texlive[60301] Master/texmf-dist: profcollege (22aug21)
commits+karl at tug.org
commits+karl at tug.org
Sun Aug 22 21:58:48 CEST 2021
Revision: 60301
http://tug.org/svn/texlive?view=revision&revision=60301
Author: karl
Date: 2021-08-22 21:58:48 +0200 (Sun, 22 Aug 2021)
Log Message:
-----------
profcollege (22aug21)
Modified Paths:
--------------
trunk/Master/texmf-dist/doc/latex/profcollege/ProfCollege-doc.pdf
trunk/Master/texmf-dist/doc/latex/profcollege/ProfCollege-doc.zip
trunk/Master/texmf-dist/metapost/profcollege/PfCScratch.mp
trunk/Master/texmf-dist/metapost/profcollege/PfCScratchpdf.mp
trunk/Master/texmf-dist/tex/latex/profcollege/PfCEquationComposition2.tex
trunk/Master/texmf-dist/tex/latex/profcollege/PfCEquationLaurent1.tex
trunk/Master/texmf-dist/tex/latex/profcollege/PfCEquationPose1.tex
trunk/Master/texmf-dist/tex/latex/profcollege/PfCEquationSoustraction2.tex
trunk/Master/texmf-dist/tex/latex/profcollege/PfCEquationSymbole1.tex
trunk/Master/texmf-dist/tex/latex/profcollege/PfCEquationTerme1.tex
trunk/Master/texmf-dist/tex/latex/profcollege/ProfCollege.sty
Added Paths:
-----------
trunk/Master/texmf-dist/metapost/profcollege/PfCLabyNombre.mp
trunk/Master/texmf-dist/metapost/profcollege/PfCMosaique.mp
Modified: trunk/Master/texmf-dist/doc/latex/profcollege/ProfCollege-doc.pdf
===================================================================
(Binary files differ)
Modified: trunk/Master/texmf-dist/doc/latex/profcollege/ProfCollege-doc.zip
===================================================================
(Binary files differ)
Added: trunk/Master/texmf-dist/metapost/profcollege/PfCLabyNombre.mp
===================================================================
--- trunk/Master/texmf-dist/metapost/profcollege/PfCLabyNombre.mp (rev 0)
+++ trunk/Master/texmf-dist/metapost/profcollege/PfCLabyNombre.mp 2021-08-22 19:58:48 UTC (rev 60301)
@@ -0,0 +1,211 @@
+%Pile des cases du chemin
+pair PileChemin[];
+numeric indiceChemin;
+indiceChemin=0;
+
+vardef RAZPileChemin=
+ pair PileChemin[];
+ indiceChemin:=0;
+enddef;
+
+def PushChemin(expr tt)=
+ if indiceChemin<1:
+ PileChemin[1]:=tt;
+ indiceChemin:=1;
+ else:
+ PileChemin[indiceChemin+1]:=tt;
+ indiceChemin:=indiceChemin+1;
+ fi;
+enddef;
+
+def PopChemin=
+ if indiceChemin<1:
+ RAZPileChemin;
+ for k=-1 upto LargeurLaby:
+ for l=-1 upto LongueurLaby:
+ if (k=-1) or (k=LargeurLaby) or (l=-1) or (l=LongueurLaby):
+ CaseExploree[k][l]:=true;
+ else:
+ CaseExploree[k][l]:=false;
+ fi;
+ endfor;
+ endfor;
+ Mobile:=Depart;
+ PushChemin((choixligneD,choixcolonneD));
+ CaseExploree[choixligneD][choixcolonneD]:=true;
+ VoisinDispo(choixligneD,choixcolonneD);
+ else:
+ if indiceChemin>0:
+ CaseExploree[xpart(PileChemin[indiceChemin])][ypart(PileChemin[indiceChemin])]:=true;
+ fi;
+ indiceChemin:=indiceChemin-1;
+ fi;
+enddef;
+
+%Pile des cases voisines de la case parcourue
+pair PileVoisin[];
+numeric indiceVoisin;
+indiceVoisin=0;
+
+vardef RAZPileVoisin=
+ indiceVoisin:=0;
+enddef;
+
+def PushVoisin(expr tt)=
+ if indiceVoisin<1:
+ PileVoisin[1]:=tt;
+ indiceVoisin:=1;
+ else:
+ PileVoisin[indiceVoisin+1]:=tt;
+ indiceVoisin:=indiceVoisin+1;
+ fi;
+enddef;
+
+def PopVoisin=
+ if indiceVoisin<0:
+ %message("La pile n'existe pas");
+ else:
+ indiceVoisin:=indiceVoisin-1;
+ fi;
+enddef;
+
+vardef VoisinDispo(expr la,lo)=
+ RAZPileVoisin;
+ numeric nbvoisin;
+ nbvoisin=0;
+ if (la>-1) and (la<LargeurLaby) and (lo>-1) and (lo<LongueurLaby):
+ if CaseExploree[la+1][lo]=false:
+ nbvoisin:=nbvoisin+1;
+ PushVoisin((la+1,lo));
+ fi;
+ if CaseExploree[la-1][lo]=false:
+ nbvoisin:=nbvoisin+1;
+ PushVoisin((la-1,lo));
+ fi;
+ if CaseExploree[la][lo+1]=false:
+ nbvoisin:=nbvoisin+1;
+ PushVoisin((la,lo+1));
+ fi;
+ if CaseExploree[la][lo-1]=false:
+ nbvoisin:=nbvoisin+1;
+ PushVoisin((la,lo-1));
+ fi;
+ fi;
+enddef;
+
+vardef InitialisationLabyrinthe(expr long,larg)=
+ LargeurLaby:=larg;
+ LongueurLaby:=long;
+ pair M[][],N[][];%centre de la case, coinbg de la case
+ boolean CaseExploree[][];%Case Exploree ou pas
+ %on initialise les cases comme non explorées pour celles qui sont à l'intérieur du labyrinthe
+ %n=0;
+ for k=-1 upto larg:
+ for l=-1 upto long:
+ M[k][l]:=u*(0.5,-0.5)+u*(l,-k);
+ N[k][l]:=u*(l,-k-1);
+ if (k=-1) or (k=larg) or (l=-1) or (l=long):
+ CaseExploree[k][l]:=true;
+ else:
+ CaseExploree[k][l]:=false;
+ fi;
+ endfor;
+ endfor;
+enddef;
+
+vardef TraceLabyrinthe=
+ save $;
+ picture $;
+ $=image(
+ if Murs:
+ for k=1 upto LargeurLaby:
+ trace murgauche shifted(u*(0,-k));
+ endfor;
+ for k=0 upto LongueurLaby-1:
+ trace murhaut shifted(u*(k,-1));
+ endfor;
+ for k=1 upto LargeurLaby:
+ trace murdroit shifted(u*(LongueurLaby-1,-k));
+ endfor;
+ for k=0 upto LongueurLaby-1:
+ trace murbas shifted(u*(k,-LargeurLaby));
+ endfor;
+ for k=1 upto LargeurLaby-1:
+ for l=1 upto LongueurLaby-1:
+ trace Separation shifted(u*(l,-k));
+ endfor;
+ endfor;
+ else:
+ for k=0 upto LargeurLaby:
+ trace u*(0,0-k)--u*(LongueurLaby,0-k);
+ endfor;
+ for k=0 upto LongueurLaby:
+ trace u*(0+k,0)--u*(0+k,-LargeurLaby);
+ endfor;
+ fi;
+ );
+ $
+enddef;
+
+vardef murgauche=
+ save $;
+ picture $;
+ path pl[];
+ $=image(
+ %pl1=(0,0)--u*(0.15,0)--u*(0.15,0.2){dir180}..u*(0.08+uniformdeviate(0.05),0.2+uniformdeviate(0.1))..u*(0.09+uniformdeviate(0.015),0.3+uniformdeviate(0.2))..u*(0.08+uniformdeviate(0.04),0.5+uniformdeviate(0.2))..{dir0}u*(0.15,0.8)--u*(0.15,1)--u*(0,1)--cycle;
+ pl1=(0,0)--u*(0.1,0)..u*(0.02+uniformdeviate(0.05),0.25)..u*(0.1-uniformdeviate(0.03),0.5)..u*(0.02+uniformdeviate(0.05),0.75)..u*(0.1,1)--u*(0,1)--cycle;
+ remplis pl[1];
+ trace pl[1];
+ );
+ $
+enddef;%ok
+
+vardef murhaut=
+ save $;
+ picture $;
+ path pl[];
+ $=image(
+ pl1=u*(0,0.8)--u*(0,1)--u*(1,1)--u*(1,0.8)..u*(0.8+uniformdeviate(0.1),0.8+uniformdeviate(0.1))..u*(0.4+uniformdeviate(0.2),0.8-uniformdeviate(0.1))..u*(0.2+uniformdeviate(0.2),0.8+uniformdeviate(0.1))--cycle;
+ remplis pl[1];
+ trace pl[1];
+ );
+ $
+enddef;
+
+vardef murdroit=
+ save $;
+ picture $;
+ path pl[];
+ $=image(
+ pl1=u*(1,0)--u*(1-0.15,0)--u*(1-0.15,0.2){dir180}..u*(1-0.08+uniformdeviate(0.05),0.2+uniformdeviate(0.1))..u*(1-0.09+uniformdeviate(0.015),0.3+uniformdeviate(0.2))..u*(1-0.08+uniformdeviate(0.04),0.5+uniformdeviate(0.2))..{dir0}u*(1-0.15,0.8)--u*(1-0.15,1)--u*(1-0,1)--cycle;
+ remplis pl[1];
+ trace pl[1];
+ );
+ $
+enddef;%ok
+
+vardef murbas=
+ save $;
+ picture $;
+ path pl[];
+ $=image(
+ pl1=u*(0,0.2)--u*(0,0)--u*(1,0)--u*(1,0.2)..u*(0.8+uniformdeviate(0.1),0.2+uniformdeviate(0.1))..u*(0.4+uniformdeviate(0.2),0.2-uniformdeviate(0.1))..u*(0.2+uniformdeviate(0.2),0.2+uniformdeviate(0.1))--cycle;
+ remplis pl[1];
+ trace pl[1];
+ );
+ $
+enddef;
+
+vardef Separation=
+ save $;
+ picture $;
+ path pl[];
+ $=image(
+ pl1=u*(0.2,0)..u*(0.05+uniformdeviate(0.05),0.05+uniformdeviate(0.05))..u*(0,0.2)..u*(-0.1+uniformdeviate(0.05),0.05+uniformdeviate(0.05))..u*(-0.2,0)..u*(-0.1+uniformdeviate(0.05),-0.05-uniformdeviate(0.05))..u*(0,-0.2)..u*(0.05+uniformdeviate(0.05),-0.05-uniformdeviate(0.05))..cycle;
+ remplis pl[1];
+ trace pl[1];
+ );
+ $
+enddef;
+
+endinput
Property changes on: trunk/Master/texmf-dist/metapost/profcollege/PfCLabyNombre.mp
___________________________________________________________________
Added: svn:eol-style
## -0,0 +1 ##
+native
\ No newline at end of property
Added: trunk/Master/texmf-dist/metapost/profcollege/PfCMosaique.mp
===================================================================
--- trunk/Master/texmf-dist/metapost/profcollege/PfCMosaique.mp (rev 0)
+++ trunk/Master/texmf-dist/metapost/profcollege/PfCMosaique.mp 2021-08-22 19:58:48 UTC (rev 60301)
@@ -0,0 +1,446 @@
+%Premier ensemble de mosaique
+pair A[],O;
+path Bc[];
+picture MosaiqueUn[];
+
+for k=1 upto 8:
+ A1=u*(0,0);
+ A3-A1=u*(1,0);
+ A2=iso(A1,A3);
+ A5=rotation(A1,A3,-90);
+ A4=iso(A3,A5);
+ A7-A5=A1-A3;
+ A6=iso(A5,A7);
+ A8=iso(A7,A1);
+ O=iso(A1,A5);
+endfor;
+
+A9=A1;
+
+for k=1 upto 8:
+ Bc[k]=polygone(A[k],A[k+1],O);
+endfor;
+
+MosaiqueUn[0]=image(
+ drawoptions(withcolor gris);
+ for j=1 upto 4:
+ trace segment(A[j],A[j+4]);
+ endfor;
+ drawoptions();
+ trace polygone(A1,A3,A5,A7) withcolor 0.5white;
+ );
+
+for l=1 upto 8:
+ MosaiqueUn[l]=image(
+ remplis Bc[l];
+ drawoptions(withcolor gris);
+ for j=1 upto 4:
+ trace segment(A[j],A[j+4]);
+ endfor;
+ drawoptions();
+ trace polygone(A1,A3,A5,A7) withcolor 0.5white;
+ );
+endfor;
+
+p:=8;
+
+for l=1 upto 7:
+ for k=l+1 upto 8:
+ p:=p+1;
+ MosaiqueUn[p]=image(
+ remplis Bc[l] withcolor noir;
+ remplis Bc[k] withcolor noir;
+ drawoptions(withcolor gris);
+ for j=1 upto 4:
+ trace segment(A[j],A[j+4]);
+ endfor;
+ drawoptions();
+ trace polygone(A1,A3,A5,A7) withcolor 0.5white;
+ );
+ endfor;
+endfor;
+
+for l=1 upto 6:
+ for k=l+1 upto 7:
+ for m=k+1 upto 8:
+ p:=p+1;
+ MosaiqueUn[p]=image(
+ remplis Bc[l] withcolor noir;
+ remplis Bc[k] withcolor noir;
+ remplis Bc[m] withcolor noir;
+ drawoptions(withcolor gris);
+ for j=1 upto 4:
+ trace segment(A[j],A[j+4]);
+ endfor;
+ drawoptions();
+ trace polygone(A1,A3,A5,A7) withcolor 0.5white;
+ );
+ endfor;
+ endfor;
+endfor;
+
+for l=1 upto 5:
+ for k=l+1 upto 6:
+ for m=k+1 upto 7:
+ for n=m+1 upto 8:
+ p:=p+1;
+ MosaiqueUn[p]=image(
+ remplis Bc[l] withcolor noir;
+ remplis Bc[k] withcolor noir;
+ remplis Bc[m] withcolor noir;
+ remplis Bc[n] withcolor noir;
+ drawoptions(withcolor gris);
+ for j=1 upto 4:
+ trace segment(A[j],A[j+4]);
+ endfor;
+ drawoptions();
+ trace polygone(A1,A3,A5,A7) withcolor 0.5white;
+ );
+ endfor;
+ endfor;
+ endfor;
+endfor;
+
+for l=1 upto 4:
+ for k=l+1 upto 5:
+ for m=k+1 upto 6:
+ for n=m+1 upto 7:
+ for o=n+1 upto 8:
+ p:=p+1;
+ MosaiqueUn[p]=image(
+ remplis Bc[l] withcolor noir;
+ remplis Bc[k] withcolor noir;
+ remplis Bc[m] withcolor noir;
+ remplis Bc[n] withcolor noir;
+ remplis Bc[o] withcolor noir;
+ drawoptions(withcolor gris);
+ for j=1 upto 4:
+ trace segment(A[j],A[j+4]);
+ endfor;
+ drawoptions();
+ trace polygone(A1,A3,A5,A7) withcolor 0.5white;
+ );
+ endfor;
+ endfor;
+ endfor;
+ endfor;
+endfor;
+
+for l=1 upto 3:
+ for k=l+1 upto 4:
+ for m=k+1 upto 5:
+ for n=m+1 upto 6:
+ for o=n+1 upto 7:
+ for r=o+1 upto 8:
+ p:=p+1;
+ MosaiqueUn[p]=image(
+ remplis Bc[l] withcolor noir;
+ remplis Bc[k] withcolor noir;
+ remplis Bc[m] withcolor noir;
+ remplis Bc[n] withcolor noir;
+ remplis Bc[o] withcolor noir;
+ remplis Bc[r] withcolor noir;
+ drawoptions(withcolor gris);
+ for j=1 upto 4:
+ trace segment(A[j],A[j+4]);
+ endfor;
+ drawoptions();
+ trace polygone(A1,A3,A5,A7) withcolor 0.5white;
