3><a class="toc-backref" href="#id175">Expandable macros for use within execution of <span class="docutils literal">\PolPrintIntervals</span></a></h3>
-<p>These macros are for usage within custom user redefinitions of
-<a class="reference internal" href="#polprintintervalsknownroot">\PolPrintIntervalsKnownRoot</a>, <a class="reference internal" href="#polprintintervalsunknownroot">\PolPrintIntervalsUnknownRoot</a>, or
-in redefinitions of <a class="reference internal" href="#polprintintervalsprintexactzero">PolPrintIntervalsPrintExactZero</a> (used in the
-default for the former) and of <a class="reference internal" href="#polprintintervalsprintleftendpoint">\PolPrintIntervalsPrintLeftEndPoint</a>,
-<a class="reference internal" href="#polprintintervalsprintrightendpoint">\PolPrintIntervalsPrintRightEndPoint</a> (used in the default for the
-latter).</p>
-</div>
-<div class="section" id="polprintintervalsthevar">
-<h3><a class="toc-backref" href="#id176"><span class="docutils literal">\PolPrintIntervalsTheVar</span></a></h3>
-<blockquote>
-<p>Expands to the name (default <span class="docutils literal">Z</span>) used for representing the roots,
-which was passed as optional argument <span class="docutils literal">varname</span> to
-<a class="reference internal" href="#polprintintervals-varname-sturmname">\PolPrintIntervals[<varname>]{<sturmname>}</a>.</p>
-</blockquote>
-</div>
-<div class="section" id="polprintintervalstheindex">
-<h3><a class="toc-backref" href="#id177"><span class="docutils literal">\PolPrintIntervalsTheIndex</span></a></h3>
-<blockquote>
-<p>Expands to the index of the considered interval (indexing starting
-at 1 for the leftmost interval).</p>
-</blockquote>
-</div>
-<div class="section" id="polprintintervalsthesturmname">
-<h3><a class="toc-backref" href="#id178"><span class="docutils literal">\PolPrintIntervalsTheSturmName</span></a></h3>
-<blockquote>
-<p>Expands to the argument which was passed as <span class="docutils literal"><sturmname></span> to
-<a class="reference internal" href="#polprintintervals-varname-sturmname">\PolPrintIntervals[<varname>]{<sturmname>}</a>.</p>
-</blockquote>
-</div>
-<div class="section" id="polprintintervalstheleftendpoint">
-<h3><a class="toc-backref" href="#id179"><span class="docutils literal">\PolPrintIntervalsTheLeftEndPoint</span></a></h3>
-<blockquote>
-<p>The left end point of the interval, as would be produced by
-<a class="reference internal" href="#polsturmisolatedzeroleft">\PolSturmIsolatedZeroLeft</a> if it was
-used with arguments the Sturm chain name and interval index returned
-by <a class="reference internal" href="#polprintintervalsthesturmname">\PolPrintIntervalsTheSturmName</a> and
-<a class="reference internal" href="#polprintintervalstheindex">\PolPrintIntervalsTheIndex</a>.</p>
-</blockquote>
-</div>
-<div class="section" id="polprintintervalstherightendpoint">
-<h3><a class="toc-backref" href="#id180"><span class="docutils literal">\PolPrintIntervalsTheRightEndPoint</span></a></h3>
-<blockquote>
-<p>The right end point of the interval, as would be produced by
-<a class="reference internal" href="#polsturmisolatedzeroright">\PolSturmIsolatedZeroRight</a> for
-this Sturm chain name and index.</p>
-</blockquote>
-</div>
-<div class="section" id="polprintintervalsthemultiplicity">
-<h3><a class="toc-backref" href="#id181"><span class="docutils literal">\PolPrintIntervalsTheMultiplicity</span></a></h3>
-<blockquote>
-<p>The multiplicity of the unique root within the interval of index
-<a class="reference internal" href="#polprintintervalstheindex">\PolPrintIntervalsTheIndex</a>. Makes sense only if the starred (or
-double-starred) variant of <a class="reference internal" href="#polsturmisolatezeros">\PolSturmIsolateZeros</a> was used earlier.</p>
-</blockquote>
-</div>
-</div>
-</div>
-<div class="section" id="booleans-with-default-setting-as-indicated">
-<h1><a class="toc-backref" href="#id182">Booleans (with default setting as indicated)</a></h1>
-<div class="section" id="xintverbosefalse">
-<h2><a class="toc-backref" href="#id183"><span class="docutils literal">\xintverbosefalse</span></a></h2>
-<blockquote>
-<p>This is actually an <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a> configuration. Setting it to
-<span class="docutils literal">true</span> triggers the writing of information to the log when new
-polynomial or scalar variables are defined.</p>
-<div class="admonition caution">
-<p class="admonition-title">Caution!</p>
-<p>The macro and variable meanings as written to the log are to be
-considered unstable and undocumented internal structures.</p>
-</div>
-</blockquote>
-</div>
-<div class="section" id="polnewpolverbosefalse">
-<h2><a class="toc-backref" href="#id184"><span class="docutils literal">\polnewpolverbosefalse</span></a></h2>
-<blockquote>
-<p>When <span class="docutils literal">\poldef</span> is used, both a variable and a function are
-defined. The default <span class="docutils literal">\polnewpolverbosefalse</span> setting suppresses
-the print-out to the log and terminal of the function macro meaning,
-as it only duplicates the information contained in the variable
-which is already printed out to the log and terminal.</p>
-<p>However <a class="reference internal" href="#polgenfloatvariant-polname">\PolGenFloatVariant{<polname>}</a> does still print out the
-information relative to the polynomial function it defines for use in
-<span class="docutils literal">\xintfloateval{}</span> as there is no float polynomial variable, only the
-function, and it is the only way to see its rounded coefficients
-(<span class="docutils literal">\xintverbosefalse</span> suppresses also that info).</p>
-<p>If set to <span class="docutils literal">true</span>, it overrides in both cases
-<span class="docutils literal">\xintverbosefalse</span>. The setting only affects polynomial
-declarations. Scalar variables such as those holding information on
-roots obey only the <span class="docutils literal"><span class="pre">\xintverbose...</span></span> setting.</p>
-<p>(new with <span class="docutils literal">0.8</span>)</p>
-</blockquote>
-</div>
-<div class="section" id="poltypesetallfalse">
-<h2><a class="toc-backref" href="#id185"><span class="docutils literal">\poltypesetallfalse</span></a></h2>
-<blockquote>
-<p>If <span class="docutils literal">true</span>, <a class="reference internal" href="#poltypeset">\PolTypeset</a> will also typeset the vanishing
-coefficients.</p>
-</blockquote>
-</div>
-<div class="section" id="poltoexprallfalse">
-<h2><a class="toc-backref" href="#id186"><span class="docutils literal">\poltoexprallfalse</span></a></h2>
-<blockquote>
-<p>If <span class="docutils literal">true</span>, <a class="reference internal" href="#poltoexpr-pol-expr">\PolToExpr{<pol. expr.>}</a> and <a class="reference internal" href="#poltofloatexpr-pol-expr">\PolToFloatExpr{<pol. expr.>}</a> will
-also include the vanishing coefficients in their outputs.</p>
-</blockquote>
-</div>
-</div>
-<div class="section" id="utilies">
-<h1><a class="toc-backref" href="#id187">Utilies</a></h1>
-<div class="section" id="poldectostring-decimal-number">
-<span id="poldectostring"></span><h2><a class="toc-backref" href="#id188"><span class="docutils literal">\PolDecToString{decimal number}</span></a></h2>
-<blockquote>
-<p>This is a utility macro to print decimal numbers. It is an alias
-for <span class="docutils literal">\xintDecToString</span>.</p>
-</blockquote>
-<blockquote>
-<p>For example
-<span class="docutils literal"><span class="pre">\PolDecToString{123.456e-8}</span></span> will expand to <span class="docutils literal">0.00000123456</span>
-and <span class="docutils literal"><span class="pre">\PolDecToString{123.450e-8}</span></span> to <span class="docutils literal">0.00000123450</span> which
-illustrates that trailing zeros are not trimmed.</p>
-<p>To trim trailing zeroes, one can use
-<span class="docutils literal"><span class="pre">\PolDecToString{\xintREZ{#1}}</span></span>.</p>
-<p>Attention that a.t.t.o.w. if the argument is for example <span class="docutils literal">1/5</span>, the
-macro does not identify that this is in fact a number with a finite
-decimal expansion and it outputs <span class="docutils literal">1/5</span>. See current <a class="reference external" href="https://www.ctan.org/pkg/xint">xintfrac</a>
-documentation.</p>
-</blockquote>
-</div>
-<div class="section" id="polexprsetup">
-<h2><a class="toc-backref" href="#id189"><span class="docutils literal">\polexprsetup</span></a></h2>
-<blockquote>
-<p>Serves to customize the package. Currently only two keys are
-recognized:</p>
-<ul class="simple">
-<li><p><span class="docutils literal">norr</span>: the postfix that <a class="reference internal" href="#id17">\PolSturmIsolateZeros**{<sturmname>}</a>
-should append to <span class="docutils literal"><sturmname></span> to declare the primitive polynomial
-obtained from original one after removal of all rational roots.