+ );
+ endfor;
+ endfor;
+ endfor;
+ endfor;
+ endfor;
+endfor;
+
+for l=1 upto 2:
+ for k=l+1 upto 3:
+ for m=k+1 upto 4:
+ for n=m+1 upto 5:
+ for o=n+1 upto 6:
+ for r=o+1 upto 7:
+ for s=r+1 upto 8:
+ p:=p+1;
+ MosaiqueUn[p]=image(
+ remplis Bc[l] withcolor noir;
+ remplis Bc[k] withcolor noir;
+ remplis Bc[m] withcolor noir;
+ remplis Bc[n] withcolor noir;
+ remplis Bc[o] withcolor noir;
+ remplis Bc[r] withcolor noir;
+ remplis Bc[s] withcolor noir;
+ drawoptions(withcolor gris);
+ for j=1 upto 4:
+ trace segment(A[j],A[j+4]);
+ endfor;
+ drawoptions();
+ trace polygone(A1,A3,A5,A7) withcolor 0.5white;
+ );
+ endfor;
+ endfor;
+ endfor;
+ endfor;
+ endfor;
+ endfor;
+endfor;
+
+for l=1 upto 1:
+ for k=l+1 upto 2:
+ for m=k+1 upto 3:
+ for n=m+1 upto 4:
+ for o=n+1 upto 5:
+ for r=o+1 upto 6:
+ for s=r+1 upto 7:
+ for t=s+1 upto 8:
+ p:=p+1;
+ MosaiqueUn[p]=image(
+ remplis Bc[l] withcolor noir;
+ remplis Bc[k] withcolor noir;
+ remplis Bc[m] withcolor noir;
+ remplis Bc[n] withcolor noir;
+ remplis Bc[o] withcolor noir;
+ remplis Bc[r] withcolor noir;
+ remplis Bc[s] withcolor noir;
+ remplis Bc[t] withcolor noir;
+ drawoptions(withcolor gris);
+ for j=1 upto 4:
+ trace segment(A[j],A[j+4]);
+ endfor;
+ drawoptions();
+ trace polygone(A1,A3,A5,A7) withcolor 0.5white;
+ );
+ endfor;
+ endfor;
+ endfor;
+ endfor;
+ endfor;
+ endfor;
+ endfor;
+endfor;
+
+% Deuxième jeu de mosaique
+pair A[],O;
+path Bc[];
+picture MosaiqueDeux[];
+
+for k=1 upto 8:
+ A1=u*(0,0);
+ A3-A1=u*(1,0);
+ A2=iso(A1,A3);
+ A5=rotation(A1,A3,-90);
+ A4=iso(A3,A5);
+ A7-A5=A1-A3;
+ A6=iso(A5,A7);
+ A8=iso(A7,A1);
+ O=iso(A1,A5);
+endfor;
+
+A9=A1;
+
+Bc[1]=polygone(A[1],A[2],A[8]);
+Bc[2]=polygone(A[8],A[2],O);
+Bc[3]=polygone(A[4],A[2],O);
+Bc[4]=polygone(A[3],A[2],A[4]);
+Bc[5]=polygone(A[5],A[4],A[6]);
+Bc[6]=polygone(A[4],A[6],O);
+Bc[7]=polygone(A[6],A[8],O);
+Bc[8]=polygone(A[6],A[7],A[8]);
+
+MosaiqueDeux[0]=image(
+ drawoptions(withcolor gris);
+ trace polygone(A2,A4,A6,A8);
+ trace segment(A8,A4);
+ trace segment(A6,A2);
+ drawoptions();
+ trace polygone(A1,A3,A5,A7) withcolor 0.5white;
+ );
+
+for l=1 upto 8:
+ MosaiqueDeux[l]=image(
+ remplis Bc[l];
+ drawoptions(withcolor gris);
+ trace polygone(A2,A4,A6,A8);
+ trace segment(A8,A4);
+ trace segment(A6,A2);
+ drawoptions();
+ trace polygone(A1,A3,A5,A7) withcolor 0.5white;
+ );
+endfor;
+
+p:=8;
+
+for l=1 upto 7:
+ for k=l+1 upto 8:
+ p:=p+1;
+ MosaiqueDeux[p]=image(
+ remplis Bc[l] withcolor noir;
+ remplis Bc[k] withcolor noir;
+ drawoptions(withcolor gris);
+ trace polygone(A2,A4,A6,A8);
+ trace segment(A8,A4);
+ trace segment(A6,A2);
+ drawoptions();
+ trace polygone(A1,A3,A5,A7) withcolor 0.5white;
+ );
+ endfor;
+endfor;
+
+for l=1 upto 6:
+ for k=l+1 upto 7:
+ for m=k+1 upto 8:
+ p:=p+1;
+ MosaiqueDeux[p]=image(
+ remplis Bc[l] withcolor noir;
+ remplis Bc[k] withcolor noir;
+ remplis Bc[m] withcolor noir;
+ drawoptions(withcolor gris);
+ trace polygone(A2,A4,A6,A8);
+ trace segment(A8,A4);
+ trace segment(A6,A2);
+ drawoptions();
+ trace polygone(A1,A3,A5,A7) withcolor 0.5white;
+ );
+ endfor;
+ endfor;
+endfor;
+
+for l=1 upto 5:
+ for k=l+1 upto 6:
+ for m=k+1 upto 7:
+ for n=m+1 upto 8:
+ p:=p+1;
+ MosaiqueDeux[p]=image(
+ remplis Bc[l] withcolor noir;
+ remplis Bc[k] withcolor noir;
+ remplis Bc[m] withcolor noir;
+ remplis Bc[n] withcolor noir;
+ drawoptions(withcolor gris);
+trace polygone(A2,A4,A6,A8);
+ trace segment(A8,A4);
+ trace segment(A6,A2);
+ drawoptions();
+ trace polygone(A1,A3,A5,A7) withcolor 0.5white;
+ );
+ endfor;
+ endfor;
+ endfor;
+endfor;
+
+for l=1 upto 4:
+ for k=l+1 upto 5:
+ for m=k+1 upto 6:
+ for n=m+1 upto 7:
+ for o=n+1 upto 8:
+ p:=p+1;
+ MosaiqueDeux[p]=image(
+ remplis Bc[l] withcolor noir;
+ remplis Bc[k] withcolor noir;
+ remplis Bc[m] withcolor noir;
+ remplis Bc[n] withcolor noir;
+ remplis Bc[o] withcolor noir;
+ drawoptions(withcolor gris);
+trace polygone(A2,A4,A6,A8);
+ trace segment(A8,A4);
+ trace segment(A6,A2);
+ drawoptions();
+ trace polygone(A1,A3,A5,A7) withcolor 0.5white;
+ );
+ endfor;
+ endfor;
+ endfor;
+ endfor;
+endfor;
+
+for l=1 upto 3:
+ for k=l+1 upto 4:
+ for m=k+1 upto 5:
+ for n=m+1 upto 6:
+ for o=n+1 upto 7:
+ for r=o+1 upto 8:
+ p:=p+1;
+ MosaiqueDeux[p]=image(
+ remplis Bc[l] withcolor noir;
+ remplis Bc[k] withcolor noir;
+ remplis Bc[m] withcolor noir;
+ remplis Bc[n] withcolor noir;
+ remplis Bc[o] withcolor noir;
+ remplis Bc[r] withcolor noir;
+ drawoptions(withcolor gris);
+trace polygone(A2,A4,A6,A8);
+ trace segment(A8,A4);
+ trace segment(A6,A2);
+ drawoptions();
+ trace polygone(A1,A3,A5,A7) withcolor 0.5white;
+ );
+ endfor;
+ endfor;
+ endfor;
+ endfor;
+ endfor;
+endfor;
+
+for l=1 upto 2:
+ for k=l+1 upto 3:
+ for m=k+1 upto 4:
+ for n=m+1 upto 5:
+ for o=n+1 upto 6:
+ for r=o+1 upto 7:
+ for s=r+1 upto 8:
+ p:=p+1;
+ MosaiqueDeux[p]=image(
+ remplis Bc[l] withcolor noir;
+ remplis Bc[k] withcolor noir;
+ remplis Bc[m] withcolor noir;
+ remplis Bc[n] withcolor noir;
+ remplis Bc[o] withcolor noir;
+ remplis Bc[r] withcolor noir;
+ remplis Bc[s] withcolor noir;
+ drawoptions(withcolor gris);
+trace polygone(A2,A4,A6,A8);
+ trace segment(A8,A4);
+ trace segment(A6,A2);
+ drawoptions();
+ trace polygone(A1,A3,A5,A7) withcolor 0.5white;
+ );
+ endfor;
+ endfor;
+ endfor;
+ endfor;
+ endfor;
+ endfor;
+endfor;
+
+for l=1 upto 1:
+ for k=l+1 upto 2:
+ for m=k+1 upto 3:
+ for n=m+1 upto 4:
+ for o=n+1 upto 5:
+ for r=o+1 upto 6:
+ for s=r+1 upto 7:
+ for t=s+1 upto 8:
+ p:=p+1;
+ MosaiqueDeux[p]=image(
+ remplis Bc[l] withcolor noir;
+ remplis Bc[k] withcolor noir;
+ remplis Bc[m] withcolor noir;
+ remplis Bc[n] withcolor noir;
+ remplis Bc[o] withcolor noir;
+ remplis Bc[r] withcolor noir;
+ remplis Bc[s] withcolor noir;
+ remplis Bc[t] withcolor noir;
+ drawoptions(withcolor gris);
+ trace polygone(A2,A4,A6,A8);
+ trace segment(A8,A4);
+ trace segment(A6,A2);
+ drawoptions();
+ trace polygone(A1,A3,A5,A7) withcolor 0.5white;
+ );
+ endfor;
+ endfor;
+ endfor;
+ endfor;
+ endfor;
+ endfor;
+ endfor;
+endfor;
Property changes on: trunk/Master/texmf-dist/metapost/profcollege/PfCMosaique.mp
___________________________________________________________________
Added: svn:eol-style
## -0,0 +1 ##
+native
\ No newline at end of property
Modified: trunk/Master/texmf-dist/metapost/profcollege/PfCScratch.mp
===================================================================
--- trunk/Master/texmf-dist/metapost/profcollege/PfCScratch.mp 2021-08-22 19:58:29 UTC (rev 60300)
+++ trunk/Master/texmf-dist/metapost/profcollege/PfCScratch.mp 2021-08-22 19:58:48 UTC (rev 60301)
@@ -2939,6 +2939,21 @@
Oop
enddef;
+vardef OpModulo(expr pasun,pasdeux)=
+ save Oop; picture Oop;
+ save TAao; path TAao;
+ save LOPop; picture LOPop;
+ LOPop=ColleBoxNew(if string pasun : OvalNb(pasun) else: pasun fi,"modulo",if string pasdeux : OvalNb(pasdeux) else: pasdeux fi);
+ TAao=OvalBox(LOPop);
+ Oop=image(
+ fill TAao if print=false : withcolor FondOvalOp else : withcolor coefprint*white fi;
+ draw LOPop;
+ draw TAao if print=false : withcolor coefprint*white fi;
+ );
+ Oop:=Oop shifted(-center Oop);
+ Oop
+enddef;
+
vardef OpAlea(expr pasun,pasdeux)=
save Oop; picture Oop;
save TAao; path TAao;
@@ -3243,7 +3258,7 @@
save $; picture $;
save TAa; path TAa;
save LTa; picture LTa;
- LTa=ColleBoxNew("couleur",OvalCouleur(redpart(pasun),greenpart(pasun),bluepart(pasun)),"touché",OvalCouleur(redpart(pasdeux),greenpart(pasdeux),bluepart(pasdeux)),"?");
+ LTa=ColleBoxNew("couleur",OvalCouleur(redpart(pasun),greenpart(pasun),bluepart(pasun)),"touche",OvalCouleur(redpart(pasdeux),greenpart(pasdeux),bluepart(pasdeux)),"?");
TAa=DiamondBox(LTa);
$=image(
fill TAa if print=false : withcolor CapteurTrois else : withcolor coefprint*white fi;
Modified: trunk/Master/texmf-dist/metapost/profcollege/PfCScratchpdf.mp
===================================================================
--- trunk/Master/texmf-dist/metapost/profcollege/PfCScratchpdf.mp 2021-08-22 19:58:29 UTC (rev 60300)
+++ trunk/Master/texmf-dist/metapost/profcollege/PfCScratchpdf.mp 2021-08-22 19:58:48 UTC (rev 60301)
@@ -2971,6 +2971,21 @@
Oop
enddef;
+vardef OpModulo(expr pasun,pasdeux)=
+ save Oop; picture Oop;
+ save TAao; path TAao;
+ save LOPop; picture LOPop;
+ LOPop=ColleBoxNew(if string pasun : OvalNb(pasun) else: pasun fi,"modulo",if string pasdeux : OvalNb(pasdeux) else: pasdeux fi);
+ TAao=OvalBox(LOPop);
+ Oop=image(
+ fill TAao if print=false : withcolor FondOvalOp else : withcolor coefprint*white fi;
+ draw LOPop;
+ draw TAao if print=false : withcolor coefprint*white fi;
+ );
+ Oop:=Oop shifted(-center Oop);
+ Oop
+enddef;
+
vardef OpAlea(expr pasun,pasdeux)=
save Oop; picture Oop;
save TAao; path TAao;
@@ -3275,7 +3290,7 @@
save $; picture $;
save TAa; path TAa;
save LTa; picture LTa;
- LTa=ColleBoxNew("couleur",OvalCouleur(redpart(pasun),greenpart(pasun),bluepart(pasun)),"touché",OvalCouleur(redpart(pasdeux),greenpart(pasdeux),bluepart(pasdeux)),"?");
+ LTa=ColleBoxNew("couleur",OvalCouleur(redpart(pasun),greenpart(pasun),bluepart(pasun)),"touche",OvalCouleur(redpart(pasdeux),greenpart(pasdeux),bluepart(pasdeux)),"?");
TAa=DiamondBox(LTa);
$=image(
fill TAa if print=false : withcolor CapteurTrois else : withcolor coefprint*white fi;
Modified: trunk/Master/texmf-dist/tex/latex/profcollege/PfCEquationComposition2.tex
===================================================================
--- trunk/Master/texmf-dist/tex/latex/profcollege/PfCEquationComposition2.tex 2021-08-22 19:58:29 UTC (rev 60300)
+++ trunk/Master/texmf-dist/tex/latex/profcollege/PfCEquationComposition2.tex 2021-08-22 19:58:48 UTC (rev 60301)
@@ -1,6 +1,6 @@
% Licence : Released under the LaTeX Project Public License v1.3c
% or later, see http://www.latex-project.org/lppl.txtf
-\newcommand{\EquaDeuxComposition}[5][]{%type ax+b=d ou b=cx+d$
+\newcommand\EquaDeuxComposition[5][]{%type ax+b=d ou b=cx+d$
\useKVdefault[ClesEquation]%
\setKV[ClesEquation]{#1}%
\ifx\bla#2\bla%On échange en faisant attention à ne pas boucler : c doit être non vide
@@ -14,7 +14,7 @@
}%
}{%ELSE
\xintifboolexpr{#3==0}{%ax+b=d
- \EquaBase[#1]{#2}{}{}{#5}%
+ \EquaBase[#1]{#2}{0}{0}{#5}%
}{%ax+b=d$ Ici
\ifboolKV[ClesEquation]{Decomposition}{\colorlet{Ccompo}{\useKV[ClesEquation]{CouleurCompo}}}{}
\begin{align*}
@@ -51,14 +51,13 @@
}{}
\ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}}
\end{align*}
- \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\num{#5}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.