-The default value is <span class="docutils literal">_norr</span> (standing for “no rational roots”).</p></li>
-<li><p><span class="docutils literal">sqfnorr</span>: the postfix that <a class="reference internal" href="#id17">\PolSturmIsolateZeros**{<sturmname>}</a>
-should append to <span class="docutils literal"><sturmname></span> to declare the primitive polynomial
-obtained from original one after removal of all rational roots and
-suppression of all multiplicities.
-The default value is <span class="docutils literal">_sqf_norr</span> (standing for “square-free with
-no rational roots”).</p></li>
-</ul>
-<p>The package executes <span class="docutils literal">\polexprsetup{norr=_norr, sqfnorr=_sqf_norr}</span> as default.</p>
-</blockquote>
-</div>
-</div>
-<div class="section" id="technicalities">
-<h1><a class="toc-backref" href="#id190">Technicalities</a></h1>
-<ul>
-<li><p>The catcode of the semi-colon is reset temporarily by <a class="reference internal" href="#poldef">\poldef</a> macro in case some other package (for example the French
-babel module) may have made it active. This will fail though if the
-whole thing was already part of a macro argument, in such cases one
-can use <a class="reference internal" href="#id8">\PolDef</a> rather. The colon in <span class="docutils literal">:=</span> may be
-active with no consequences.</p></li>
-<li><p>As a consequence of <a class="reference external" href="https://www.ctan.org/pkg/xint">xintfrac</a> addition and subtraction always using
-least common multiples for the denominators, user-chosen common
-denominators survive additions and multiplications. For example, this:</p>
-<pre class="literal-block">\poldef P(x):= 1/2 + 2/2*x + 3/2*x^3 + 4/2*x^4;
-\poldef Q(x):= 1/3 + (2/3)x + (3/3)x^3 + (4/3)x^4;
-\poldef PQ(x):= P*Q;</pre>
-<p>gives internally the polynomial:</p>
-<pre class="literal-block">1/6+4/6*x^1+4/6*x^2+6/6*x^3+20/6*x^4+16/6*x^5+9/6*x^6+24/6*x^7+16/6*x^8</pre>
-<p>where all coefficients have the same denominator 6. Notice though that
-<span class="docutils literal">\PolToExpr{PQ}</span> outputs the <span class="docutils literal">6/6*x^3</span> as <span class="docutils literal">x^3</span> because (by
-default) it recognizes and filters out coefficients equal to one or
-minus one. One can use for example
-<span class="docutils literal">\PolToCSV{PQ}</span> to see the internally stored coefficients.</p>
-</li>
-<li><p><a class="reference internal" href="#poldiff-polname-1-polname-2">\PolDiff{<polname_1>}{<polname_2>}</a> always applies <span class="docutils literal">\xintPIrr</span> to the
-resulting coefficients, which means that fractions are reduced to
-lowest terms but ignoring an already separated <em>power of ten</em> part <span class="docutils literal">[N]</span>
-present in the internal representation. This is tentative and may change.</p>
-<p>Same remark for <a class="reference internal" href="#polantidiff-polname-1-polname-2">\PolAntiDiff{<polname_1>}{<polname_2>}</a>.</p>
-</li>
-<li><p>Currently, the package stores all coefficients from index <span class="docutils literal">0</span> to
-index equal to the polynomial degree inside a single macro, as a list.
-This data structure is obviously very inefficient for polynomials of
-high degree and few coefficients (as an example with <span class="docutils literal">\poldef <span class="pre">f(x):=x^1000</span> + x^500;</span> the subsequent definition <span class="docutils literal">\poldef <span class="pre">g(x):=</span> <span class="pre">f(x)^2;</span></span> will do of the order of 1,000,000 multiplications and
-additions involvings only zeroes... which does take time). This
-may change in the future.</p></li>
-<li><p>As is to be expected internal structures of the package are barely
-documented and unstable. Don't use them.</p></li>
-</ul>
-</div>
-<div class="section" id="change-log">
-<h1><a class="toc-backref" href="#id191">CHANGE LOG</a></h1>
-<ul>
-<li><p>v0.1 (2018/01/11): initial release. Features:</p>
-<ul class="simple">
-<li><p>The <a class="reference internal" href="#poldef">\poldef</a> parser itself,</p></li>
-<li><p>Differentiation and anti-differentiation,</p></li>
-<li><p>Euclidean division and GCDs,</p></li>
-<li><p>Various utilities such as <a class="reference internal" href="#polfromcsv">\PolFromCSV</a>,
-<a class="reference internal" href="#polmapcoeffs">\PolMapCoeffs</a>,
-<a class="reference internal" href="#poltocsv">\PolToCSV</a>, <a class="reference internal" href="#poltoexpr">\PolToExpr</a>, ...</p></li>
-</ul>
-<p>Only one-variable polynomials so far.</p>
-</li>
-<li><p>v0.2 (2018/01/14)</p>
-<ul class="simple">
-<li><p>Fix: <span class="docutils literal">"README thinks \numexpr recognizes ^ operator"</span>.</p></li>
-<li><p>Convert README to reStructuredText markup.</p></li>
-<li><p>Move main documentation from README to separate <span class="docutils literal">polexpr.txt</span> file.</p></li>
-<li><p>Provide <span class="docutils literal">polexpr.html</span> as obtained via <a class="reference external" href="http://docutils.sourceforge.net/docs/index.html">DocUtils</a> <span class="docutils literal">rst2html.py</span>.</p></li>
-<li><p>Convert README to (CTAN compatible) Markdown markup.</p></li>
-</ul>
-<p>Due to lack of available time the test suite might not be extensive
-enough. Bug reports are very welcome!</p>
-</li>
-<li><p>v0.3 (2018/01/17)</p>
-<ul>
-<li><p>bug fixes:</p>
-<ul>
-<li><p>the <span class="docutils literal">0.1</span> <a class="reference internal" href="#polevalat">\PolEval</a> accepted expressions for its second
-argument, but this was removed by mistake at <span class="docutils literal">0.2</span>. Restored.</p>
-<p><strong>Attention</strong>: at <span class="docutils literal">0.4</span> this has been reverted again, and
-<a class="reference internal" href="#polevalatexpr">\PolEval{P}\AtExpr{foo}</a> syntax is needed for
-using expressions in the second argument.</p>
-</li>
-</ul>
-</li>
-<li><p>incompatible or breaking changes:</p>
-<ul class="simple">
-<li><p><a class="reference internal" href="#poltoexpr">\PolToExpr</a> now by default uses <em>descending</em>
-powers (it also treats differently coefficients equal to 1 or -1.)
-Use <a class="reference internal" href="#id29">\PolToExpr*</a> for <em>ascending</em> powers.</p></li>
-<li><p><a class="reference internal" href="#polevalat">\PolEval</a> reduced the output to smallest terms,
-but as this is costly with big fractions and not needed if e.g.