- }{}
+ \ifboolKV[ClesEquation]{Solution}{\EcrireSolutionEquation{#2}{#3}{#4}{#5}}{}%
}
}
\fi
}
-\newcommand{\EquaTroisComposition}[5][]{%ax+b=cx ou ax=cx+d
+\newcommand\EquaTroisComposition[5][]{%ax+b=cx ou ax=cx+d
\useKVdefault[ClesEquation]%
\setKV[ClesEquation]{#1}%
\ifx\bla#3\bla%on inverse en faisant attention à la boucle #3<->#5
@@ -65,14 +64,14 @@
\ifx\bla#5\bla%
%% paramètre oublié
\else
- \EquaTroisComposition[#1]{#4}{#5}{#2}{}%
+ \EquaTroisComposition[#1]{#4}{#5}{#2}{0}%
\fi
\else
\xintifboolexpr{#2==0}{%b=cx
- \EquaBase[#1]{#4}{}{}{#3}
+ \EquaBase[#1]{#4}{0}{0}{#3}
}{%
\xintifboolexpr{#4==0}{%ax+b=0
- \EquaDeuxComposition[#1]{#2}{#3}{}{0}
+ \EquaDeuxComposition[#1]{#2}{#3}{0}{0}
}{%ax+b=cx
\xintifboolexpr{#2==#4}{%
\xintifboolexpr{#3==0}{%ax=ax
@@ -122,7 +121,7 @@
\ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}}
}
\end{align*}
- \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}
+ %\ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}
}{%ax+b=cx avec a<c % Autre cas délicat
\ifboolKV[ClesEquation]{Decomposition}{\colorlet{Ccompo}{\useKV[ClesEquation]{CouleurCompo}}}{}
\begin{align*}%
@@ -158,8 +157,9 @@
}
\ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}}
\end{align*}
- \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}%
+ %\ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}%
}%
+ \ifboolKV[ClesEquation]{Solution}{\EcrireSolutionEquation{#2}{#3}{#4}{#5}}{}%
}%
}%
}%
@@ -166,7 +166,7 @@
\fi
}%
-\newcommand{\ResolEquationComposition}[5][]{%
+\newcommand\ResolEquationComposition[5][]{%
\useKVdefault[ClesEquation]%
\setKV[ClesEquation]{#1}%
\xintifboolexpr{#2==0}{%
@@ -182,19 +182,19 @@
}%
}{%
\xintifboolexpr{#4==0}{%ax+b=0x+d
- \EquaDeuxComposition[#1]{#2}{#3}{}{#5}%
+ \EquaDeuxComposition[#1]{#2}{#3}{0}{#5}%
}
{%ax+b=cx+d$
\xintifboolexpr{#3==0}{%
\xintifboolexpr{#5==0}{%ax=cx
- \EquaTroisComposition[#1]{#2}{0}{#4}{}%
+ \EquaTroisComposition[#1]{#2}{0}{#4}{0}%
}%
{%ax=cx+d
- \EquaTroisComposition[#1]{#4}{#5}{#2}{}%
+ \EquaTroisComposition[#1]{#4}{#5}{#2}{0}%
}%
}%
{\xintifboolexpr{#5==0}{%ax+b=cx
- \EquaTroisComposition[#1]{#2}{#3}{#4}{}%
+ \EquaTroisComposition[#1]{#2}{#3}{#4}{0}%
}%
{%ax+b=cx+d -- ici
\xintifboolexpr{#2==#4}{%
@@ -245,8 +245,7 @@
}
\ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}}
\end{align*}
- \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.%
- }{}
+ %\ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}%
}{%ax+b=cx+d avec a<c % Autre cas délicat
\ifboolKV[ClesEquation]{Decomposition}{\colorlet{Ccompo}{\useKV[ClesEquation]{CouleurCompo}}}{}%
\begin{align*}%
@@ -287,9 +286,9 @@
}
\ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}}
\end{align*}
- \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.%
- }{}%
+ %\ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}%
}%
+ \ifboolKV[ClesEquation]{Solution}{\EcrireSolutionEquation{#2}{#3}{#4}{#5}}{}%
}%
}%
}%
Modified: trunk/Master/texmf-dist/tex/latex/profcollege/PfCEquationLaurent1.tex
===================================================================
--- trunk/Master/texmf-dist/tex/latex/profcollege/PfCEquationLaurent1.tex 2021-08-22 19:58:29 UTC (rev 60300)
+++ trunk/Master/texmf-dist/tex/latex/profcollege/PfCEquationLaurent1.tex 2021-08-22 19:58:48 UTC (rev 60301)
@@ -1,12 +1,12 @@
% Licence : Released under the LaTeX Project Public License v1.3c
% or later, see http://www.latex-project.org/lppl.txtf
-\newcommand{\EquaBaseLaurent}[5][]{%type ax=d ou b=cx
+\newcommand\EquaBaseLaurent[5][]{%type ax=d ou b=cx
\useKVdefault[ClesEquation]%
\setKV[ClesEquation]{#1}%
\ifx\bla#2\bla%on teste si le paramètre #2 est vide:
% si oui, on est dans le cas b=cx. Eh bien on échange :)
% Mais attention si les deux paramètres a et c sont vides...
- \EquaBaseLaurent[#1]{#4}{}{}{#3}
+ \EquaBaseLaurent[#1]{#4}{0}{0}{#3}
\else
% si non, on est dans le cas ax=d
\xintifboolexpr{#2==0}{%
@@ -29,14 +29,15 @@
}{}
}{}
\end{align*}
- \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{\useKV[ClesEquation]{Lettre}=\num{#5}}{\num{#2}\useKV[ClesEquation]{Lettre}=\num{#5}}$ a une unique solution : $\displaystyle\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\opdiv*{#5}{#2}{numequa}{resteequa}\opcmp{resteequa}{0}\ifopeq\opexport{numequa}{\numequa}\num{\numequa}\else\ifboolKV[ClesEquation]{Simplification}{\SSimplifie{#5}{#2}}{\frac{\num{#5}}{\num{#2}}}\fi$.%
- }{}
+ \xdef\Coeffa{#2}%
+ \xdef\Coeffb{#5}%
+ \ifboolKV[ClesEquation]{Solution}{\EcrireSolutionEquation{#2}{#3}{#4}{#5}}{}%
}
}
\fi
}
-\newcommand{\EquaDeuxLaurent}[5][]{%type ax+b=d ou b=cx+d$
+\newcommand\EquaDeuxLaurent[5][]{%type ax+b=d ou b=cx+d$
\useKVdefault[ClesEquation]%
\setKV[ClesEquation]{#1}%
\ifx\bla#2\bla%On échange en faisant attention à ne pas boucler : c doit être non vide
@@ -50,10 +51,10 @@
}%
}{%ELSE
\xintifboolexpr{#3==0}{%ax+b=d
- \EquaBaseLaurent[#1]{#2}{}{}{#5}%
+ \EquaBaseLaurent[#1]{#2}{0}{0}{#5}%
}{%ax+b=d$ Ici
\begin{align*}
- \xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#3} {}}\stackText}{-\num{\fpeval{0-#3}}\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#3}}}\stackText}&=\num{#5}\xintifboolexpr{#3>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#3} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#3}}}\stackText}\\
+ \xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#3} {}}\stackText}{-\num{\fpeval{0-#3}}\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#3}} {}}\stackText}&=\num{#5}\xintifboolexpr{#3>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#3} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#3}} {}}\stackText}\\
\xdef\Coeffa{#2}\xdef\Coeffb{\fpeval{#5-#3}}%\\
\xintifboolexpr{\Coeffa==1}{\useKV[ClesEquation]{Lettre}}{\color{Cdecomp}\frac{\cancel{\color{black}\num{\Coeffa}}\color{black}\useKV[ClesEquation]{Lettre}}{\cancel{\num{\Coeffa}}}}&=\xintifboolexpr{\Coeffa==1}{\num{\Coeffb}}{\color{Cdecomp}\frac{\color{black}\num{\Coeffb}}{\num{\Coeffa}}}%\\
\xintifboolexpr{\Coeffa==1}{}{\\}
@@ -73,13 +74,12 @@
}{}
}
\end{align*}
- \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\num{#5}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.
- }{}
+ \ifboolKV[ClesEquation]{Solution}{\EcrireSolutionEquation{#2}{#3}{#4}{#5}}{}%
}
}
}
-\newcommand{\EquaTroisLaurent}[5][]{%ax+b=cx ou ax=cx+d
+\newcommand\EquaTroisLaurent[5][]{%ax+b=cx ou ax=cx+d
\useKVdefault[ClesEquation]%
\setKV[ClesEquation]{#1}%
\ifx\bla#3\bla%on inverse en faisant attention à la boucle #3<->#5
@@ -86,14 +86,14 @@
\ifx\bla#5\bla%
%% paramètre oublié
\else
- \EquaTroisLaurent[#1]{#4}{#5}{#2}{}%
+ \EquaTroisLaurent[#1]{#4}{#5}{#2}{0}%
\fi
\else
\xintifboolexpr{#2==0}{%b=cx
- \EquaBaseLaurent[#1]{#4}{}{}{#3}
+ \EquaBaseLaurent[#1]{#4}{0}{0}{#3}
}{%
\xintifboolexpr{#4==0}{%ax+b=0
- \EquaDeuxLaurent[#1]{#2}{#3}{}{0}
+ \EquaDeuxLaurent[#1]{#2}{#3}{0}{0}
}{%ax+b=cx
\xintifboolexpr{#2==#4}{%
\xintifboolexpr{#3==0}{%ax=ax
@@ -104,7 +104,7 @@
}{%% Cas délicat
\xintifboolexpr{#2>#4}{%ax+b=cx avec a>c
\begin{align*}
- \xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3==0}{}{\xintifboolexpr{#3>0}{+\num{#3}\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#3} {}}\stackText}{-\num{\fpeval{0-#3}}\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#3}}}\stackText}}&=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3==0}{}{\xintifboolexpr{#3>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#3} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#3}}}\stackText}}\\
+ \xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3==0}{}{\xintifboolexpr{#3>0}{+\num{#3}\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#3} {}}\stackText}{-\num{\fpeval{0-#3}}\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#3}} {}}\stackText}}&=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3==0}{}{\xintifboolexpr{#3>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#3} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#3}} {}}\stackText}}\\
\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#4>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#4}\useKV[ClesEquation]{Lettre} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre} {}}\stackText}&=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#4>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#4}\useKV[ClesEquation]{Lettre} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre} {}}\stackText}\xintifboolexpr{#3==0}{}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}\\
\xdef\Coeffa{\fpeval{#2-#4}}\xdef\Coeffb{\fpeval{0-#3}}%\\
\xintifboolexpr{\Coeffa==1}{\useKV[ClesEquation]{Lettre}}{\color{Cdecomp}\frac{\cancel{\color{black}\num{\Coeffa}}\color{black}\useKV[ClesEquation]{Lettre}}{\cancel{\num{\Coeffa}}}}&=\xintifboolexpr{\Coeffa==1}{\num{\Coeffb}}{\color{Cdecomp}\frac{\color{black}\num{\Coeffb}}{\num{\Coeffa}}}%\\
@@ -125,12 +125,12 @@
}{}
}
\end{align*}
- \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}
+ %\ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}
}{%ax+b=cx avec a<c % Autre cas délicat
\begin{align*}%
\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#4>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#4}\useKV[ClesEquation]{Lettre} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre} {}}\stackText}\xintifboolexpr{#3==0}{}{\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}}&=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#4>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#4}\useKV[ClesEquation]{Lettre} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre} {}}\stackText}\\
\xdef\Coeffa{\fpeval{#2-#4}}\xdef\Coeffb{\fpeval{0-#3}}%\\
- \xintifboolexpr{\Coeffa==1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3==0}{}{\xintifboolexpr{#3>0}{+\num{#3}\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#3} {}}\stackText}{-\num{\fpeval{0-#3}}\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#3}}}\stackText}}&=0\xintifboolexpr{#3==0}{}{\xintifboolexpr{#3>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#3} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#3}}}\stackText}}\\
+ \xintifboolexpr{\Coeffa==1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3==0}{}{\xintifboolexpr{#3>0}{+\num{#3}\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#3} {}}\stackText}{-\num{\fpeval{0-#3}}\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#3}} {}}\stackText}}&=0\xintifboolexpr{#3==0}{}{\xintifboolexpr{#3>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#3} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#3}} {}}\stackText}}\\
\xintifboolexpr{\Coeffa==1}{\useKV[ClesEquation]{Lettre}}{\color{Cdecomp}\frac{\cancel{\color{black}\num{\Coeffa}}\color{black}\useKV[ClesEquation]{Lettre}}{\cancel{\num{\Coeffa}}}}&=\xintifboolexpr{\Coeffa==1}{\num{\Coeffb}}{\color{Cdecomp}\frac{\color{black}\num{\Coeffb}}{\num{\Coeffa}}}%\\
\xintifboolexpr{\Coeffa==1}{}{\\}
\xintifboolexpr{\Coeffa==1}{%
@@ -149,8 +149,9 @@
}{}
}
\end{align*}
- \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}%
+ %\ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}%
}%
+ \ifboolKV[ClesEquation]{Solution}{\EcrireSolutionEquation{#2}{#3}{#4}{#5}}{}%
}%
}%
}%
@@ -157,7 +158,7 @@
\fi
}%
-\newcommand{\ResolEquationLaurent}[5][]{%
+\newcommand\ResolEquationLaurent[5][]{%
\useKVdefault[ClesEquation]%
\setKV[ClesEquation]{#1}%
\xintifboolexpr{#2==0}{%
@@ -169,23 +170,23 @@
}%
}%
{%0x+b=cx+d
- \EquaDeuxLaurent[#1]{#4}{#5}{}{#3}%
+ \EquaDeuxLaurent[#1]{#4}{#5}{0}{#3}%
}%
}{%
\xintifboolexpr{#4==0}{%ax+b=0x+d
- \EquaDeuxLaurent[#1]{#2}{#3}{}{#5}%
+ \EquaDeuxLaurent[#1]{#2}{#3}{0}{#5}%
}
{%ax+b=cx+d
\xintifboolexpr{#3==0}{%
\xintifboolexpr{#5==0}{%ax=cx
- \EquaTroisLaurent[#1]{#2}{0}{#4}{}%
+ \EquaTroisLaurent[#1]{#2}{0}{#4}{0}%
}%
{%ax=cx+d
- \EquaTroisLaurent[#1]{#4}{#5}{#2}{}%
+ \EquaTroisLaurent[#1]{#4}{#5}{#2}{0}%
}%
}%
{\xintifboolexpr{#5==0}{%ax+b=cx
- \EquaTroisLaurent[#1]{#2}{#3}{#4}{}%
+ \EquaTroisLaurent[#1]{#2}{#3}{#4}{0}%
}%
{%ax+b=cx+d -- ici
\xintifboolexpr{#2==#4}{%
@@ -197,7 +198,7 @@
}{%% Cas délicat
\xintifboolexpr{#2>#4}{%ax+b=cx+d avec a>c
\begin{align*}
- \xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#3} {}}\stackText}{-\num{\fpeval{0-#3}}\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#3}}}\stackText}&=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\xintifboolexpr{#3>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#3} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#3}}}\stackText}\\
+ \xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#3} {}}\stackText}{-\num{\fpeval{0-#3}}\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#3}} {}}\stackText}&=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\xintifboolexpr{#3>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#3} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#3}} {}}\stackText}\\
\xdef\Coeffa{\fpeval{#2-#4}}\xdef\Coeffb{\fpeval{#5-#3}}%\\
\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#4>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#4}\useKV[ClesEquation]{Lettre} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre} {}}\stackText}&=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#4>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#4}\useKV[ClesEquation]{Lettre} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre} {}}\stackText}\xintifboolexpr{\Coeffb>0}{+\num{\Coeffb}}{-\num{\fpeval{0-\Coeffb}}}\\
\xintifboolexpr{\Coeffa==1}{\useKV[ClesEquation]{Lettre}}{\color{Cdecomp}\frac{\cancel{\color{black}\num{\Coeffa}}\color{black}\useKV[ClesEquation]{Lettre}}{\cancel{\num{\Coeffa}}}}&=\xintifboolexpr{\Coeffa==1}{\num{\Coeffb}}{\color{Cdecomp}\frac{\color{black}\num{\Coeffb}}{\num{\Coeffa}}}%\\
@@ -218,8 +219,7 @@
}{}
}
\end{align*}
- \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.%
- }{}
+ %\ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}
}{%ax+b=cx+d avec a<c % Autre cas délicat
\begin{align*}%
\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}\xintifboolexpr{#3>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#3} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#3}} {}}\stackText}%
@@ -245,9 +245,9 @@
}{}
}
\end{align*}
- \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.%
- }{}%
+ %\ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}%
}%
+ \ifboolKV[ClesEquation]{Solution}{\EcrireSolutionEquation{#2}{#3}{#4}{#5}}{}%
}%
}%
}%
Modified: trunk/Master/texmf-dist/tex/latex/profcollege/PfCEquationPose1.tex
===================================================================
--- trunk/Master/texmf-dist/tex/latex/profcollege/PfCEquationPose1.tex 2021-08-22 19:58:29 UTC (rev 60300)
+++ trunk/Master/texmf-dist/tex/latex/profcollege/PfCEquationPose1.tex 2021-08-22 19:58:48 UTC (rev 60301)
@@ -1,12 +1,12 @@
% Licence : Released under the LaTeX Project Public License v1.3c
% or later, see http://www.latex-project.org/lppl.txtf
-\newcommand{\EquaBaseL}[5][]{%type ax=d ou b=cx
+\newcommand\EquaBaseL[5][]{%type ax=d ou b=cx
\useKVdefault[ClesEquation]%
\setKV[ClesEquation]{#1}%
\ifx\bla#2\bla%on teste si le paramètre #2 est vide:
% si oui, on est dans le cas b=cx. Eh bien on échange :)
% Mais attention si les deux paramètres a et c sont vides...