-wrapped in an <span class="docutils literal">\xintRound</span> or <span class="docutils literal">\xintFloat</span>, this step has been
-removed; the former meaning is available as <a class="reference internal" href="#polevalreducedat">\PolEvalReduced</a>.</p></li>
-</ul>
-</li>
-<li><p>new (or newly documented) macros:</p>
-<ul class="simple">
-<li><p><a class="reference internal" href="#poltypesetcmd">\PolTypesetCmd</a></p></li>
-<li><p><a class="reference internal" href="#poltypesetcmdprefix">\PolTypesetCmdPrefix</a></p></li>
-<li><p><a class="reference internal" href="#poltypesetmonomialcmd">\PolTypesetMonomialCmd</a></p></li>
-<li><p><a class="reference internal" href="#polevalreducedat">\PolEvalReducedAt</a></p></li>
-<li><p><a class="reference internal" href="#poltofloatexpr">\PolToFloatExpr</a></p></li>
-<li><p><a class="reference internal" href="#poltoexproneterm">\PolToExprOneTerm</a></p></li>
-<li><p><a class="reference internal" href="#poltofloatexproneterm">\PolToFloatExprOneTerm</a></p></li>
-<li><p><a class="reference internal" href="#poltoexprcmd">\PolToExprCmd</a></p></li>
-<li><p><a class="reference internal" href="#poltofloatexprcmd">\PolToFloatExprCmd</a></p></li>
-<li><p><a class="reference internal" href="#poltoexprtermprefix">\PolToExprTermPrefix</a></p></li>
-<li><p><a class="reference internal" href="#poltoexprvar">\PolToExprVar</a></p></li>
-<li><p><a class="reference internal" href="#poltoexprtimes">\PolToExprTimes</a></p></li>
-</ul>
-</li>
-<li><p>improvements:</p>
-<ul>
-<li><p>documentation has a table of contents, internal hyperlinks,
-standardized signature notations and added explanations.</p></li>
-<li><p>one can do <span class="docutils literal"><span class="pre">\PolLet{g}={f}</span></span> or <span class="docutils literal"><span class="pre">\PolLet{g}{f}</span></span>.</p></li>
-<li><p><span class="docutils literal">\PolToExpr{f}</span> is highly customizable.</p></li>
-<li><p><a class="reference internal" href="#poldef">\poldef</a> and other defining macros prepare the polynomial
-functions for usage within <span class="docutils literal">\xintthefloatexpr</span> (or
-<span class="docutils literal">\xintdeffloatvar</span>). Coefficients are pre-rounded to the
-floating point precision. Indispensible for numerical algorithms,
-as exact fractions, even reduced, quickly become very big. See the
-documentation about how to use the exact polynomials also in
-floating point context.</p>
-<p><strong>Attention</strong>: this has been reverted at <span class="docutils literal">0.4</span>. The macro
-<a class="reference internal" href="#polgenfloatvariant">\PolGenFloatVariant</a> must be used for
-generation floating point polynomial functions.</p>
-</li>
-</ul>
-</li>
-</ul>
-</li>
-<li><p>v0.3.1 (2018/01/18)</p>
-<p>Fixes two typos in example code included in the documentation.</p>
-</li>
-<li><p>v0.4 (2018/02/16)</p>
-<ul>
-<li><p>bug fixes:</p>
-<ul class="simple">
-<li><p>when Euclidean division gave a zero remainder, the internal
-representation of this zero polynomial could be faulty; this
-could cause mysterious bugs in conjunction with other package
-macros such as <a class="reference internal" href="#polmapcoeffs">\PolMapCoeffs</a>.</p></li>
-<li><p><a class="reference internal" href="#polgcd">\PolGCD</a> was buggy in case of first polynomial being
-of lesser degree than the second one.</p></li>
-</ul>
-</li>
-<li><p>breaking changes:</p>
-<ul>
-<li><p>formerly <a class="reference internal" href="#polevalat">\PolEval{P}\At{foo}</a> allowed <span class="docutils literal">foo</span> to
-be an expression, which was transparently handled via
-<span class="docutils literal">\xinttheexpr</span>. Now, <span class="docutils literal">foo</span> must be a fraction (or a macro
-expanding to such) in the format acceptable by <span class="docutils literal">xintfrac.sty</span>
-macros. Use <a class="reference internal" href="#polevalatexpr">\PolEval{P}\AtExpr{foo}</a> for more
-general arguments using expression syntax. E.g., if <span class="docutils literal">foo</span> is the
-name of a variable known to <span class="docutils literal">\xintexpr</span>.</p>
-<p>The same holds for <a class="reference internal" href="#polevalreducedat">\PolEvalReduced</a>
-and <a class="reference internal" href="#polfloatevalat">\PolFloatEval</a>.</p>
-</li>
-<li><p>the <span class="docutils literal">3.0</span> automatic generation of floating point variants has
-been reverted. Not only do <em>not</em> the package macros automatically
-generate floating point variants of newly created polynomials,
-they actually make pre-existing such variant undefined.</p>
-<p>See <a class="reference internal" href="#polgenfloatvariant">\PolGenFloatVariant</a>.</p>
-</li>
-</ul>
-</li>
-<li><p>new non-expandable macros:</p>
-<ul class="simple">
-<li><p><a class="reference internal" href="#polgenfloatvariant">\PolGenFloatVariant</a></p></li>
-<li><p><a class="reference internal" href="#polgloballet">\PolGlobalLet</a></p></li>
-<li><p><a class="reference internal" href="#poltypesetone">\PolTypesetOne</a></p></li>
-<li><p><a class="reference internal" href="#polquo">\PolQuo</a></p></li>
-<li><p><a class="reference internal" href="#polrem">\PolRem</a></p></li>
-<li><p><a class="reference internal" href="#poltosturm">\PolToSturm</a></p></li>
-<li><p><a class="reference internal" href="#id12">\PolToSturm*</a></p></li>
-<li><p><a class="reference internal" href="#polsettosturmchainsignchangesat">\PolSetToSturmChainSignChangesAt</a></p></li>
-<li><p><a class="reference internal" href="#polsettonbofzeroswithin">\PolSetToNbOfZerosWithin</a></p></li>
-<li><p><a class="reference internal" href="#polsturmisolatezeros">\PolSturmIsolateZeros</a></p></li>
-<li><p><a class="reference internal" href="#polrefineinterval">\PolRefineInterval*</a></p></li>
-<li><p><a class="reference internal" href="#polrefineinterval-n">\PolRefineInterval[N]</a></p></li>
-<li><p><a class="reference internal" href="#polensureintervallength">\PolEnsureIntervalLength</a></p></li>
-<li><p><a class="reference internal" href="#polensureintervallengths">\PolEnsureIntervalLengths</a></p></li>
-<li><p><a class="reference internal" href="#polprintintervals">\PolPrintIntervals</a></p></li>
-<li><p><a class="reference internal" href="#polprintintervalsprintexactzero">\PolPrintIntervalsPrintExactZero</a></p></li>
-<li><p><a class="reference internal" href="#polprintintervalsprintleftendpoint">\PolPrintIntervalsPrintLeftEndPoint</a></p></li>
-<li><p><a class="reference internal" href="#polprintintervalsprintrightendpoint">\PolPrintIntervalsPrintRightEndPoint</a></p></li>
-<li><p><a class="reference internal" href="#id23">\PolReduceCoeffs*</a></p></li>
-<li><p><a class="reference internal" href="#polmakemonic">\PolMakeMonic</a></p></li>
-</ul>
-</li>
-<li><p>new expandable macros:</p>
-<ul class="simple">
-<li><p><a class="reference internal" href="#poltoexpronetermstylea">\PolToExprOneTermStyleA</a></p></li>
-<li><p><a class="reference internal" href="#polifcoeffisplusorminusone">\PolIfCoeffIsPlusOrMinusOne</a></p></li>
-<li><p><a class="reference internal" href="#polleadingcoeff">\PolLeadingCoeff</a></p></li>
-<li><p><a class="reference internal" href="#polsturmchainlength">\PolSturmChainLength</a></p></li>
-<li><p><a class="reference internal" href="#polsturmnbofisolatedzeros">\PolSturmNbOfIsolatedZeros</a></p></li>
-<li><p><a class="reference internal" href="#polsturmifzeroexactlyknown">\PolSturmIfZeroExactlyKnown</a></p></li>
-<li><p><a class="reference internal" href="#polsturmisolatedzeroleft">\PolSturmIsolatedZeroLeft</a></p></li>
-<li><p><a class="reference internal" href="#polsturmisolatedzeroright">\PolSturmIsolatedZeroRight</a></p></li>
-<li><p><span class="docutils literal">\PolPrintIntervalsTheEndPoint</span> (removed at 0.7)</p></li>
-<li><p><a class="reference internal" href="#polprintintervalstheindex">\PolPrintIntervalsTheIndex</a></p></li>
-<li><p><span class="docutils literal">\PolIfEndPointIsPositive</span> (removed at 0.7)</p></li>
-<li><p><span class="docutils literal">\PolIfEndPointIsNegative</span> (removed at 0.7)</p></li>
-<li><p><span class="docutils literal">\PolIfEndPointIsZero</span> (removed at 0.7)</p></li>
-<li><p><a class="reference internal" href="#polintervalwidth">\PolIntervalWidth</a></p></li>
-<li><p><a class="reference internal" href="#poldectostring">\PolDecToString</a></p></li>
-</ul>
-</li>
-<li><p>improvements:</p>
-<p>The main new feature is implementation of the <a class="reference external" href="https://en.wikipedia.org/wiki/Sturm%27s_theorem">Sturm algorithm</a>
-for localization of the real roots of polynomials.</p>
-</li>
-</ul>
-</li>
-<li><p>v0.4.1 (2018/03/01)</p>
-<p>Synced with xint 1.3.</p>
-</li>
-<li><p>v0.4.2 (2018/03/03)</p>
-<p>Documentation fix.</p>
-</li>
-<li><p>v0.5 (2018/04/08)</p>
-<ul class="simple">
-<li><p>bug fixes:</p>
-<ul>
-<li><p><a class="reference internal" href="#polget-polname-fromarray-macro">\PolGet{<polname>}\fromarray\macro</a> crashed when <span class="docutils literal">\macro</span> was
-an <a class="reference external" href="https://www.ctan.org/pkg/xint">xinttools</a> array macro with no items. It now produces the zero
-polynomial.</p></li>
-</ul>
-</li>
-<li><p>breaking changes:</p>
-<ul>
-<li><p><a class="reference internal" href="#poltosturm">\PolToSturm</a> creates primitive integer coefficients polynomials.