- \EquaBaseL[#1]{#4}{}{}{#3}
+ \EquaBaseL[#1]{#4}{0}{0}{#3}
\else
% si non, on est dans le cas ax=d
\xintifboolexpr{#2==0}{%
@@ -30,14 +30,15 @@
}{}
}{}
\end{align*}
- \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{\useKV[ClesEquation]{Lettre}=\num{#5}}{\num{#2}\useKV[ClesEquation]{Lettre}=\num{#5}}$ a une unique solution : $\displaystyle\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\opdiv*{#5}{#2}{numequa}{resteequa}\opcmp{resteequa}{0}\ifopeq\opexport{numequa}{\numequa}\num{\numequa}\else\ifboolKV[ClesEquation]{Simplification}{\SSimplifie{#5}{#2}}{\frac{\num{#5}}{\num{#2}}}\fi$.%
- }{}
+ \xdef\Coeffa{#2}%
+ \xdef\Coeffb{#5}%
+ \ifboolKV[ClesEquation]{Solution}{\EcrireSolutionEquation{#2}{#3}{#4}{#5}}{}%
}
}
\fi
}
-\newcommand{\EquaDeuxL}[5][]{%type ax+b=d ou b=cx+d$
+\newcommand\EquaDeuxL[5][]{%type ax+b=d ou b=cx+d$
\useKVdefault[ClesEquation]%
\setKV[ClesEquation]{#1}%
\ifx\bla#2\bla%On échange en faisant attention à ne pas boucler : c doit être non vide
@@ -51,7 +52,7 @@
}%
}{%ELSE
\xintifboolexpr{#3==0}{%ax+b=d
- \EquaBaseL[#1]{#2}{}{}{#5}%
+ \EquaBaseL[#1]{#2}{0}{0}{#5}%
}{%ax+b=d$ Ici
\begin{align*}
\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\num{#5}\\
@@ -76,14 +77,13 @@
}{}
}{}
\end{align*}
- \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\num{#5}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.
- }{}
+ \ifboolKV[ClesEquation]{Solution}{\EcrireSolutionEquation{#2}{#3}{#4}{#5}}{}%
}
}
\fi
}
-\newcommand{\EquaTroisL}[5][]{%ax+b=cx ou ax=cx+d
+\newcommand\EquaTroisL[5][]{%ax+b=cx ou ax=cx+d
\useKVdefault[ClesEquation]%
\setKV[ClesEquation]{#1}%
\ifx\bla#3\bla%on inverse en faisant attention à la boucle #3<->#5
@@ -90,14 +90,14 @@
\ifx\bla#5\bla%
%% paramètre oublié
\else
- \EquaTroisL[#1]{#4}{#5}{#2}{}%
+ \EquaTroisL[#1]{#4}{#5}{#2}{0}%
\fi
\else
\xintifboolexpr{#2==0}{%b=cx
- \EquaBaseL[#1]{#4}{}{}{#3}
+ \EquaBaseL[#1]{#4}{0}{0}{#3}
}{%
\xintifboolexpr{#4==0}{%ax+b=0
- \EquaDeuxL[#1]{#2}{#3}{}{0}
+ \EquaDeuxL[#1]{#2}{#3}{0}{0}
}{%ax+b=cx
\xintifboolexpr{#2==#4}{%
\xintifboolexpr{#3==0}{%ax=ax
@@ -132,7 +132,7 @@
}{}
}{}
\end{align*}
- \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}
+ %\ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}
}{%ax+b=cx+d avec a<c % Autre cas délicat
\begin{align*}%
\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\\
@@ -157,16 +157,16 @@
}{}
}{}
\end{align*}
- \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}%
+ %\ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}%
}%
+ \ifboolKV[ClesEquation]{Solution}{\EcrireSolutionEquation{#2}{#3}{#4}{#5}}{}%
}%
}%
}%
\fi
}%\\
- % \\
-\newcommand{\ResolEquationL}[5][]{%
+\newcommand\ResolEquationL[5][]{%
\useKVdefault[ClesEquation]%
\setKV[ClesEquation]{#1}%
\xintifboolexpr{#2==0}{%
@@ -178,23 +178,23 @@
}%
}%
{%0x+b=cx+d$
- \EquaDeuxL[#1]{#4}{#5}{}{#3}%
+ \EquaDeuxL[#1]{#4}{#5}{0}{#3}%
}%
}{%
\xintifboolexpr{#4==0}{%ax+b=0x+d
- \EquaDeuxL[#1]{#2}{#3}{}{#5}%
+ \EquaDeuxL[#1]{#2}{#3}{0}{#5}%
}
{%ax+b=cx+d$
\xintifboolexpr{#3==0}{%
\xintifboolexpr{#5==0}{%ax=cx
- \EquaTroisL[#1]{#2}{0}{#4}{}%
+ \EquaTroisL[#1]{#2}{0}{#4}{0}%
}%
{%ax=cx+d
- \EquaTroisL[#1]{#4}{#5}{#2}{}%
+ \EquaTroisL[#1]{#4}{#5}{#2}{0}%
}%
}%
{\xintifboolexpr{#5==0}{%ax+b=cx
- \EquaTroisL[#1]{#2}{#3}{#4}{}%
+ \EquaTroisL[#1]{#2}{#3}{#4}{0}%
}%
{%ax+b=cx+d -- ici
\xintifboolexpr{#2==#4}{%
@@ -230,8 +230,7 @@
}{}
}{}
\end{align*}
- \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.%
- }{}
+ %\ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}
}{%ax+b=cx+d avec a<c % Autre cas délicat
\begin{align*}%
\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\
@@ -255,9 +254,9 @@
}{}
}{}
\end{align*}
- \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.%
- }{}%
+ %\ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}%
}%
+ \ifboolKV[ClesEquation]{Solution}{\EcrireSolutionEquation{#2}{#3}{#4}{#5}}{}%
}%
}%
}%
Modified: trunk/Master/texmf-dist/tex/latex/profcollege/PfCEquationSoustraction2.tex
===================================================================
--- trunk/Master/texmf-dist/tex/latex/profcollege/PfCEquationSoustraction2.tex 2021-08-22 19:58:29 UTC (rev 60300)
+++ trunk/Master/texmf-dist/tex/latex/profcollege/PfCEquationSoustraction2.tex 2021-08-22 19:58:48 UTC (rev 60301)
@@ -6,7 +6,7 @@
\ifx\bla#2\bla%on teste si le paramètre #2 est vide:
% si oui, on est dans le cas b=cx. Eh bien on échange :)
% Mais attention si les deux paramètres a et c sont vides...
- \EquaBase[#1]{#4}{}{}{#3}
+ \EquaBase[#1]{#4}{0}{0}{#3}
\else
% si non, on est dans le cas ax=d
\xintifboolexpr{#2==0}{%
@@ -42,8 +42,9 @@
{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}
}
\end{align*}
- \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{\useKV[ClesEquation]{Lettre}=\num{#5}}{\num{#2}\useKV[ClesEquation]{Lettre}=\num{#5}}$ a une unique solution : $\displaystyle\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\opdiv*{#5}{#2}{numequa}{resteequa}\opcmp{resteequa}{0}\ifopeq\opexport{numequa}{\numequa}\num{\numequa}\else\ifboolKV[ClesEquation]{Simplification}{\SSimplifie{#5}{#2}}{\frac{\num{#5}}{\num{#2}}}\fi$.%
- }{}
+ \xdef\Coeffb{#5}%
+ \xdef\Coeffa{#2}%
+ \ifboolKV[ClesEquation]{Solution}{\EcrireSolutionEquation{#2}{#3}{#4}{#5}}{}%
}
}
\fi
@@ -63,8 +64,8 @@
}%
}{%ELSE
\xintifboolexpr{#3==0}{%ax+b=d
- \EquaBase[#1]{#2}{}{}{#5}%
- }{%ax+b=d$ Ici
+ \EquaBase[#1]{#2}{0}{0}{#5}%
+ }{%ax+b=d$
\begin{align*}
\tikzmark{A-\theNbequa}\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\num{#5}\tikzmark{E-\theNbequa}\\
\ifboolKV[ClesEquation]{Decomposition}{%
@@ -71,13 +72,13 @@
\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}&=\num{#5}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}\\
}{}%
\tikzmark{C-\theNbequa}\xdef\Coeffa{#2}\xdef\Coeffb{\fpeval{#5-#3}}\xintifboolexpr{\Coeffa==1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}\tikzmark{G-\theNbequa}
- \ifboolKV[ClesEquation]{Decomposition}{\\\xintifboolexpr{\Coeffa==1}{}{\frac{\num{\Coeffa}}{\mathcolor{Cdecomp}{\num{\Coeffa}}}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\mathcolor{Cdecomp}{\num{\Coeffa}}}}}{}
+ \ifboolKV[ClesEquation]{Decomposition}{\xintifboolexpr{\Coeffa==1}{}{\\\frac{\num{\Coeffa}}{\mathcolor{Cdecomp}{\num{\Coeffa}}}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\mathcolor{Cdecomp}{\num{\Coeffa}}}}}{}
\xintifboolexpr{\Coeffa==1}{}{\\}
\ifboolKV[ClesEquation]{Fleches}{%
\leftcomment{A-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}%
\rightcomment{E-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}%
}{}
- \xintifboolexpr{\Coeffa==1}{%
+ \xintifboolexpr{\Coeffa==1}{%
}{%\ifnum\cmtd>1
\tikzmark{D-\theNbequa}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}\tikzmark{H-\theNbequa}%\\
\ifboolKV[ClesEquation]{Fleches}{%
@@ -103,14 +104,13 @@
}{}
\ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}}
\end{align*}
- \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\num{#5}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.
- }{}
+ \ifboolKV[ClesEquation]{Solution}{\EcrireSolutionEquation{#2}{#3}{#4}{#5}}{}%
}
}
\fi
}
-\newcommand{\EquaTroisSoustraction}[5][]{%ax+b=cx ou ax=cx+d
+\newcommand\EquaTroisSoustraction[5][]{%ax+b=cx ou ax=cx+d
\useKVdefault[ClesEquation]%
\setKV[ClesEquation]{#1}%
\ifx\bla#3\bla%on inverse en faisant attention à la boucle #3<->#5
@@ -117,119 +117,119 @@
\ifx\bla#5\bla%
%% paramètre oublié
\else
- \EquaTroisSoustraction[#1]{#4}{#5}{#2}{}%
+ \EquaTroisSoustraction[#1]{#4}{#5}{#2}{0}%
\fi
\else
\xintifboolexpr{#2==0}{%b=cx
- \EquaBase[#1]{#4}{}{}{#3}
+ \EquaBase[#1]{#4}{0}{0}{#3}
}{%
\xintifboolexpr{#4==0}{%ax+b=0
- \EquaDeuxSoustraction[#1]{#2}{#3}{}{0}
- }{%ax+b=cx
- \xintifboolexpr{#2==#4}{%
- \xintifboolexpr{#3==0}{%ax=ax
- L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une infinité de solutions.}%
- {%ax+b=ax
- L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ n'a aucune solution.%
- }%
- }{%% Cas délicat
- \xintifboolexpr{#2>#4}{%ax+b=cx avec a>c
- \begin{align*}
- \tikzmark{A-\theNbequa}\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\tikzmark{E-\theNbequa}\\
- \ifboolKV[ClesEquation]{Decomposition}{%
- \xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\mathcolor{Cdecomp}{\xintifboolexpr{#4>0}{-\num{#4}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\mathcolor{Cdecomp}{\xintifboolexpr{#4>0}{-\num{#4}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\\
- }{}
- \tikzmark{B-\theNbequa}\xdef\Coeffa{\fpeval{#2-#4}}\xintifboolexpr{\Coeffa==1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=0\tikzmark{F-\theNbequa}\\
- \ifboolKV[ClesEquation]{Decomposition}{%
- \xintifboolexpr{\Coeffa==1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}&=0\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}\tikzmark{F-\theNbequa}\\
- }{}%
- \tikzmark{C-\theNbequa}\xdef\Coeffb{\fpeval{0-#3}}\xintifboolexpr{\Coeffa==1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}\tikzmark{G-\theNbequa}%\\
- %eric
- \ifboolKV[ClesEquation]{Decomposition}{\\\xintifboolexpr{\Coeffa==1}{}{\frac{\num{\Coeffa}}{\mathcolor{Cdecomp}{\num{\Coeffa}}}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\mathcolor{Cdecomp}{\num{\Coeffa}}}}}{}
- % eric
- \xintifboolexpr{\Coeffa==1}{}{\\}
- \ifboolKV[ClesEquation]{Fleches}{%
- \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$}
- \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$}
- \leftcomment{B-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}%
- \rightcomment{F-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}%
- }{}
- \xintifboolexpr{\Coeffa==1}{}{%\ifnum\cmtd>1
- \tikzmark{D-\theNbequa}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}\tikzmark{H-\theNbequa}%\\
- \ifboolKV[ClesEquation]{Fleches}{%
- \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
- \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
- }{
- \ifboolKV[ClesEquation]{FlecheDiv}{%
- \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
- \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
- }{}
- }
- %% decimal
- \ifboolKV[ClesEquation]{Decimal}{%
- \\\useKV[ClesEquation]{Lettre}&=\num{\fpeval{\Coeffb/\Coeffa}}%
- }{}%
- % %%%
- \ifboolKV[ClesEquation]{Entier}{%
- \SSimpliTest{\Coeffb}{\Coeffa}%
- \ifboolKV[ClesEquation]{Simplification}{%
- \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\
- }{}
- }{}
- }
- \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}}
- \end{align*}
- \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}
- }{%ax+b=cx+d avec a<c % Autre cas délicat
- \begin{align*}%
- \tikzmark{A-\theNbequa}\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\tikzmark{E-\theNbequa}\\
- \ifboolKV[ClesEquation]{Decomposition}{%
- \xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\mathcolor{Cdecomp}{\xintifboolexpr{#2>0}{-\num{#2}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\mathcolor{Cdecomp}{\xintifboolexpr{#2>0}{-\num{#2}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\\
- }{}
- \tikzmark{B-\theNbequa}\xdef\Coeffb{#3}\xdef\Coeffa{\fpeval{#4-#2}}\xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{\Coeffa==1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\tikzmark{F-\theNbequa}
- \xintifboolexpr{\Coeffa==1}{}{\\}
- \ifboolKV[ClesEquation]{Fleches}{%
- \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#2>0}{-\num{#2}}{+\num{\fpeval{0-#2}}}\useKV[ClesEquation]{Lettre}$}
- \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#2>0}{-\num{#2}}{+\num{\fpeval{0-#2}}}\useKV[ClesEquation]{Lettre}$}
- }{}
- % eric
- \ifboolKV[ClesEquation]{Decomposition}{\\\xintifboolexpr{\Coeffa==1}{}{\frac{\num{\Coeffb}}{\mathcolor{Cdecomp}{\num{\Coeffa}}}&=\frac{\num{\Coeffa}}{\mathcolor{Cdecomp}{\num{\Coeffa}}}\useKV[ClesEquation]{Lettre}}}{}
- % eric
- \xintifboolexpr{\Coeffa==1}{}{%\ifnum\cmtd>1
- \tikzmark{D-\theNbequa}\frac{\num{\Coeffb}}{\num{\Coeffa}}&=\useKV[ClesEquation]{Lettre}\tikzmark{H-\theNbequa}%\\