-This speeds up localization of roots via
-<a class="reference internal" href="#polsturmisolatezeros">\PolSturmIsolateZeros</a>. In case of user protests the author
-will make available again the code producing the bona fide Sturm
-polynomials as used formerly.</p></li>
-<li><p>polynomials created from <a class="reference internal" href="#polfromcsv">\PolFromCSV</a> or <a class="reference internal" href="#polget">\PolGet</a>
-get their coefficients normalized via <a class="reference external" href="https://www.ctan.org/pkg/xint">xintfrac</a>'s <span class="docutils literal">\xintRaw</span>.</p></li>
-</ul>
-</li>
-<li><p>experimental change:</p>
-<ul>
-<li><p>optional argument to <a class="reference internal" href="#polsturmisolatezeros">\PolSturmIsolateZeros</a> (see <span class="docutils literal">The degree 41 polynomial with <span class="pre">-2,</span> <span class="pre">-1.9,</span> <span class="pre">-1.8,</span> <span class="pre">...,</span> 0, 0.1, <span class="pre">...,</span> 1.9, 2 as roots</span> in <span class="docutils literal"><span class="pre">polexpr-examples.pdf</span></span>).
-It will presumably be replaced in future by
-an interval specification.</p></li>
-</ul>
-</li>
-<li><p>new non-expandable macro:</p>
-<ul>
-<li><p><a class="reference internal" href="#polmakeprimitive">\PolMakePrimitive</a></p></li>
-</ul>
-</li>
-<li><p>new expandable macro:</p>
-<ul>
-<li><p><a class="reference internal" href="#policontent">\PolIContent</a></p></li>
-</ul>
-</li>
-</ul>
-</li>
-<li><p>v0.5.1 (2018/04/22)</p>
-<ul class="simple">
-<li><p>new feature:</p>
-<ul>
-<li><p>the character <span class="docutils literal">'</span> can be used in polynomial names.</p></li>
-</ul>
-</li>
-</ul>
-</li>
-<li><p>v0.6 (2018/11/20)</p>
-<ul class="simple">
-<li><p>bugfix:</p>
-<ul>
-<li><p>the starred variant <a class="reference internal" href="#id13">\PolToSturm*{<polname>}{<sturmname>}</a> was
-broken. On the occasion of the fix, its meaning has been modified,
-see its documentation.</p></li>
-<li><p>using <a class="reference internal" href="#poltosturm">\PolToSturm</a> with a constant polynomial
-caused a division by zero error.</p></li>
-</ul>
-</li>
-<li><p>new macro:</p>
-<ul>
-<li><p><a class="reference internal" href="#id14">\PolSturmIsolateZeros*</a>
-acts like the <a class="reference internal" href="#polsturmisolatezeros">non-starred variant</a> then computes all the multiplicities.</p></li>
-</ul>
-</li>
-<li><p>new expandable macros:</p>
-<ul>
-<li><p><a class="reference internal" href="#polsturmisolatedzeromultiplicity-sturmname-index">\PolSturmIsolatedZeroMultiplicity{<sturmname>}{<index>}</a></p></li>
-<li><p><a class="reference internal" href="#polsturmnbofrootsof-sturmname-lessthanorequalto-value">\PolSturmNbOfRootsOf{<sturmname>}\LessThanOrEqualTo{<value>}</a></p></li>
-<li><p><a class="reference internal" href="#polsturmnbofrootsof-sturmname-lessthanorequaltoexpr-num-expr">\PolSturmNbOfRootsOf{<sturmname>}\LessThanOrEqualToExpr{<num. expr.>}</a></p></li>
-<li><p><a class="reference internal" href="#polsturmnbwithmultofrootsof-sturmname-lessthanorequalto-value">\PolSturmNbWithMultOfRootsOf{<sturmname>}\LessThanOrEqualTo{<value>}</a></p></li>
-<li><p><a class="reference internal" href="#polsturmnbwithmultofrootsof-sturmname-lessthanorequaltoexpr-num-expr">\PolSturmNbWithMultOfRootsOf{<sturmname>}\LessThanOrEqualToExpr{<num. expr.>}</a></p></li>
-</ul>
-</li>
-</ul>
-</li>
-<li><p>v0.7 (2018/12/08), v0.7.1 (bugfix), v0.7.2 (2nd bugfix) (2018/12/09)</p>
-<ul class="simple">
-<li><p>breaking changes:</p>
-<ul>
-<li><p>although <a class="reference internal" href="#polprintintervals-varname-sturmname">\PolPrintIntervals[<varname>]{<sturmname>}</a> default output
-remains the same, some auxiliary macros for user-customization
-have been removed: <span class="docutils literal">\PolPrintIntervalsTheEndPoint</span>,
-<span class="docutils literal"><span class="pre">\PolIfEndPointIsPositive{T}{F}</span></span>,
-<span class="docutils literal"><span class="pre">\PolIfEndPointIsNegative{T}{F}</span></span>, and
-<span class="docutils literal"><span class="pre">\PolIfEndPointIsZero{T}{F}</span></span>.</p></li>
-</ul>
-</li>
-<li><p>bugfix:</p>
-<ul>
-<li><p>it could happen that, contrarily to documentation, an interval
-computed by <a class="reference internal" href="#polsturmisolatezeros-sturmname">\PolSturmIsolateZeros{<sturmname>}</a> had zero as an
-endpoint,</p></li>
-<li><p><a class="reference internal" href="#polensureintervallength-sturmname-index-exponent">\PolEnsureIntervalLength{<sturmname>}{<index>}{<exponent>}</a> could under
-certain circumstances erroneously replace a non-zero root by
-zero,</p></li>
-<li><p><a class="reference internal" href="#polensureintervallengths-sturmname-exponent">\PolEnsureIntervalLengths{<sturmname>}{<exponent>}</a> crashed when used with
-a polynomial with no real roots, hence for which no isolation intervals
-existed (thanks to Thomas Söll for report).</p></li>
-</ul>
-</li>
-<li><p>new macros:</p>
-<ul>
-<li><p><a class="reference internal" href="#id17">\PolSturmIsolateZeros**{<sturmname>}</a></p></li>
-<li><p><a class="reference internal" href="#polsturmisolatezerosgetmultiplicitiesandrationalroots-sturmname">\PolSturmIsolateZerosGetMultiplicitiesAndRationalRoots{<sturmname>}</a></p></li>
-<li><p><a class="reference internal" href="#polsturmisolatezerosandfindrationalroots-sturmname">\PolSturmIsolateZerosAndFindRationalRoots{<sturmname>}</a></p></li>
-<li><p><a class="reference internal" href="#polexprsetup">\polexprsetup</a></p></li>
-<li><p><a class="reference internal" href="#id21">\PolPrintIntervals*</a></p></li>
-<li><p><a class="reference internal" href="#polprintintervalsnorealroots">\PolPrintIntervalsNoRealRoots</a></p></li>
-<li><p><a class="reference internal" href="#polprintintervalsbeginenv">\PolPrintIntervalsBeginEnv</a></p></li>
-<li><p><a class="reference internal" href="#polprintintervalsendenv">\PolPrintIntervalsEndEnv</a></p></li>
-<li><p><a class="reference internal" href="#polprintintervalsknownroot">\PolPrintIntervalsKnownRoot</a></p></li>
-<li><p><a class="reference internal" href="#polprintintervalsunknownroot">\PolPrintIntervalsUnknownRoot</a></p></li>
-<li><p><a class="reference internal" href="#polprintintervalsprintmultiplicity">\PolPrintIntervalsPrintMultiplicity</a></p></li>
-</ul>
-</li>
-<li><p>new expandable macros:</p>
-<ul>
-<li><p><a class="reference internal" href="#polsturmnbofrationalroots-sturmname">\PolSturmNbOfRationalRoots{<sturmname>}</a></p></li>
-<li><p><a class="reference internal" href="#polsturmnbofrationalrootswithmultiplicities-sturmname">\PolSturmNbOfRationalRootsWithMultiplicities{<sturmname>}</a></p></li>
-<li><p><a class="reference internal" href="#polsturmrationalroot-sturmname-k">\PolSturmRationalRoot{<sturmname>}{<k>}</a></p></li>
-<li><p><a class="reference internal" href="#polsturmrationalrootindex-sturmname-k">\PolSturmRationalRootIndex{<sturmname>}{<k>}</a></p></li>
-<li><p><a class="reference internal" href="#polsturmrationalrootmultiplicity-sturmname-k">\PolSturmRationalRootMultiplicity{<sturmname>}{<k>}</a></p></li>
-<li><p><a class="reference internal" href="#polprintintervalsthevar">\PolPrintIntervalsTheVar</a></p></li>
-<li><p><a class="reference internal" href="#polprintintervalsthesturmname">\PolPrintIntervalsTheSturmName</a></p></li>
-<li><p><a class="reference internal" href="#polprintintervalsthemultiplicity">\PolPrintIntervalsTheMultiplicity</a></p></li>
-</ul>
-</li>
-</ul>
-</li>
-<li><p>v0.7.3 (2019/02/04)</p>
-<ul class="simple">
-<li><p>bugfix:</p>
-<ul>
-<li><p>Debugging information not destined to user showed in log if root
-finding was done under <span class="docutils literal">\xintverbosetrue</span> regime.</p></li>
-<li><p><a class="reference internal" href="#polprintintervalsthevar">\PolPrintIntervalsTheVar</a> remained defined after
-<a class="reference internal" href="#polprintintervals">\PolPrintIntervals</a> but was left undefined after
-<a class="reference internal" href="#id21">\PolPrintIntervals*</a> (reported by Jürgen Gilg). Now remains
-defined in both cases, and <a class="reference internal" href="#polprintintervalsthesturmname">\PolPrintIntervalsTheSturmName</a>
-also.</p></li>
-<li><p>Polynomial names ending in digits caused errors (reported by Thomas
-Söll).</p></li>
-</ul>
-</li>
-</ul>
-</li>
-<li><p>v0.7.4 (2019/02/12)</p>
-<ul class="simple">
-<li><p>bugfix:</p>
-<ul>
-<li><p>20000000000 is too big for <span class="docutils literal">\numexpr</span>, shouldn't I know that?
-Thanks to Jürgen Gilg for report.</p></li>
-</ul>
-</li>
-</ul>
-</li>
-<li><p>v0.7.5 (2020/01/31)</p>
-<p>Synced with xintexpr 1.4. Requires it.</p>
-</li>
-<li><p>v0.8 (2021/03/29)</p>
-<p>Synced with xintexpr 1.4d. Requires it.</p>
-<ul class="simple">
-<li><p>breaking changes:</p>
-<ul>
-<li><p>As the usability of character <span class="docutils literal">'</span> in names has been extended
-from <span class="docutils literal">\poldef</span> to also generally <span class="docutils literal">\xintexpr</span>, <span class="docutils literal">\xintdefvar</span>,
-and <span class="docutils literal">\xintdeffunc</span>, it means that the infix operators
-<span class="docutils literal">'and'</span>, <span class="docutils literal">'or'</span>, and <span class="docutils literal">'mod'</span> must be replaced
-by <span class="docutils literal">&&</span>, <span class="docutils literal">||</span>, and <span class="docutils literal">/:</span> if they
-follow immediately a variable name (similarly <span class="docutils literal">'xor'</span> must
-be replaced by the <span class="docutils literal">xor()</span> function in such case).</p></li>
-<li><p><a class="reference internal" href="#poltoexpr">\PolToExpr</a> by default uses a catcode 12
-<span class="docutils literal">^</span>. See its documentation and the new configuration
-<a class="reference internal" href="#poltoexprcaret">\PolToExprCaret</a>.</p></li>
-</ul>
-</li>
-<li><p>deprecated:</p>
-<ul>
-<li><p>Usage of <span class="docutils literal">P/Q</span> for the euclidean quotient of two polynomials is
-deprecated. Start using <span class="docutils literal">quo(P,Q)</span> in its place.</p></li>
-</ul>
-</li>
-<li><p>bugfix:</p>
-<ul>
-<li><p>The <span class="docutils literal">\xintglobaldefstrue</span> setting was obeyed only partially
-by the polexpr macros defining polynomials.</p></li>
-<li><p>The <span class="docutils literal">\xintexpr</span> variables storing the values of the extremities
-of the intervals as found by <a class="reference internal" href="#polsturmisolatezeros">\PolSturmIsolateZeros</a> were not updated at 0.7.5 to the
-xintexpr 1.4 format and thus caused low-level TeX errors if used.</p></li>
-<li><p>Attempting to use in <span class="docutils literal">\poldef</span> a function previously declared
-via <span class="docutils literal">\xintdeffunc</span> which made usage of the indexing or slicing
-"ople" syntax typically caused <span class="docutils literal">TeX capacity exceeded</span> error.
-Indeed 0.7.5 only partially made polexpr able to cope with the
-extended possibilities for xintexpr 1.4 user-declared functions.