- \ifboolKV[ClesEquation]{Fleches}{%
- \leftcomment{B-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
- \rightcomment{F-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
- }{
- \ifboolKV[ClesEquation]{FlecheDiv}{%
- \leftcomment{B-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
- \rightcomment{F-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
- }{}
- }
- %% decimal
- \ifboolKV[ClesEquation]{Decimal}{%
- \\\num{\fpeval{\Coeffb/\Coeffa}}&=\useKV[ClesEquation]{Lettre}%
- }{}%
- % %%%
- \ifboolKV[ClesEquation]{Entier}{%
- \SSimpliTest{\Coeffb}{\Coeffa}%
- \ifboolKV[ClesEquation]{Simplification}{%
- \ifthenelse{\boolean{Simplification}}{\\\SSimplifie{\Coeffb}{\Coeffa}&=\useKV[ClesEquation]{Lettre}}{}%\\
- }{}
- }{}
- }
- \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}}
- \end{align*}
- \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}%
- }%
- }%
+ \EquaDeuxSoustraction[#1]{#2}{#3}{0}{0}
+ }{%ax+b=cx
+ \xintifboolexpr{#2==#4}{%
+ \xintifboolexpr{#3==0}{%ax=ax
+ L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une infinité de solutions.}%
+ {%ax+b=ax
+ L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ n'a aucune solution.%
}%
+ }{%% Cas délicat
+ \xintifboolexpr{#2>#4}{%ax+b=cx avec a>c
+ \begin{align*}
+ \tikzmark{A-\theNbequa}\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\tikzmark{E-\theNbequa}\\
+ \ifboolKV[ClesEquation]{Decomposition}{%
+ \xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\mathcolor{Cdecomp}{\xintifboolexpr{#4>0}{-\num{#4}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\mathcolor{Cdecomp}{\xintifboolexpr{#4>0}{-\num{#4}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\\
+ }{}
+ \tikzmark{B-\theNbequa}\xdef\Coeffa{\fpeval{#2-#4}}\xintifboolexpr{\Coeffa==1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=0\tikzmark{F-\theNbequa}\\
+ \ifboolKV[ClesEquation]{Decomposition}{%
+ \xintifboolexpr{\Coeffa==1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}&=0\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}\tikzmark{F-\theNbequa}\\
+ }{}%
+ \tikzmark{C-\theNbequa}\xdef\Coeffb{\fpeval{0-#3}}\xintifboolexpr{\Coeffa==1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}\tikzmark{G-\theNbequa}%\\
+ % eric
+ \ifboolKV[ClesEquation]{Decomposition}{\\\xintifboolexpr{\Coeffa==1}{}{\frac{\num{\Coeffa}}{\mathcolor{Cdecomp}{\num{\Coeffa}}}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\mathcolor{Cdecomp}{\num{\Coeffa}}}}}{}%\\
+ % eric
+ \xintifboolexpr{\Coeffa==1}{}{\\}
+ \ifboolKV[ClesEquation]{Fleches}{%
+ \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$}
+ \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$}
+ \leftcomment{B-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}%
+ \rightcomment{F-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}%
+ }{}%
+ \xintifboolexpr{\Coeffa==1}{}{%\ifnum\cmtd>1
+ \tikzmark{D-\theNbequa}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}\tikzmark{H-\theNbequa}%\\
+ \ifboolKV[ClesEquation]{Fleches}{%
+ \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
+ \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
+ }{%
+ \ifboolKV[ClesEquation]{FlecheDiv}{%
+ \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
+ \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
+ }{}
+ }
+ %% decimal
+ \ifboolKV[ClesEquation]{Decimal}{%
+ \\\useKV[ClesEquation]{Lettre}&=\num{\fpeval{\Coeffb/\Coeffa}}%\\
+ }{}%
+ %
+ \ifboolKV[ClesEquation]{Entier}{%
+ \SSimpliTest{\Coeffb}{\Coeffa}%
+ \ifboolKV[ClesEquation]{Simplification}{%
+ \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\
+ }{}
+ }{}
+ }
+ \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}}
+ \end{align*}
+ % \ifboolKV[ClesEquation]{Solution}{L'équation \AffichageEqua{#2}{#3}{#4}{#5} a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}
+ }{%ax+b=cx+d avec a<c % Autre cas délicat
+ \begin{align*}%
+ \tikzmark{A-\theNbequa}\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\tikzmark{E-\theNbequa}\\
+ \ifboolKV[ClesEquation]{Decomposition}{%
+ \xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\mathcolor{Cdecomp}{\xintifboolexpr{#2>0}{-\num{#2}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\mathcolor{Cdecomp}{\xintifboolexpr{#2>0}{-\num{#2}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\\
+ }{}
+ \tikzmark{B-\theNbequa}\xdef\Coeffb{#3}\xdef\Coeffa{\fpeval{#4-#2}}\xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{\Coeffa==1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\tikzmark{F-\theNbequa}%\\
+ \xintifboolexpr{\Coeffa==1}{}{\\}
+ \ifboolKV[ClesEquation]{Fleches}{%
+ \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#2>0}{-\num{#2}}{+\num{\fpeval{0-#2}}}\useKV[ClesEquation]{Lettre}$}
+ \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#2>0}{-\num{#2}}{+\num{\fpeval{0-#2}}}\useKV[ClesEquation]{Lettre}$}
+ }{}%\\
+ %% eric
+ \ifboolKV[ClesEquation]{Decomposition}{\xintifboolexpr{\Coeffa==1}{}{\frac{\num{\Coeffb}}{\mathcolor{Cdecomp}{\num{\Coeffa}}}&=\frac{\num{\Coeffa}}{\mathcolor{Cdecomp}{\num{\Coeffa}}}\useKV[ClesEquation]{Lettre}}\\}{}%\\
+ % eric
+ \xintifboolexpr{\Coeffa==1}{}{%\ifnum\cmtd>1
+ \tikzmark{D-\theNbequa}\frac{\num{\Coeffb}}{\num{\Coeffa}}&=\useKV[ClesEquation]{Lettre}\tikzmark{H-\theNbequa}%\\
+ \ifboolKV[ClesEquation]{Fleches}{%
+ \leftcomment{B-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
+ \rightcomment{F-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
+ }{
+ \ifboolKV[ClesEquation]{FlecheDiv}{%
+ \leftcomment{B-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
+ \rightcomment{F-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
+ }{}
+ }
+ %% decimal
+ \ifboolKV[ClesEquation]{Decimal}{%
+ \\\num{\fpeval{\Coeffb/\Coeffa}}&=\useKV[ClesEquation]{Lettre}%\\
+ }{}%
+ %
+ \ifboolKV[ClesEquation]{Entier}{%
+ \SSimpliTest{\Coeffb}{\Coeffa}%
+ \ifboolKV[ClesEquation]{Simplification}{%
+ \ifthenelse{\boolean{Simplification}}{\\\SSimplifie{\Coeffb}{\Coeffa}&=\useKV[ClesEquation]{Lettre}}{}%\\
+ }{}
+ }{}
+ }
+ \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}}
+ \end{align*}
+ % \ifboolKV[ClesEquation]{Solution}{L'équation \AffichageEqua{#2}{#3}{#4}{#5} a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}%
+ }%
}%
- \fi
+ \ifboolKV[ClesEquation]{Solution}{\EcrireSolutionEquation{#2}{#3}{#4}{#5}}{}%
+ }%
}%
+ \fi
+}%
-
-\newcommand{\ResolEquationSoustraction}[5][]{%
+\newcommand\ResolEquationSoustraction[5][]{%
\useKVdefault[ClesEquation]%
\setKV[ClesEquation]{#1}%
\xintifboolexpr{#2==0}{%
@@ -241,23 +241,23 @@
}%
}%
{%0x+b=cx+d$
- \EquaDeuxSoustraction[#1]{#4}{#5}{}{#3}%
+ \EquaDeuxSoustraction[#1]{#4}{#5}{0}{#3}%
}%
}{%
\xintifboolexpr{#4==0}{%ax+b=0x+d
- \EquaDeuxSoustraction[#1]{#2}{#3}{}{#5}%
+ \EquaDeuxSoustraction[#1]{#2}{#3}{0}{#5}%
}
{%ax+b=cx+d$
\xintifboolexpr{#3==0}{%
\xintifboolexpr{#5==0}{%ax=cx
- \EquaTroisSoustraction[#1]{#2}{0}{#4}{}%
+ \EquaTroisSoustraction[#1]{#2}{0}{#4}{0}%
}%
{%ax=cx+d
- \EquaTroisSoustraction[#1]{#4}{#5}{#2}{}%
+ \EquaTroisSoustraction[#1]{#4}{#5}{#2}{0}%
}%
}%
{\xintifboolexpr{#5==0}{%ax+b=cx
- \EquaTroisSoustraction[#1]{#2}{#3}{#4}{}%
+ \EquaTroisSoustraction[#1]{#2}{#3}{#4}{0}%
}%
{%ax+b=cx+d -- ici
\xintifboolexpr{#2==#4}{%
@@ -314,8 +314,8 @@
}
\ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}}
\end{align*}
- \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.%
- }{}
+ %\ifboolKV[ClesEquation]{Solution}{L'équation \AffichageEqua{#2}{#3}{#4}{#5} une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.%
+ %}{}
}{%ax+b=cx+d avec a<c % Autre cas délicat
\begin{align*}%
\tikzmark{A-\theNbequa}\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\tikzmark{E-\theNbequa}\\
@@ -362,9 +362,10 @@
}
\ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}}
\end{align*}
- \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.%
- }{}%
+ %\ifboolKV[ClesEquation]{Solution}{L'équation \AffichageEqua{#2}{#3}{#4}{#5} a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.%
+ %}{}%
}%
+ \ifboolKV[ClesEquation]{Solution}{\EcrireSolutionEquation{#2}{#3}{#4}{#5}}{}%
}%
}%
}%
Modified: trunk/Master/texmf-dist/tex/latex/profcollege/PfCEquationSymbole1.tex
===================================================================
--- trunk/Master/texmf-dist/tex/latex/profcollege/PfCEquationSymbole1.tex 2021-08-22 19:58:29 UTC (rev 60300)
+++ trunk/Master/texmf-dist/tex/latex/profcollege/PfCEquationSymbole1.tex 2021-08-22 19:58:48 UTC (rev 60301)
@@ -1,6 +1,6 @@
% Licence : Released under the LaTeX Project Public License v1.3c
% or later, see http://www.latex-project.org/lppl.txtf
-\newcommand{\EquaBaseSymbole}[5][]{%type ax=d ou b=cx
+\newcommand\EquaBaseSymbole[5][]{%type ax=d ou b=cx
\useKVdefault[ClesEquation]%
\setKV[ClesEquation]{#1}%
\setKV[ClesEquation]{Fleches=false,FlecheDiv=false,Terme=false,Decomposition=false}
@@ -39,7 +39,7 @@
\fi
}
-\newcommand{\EquaDeuxSymbole}[5][]{%type ax+b=d ou b=cx+d$
+\newcommand\EquaDeuxSymbole[5][]{%type ax+b=d ou b=cx+d$
\useKVdefault[ClesEquation]%
\setKV[ClesEquation]{#1}%
\setKV[ClesEquation]{Fleches=false,FlecheDiv=false,Terme=false,Decomposition=false}
@@ -82,7 +82,7 @@
\fi
}
-\newcommand{\EquaTroisSymbole}[5][]{%ax+b=cx ou ax=cx+d
+\newcommand\EquaTroisSymbole[5][]{%ax+b=cx ou ax=cx+d
\useKVdefault[ClesEquation]%
\setKV[ClesEquation]{#1}%
\setKV[ClesEquation]{Fleches=false,FlecheDiv=false,Terme=false,Decomposition=false}
@@ -155,7 +155,7 @@
\fi
}%
-\newcommand{\ResolEquationSymbole}[5][]{%
+\newcommand\ResolEquationSymbole[5][]{%
\useKVdefault[ClesEquation]%
\setKV[ClesEquation]{#1}%
\setKV[ClesEquation]{Fleches=false,FlecheDiv=false,Terme=false,Decomposition=false}
Modified: trunk/Master/texmf-dist/tex/latex/profcollege/PfCEquationTerme1.tex
===================================================================
--- trunk/Master/texmf-dist/tex/latex/profcollege/PfCEquationTerme1.tex 2021-08-22 19:58:29 UTC (rev 60300)
+++ trunk/Master/texmf-dist/tex/latex/profcollege/PfCEquationTerme1.tex 2021-08-22 19:58:48 UTC (rev 60301)
@@ -1,6 +1,6 @@
% Licence : Released under the LaTeX Project Public License v1.3c
% or later, see http://www.latex-project.org/lppl.txtf
-\newcommand{\EquaDeuxTerme}[5][]{%type ax+b=d ou b=cx+d$
+\newcommand\EquaDeuxTerme[5][]{%type ax+b=d ou b=cx+d$
\useKVdefault[ClesEquation]%
\setKV[ClesEquation]{#1}%
\ifx\bla#2\bla%On échange en faisant attention à ne pas boucler : c doit être non vide
@@ -14,7 +14,7 @@
}%
}{%ELSE
\xintifboolexpr{#3==0}{%ax+b=d
- \EquaBase[#1]{#2}{}{}{#5}%
+ \EquaBase[#1]{#2}{0}{0}{#5}%
}{%ax+b=d$ Ici
\ifboolKV[ClesEquation]{Decomposition}{\colorlet{Cterme}{\useKV[ClesEquation]{CouleurTerme}}}{}
\begin{align*}
@@ -21,13 +21,13 @@
\tikzmark{A-\theNbequa}\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\num{#5}\tikzmark{E-\theNbequa}\\
\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}&=\num{#5}\mathcolor{Cterme}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}\\
\tikzmark{C-\theNbequa}\xdef\Coeffa{#2}\xdef\Coeffb{\fpeval{#5-#3}}\xintifboolexpr{\Coeffa==1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}\tikzmark{G-\theNbequa}%\\
- \xintifboolexpr{\Coeffa==1}{}{\\}
+ %\xintifboolexpr{\Coeffa==1}{}{\\}
\ifboolKV[ClesEquation]{Fleches}{%
\leftcomment{A-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}%
\rightcomment{E-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}%
}{}
\xintifboolexpr{\Coeffa==1}{%
- }{%\ifnum\cmtd>1
+ }{\\
\tikzmark{D-\theNbequa}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}\tikzmark{H-\theNbequa}%\\
\ifboolKV[ClesEquation]{Fleches}{%
\leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
@@ -52,8 +52,7 @@
}{}
\ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}}
\end{align*}
- \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\num{#5}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.