-Hopefully <span class="docutils literal">0.8</span> achieves full functionality in this context.</p></li>
-</ul>
-</li>
-<li><p>new macros:</p>
-<ul>
-<li><p><a class="reference internal" href="#polnewpolverbosefalse">\polnewpolverbosefalse</a></p></li>
-<li><p><a class="reference internal" href="#poltoexprcaret">\PolToExprCaret</a></p></li>
-<li><p><a class="reference internal" href="#poltoexprinvar">\PolToExprInVar</a></p></li>
-<li><p>alongside the major new functionalities described in the next item
-<a class="reference internal" href="#poltypeset">\PolTypeset</a> and <a class="reference internal" href="#poltoexpr">\PolToExpr</a> have
-been enhanced to accept as argument a general expression and not
-only a pre-declared polynomial name.</p></li>
-</ul>
-</li>
-<li><p>new features:</p>
-<ul>
-<li><p>The package is usable under Plain and probably most any TeX format,
-and not only under LaTeX.</p></li>
-<li><p>The core of the package has been rewritten entirely in order to
-start letting <span class="docutils literal">\xintexpr</span> recognize a polynomial type as a genuine
-variable. This has allowed:</p>
-<ul>
-<li><p>to solve the reduced inter-operability problems between polexpr
-and <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a> which arose as consequences to the deep <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a> <span class="docutils literal">1.4</span>
-evolution,</p></li>
-<li><p>to make available most of the functionality associated to
-expandable macros directly in the <span class="docutils literal">\xinteval</span> syntax as
-operators or functions,</p></li>
-<li><p>to provide (expandable) functional interface in <span class="docutils literal">\xinteval</span> to
-features previously available only via (for some, non-expandable)
-macro interface such as gcd computations.</p></li>
-</ul>
-</li>
-</ul>
-</li>
-</ul>
-<p>See the updated <a class="reference internal" href="#quick-syntax-overview">Quick syntax overview</a> and then <a class="reference internal" href="#polexpr08">the extended syntax
-description</a>.</p>
-</li>
-<li><p>v0.8.1 (2021/04/12)</p>
-<ul class="simple">
-<li><p>breaking changes:</p>
-<ul>
-<li><p>renamed v0.8's <span class="docutils literal">icontent()</span> to <a class="reference internal" href="#cont">cont()</a>.</p></li>
-<li><p>renamed v0.8's <span class="docutils literal">lcoeff()</span> to <a class="reference internal" href="#lc">lc()</a>.</p></li>
-</ul>
-</li>
-<li><p>bugfix:</p>
-<ul>
-<li><p>Sadly, <span class="docutils literal">diff1()</span>, <span class="docutils literal">diff2()</span>, <span class="docutils literal">diffn()</span> were broken
-for polynomials of degrees 8 or more, due to a typo and
-insufficient testing.</p></li>
-<li><p>The package should have (as documented) required <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a> 1.4d
-but in practice it accepted to work with <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a> 1.4c, whose
-<span class="docutils literal">\xinteval</span> does not know how to "output" a polynomial.</p></li>
-<li><p>The definition of one of the two variants of <a class="reference internal" href="#polsturmnbofrootsof">\PolSturmNbOfRootsOf</a> was broken by an end-of-line space, left-over
-from mass conversion from LaTeX to TeX syntax.</p></li>
-</ul>
-</li>
-<li><p>added:</p>
-<ul>
-<li><p><a class="reference internal" href="#lpol">lpol()</a></p></li>
-<li><p><a class="reference internal" href="#lcoeffs">lcoeffs()</a></p></li>
-</ul>
-</li>
-</ul>
-</li>
-<li><p>v0.8.2 (2021/05/05)</p>
-<ul class="simple">
-<li><p>breaking change:</p>
-<ul>
-<li><p>usage of <span class="docutils literal">\xintPFloat</span> in place of <span class="docutils literal">\xintFloat</span> for
-<a class="reference internal" href="#poltofloatexprcmd">\PolToFloatExprCmd</a>.</p></li>
-</ul>
-</li>
-<li><p>improved:</p>
-<ul>
-<li><p>Some <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a> functions such as <span class="docutils literal">rseq()</span> use the semi-colon,
-and it was mentioned in the documentation that <a class="reference internal" href="#poldef">\poldef</a>
-will be confused by this and that inner semi-colons could be
-set within braces <span class="docutils literal">{;}</span> as a work-around. It was not clear from
-this documentation that also <a class="reference internal" href="#id8">\PolDef</a> required
-this work-around. With this relase only <a class="reference internal" href="#poldef">\poldef</a> but
-not <a class="reference internal" href="#id8">\PolDef</a> needs the work-around.</p></li>
-</ul>
-</li>
-<li><p>track <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a> <span class="docutils literal">1.4e</span> changes relative to powers.</p></li>
-</ul>
-</li>
-<li><p>v0.8.3 (2021/05/27)</p>
-<ul class="simple">
-<li><p>small internal update to track an <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a> <span class="docutils literal">1.4h</span> change
-regarding handling of exceptions. Will require this version at
-least on loading.</p></li>
-</ul>
-</li>
-<li><p>v0.8.4 (2021/11/01)</p>
-<ul class="simple">
-<li><p>bugfix: <a class="reference internal" href="#id17">\PolSturmIsolateZeros**{<sturmname>}</a> did not
-declare the <span class="docutils literal"><sturmname>_norr</span> and <span class="docutils literal"><sturmname>_sqf_norr</span>
-polynomials if original polynomial had no real root!</p></li>
-</ul>
-</li>
-<li><p>v0.8.5 (2021/11/30)</p>
-<ul class="simple">
-<li><p>bugfix: support for the <span class="docutils literal">intfrom()</span> function was in the code,
-but the declaration to the polynomial parser had not been done.</p></li>
-<li><p>track (belatedly) upstream deprecation of <span class="docutils literal">\xintSignedFrac</span> and
-<span class="docutils literal">\xintSignedFwOver</span> at <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a> <span class="docutils literal">1.4g</span></p></li>
-</ul>
-</li>
-<li><p>v0.8.6 (2022/01/09)</p>
-<ul class="simple">
-<li><p>separate <span class="docutils literal"><span class="pre">polexpr-examples.pdf</span></span> from this reference documentation.</p></li>
-<li><p>minor improvement to the computation of a priori bounds on real roots.</p></li>
-<li><p>add <a class="reference internal" href="#polprintintervalsrowseparator">\PolPrintIntervalsRowSeparator</a> and allow usage of
-<span class="docutils literal">amsmath</span> environments in custom <a class="reference internal" href="#polprintintervalsbeginenv">\PolPrintIntervalsBeginEnv</a>
-and <a class="reference internal" href="#polprintintervalsendenv">\PolPrintIntervalsEndEnv</a>.</p></li>
-</ul>
-</li>
-</ul>
-</div>
-<div class="section" id="acknowledgments">
-<h1><a class="toc-backref" href="#id192">Acknowledgments</a></h1>
-<p>Thanks to Jürgen Gilg whose question about <a class="reference external" href="https://www.ctan.org/pkg/xintexpr">xintexpr</a> usage for
-differentiating polynomials was the initial trigger leading to this
-package, and to Jürgen Gilg and Thomas Söll for testing it on some
-concrete problems.</p>
-<p>Renewed thanks to them on occasion of the <span class="docutils literal">0.6</span>, <span class="docutils literal">0.7</span>, and <span class="docutils literal">0.8</span>
-releases for their continued interest.</p>
-<p>See README.md for the License.</p>
-</div>
-</div>
-</body>
-</html>
+
+ </div>
+ </div>
+ <div class="clearer"></div>
+ </div>
+ <div class="related" role="navigation" aria-label="related navigation">
+ <h3>Navigation</h3>
+ <ul>
+ <li class="right" style="margin-right: 10px">
+ <a href="polexpr-ref.html" title="polexpr reference"
+ >next</a></li>
+ <li class="nav-item nav-item-0"><a href="#">polexpr 0.8.7 documentation</a> »</li>
+ <li class="nav-item nav-item-this"><a href="">Introduction to polexpr</a></li>
+ </ul>
+ </div>
+ <div class="footer" role="contentinfo">
+ © Copyright 2022, Jean-François Burnol.
+ Created using <a href="https://www.sphinx-doc.org/">Sphinx</a> 5.0.0+/f58771c09.
+ </div>
+ </body>
+</html>
\ No newline at end of file
Added: trunk/Master/texmf-dist/doc/generic/polexpr/polexpr.rst.txt
===================================================================
--- trunk/Master/texmf-dist/doc/generic/polexpr/polexpr.rst.txt (rev 0)
+++ trunk/Master/texmf-dist/doc/generic/polexpr/polexpr.rst.txt 2022-05-15 20:41:35 UTC (rev 63306)
@@ -0,0 +1,157 @@
+.. comment: -*- fill-column: 72; mode: rst -*-
+
+=========================
+ Introduction to polexpr
+=========================
+
+polexpr_ is a TeX and LaTeX macro package.
+
+To use it with Plain or formats other than LaTeX::
+
+ \input polexpr.sty
+
+To use it with LaTeX::
+
+ \usepackage{polexpr}
+
+polexpr_ loads xintexpr_ and extends its syntax with a polynomial type.
+
+Polynomials are defined via the :ref:`\\poldef <quick>` parser and
+can then be manipulated via TeX macros for various operations such
+as obtaining G.C.D.s, computing derivatives, or indefinite
+integrals... many of these functionalities are available directly
+via functions in the syntax recognized by the ``\poldef`` parser.
+
+Apart from the final step of internally creating some TeX macros
+associated with the polynomial name, this is all done completely
+expandably, and a polynomial expression can be fetched directly to
+``\xinteval`` for a completely expandable operation from start to
+finish.
+
+For polynomials fully declared via ``\poldef``, root localization
+implementing the `Sturm algorithm`_ is available via macros.
+Arbitrarily long decimal expansion of all real roots can be
+obtained, and all rational roots can be found exactly.
+
+The legacy documentation section which showed examples of root
+localization has been moved to the `polexpr-examples.pdf
+<polexpr-examples.pdf>`_ document, where both the TeX code and its
+output are displayed.
+
+To access this document (if the previous link for some reason does not
+work)::
+
+ texdoc polexpr-examples
+
+
+Usage via xintsession_
+----------------------
+
+The simplest manner to get a feeling for the package abilities regarding
+in particularl root localization is to use it on the command line
+via the xintsession_ interface. Here is an example::
+
+ $ rlwrap etex xintsession
+ [...xintsession welcome message...]