- }{}
+ \ifboolKV[ClesEquation]{Solution}{\EcrireSolutionEquation{#2}{#3}{#4}{#5}}{}%
}
}
\fi
@@ -66,14 +65,14 @@
\ifx\bla#5\bla%
%% paramètre oublié
\else
- \EquaTroisTerme[#1]{#4}{#5}{#2}{}%
+ \EquaTroisTerme[#1]{#4}{#5}{#2}{0}%
\fi
\else
\xintifboolexpr{#2==0}{%b=cx
- \EquaBase[#1]{#4}{}{}{#3}
+ \EquaBase[#1]{#4}{0}{0}{#3}
}{%
\xintifboolexpr{#4==0}{%ax+b=0
- \EquaDeuxTerme[#1]{#2}{#3}{}{0}
+ \EquaDeuxTerme[#1]{#2}{#3}{0}{0}
}{%ax+b=cx
\xintifboolexpr{#2==#4}{%
\xintifboolexpr{#3==0}{%ax=ax
@@ -122,7 +121,7 @@
}
\ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}}
\end{align*}
- \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}
+ %\ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}
}{%ax+b=cx+d avec a<c % Autre cas délicat
\ifboolKV[ClesEquation]{Decomposition}{\colorlet{Cterme}{\useKV[ClesEquation]{CouleurTerme}}}{}
\begin{align*}%
@@ -159,8 +158,9 @@
}
\ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}}
\end{align*}
- \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}%
+ %\ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}%
}%
+ \ifboolKV[ClesEquation]{Solution}{\EcrireSolutionEquation{#2}{#3}{#4}{#5}}{}%
}%
}%
}%
@@ -167,7 +167,7 @@
\fi
}%
-\newcommand{\ResolEquationTerme}[5][]{%
+\newcommand\ResolEquationTerme[5][]{%
\useKVdefault[ClesEquation]%
\setKV[ClesEquation]{#1}%
\xintifboolexpr{#2==0}{%
@@ -183,19 +183,19 @@
}%
}{%
\xintifboolexpr{#4==0}{%ax+b=0x+d
- \EquaDeuxTerme[#1]{#2}{#3}{}{#5}%
+ \EquaDeuxTerme[#1]{#2}{#3}{0}{#5}%
}
{%ax+b=cx+d$
\xintifboolexpr{#3==0}{%
\xintifboolexpr{#5==0}{%ax=cx
- \EquaTroisTerme[#1]{#2}{0}{#4}{}%
+ \EquaTroisTerme[#1]{#2}{0}{#4}{0}%
}%
{%ax=cx+d
- \EquaTroisTerme[#1]{#4}{#5}{#2}{}%
+ \EquaTroisTerme[#1]{#4}{#5}{#2}{0}%
}%
}%
{\xintifboolexpr{#5==0}{%ax+b=cx
- \EquaTroisTerme[#1]{#2}{#3}{#4}{}%
+ \EquaTroisTerme[#1]{#2}{#3}{#4}{0}%
}%
{%ax+b=cx+d -- ici
\xintifboolexpr{#2==#4}{%
@@ -246,8 +246,7 @@
}
\ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}}
\end{align*}
- \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.%
- }{}
+ %\ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}
}{%ax+b=cx+d avec a<c % Autre cas délicat
\ifboolKV[ClesEquation]{Decomposition}{\colorlet{Cterme}{\useKV[ClesEquation]{CouleurTerme}}}{}
\begin{align*}%
@@ -288,9 +287,9 @@
}
\ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}}
\end{align*}
- \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.%
- }{}%
+ %\ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2==1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4==1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}%
}%
+ \ifboolKV[ClesEquation]{Solution}{\EcrireSolutionEquation{#2}{#3}{#4}{#5}}{}%
}%
}%
}%
Modified: trunk/Master/texmf-dist/tex/latex/profcollege/ProfCollege.sty
===================================================================
--- trunk/Master/texmf-dist/tex/latex/profcollege/ProfCollege.sty 2021-08-22 19:58:29 UTC (rev 60300)
+++ trunk/Master/texmf-dist/tex/latex/profcollege/ProfCollege.sty 2021-08-22 19:58:48 UTC (rev 60301)
@@ -3,7 +3,7 @@
% or later, see http://www.latex-project.org/lppl.txtf
\NeedsTeXFormat{LaTeX2e}
-\ProvidesPackage{ProfCollege}[2021/06/04 v0.99-d Aide pour l'utilisation de LaTeX au collège]
+\ProvidesPackage{ProfCollege}[2021/08/22 v0.99-f Aide pour l'utilisation de LaTeX au collège]
\RequirePackage{verbatim}
@@ -88,7 +88,7 @@
\RequirePackage{tikz}
% https://tex.stackexchange.com/questions/349259/curved-arrow-describing-a-step-in-a-equation-derivation
%https://tex.stackexchange.com/questions/58656/best-way-to-draw-a-chevron-diagram-using-tikz
-\usetikzlibrary{calc,arrows,tikzmark,chains,positioning,shapes.symbols,babel}
+\usetikzlibrary{calc,shapes,arrows,tikzmark,chains,positioning,shapes.symbols,babel}
\RequirePackage{suffix}%pour la commande étoilée
@@ -101,6 +101,12 @@
\RequirePackage{nicematrix}%pour le tableur
+\let\myoldmulticolumn\multicolumn
+\AtBeginEnvironment{tabular}{\let\multicolumn\myoldmulticolumn}
+
+\RequirePackage{fmtcount}
+\FCloadlang{french}
+
% https://stackoverflow.com/questions/3391103/how-to-make-the-grayed-round-box-using-tiks
\RequirePackage{environ}
%
@@ -311,8 +317,509 @@
\day=\the\rappeljour\relax%
}
+%%%
+% Smiley
+%%%
+%%https://tex.stackexchange.com/questions/3695/smileys-in-latex/227226
+\tikzset{face/.style={shape=circle,minimum size=4ex,shading=radial,outer sep=0pt, inner color=white!50!yellow,outer color= yellow!70!orange}}
+\newcommand{\emoticon}[2][]{%
+\scalebox{.5}{\begin{tikzpicture}
+\node[face,#1,draw,thick] (emoticon) {};
+%% The eyes are fixed.
+\draw[fill=white] (-1ex,0ex) ..controls (-0.5ex,0.2ex)and(0.5ex,0.2ex)..(1ex,0.0ex) ..controls ( 1.5ex,1.5ex)and( 0.2ex,1.7ex)..(0ex,0.4ex) ..controls (-0.2ex,1.7ex)and(-1.5ex,1.5ex)..(-1ex,0ex)--cycle;
+#2%
+\end{tikzpicture}}%
+}
+
+\newcommand{\pupils}{
+%% standard pupils
+\fill[shift={(0.5ex,0.5ex)},rotate=80] (0,0) ellipse (0.3ex and 0.15ex);
+\fill[shift={(-0.5ex,0.5ex)},rotate=100] (0,0) ellipse (0.3ex and 0.15ex);}
+
+\def\RKsmallsmile{%
+\emoticon{%
+\pupils
+%% mouth
+\draw[thick] (-0.5ex,-1ex)..controls (-0.25ex,-1.25ex)and(0.25ex,-1.25ex)..(0.5ex,-1ex);
+}%\emoticon
+}
+
+\def\RKsmile{%
+\emoticon{%
+\pupils
+\draw[thick] (-1ex,-1ex)..controls (-0.5ex,-1.5ex)and(0.5ex,-1.5ex)..(1ex,-1ex);
+}%\emoticon
+}
+
+\def\RKbigsmile{%
+\emoticon{%
+\pupils
+%% mouth
+\draw[thick] (-1.5ex,-0.5ex)..controls (-0.7ex,-1.7ex)and(0.7ex,-1.7ex)..(1.5ex,-0.5ex);
+}%\emoticon
+}
+
+\def\RKsad{%
+\emoticon{%
+%% pupils
+\fill[shift={( 0.5ex,0.5ex)},rotate=90] (0,0) ellipse (0.3ex and 0.15ex);
+\fill[shift={(-0.5ex,0.5ex)},rotate=90] (0,0) ellipse (0.3ex and 0.15ex);
+%% mouth
+\draw[thick] (-1ex,-1ex)..controls(-0.5ex,-0.5ex)and(0.5ex,-0.5ex)..(1ex,-1ex);
+}%\emoticon
+}
+
+\def\RKneutral{%
+\emoticon{%
+%% pupils
+\fill[shift={( 0.5ex,0.5ex)},rotate=90] (0,0) ellipse (0.3ex and 0.15ex);
+\fill[shift={(-0.5ex,0.5ex)},rotate=90] (0,0) ellipse (0.3ex and 0.15ex);
+%% mouth
+\draw[thick] (-0.5ex,-1ex)--(0.5ex,-1ex);
+}%\emoticon
+}
+
+\def\RKconfused{%
+\emoticon{%
+\pupils
+%% mouth
+\draw[thick] (-1ex,-0.75ex)--(1ex,-1.25ex);
+}%\emoticon
+}
+
+\def\RKsexy{%
+\emoticon{%
+\pupils
+%% mouth
+\draw[very thick,red,line cap=round] (-1ex,-1ex)..controls (-0.5ex,-1.5ex)and(0.5ex,-1.5ex)..(1ex,-1ex);
+%% eyelashes
+\draw (0.60ex,1.20ex)--(0.60ex,1.60ex)
+ (0.85ex,1.25ex)--(0.95ex,1.45ex)
+ (1.00ex,1.00ex)--(1.20ex,1.10ex)
+ (0.35ex,1.15ex)--(0.25ex,1.35ex)
+ (-0.60ex,1.20ex)--(-0.60ex,1.60ex)
+ (-0.85ex,1.25ex)--(-0.95ex,1.45ex)
+ (-1.00ex,1.00ex)--(-1.20ex,1.10ex)
+ (-0.35ex,1.15ex)--(-0.25ex,1.35ex);
+}%\emoticon
+}
+
+\def\RKangry{%
+\emoticon{%
+%% pupils
+\fill[shift={( 0.5ex,0.5ex)},rotate=90] (0,0) ellipse (0.3ex and 0.15ex);
+\fill[shift={(-0.5ex,0.5ex)},rotate=90] (0,0) ellipse (0.3ex and 0.15ex);
+%% mouth
+\draw[thick] (-1ex,-1ex)..controls(-0.5ex,-0.5ex)and(0.5ex,-0.5ex)..(1ex,-1ex);
+%% eyebrows
+\draw[thick] (0.2ex,1.15ex)--(0.5ex,1.6ex)(-0.2ex,1.15ex)--(-0.5ex,1.6ex);
+}%\emoticon
+}
+
+\def\RKlookup{%
+\emoticon{%
+%% pupils
+\fill[shift={( 0.5ex,1.05ex)},rotate= 80] (0,0) ellipse (0.2ex and 0.2ex);
+\fill[shift={(-0.5ex,1.05ex)},rotate=100] (0,0) ellipse (0.2ex and 0.2ex);
+%% mouth
+\draw[thick] (-1ex,-1ex)..controls(-0.5ex,-1.5ex)and(0.5ex,-1.5ex)..(1ex,-1ex);
+}%\emoticon
+}
+
+\def\RKlookdown{%
+\emoticon{%
+%% pupils
+\fill[shift={( 0.5ex,0.3ex)},rotate= 80] (0,0) ellipse (0.2ex and 0.2ex);
+\fill[shift={(-0.5ex,0.3ex)},rotate=100] (0,0) ellipse (0.2ex and 0.2ex);
+%% mouth
+\draw[thick] (-1ex,-1ex)..controls(-0.5ex,-1.5ex)and(0.5ex,-1.5ex)..(1ex,-1ex);
+}%\emoticon
+}
+
+\def\RKlookleft{%
+\emoticon{%
+%% pupils
+\fill[shift={( 0.25ex,0.5ex)},rotate=100] (0,0) ellipse (0.3ex and 0.15ex);
+\fill[shift={(-0.95ex,0.5ex)},rotate=100] (0,0) ellipse (0.3ex and 0.15ex);
+%% mouth
+\draw[thick] (-1ex,-1ex)..controls(-0.5ex,-1.5ex)and(0.5ex,-1.5ex)..(1ex,-1ex);
+}%\emoticon
+}
+
+\def\RKlookright{%
+\emoticon{%
+%% pupils
+\fill[shift={( 0.95ex,0.5ex)},rotate=80] (0,0) ellipse (0.3ex and 0.15ex);
+\fill[shift={(-0.25ex,0.5ex)},rotate=80] (0,0) ellipse (0.3ex and 0.15ex);
+%% mouth
+\draw[thick] (-1.0ex,-1ex)..controls(-0.5ex,-1.5ex)and(0.5ex,-1.5ex)..(1ex,-1ex);
+}%\emoticon
+}
+
+\def\RKblush{%
+\emoticon{%
+\pupils
+%% mouth
+\draw[thick] (-0.5ex,-1ex)..controls (-0.25ex,-1.25ex)and(0.25ex,-1.25ex)..(0.5ex,-1ex);
+%% blush
+\shade[shading=radial,inner color=white!50!red,outer color= yellow!80!orange] ( 1ex,-0.5ex) circle (0.4ex);
+\shade[shading=radial,inner color=white!50!red,outer color= yellow!80!orange] (-1ex,-0.5ex) circle (0.4ex);
+}%\emoticon
+}
+
+\def\RKalmostcrying{%
+\emoticon{%
+%% pupils
+\fill[shift={( 0.5ex,0.5ex)},rotate=105] (0,0) ellipse (0.3ex and 0.15ex);
+\fill[shift={(-0.5ex,0.5ex)},rotate= 75] (0,0) ellipse (0.3ex and 0.15ex);
+%% mouth
+\draw[thick] (-1ex,-1ex)..controls
+(-0.5ex,-0.8ex)and(0.5ex,-0.8ex)..(1ex,-1ex);
+}%\emoticon
+}
+
+\def\RKmartian{%
+\emoticon[inner color=white!50!green,outer color=green!70!red]{%
+\pupils
+%% mouth
+\draw[thick] (-1ex,-1ex)..controls
+(-0.5ex,-1.5ex)and(0.5ex,-1.5ex)..(1ex,-1ex);
+}%\emoticon
+}
+
+\def\RKdevilish{%
+\raisebox{-0.6ex}[0ex][0ex]{%
+\emoticon[inner color=white!50!red,outer color= red!70!red!90!black]{%
+\pupils
+%% mouth
+\draw[thick,line cap=round] (-1ex,-1ex)..controls (-0.5ex,-1.5ex)and(0.5ex,-1.5ex)..(1ex,-1ex);
+%% tail
+\draw[line width=0.45ex,-stealth,black] (emoticon.330)--++(330:0.01ex)..controls (3ex,-3ex)and(3.5ex,1ex)..(4.25ex,-3ex);
+\draw[line width=0.27ex,-stealth,red!90!black] (emoticon.330)--++(330:0.01ex)..controls (3ex,-3ex)and(3.5ex,1ex)..(4.22ex,-2.8ex);
+%% horns
+\draw[fill] (emoticon.80)..controls ( 0.6ex,2.4ex)..( 1ex,2.5ex)..controls ( 0.8ex,2.3ex)..(emoticon.70);
+\draw[fill] (emoticon.100)..controls (-0.6ex,2.4ex)..(-1ex,2.5ex)..controls (-0.8ex,2.3ex)..(emoticon.110);
+\draw[thick] (0,0) circle (2ex);
+}%\emoticon
+}%\raisebox
+}
+
%%%
+% Bon de sortie
+%%%
+\newtcolorbox{Sortie}{%
+ %Titre
+ colbacktitle=white,
+ fonttitle=\color{black}\Large\bfseries,
+ toptitle=2mm,
+ bottomtitle=2mm,
+ title={Nom : \hfill Date : \hspace*{3cm}},
+ %%Cadre principal
+ enhanced,
+ nobeforeafter,
+ width=13.15cm,
+ height=8.8cm,
+ colback=white,
+ valign=top,
+ %Cadre bas
+ sidebyside,
+ righthand width=0.05\linewidth,
+}
+
+\setKVdefault[ClesSortie]{MemeEnonce=false}%
+
+\newcommand\BonSortieSmiley{%
+ \Huge
+ \begin{center}
+ \RKangry
+
+ \vspace{1em}
+
+ \RKsad
+
+ \vspace{1em}
+
+ \RKsmallsmile
+
+ \vspace{1em}
+
+ \RKbigsmile
+ \end{center}
+}
+
+\newcommand\BonSortie[5][]{%
+ \clearpage%
+ \useKVdefault[ClesSortie]%
+ \setKV[ClesSortie]{#1}%
+ \begin{tikzpicture}[remember picture, overlay]
+ \draw[dashed] (current page.north) to (current page.south);
+ \draw[dashed] (current page.west) to (current page.east);
+ \coordinate[xshift=7.425cm,yshift=-5.25cm] (A) at (current page.north west);
+ \coordinate[xshift=-7.425cm,yshift=-5.25cm] (B) at (current page.north east);
+ \coordinate[xshift=7.425cm,yshift=5.25cm] (C) at (current page.south west);
+ \coordinate[xshift=-7.425cm,yshift=5.25cm] (D) at (current page.south east);
+ \ifboolKV[ClesSortie]{MemeEnonce}{%
+ \foreach\i\in in {A,B,C,D}{%
+ \node (\i1) at (\i) {\begin{Sortie}
+ #2
+ \tcblower
+ \BonSortieSmiley
+ \end{Sortie}
+ };
+ }
+ }{%
+ \node (A1) at (A) {\begin{Sortie}
+ #2
+ \tcblower
+ \BonSortieSmiley
+ \end{Sortie}
+ };
+ \node (B1) at (B) {\begin{Sortie}
+ #3
+ \tcblower
+ \BonSortieSmiley
+ \end{Sortie}
+ };
+ \node (C1) at (C) {\begin{Sortie}
+ #4
+ \tcblower
+ \BonSortieSmiley
+ \end{Sortie}
+ };
+ \node (D1) at (D) {\begin{Sortie}
+ #5
+ \tcblower
+ \BonSortieSmiley
+ \end{Sortie}
+ };
+ }
+ \end{tikzpicture}
+}
+
+%%%
+% Ecriture des nombres en lettres
+%%%
+\setKVdefault[ClesEcriture]{Math=false,Majuscule=false,E=false,Tradition=false,Zero=false}
+
+\newcommand\EcriturePluriel[1]{%
+ \xintifboolexpr{#1 > 1}{s}{}%
+}
+
+\newcommand\EcritureDecimale{%
+ \StrLen{\ListeEcriture[2]}[\LongueurDecimale]%
+ \xintifboolexpr{\LongueurDecimale == 6}{%
+ ~millionième\EcriturePluriel{\ListeEcriture[2]}%
+ }{\xintifboolexpr{\LongueurDecimale == 5}{%
+ ~cent-millième\EcriturePluriel{\ListeEcriture[2]}
+ }{\xintifboolexpr{\LongueurDecimale == 4}{%
+ ~dix-millième\EcriturePluriel{\ListeEcriture[2]}
+ }{\xintifboolexpr{\LongueurDecimale == 3}{%
+ ~millième\EcriturePluriel{\ListeEcriture[2]}
+ }{\xintifboolexpr{\LongueurDecimale == 2}{%
+ ~centième\EcriturePluriel{\ListeEcriture[2]}
+ }{\xintifboolexpr{\LongueurDecimale == 1}{%
+ ~dixième\EcriturePluriel{\ListeEcriture[2]}
+ }{}%
+ }%
+ }%
+ }%
+ }%
+ }%
+}%
+
+\newcommand\Ecriture[2][]{%
+ \useKVdefault[ClesEcriture]%
+ \setKV[ClesEcriture]{#1}%
+ \ifboolKV[ClesEcriture]{Tradition}{%
+ \fmtcountsetoptions{french={dash or space=traditional}}%
+ }{%
+ \fmtcountsetoptions{french={dash or space=always}}%
+ }%
+ \setsepchar{.}%
+ \readlist*\ListeEcriture{#2}%
+ \xintifboolexpr{\ListeEcriturelen == 2}{%
+ \ifboolKV[ClesEcriture]{Majuscule}{%
+ \ifboolKV[ClesEcriture]{Zero}{}{\Numberstringnum{\ListeEcriture[1]}}\ifboolKV[ClesEcriture]{Math}{\ifboolKV[ClesEcriture]{Zero}{}{\ifboolKV[ClesEcriture]{E}{e}{}~unité\EcriturePluriel{\ListeEcriture[1]} et }}{\ifboolKV[ClesEcriture]{Tradition}{ virgule }{-virgule-}}\numberstringnum{\ListeEcriture[2]}\ifboolKV[ClesEcriture]{Math}{\EcritureDecimale}{}%
+ }{%
+ \ifboolKV[ClesEcriture]{Zero}{}{\numberstringnum{\ListeEcriture[1]}}\ifboolKV[ClesEcriture]{Math}{\ifboolKV[ClesEcriture]{Zero}{}{\ifboolKV[ClesEcriture]{E}{e}{}~unité\EcriturePluriel{\ListeEcriture[1]} et }}{\ifboolKV[ClesEcriture]{Tradition}{ virgule }{-virgule-}}\numberstringnum{\ListeEcriture[2]}\ifboolKV[ClesEcriture]{Math}{\EcritureDecimale}{}%
+ }}{%
+ \ifboolKV[ClesEcriture]{Majuscule}{%
+ \Numberstringnum{\ListeEcriture[1]}\ifboolKV[ClesEcriture]{Math}{\ifboolKV[ClesEcriture]{E}{e}{}~unité\EcriturePluriel{\ListeEcriture[1]}}{}%
+ }{%
+ \numberstringnum{\ListeEcriture[1]}\ifboolKV[ClesEcriture]{Math}{\ifboolKV[ClesEcriture]{E}{e}{}~unité\EcriturePluriel{\ListeEcriture[1]}}{}%
+ }
+ }%
+}%
+
+%%%
+% D\'ecomposition de fractions d\'ecimales
+%%%
+\setKVdefault[ClesFracDeci]{Complete=false,SansZero=false,Remediation=false}
+
+\newcommand\FractionDecimale[2][]{%
+ \useKVdefault[ClesFracDeci]%
+ \setKV[ClesFracDeci]{#1}%
+ \setsepchar[*]{/}%
+ \readlist*\ListeFractionDecimale{#2}%
+ \xdef\FractionDeciNum{\ListeFractionDecimale[1]}%
+ \xdef\FractionDeciDeno{\ListeFractionDecimale[2]}%
+ \xdef\PartieEntiereFractionDeci{\fpeval{floor(\FractionDeciNum/\FractionDeciDeno)}}%
+ \xdef\PartieDecimaleFractionDeci{\fpeval{\FractionDeciNum-floor(\FractionDeciNum/\FractionDeciDeno)*\FractionDeciDeno}}%
+ \StrLen{\PartieDecimaleFractionDeci}[\LongueurPartieDecimale]%
+ \StrLen{\fpeval{\FractionDeciDeno}}[\LongueurFracDeciDeno]%
+ \StrLen{\fpeval{\FractionDeciNum}}[\LongueurFracDeciNum]%
+ \xintifboolexpr{\PartieEntiereFractionDeci == 0}{\xdef\LongueurPartieEntiere{0}}{\StrLen{\PartieEntiereFractionDeci}[\LongueurPartieEntiere]}%
+ \xintifboolexpr{\PartieEntiereFractionDeci == \fpeval{\FractionDeciNum/\FractionDeciDeno}}{%
+ \ensuremath{\ifboolKV[ClesFracDeci]{Remediation}{\dots}{\num{\PartieEntiereFractionDeci}}}%
+ }{%
+ \ifboolKV[ClesFracDeci]{SansZero}{%
+ \ensuremath{%
+ \xintifboolexpr{\PartieEntiereFractionDeci == 0}{}{\ifboolKV[ClesFracDeci]{Remediation}{\dots}{\num{\PartieEntiereFractionDeci}}+}%
+ \xintFor* ##1 in {\xintSeq{1}{\LongueurPartieDecimale}}\do{%
+ \StrMid{\PartieDecimaleFractionDeci}{##1}{##1}[\ChiffrePartieDecimale]%
+ \xintifForFirst{}{\xintifboolexpr{\ChiffrePartieDecimale == 0}{}{+}}\xintifboolexpr{\ChiffrePartieDecimale == 0}{}{\frac{\ifboolKV[ClesFracDeci]{Remediation}{\dots}{\num{\ChiffrePartieDecimale}}}{\num{\fpeval{10**(\LongueurFracDeciDeno-1-\LongueurPartieDecimale+##1)}}}}%
+ }%
+ }%
+ }{%
+ \ifboolKV[ClesFracDeci]{Complete}{%
+ \xintifboolexpr{\FractionDeciNum>\FractionDeciDeno}{%
+ \ensuremath{%
+ % on affiche la partie entière.
+ \xintifboolexpr{\PartieEntiereFractionDeci == 0}{}{\ifboolKV[ClesFracDeci]{Remediation}{\dots}{\num{\PartieEntiereFractionDeci}}+}%
+ \StrGobbleLeft{\FractionDeciNum}{\fpeval{\LongueurPartieEntiere}}[\DecompositionFracDeciComplete]%
+ % on affiche la partie décimale.
+ \xintFor* ##1 in {\xintSeq{1}{\fpeval{\LongueurFracDeciNum-\LongueurPartieEntiere}}}\do{%
+ \xintifForFirst{}{+}\StrMid{\DecompositionFracDeciComplete}{##1}{##1}[\ChiffrePartieDecimale]\frac{\ifboolKV[ClesFracDeci]{Remediation}{\dots}{\num{\ChiffrePartieDecimale}}}{\num{\fpeval{10**##1}}}%
+ }%
+ }%
+ }{%
+ \ensuremath{%
+ \xintFor* ##1 in {\xintSeq{1}{\LongueurPartieDecimale}}\do{%
+ \StrMid{\PartieDecimaleFractionDeci}{##1}{##1}[\ChiffrePartieDecimale]%
+ \xintifForFirst{}{+}\frac{\ifboolKV[ClesFracDeci]{Remediation}{\dots}{\num{\ChiffrePartieDecimale}}}{\num{\fpeval{10**(\LongueurFracDeciDeno-1-\LongueurPartieDecimale+##1)}}}%
+ }%
+ }%
+ }%
+ }{%
+ \ensuremath{%
+ \xintifboolexpr{\PartieEntiereFractionDeci == 0}{}{\ifboolKV[ClesFracDeci]{Remediation}{\dots}{\num{\PartieEntiereFractionDeci}}+}\frac{\ifboolKV[ClesFracDeci]{Remediation}{\dots}{\num{\PartieDecimaleFractionDeci}}}{\num{\FractionDeciDeno}}%
+ }%
+ }%
+ }%
+ }%
+}%
+
+%%%
+% Pyramide de calculs
+%%%
+\newcommand\DessinePyramideNombre[1]{%
+ \ifluatex
+ \mplibforcehmode
+ \begin{mplibcode}
+ pair A[][],B[];
+ nbetages:=\useKV[ClesPyramide]{Etages};
+ largeur:=\useKV[ClesPyramide]{Largeur};
+ hauteur:=\useKV[ClesPyramide]{Hauteur};
+ Nbeb:=0;%Pour associer les textes avec les points. Plus facile :)
+ if \useKV[ClesPyramide]{Double}:
+ for k=nbetages downto 1:
+ for l=0 upto (k-1):
+ Nbeb:=Nbeb+1;
+ A[k][l]=(0,0)+(nbetages-k)*(largeur/2,0)+(l*largeur,(nbetages-k)*hauteur);
+ B[Nbeb]=A[k][l];
+ trace ((unitsquare xscaled largeur) yscaled hauteur) shifted (A[k][l]-0.5*(largeur,hauteur));
+ endfor;
+ endfor;
+ for k=nbetages-1 downto 1:
+ for l=0 upto (k-1):
+ Nbeb:=Nbeb+1;
+ A[-k][l]=(0,0)+(nbetages-k)*(largeur/2,0)+(l*largeur,-(nbetages-k)*hauteur);
+ B[Nbeb]=A[-k][l];
+ trace ((unitsquare xscaled largeur) yscaled hauteur) shifted (A[-k][l]-0.5*(largeur,hauteur));
+ endfor;
+ endfor;
+ else:
+ if \useKV[ClesPyramide]{Inverse}:
+ change:=-1;
+ else:
+ change=1;
+ fi;
+ for k=nbetages downto 1:
+ for l=0 upto (k-1):
+ Nbeb:=Nbeb+1;
+ A[k][l]=(0,0)+(nbetages-k)*(largeur/2,0)+(l*largeur,change*(nbetages-k)*hauteur);
+ B[Nbeb]=A[k][l];
+ trace ((unitsquare xscaled largeur) yscaled hauteur) shifted (A[k][l]-0.5*(largeur,hauteur));
+ endfor;
+ endfor;
+ fi;
+ if \useKV[ClesPyramide]{Vide}:
+ else:
+ Nbeb:=0;
+ for p_=#1:
+ Nbeb:=Nbeb+1;
+ label(TEX(""&p_&""),B[Nbeb]);
+ endfor;
+ fi;
+ \end{mplibcode}
+ \else
+ \begin{mpost}[mpsettings={nbetages:=\useKV[ClesPyramide]{Etages};largeur:=\useKV[ClesPyramide]{Largeur};hauteur:=\useKV[ClesPyramide]{Hauteur};boolean Vide;Vide=\useKV[ClesPyramide]{Vide};boolean Inverse;Inverse=\useKV[ClesPyramide]{Inverse};}]
+ pair A[][],B[];
+ Nbeb:=0;
+ if Inverse:
+ change:=-1;
+ else:
+ change=1;
+ fi;
+ for k=nbetages downto 1:
+ for l=0 upto (k-1):
+ Nbeb:=Nbeb+1;
+ A[k][l]=(0,0)+(nbetages-k)*(largeur/2,0)+(l*largeur,change*(nbetages-k)*hauteur);
+ B[Nbeb]=A[k][l];
+ trace ((unitsquare xscaled largeur) yscaled hauteur) shifted (A[k][l]-0.5(largeur,hauteur));
+ endfor;
+ endfor;
+ Nbeb:=0;
+ if Vide:
+ else:
+ for p_=#1:
+ Nbeb:=Nbeb+1;
+ label(LATEX(""&p_&""),B[Nbeb]);
+ endfor;
+ fi;
+ \end{mpost}
+ \fi
+}
+
+\setKVdefault[ClesPyramide]{Etages=5,Largeur=2cm,Hauteur=1cm,Vide=false,Inverse=false,Double=false}%
+
+\newtoks\toklistecaseP%
+\def\UpdatetoksPyramide#1\nil{\addtotok\toklistecaseP{"#1",}}%
+
+\newcommand\PyramideNombre[2][]{%
+ \useKVdefault[ClesPyramide]%
+ \setKV[ClesPyramide]{#1}%
+ \ifx\bla#2\bla%
+ \setKV[ClesPyramide]{Vide=true}%
+ \DessinePyramideNombre{\the\toklistecaseP}%
+ \else%
+ \setsepchar{,}%
+ \readlist*\ListePyramide{#2}%
+ \ifboolKV[ClesPyramide]{Double}{%
+ \def\CalculNombreComposants{\fpeval{\useKV[ClesPyramide]{Etages}*\useKV[ClesPyramide]{Etages}}}%
+ }{%
+ \def\CalculNombreComposants{\fpeval{\useKV[ClesPyramide]{Etages}*(\useKV[ClesPyramide]{Etages}+1)/2}}%
+ }%
+ \xintifboolexpr{\ListePyramidelen==\CalculNombreComposants}{%
+ \toklistecaseP{}%
+ \foreachitem\compteur\in\ListePyramide{\expandafter\UpdatetoksPyramide\compteur\nil}%
+ \DessinePyramideNombre{\the\toklistecaseP}%
+ }{Le nombre d'éléments dans la liste des propositions n'est pas compatible avec le nombre d'étages choisi.}%
+ \fi%
+}%
+
+%%%
% Tables Addition-Multiplication
%%%
\setKVdefault[Tables]{Addition=false,Multiplication=true,Seul=false,Debut=0,Fin=10,Couleur=white}
@@ -421,42 +928,42 @@
%%%
\setKVdefault[ClesRgt]{Croissant,Decroissant=false,Strict,Fraction=false,Details=false}
+\dtlexpandnewvalue%
\DTLgnewdb{mtnumedb}%
-\DTLgnewdb{mtnumeretourdb}%
\newcommand\Rangement[2][]{%
\useKVdefault[ClesRgt]%
\setKV[ClesRgt]{#1}%
\ifboolKV[ClesRgt]{Fraction}{%
- \setsepchar[*]{,*/}%\ignoreemptyitems%
+ \setsepchar[*]{,*/}\ignoreemptyitems%
\readlist*\ListeRgt{#2}%
% on cherche le d\'enominateur commun
\ppcm=1\relax
\foreachitem\x\in\ListeRgt{%
\PPCM{\fpeval{\ListeRgt[\xcnt,2]}}{\fpeval{\the\ppcm}}%
- }%
+ }%ok
% On cr\'ee la liste des rangements.