+ Starting in exact mode (floating point evaluations use 16 digits)
+ >>> &pol
+ pol mode (i.e. function definitions use \poldef)
+ >>> f(x) := x^7 - x^6 - 2x + 1;
+ f = x^7-x^6-2*x+1
+ --> &GenFloat(f) lets f become usable as function in fp mode
+ --> &ROOTS(f) (resp. &ROOTS(f,N)) finds all rational roots exactly and
+ all irrational roots with at least 10 (resp. N) fractional digits
+ >>> &ROOTS(f)
+ Solving for real roots of f and assigning them (please wait...)
+ (mult. 1) Rootf_1 = -1.0719678841...
+ (mult. 1) Rootf_2 = 0.4962386948...
+ (mult. 1) Rootf_3 = 1.3151140860...
+ Square-free irrational part: x^7-x^6-2*x+1
+ --> &REFINEROOTS(f,N) to extend real irr. roots to N fractional digits
+ >>> &REFINEROOTS(f,40)
+ Refining real roots of f to 40 digits (please wait...)
+ (mult. 1) Rootf_1 = -1.0719678841080266034109100331975342338141...
+ (mult. 1) Rootf_2 = 0.4962386948771497344730618510143671567979...
+ (mult. 1) Rootf_3 = 1.3151140860165192656960005018679846354234...
+
+The xintsession_ interface allows to define polynomial variables via its
+``&pol`` mode. It also exposes :ref:`all polynomial functions added to the
+xintexpr syntax <polexpr08>` by ``polexpr``. Further, as seen in the
+example above it also covers some of the ``polexpr`` capabilities
+currently implemented via user macros. This is to be considered a work
+in progress, the above ``&ROOTS`` and ``&REFINEROOTS`` may be renamed
+into something else, and may have been so already since this
+documentation was written.
+
+Any input on the command line at the xintsession_ ``>>>`` prompt which
+starts with a backslash is executed as TeX macros, so all macros of
+``polexpr`` are in fact already available, including those typesetting
+material in background of the interactive session on command line. The
+``&ROOTS`` and ``&REFINEROOTS`` direct their outputs to the
+terminal rather than to the TeX page as would the typesetting macros
+defined by ``polexpr`` itself.
+
+
+License is LPPL 1.3c
+--------------------
+
+This work is distributed under the conditions of the
+LaTeX Project Public License version 1.3c.
+
+See README.md for details.
+
+
+In memoriam: Jürgen Gilg (1967-2022)
+------------------------------------
+
+My first contact with Jürgen was in January 2018, and his *little
+question* about usage of xintexpr_ for differentiating polynomials
+proved the direct cause for the :ref:`creation of polexpr
+<firstrelease>`. His regular comments and questions (often, jointly
+with Thomas Söll) largely contributed to motivate the author into
+investing time and effort into the somewhat strange occupation of
+developing such unusual TeX/LaTeX packages. The topics of our
+discussions evolved over the years and were not limited to TeX, LaTeX,
+PSTricks or PostScript matters.
+
+I learned to discover and appreciate his unassuming and kind character.
+He was very conscientious in all his projects with others and was often
+overly generous in his appreciation of people's contributions. On
+receiving the sad news of his unexpected and untimely death, I initially
+thought I had been knowing him for at least 10 years, but it is actually
+only a bit more than 4 years... I will sorely miss this friendship with
+a gentle soul from *over the Rhine*.
+
+I dedicate the work which has gone into polexpr_ to Jürgen's memory.
+
+
+.. _polexpr: https://www.ctan.org/pkg/polexpr
+
+.. _xinttools:
+.. _xintfrac:
+.. _xint: https://www.ctan.org/pkg/xint
+
+.. _xintexpr: https://www.ctan.org/pkg/xintexpr
+
+.. _xintsession: https://www.ctan.org/pkg/xintsession
+
+.. _Wilkinson polynomial: https://en.wikipedia.org/wiki/Wilkinson%27s_polynomial
+
+.. _Sturm algorithm:
+.. _Sturm Theorem: https://en.wikipedia.org/wiki/Sturm%27s_theorem
+
+.. _DocUtils: http://docutils.sourceforge.net/docs/index.html
+
+
+.. toctree::
+ :hidden:
+ :maxdepth: 2
+
+ polexpr-ref
+ polexpr-changes
+
+
+
+.. Local variables:
+.. sentence-end-double-space: t;
+.. End:
Property changes on: trunk/Master/texmf-dist/doc/generic/polexpr/polexpr.rst.txt
___________________________________________________________________
Added: svn:eol-style
## -0,0 +1 ##
+native
\ No newline at end of property
Modified: trunk/Master/texmf-dist/tex/generic/polexpr/polexpr-examples.tex
===================================================================
--- trunk/Master/texmf-dist/tex/generic/polexpr/polexpr-examples.tex 2022-05-15 11:23:40 UTC (rev 63305)
+++ trunk/Master/texmf-dist/tex/generic/polexpr/polexpr-examples.tex 2022-05-15 20:41:35 UTC (rev 63306)
@@ -145,25 +145,12 @@
\makeatletter
\catcode`_ 11
-\def\everbatimtop {\MacroFont\small}% default
-\let\everbatimbottom\empty
-\let\everbatimhook\empty
-
\def\everbatim {\s at everbatim\@everbatim }
-\@namedef{everbatim*}{\s at everbatim\expandafter\@everbatimx\expandafter
- {\the\newlinechar}}
-\let\everbatimbgcolorcmd\empty
-\def\everbatimeverypar{\strut
- {\everbatimbgcolorcmd\vrule\@width\linewidth }%
- \kern-\linewidth
- \kern\everbatimindent }
-\def\everbatimindent {\z@}
-% voir plus loin atbegindocument
+%! ancienne méthode sans doute motivé par possibilité code ferme un groupe?
+%! \@namedef{everbatim*}{\s at everbatim\@everbatimx\expandafter
+%! {\the\newlinechar}}
+\@namedef{everbatim*}{\s at everbatim\@everbatimx }
-\def\endeverbatim {\if at newlist \leavevmode\fi\endtrivlist }
-
-\@namedef{endeverbatim*}{\endeverbatim\aftergroup\everbatimundoparskip}
-\def\everbatimundoparskip{\vbox{}\kern-\baselineskip\kern-\parskip}
% Note 25 juin 2021
% On ne peut pas emboîter un everbatim à l'intérieur d'un everbatim
% ou un everbatim* à l'intérieur d'un everbatim*...
@@ -197,6 +184,14 @@
}%
\obeylines \@vobeyspaces
}
+\def\everbatimtop {\MacroFont\small}% default
+\let\everbatimhook\empty
+\def\everbatimeverypar{\strut
+ {\everbatimbgcolorcmd\vrule\@width\linewidth }%
+ \kern-\linewidth
+ \kern\everbatimindent }
+\let\everbatimbgcolorcmd\empty
+\def\everbatimindent {\z@}
\begingroup
\lccode`X 13
@@ -210,31 +205,47 @@
|lowercase[|endgroup% both freezes catcodes and converts X to active ^^M
|def|@everbatim #1X#2\end{everbatim}%
[#2|end[everbatim]|everbatimbottom ]
-|def|@everbatimx #1#2X#3\end{everbatimY}]%
- {#3\end{everbatim*}%
- \everbatimbottom
+|def|@everbatimx #1X#2\end{everbatimY}]%
+ {#2\end{everbatim*}%
+% refactored 2022/01/11, rather than passing \newlinechar value
+% as was done formerly via everbatim* (see above) and fetching it here as #1
+% it is thus assumed executed contents will not terminate a scope
+ \edef\everbatimrestorenewlinechar{\newlinechar\the\newlinechar\relax}%
\newlinechar 13
+% refactored 2022/01/11:
+% attention, \parskip set to zero for execution of contents
+% reason: avoid extra space if everbatim* is in an \item of a list
+% between verbatim and output of execution, if it starts a paragraph
+% \vskip-\parskip would be no good in case contents create a display
+ \edef\everbatimrestoreparskip{\parskip\the\parskip}%
+ \parskip\z at skip
% execution as LaTeX code of contents
\everbatimxprehook
- \scantokens {#3}%
- \newlinechar #1\relax
+ \scantokens {#2}%
+ \everbatimrestorenewlinechar
+ \everbatimrestoreparskip
\everbatimxposthook
}%
-
% L'espace venant du endofline final mis par \scantokens sera inhibé si #3 se
% termine par un % ou un \x, etc...
-\let\everbatimxfgcolorcmd\empty
+\let\everbatimbottom\empty
+
+\def\endeverbatim {\if at newlist \leavevmode\fi\endtrivlist }
+\@namedef{endeverbatim*}{\endeverbatim}
+% \@namedef{endeverbatim*}{\endeverbatim\aftergroup\everbatimundoparskip}
+% \def\everbatimundoparskip{\vbox{}\kern-\baselineskip\kern-\parskip}
+% \let\everbatimundoparskip\empty
+
+% rationale: we do not want a group
+% see xint.dtx for better way avoiding colorstack overflow problem
+% with latex+dvipdfmx
\def\everbatimxprehook {\colorlet{everbsavedcolor}{.}%
- \everbatimxfgcolorcmd
- \smallskip % pour polexpr-examples.tex
- % à cause de problèmes avec les
- % output en "display"
- }%
+ \everbatimxfgcolorcmd}%
+\let\everbatimxfgcolorcmd\empty % default
\def\everbatimxposthook {\color{everbsavedcolor}}
-
\catcode`_ 8
\makeatother
@@ -251,9 +262,9 @@
% \verb
%\colorlet{verbcolor}{DarkCyan}
-\colorlet{verbcolor}{black}
+\colorlet{verbcolor}{Maroon}
\colorlet{verbsoftwrapiconcolor}{DarkBlue}
-\def\MicroFont{\ttfamily%\color{verbcolor}
+\def\MicroFont{\ttfamily\color{verbcolor}
\makestarlowast\makequotesstraight}%
% everbatim/everbatim*
@@ -265,11 +276,13 @@
\def\MacroFont{\ttfamily\color{everbatimfgcolor}}
%\colorlet{everbatimbgcolor}{WhiteSmoke}
-\colorlet{everbatimbgcolor}{Ivory}
+%\colorlet{everbatimbgcolor}{Ivory}
+\colorlet{everbatimbgcolor}{Beige}
\def\everbatimbgcolorcmd{\color{everbatimbgcolor}}
%\colorlet{everbatimxfgcolor}{MidnightBlue}
-\colorlet{everbatimxfgcolor}{OliveDrab}
+%\colorlet{everbatimxfgcolor}{OliveDrab}
+\colorlet{everbatimxfgcolor}{Maroon}
\def\everbatimxfgcolorcmd{\color{everbatimxfgcolor}}
% Notice that \macrocode uses \macro at font which stores the \MacroFont meaning
@@ -281,7 +294,7 @@
The package provides a parser |\poldef| of algebraic polynomial
-expressions.
+expressions.
Once defined, a polynomial is usable by its name either as a numerical
function in |\xintexpr/\xinteval|, or for additional polynomial
@@ -373,11 +386,10 @@
\section{A first example}
-
In this example the polynomial is square-free.
\begin{everbatim*}
\poldef f(x) := x^7 - x^6 - 2x + 1;
-
+%
\PolToSturm{f}{f}
\PolSturmIsolateZeros{f}
The \PolTypeset{f} polynomial has \PolSturmNbOfIsolatedZeros{f} distinct real
Modified: trunk/Master/texmf-dist/tex/generic/polexpr/polexpr.sty
===================================================================
--- trunk/Master/texmf-dist/tex/generic/polexpr/polexpr.sty 2022-05-15 11:23:40 UTC (rev 63305)
+++ trunk/Master/texmf-dist/tex/generic/polexpr/polexpr.sty 2022-05-15 20:41:35 UTC (rev 63306)
@@ -2,7 +2,7 @@
% License: LPPL 1.3c (author-maintained)
% Usage: \input polexpr.sty (Plain or other macro formats)
% or \usepackage{polexpr} (LaTeX macro format)
-% Release 0.8.6 (2022/01/09) of polexpr.sty. This file inputs
+% Release 0.8.7 (2022/05/14) of polexpr.sty. This file inputs
% polexprcore.tex
% polexprexpr.tex
% polexprsturm.tex
@@ -54,7 +54,7 @@
\XINTsetupcatcodes% (does \endlinechar13 in particular)
\XINT_providespackage
\ProvidesPackage{polexpr}%
- [2022/01/09 v0.8.6 Polynomial expressions with rational coefficients (JFB)]%
+ [2022/05/14 v0.8.7 Polynomial expressions with rational coefficients (JFB)]%
\begingroup
\def\x#1/#2/#3 #4\xint:{#1#2#3}%
\ifnum\expandafter\x\expanded{\csname ver at xintexpr.sty\endcsname}\xint:
@@ -199,12 +199,15 @@
%%
%% \poldef
%%
-\def\PolDef{\POL at chkopt\POL at oPolDef[x]}%
-\def\POL at oPolDef[#1]#2#3{\poldef #2(#1):={#3};}%
-\def\poldef{\edef\POL at restoresemicolon{\catcode59=\the\catcode59\relax}%
- \catcode59 12 \POL at defpol}%
+%% Ever since 1.0, catcode sanitisation was minimal and only handled
+%% the semicolon. At last 0.8.7 uses \xintexprSafeCatcodes to enhance
+%% compatibility with hostile contexts such as babel+french. This
+%% adds overhead but at least is coherent with \xintdefvar/\xintdeffunc
+\def\PolDef{\xintexprSafeCatcodes\POL at chkopt\POL at oPolDef[x]}%
+\def\POL at oPolDef[#1]#2#3{\POL at defpol #2(#1):={#3};}%
+\def\poldef{\xintexprSafeCatcodes\POL at defpol}%
\def\POL at defpol #1(#2)#3=#4;{%
- \POL at restoresemicolon
+ \xintexprRestoreCatcodes
\edef\POL at polname{\xint_zapspaces #1 \xint_gobble_i}%
\begingroup
\unless\ifxintveryverbose\xintverbosefalse\fi
@@ -214,7 +217,7 @@
%% the associated macros was then deconstructed in further analysis
%% via non-expandable approach. At 0.8 the polynomial algebra has
%% been implemented expandably allowing direct plug-in into \xintexpr
- \xintdefvar __pol = subs(#4,#2=qraw({{P1.{0/1[0]}{1/1[0]}}}));%
+ \xintdefvar_a __pol = subs(#4,#2=qraw({{P1.{0/1[0]}{1/1[0]}}}));%
\expandafter
\endgroup
\expandafter\def\expandafter\POL at result\expandafter
Modified: trunk/Master/texmf-dist/tex/generic/polexpr/polexprcore.tex
===================================================================
--- trunk/Master/texmf-dist/tex/generic/polexpr/polexprcore.tex 2022-05-15 11:23:40 UTC (rev 63305)
+++ trunk/Master/texmf-dist/tex/generic/polexpr/polexprcore.tex 2022-05-15 20:41:35 UTC (rev 63306)
@@ -1,5 +1,5 @@
%% filename: polexprcore.tex
-%% Part of the polexpr package (0.8.6, 2022/01/09)
+%% Part of the polexpr package (0.8.7, 2022/05/14)
%%
%% Core routines for infix operators +, -, *, //, /:, ^, ** and functions
%%
Modified: trunk/Master/texmf-dist/tex/generic/polexpr/polexprexpr.tex
===================================================================
--- trunk/Master/texmf-dist/tex/generic/polexpr/polexprexpr.tex 2022-05-15 11:23:40 UTC (rev 63305)
+++ trunk/Master/texmf-dist/tex/generic/polexpr/polexprexpr.tex 2022-05-15 20:41:35 UTC (rev 63306)
@@ -1,5 +1,5 @@
%% filename: polexprexpr.tex
-%% Part of the polexpr package (0.8.6, 2022/01/09)
+%% Part of the polexpr package (0.8.7, 2022/05/14)
%%
%% Polynomial extensions to the \xintexpr syntax:
%%
Modified: trunk/Master/texmf-dist/tex/generic/polexpr/polexprsturm.tex
===================================================================
--- trunk/Master/texmf-dist/tex/generic/polexpr/polexprsturm.tex 2022-05-15 11:23:40 UTC (rev 63305)
+++ trunk/Master/texmf-dist/tex/generic/polexpr/polexprsturm.tex 2022-05-15 20:41:35 UTC (rev 63306)
@@ -1,5 +1,5 @@
%% filename: polexprsturm.tex
-%% Part of the polexpr package (0.8.6, 2022/01/09)
+%% Part of the polexpr package (0.8.7, 2022/05/14)
%%
%% Implements the Sturm localization Algorithm
%% Added at polexpr 0.4
More information about the tex-live-commits
mailing list.