\DTLcleardb{mtnumedb}%
% on les trie pour les ranger par ordre croissant
\foreachitem\x\in\ListeRgt{%
\DTLnewrow{mtnumedb}%
- \itemtomacro\ListeRgt[\xcnt,1]\y%
- \DTLnewdbentry{mtnumedb}{Numeric}{\fpeval{\y*\the\ppcm/\ListeRgt[\xcnt,2]}}%
+ \xdef\toto{\fpeval{\ListeRgt[\xcnt,1]*\the\ppcm/\ListeRgt[\xcnt,2]}}%
+ \DTLnewdbentry{mtnumedb}{numeric}{\toto}%
}%
% On trie
\ifboolKV[ClesRgt]{Decroissant}{%
% On trie la liste
- \dtlsort{Numeric=descending}{mtnumedb}{\dtlicompare}%
- \ifboolKV[ClesRgt]{Details}{\ensuremath{\DTLforeach{mtnumedb}{\numeroDonnee=Numeric}{\frac{\num{\numeroDonnee}}{\num{\the\ppcm}}\DTLiflastrow{}{\ifboolKV[ClesRgt]{Strict}{>}{\geqslant}}}}}{%
- \ensuremath{\DTLforeach{mtnumedb}{\numeroDonnee=Numeric}{\Simplification{\numeroDonnee}{\ppcm}\DTLiflastrow{}{\ifboolKV[ClesRgt]{Strict}{>}{\geqslant}}}}%
+ \dtlsort{numeric=descending}{mtnumedb}{\dtlicompare}%
+ \ifboolKV[ClesRgt]{Details}{\ensuremath{\DTLforeach{mtnumedb}{\numeroDonnee=numeric}{\frac{\num{\numeroDonnee}}{\num{\the\ppcm}}\DTLiflastrow{}{\ifboolKV[ClesRgt]{Strict}{>}{\geqslant}}}}}{%
+ \ensuremath{\DTLforeach{mtnumedb}{\numeroDonnee=numeric}{\Simplification{\numeroDonnee}{\ppcm}\DTLiflastrow{}{\ifboolKV[ClesRgt]{Strict}{>}{\geqslant}}}}%
}
}{%
% On trie la liste
- \dtlsort{Numeric}{mtnumedb}{\dtlicompare}%
+ \dtlsort{numeric}{mtnumedb}{\dtlicompare}%
\ifboolKV[ClesRgt]{Details}{%
- \ensuremath{\DTLforeach{mtnumedb}{\numeroDonnee=Numeric}{\frac{\num{\numeroDonnee}}{\num{\the\ppcm}}\DTLiflastrow{}{\ifboolKV[ClesRgt]{Strict}{<}{\leqslant}}}}%
+ \ensuremath{\DTLforeach{mtnumedb}{\numeroDonnee=numeric}{\frac{\num{\numeroDonnee}}{\num{\the\ppcm}}\DTLiflastrow{}{\ifboolKV[ClesRgt]{Strict}{<}{\leqslant}}}}%
}{%
- \ensuremath{\DTLforeach{mtnumedb}{\numeroDonnee=Numeric}{\Simplification{\numeroDonnee}{\ppcm}\DTLiflastrow{}{\ifboolKV[ClesRgt]{Strict}{<}{\leqslant}}}}%
+ \ensuremath{\DTLforeach{mtnumedb}{\numeroDonnee=numeric}{\Simplification{\numeroDonnee}{\ppcm}\DTLiflastrow{}{\ifboolKV[ClesRgt]{Strict}{<}{\leqslant}}}}%
}
}%
}{%
@@ -468,25 +975,85 @@
\foreachitem\x\in\ListeRgt{%
\DTLnewrow{mtdb}%
\itemtomacro\ListeRgt[\xcnt]\y%
- \DTLnewdbentry{mtdb}{Numeric}{\y}%
+ \DTLnewdbentry{mtdb}{numeric}{\y}%
}%
%
\ifboolKV[ClesRgt]{Decroissant}{%
% On trie la liste
- \dtlsort{Numeric=descending}{mtdb}{\dtlicompare}%
- \ensuremath{\DTLforeach{mtdb}{\numeroDonnee=Numeric}{\num{\numeroDonnee}\DTLiflastrow{}{\ifboolKV[ClesRgt]{Strict}{>}{\geqslant}}}}%
+ \dtlsort{numeric=descending}{mtdb}{\dtlicompare}%
+ \ensuremath{\DTLforeach{mtdb}{\numeroDonnee=numeric}{\num{\numeroDonnee}\DTLiflastrow{}{\ifboolKV[ClesRgt]{Strict}{>}{\geqslant}}}}%
}{%
% On trie la liste
- \dtlsort{Numeric}{mtdb}{\dtlicompare}%
- \ensuremath{\DTLforeach{mtdb}{\numeroDonnee=Numeric}{\num{\numeroDonnee}\DTLiflastrow{}{\ifboolKV[ClesRgt]{Strict}{<}{\leqslant}}}}%
+ \dtlsort{numeric}{mtdb}{\dtlicompare}%
+ \ensuremath{\DTLforeach{mtdb}{\numeroDonnee=numeric}{\num{\numeroDonnee}\DTLiflastrow{}{\ifboolKV[ClesRgt]{Strict}{<}{\leqslant}}}}%
}%
- }
+ }%
}%
%%%
+% Mots Cod\'es
+%%%
+\setKVdefault[MotsCodes]{LargeurT=1cm,Colonnes=5,Largeur=3cm,Solution=false,Math=false}%
+
+\newcommand\MotsCodes[2][]{%
+ \useKVdefault[MotsCodes]%
+ \setKV[MotsCodes]{#1}%
+ \setsepchar[*]{§*/}%
+ \readlist*\ListeMotsCodes{#2}%
+ \xdef\ListeMotsCodesPas{\fpeval{\ListeMotsCodeslen/\useKV[MotsCodes]{Colonnes}}}
+ \begin{NiceTabular}{*{\fpeval{\useKV[MotsCodes]{Colonnes}}}{>{\centering\arraybackslash}m{\useKV[MotsCodes]{Largeur}}}}
+ \xintFor* ##1 in {\xintSeq {1}{\ListeMotsCodesPas}}\do{%
+ \xintFor* ##2 in {\xintSeq {1}{\fpeval{\useKV[MotsCodes]{Colonnes}}}}\do{%
+ \xintifForFirst{}{&}\Block[draw=black]{4-1}{}%
+ }\\
+ \xintFor* ##2 in {\xintSeq {1}{\fpeval{\useKV[MotsCodes]{Colonnes}}}}\do{%
+ \xintifForFirst{}{&}\ListeMotsCodes[\fpeval{(##1-1)*\useKV[MotsCodes]{Colonnes}+##2},1]
+ }\\
+ \xintFor* ##2 in {\xintSeq {1}{\fpeval{\useKV[MotsCodes]{Colonnes}}}}\do{%
+ \xintifForFirst{}{&}%
+ }\\
+ \xintFor* ##2 in {\xintSeq {1}{\fpeval{\useKV[MotsCodes]{Colonnes}}}}\do{%
+ \xintifForFirst{}{&}\textbf{\Large\ListeMotsCodes[\fpeval{(##1-1)*\useKV[MotsCodes]{Colonnes}+##2},2]}
+ }\\
+ }%
+ \end{NiceTabular}%
+}%
+
+\newcommand\MotsCodesTableau[3][]{%
+ \useKVdefault[MotsCodes]%
+ \setKV[MotsCodes]{#1}%
+ \setsepchar[*]{,*/}
+ \readlist*\ListeMotsCodesTableau{#2}%
+ \xdef\ListeMotsCodesMax{0}%
+ \setsepchar{,}%
+ \readlist*\ListeMotsCodesPhrase{#3}%
+ \foreachitem\compteur\in\ListeMotsCodesTableau{%
+ \xintifboolexpr{\ListeMotsCodesMax<\listlen\ListeMotsCodesTableau[\compteurcnt]}{\xdef\ListeMotsCodesMax{\fpeval{\listlen\ListeMotsCodesTableau[\compteurcnt]}}}{}%
+ }%
+ \begin{NiceTabular}{*{\fpeval{\ListeMotsCodesMax}}{>{\centering\arraybackslash}m{\useKV[MotsCodes]{LargeurT}}}}
+ \xintFor* ##1 in {\xintSeq {1}{\fpeval{\ListeMotsCodesTableaulen}}}\do{%
+ \xintFor* ##2 in {\xintSeq {1}{\listlen\ListeMotsCodesTableau[##1]}}\do{%
+ \xintifForFirst{}{&}\ifboolKV[MotsCodes]{Solution}{%
+ \StrMid{\ListeMotsCodesPhrase[##1]}{##2}{##2}[\MotsCodesMaLettre]%
+ \IfStrEq{\MotsCodesMaLettre}{*}{\Block[draw=black,fill=black]{3-1}{}}{\Block[draw=black]{3-1}{\StrMid{\ListeMotsCodesPhrase[##1]}{##2}{##2}}}%
+ }{%
+ \IfStrEq{\ListeMotsCodesTableau[##1,##2]}{*}{\Block[draw=black,fill=black]{3-1}{}}{\Block[draw=black]{3-1}{}}%
+ }%%
+ }\\
+ \xintFor* ##2 in {\xintSeq {1}{\listlen\ListeMotsCodesTableau[##1]}}\do{%
+ \xintifForFirst{}{&}
+ }\\
+ \xintFor* ##2 in {\xintSeq {1}{\listlen\ListeMotsCodesTableau[##1]}}\do{%
+ \xintifForFirst{}{&}\IfStrEq{\ListeMotsCodesTableau[##1,##2]}{*}{}{\footnotesize\ifboolKV[MotsCodes]{Math}{\ListeMotsCodesTableau[##1,##2]}{\num{\ListeMotsCodesTableau[##1,##2]}}}%
+ }\\
+ }%
+ \end{NiceTabular}%
+}%
+
+%%%
% Labyrinthe
%%%
-\setKVdefault[Labyrinthe]{Lignes=6,Colonnes=3,Longueur=4,Hauteur=2,Passages=false,EcartH=1,EcartV=1,CouleurF=gray!50,Texte=\color{yellow},SensImpose=false,Slop}
+\setKVdefault[Labyrinthe]{Lignes=6,Colonnes=3,Longueur=4,Hauteur=2,Passages=false,EcartH=1,EcartV=1,CouleurF=gray!50,Texte=\color{black},SensImpose=false,Slop}
\tikzset{FDirect/.style={-stealth}}
\tikzset{FIndirect/.style={stealth-}}
@@ -622,6 +1189,1086 @@
}
%%%
+% Labyrinthe Nombre
+%%%
+
+\setKVdefault[ClesLabyNombre]{Multiple=5,XDepart=0,YDepart=0,Longueur=7,Largeur=4,XArrivee=6,YArrivee=3,Solution=false,Echelle=1,Angle=0,Couleur=red,Murs=false}
+
+\newcommand\LabyNombre[1][]{%
+ \useKVdefault[ClesLabyNombre]%
+ \setKV[ClesLabyNombre]{#1}%
+ \ifboolKV[ClesLabyNombre]{Solution}{%
+ \TraceSolution{\useKV[ClesLabyNombre]{Multiple}}{\useKV[ClesLabyNombre]{Longueur}}{\useKV[ClesLabyNombre]{Largeur}}{(\useKV[ClesLabyNombre]{YDepart},\useKV[ClesLabyNombre]{XDepart})}{(\useKV[ClesLabyNombre]{YArrivee},\useKV[ClesLabyNombre]{XArrivee})}{\useKV[ClesLabyNombre]{Solution}}
+ }{%
+ \TraceLabyNombre{\useKV[ClesLabyNombre]{Multiple}}{\useKV[ClesLabyNombre]{Longueur}}{\useKV[ClesLabyNombre]{Largeur}}{(\useKV[ClesLabyNombre]{YDepart},\useKV[ClesLabyNombre]{XDepart})}{(\useKV[ClesLabyNombre]{YArrivee},\useKV[ClesLabyNombre]{XArrivee})}{\useKV[ClesLabyNombre]{Solution}}
+ }%
+}
+
+\newcommand\TraceLabyNombre[6]{%
+ \mplibforcehmode%
+ \mplibcodeinherit{enable}%\xintifboolexpr{#6==false}{\mplibcodeinherit{enable}}{}
+ \begin{mplibcode}
+ input PfCLabyNombre;
+
+ boolean Murs;
+ Murs=\useKV[ClesLabyNombre]{Murs};
+
+ numeric Multiple;
+ Multiple=#1;
+ % Initialisation du labyrinthe
+ InitialisationLabyrinthe(#2,#3);
+ % On initialise les paramètres du parcours
+ numeric choixligneD,choixligneA,choixcolonneD,choixcolonneA;
+ choixligneD=xpart(#4);
+ choixcolonneD=ypart(#4);
+ choixligneA=xpart(#5);
+ choixcolonneA=ypart(#5);%
+ pair Depart;
+ Depart=N[choixligneD][choixcolonneD];
+ pair Arrivee;
+ Arrivee=N[choixligneA][choixcolonneA];
+ pair Mobile;
+ Mobile=Depart;
+ RAZPileChemin;
+ % Exploration du labyrinthe
+ PushChemin((choixligneD,choixcolonneD));
+ CaseExploree[choixligneD][choixcolonneD]:=true;
+ VoisinDispo(choixligneD,choixcolonneD);
+ forever: exitif Mobile=Arrivee;%nb=0;
+ nb:=ceiling(uniformdeviate(nbvoisin));
+ if nb>0:
+ for k=1 upto nbvoisin:
+ CaseExploree[xpart(PileVoisin[k])][ypart(PileVoisin[k])]:=true;
+ endfor;
+ PushChemin((xpart(PileVoisin[nb]),ypart(PileVoisin[nb])));
+ Mobile:=N[xpart(PileChemin[indiceChemin])][ypart(PileChemin[indiceChemin])];
+ VoisinDispo(xpart(PileChemin[indiceChemin]),ypart(PileChemin[indiceChemin]));
+ else:
+ PopChemin;
+ fi;
+ endfor;
+ % Affichagefinal
+ % on sauvegarde les nombres aléatoires
+ numeric NbAffiche[];
+ numeric NbSol[];
+ % on écrit des nombres au hasard, mais sans être multiple du nombre choisi
+ numeric nbaffiche;
+ nbaffiche=0;
+ for k=0 upto LargeurLaby-1:
+ for l=0 upto LongueurLaby-1:
+ nbaffiche:=nbaffiche+1;
+ NbAffiche[nbaffiche]:=(50+ceiling(uniformdeviate(100)))*Multiple+ceiling(uniformdeviate(Multiple-1));
+ endfor;
+ endfor;
+ % On crée des multiples du nombre choisi
+ for k=2 upto indiceChemin-1:
+ NbSol[k]=(50+ceiling(uniformdeviate(100)))*Multiple;
+ endfor;
+ % On affiche
+ picture Corps;
+ Corps=image(
+ nbaffiche:=0;
+ for k=0 upto LargeurLaby-1:
+ for l=0 upto LongueurLaby-1:
+ nbaffiche:=nbaffiche+1;
+ label(TEX("\num{"&decimal(NbAffiche[nbaffiche])&"}"),M[k][l]);
+ endfor;
+ endfor;
+ remplis ((unitsquare scaled 10mm) shifted N[choixligneD][choixcolonneD]) withcolor \useKV[ClesLabyNombre]{Couleur};
+ remplis ((unitsquare scaled 10mm) shifted Arrivee) withcolor \useKV[ClesLabyNombre]{Couleur};
+ for k=2 upto indiceChemin-1:
+ remplis ((unitsquare scaled 10mm) shifted N[xpart(PileChemin[k])][ypart(PileChemin[k])]) withcolor white;
+ label(TEX("\num{"&decimal(NbSol[k])&"}"),M[xpart(PileChemin[k])][ypart(PileChemin[k])]);
+ endfor;
+ trace TraceLabyrinthe;
+ );
+ Corps:=(Corps scaled \useKV[ClesLabyNombre]{Echelle}) rotated \useKV[ClesLabyNombre]{Angle};
+ trace Corps;
+ \end{mplibcode}
+}
+
+\newcommand\TraceSolution[6]{%
+ \mplibforcehmode%
+ \begin{mplibcode}
+ picture CorpsSolution;
+ CorpsSolution=image(
+ nbaffiche:=0;
+ for k=0 upto #3-1:
+ for l=0 upto #2-1:
+ nbaffiche:=nbaffiche+1;
+ label(TEX("\num{"&decimal(NbAffiche[nbaffiche])&"}"),M[k][l]);
+ endfor;
+ endfor;
+ remplis ((unitsquare scaled 10mm) shifted N[choixligneD][choixcolonneD]) withcolor \useKV[ClesLabyNombre]{Couleur};
+ remplis ((unitsquare scaled 10mm) shifted Arrivee) withcolor \useKV[ClesLabyNombre]{Couleur};
+ for k=2 upto indiceChemin-1:
+ remplis ((unitsquare scaled 10mm) shifted N[xpart(PileChemin[k])][ypart(PileChemin[k])]) withcolor 0.5white;
+ label(TEX("\num{"&decimal(NbSol[k])&"}"),M[xpart(PileChemin[k])][ypart(PileChemin[k])]);
+ endfor;
+ trace TraceLabyrinthe;
+ );
+ CorpsSolution:=(CorpsSolution scaled \useKV[ClesLabyNombre]{Echelle}) rotated \useKV[ClesLabyNombre]{Angle};
+ trace CorpsSolution;
+ \end{mplibcode}
+ \mplibcodeinherit{disable}
+}%
+
+%%%
+% Mots empilés
+%%%
+\setKVdefault[ClesMotEmpile]{Colonne=4,Solution=false,Couleur=black}
+
+\newcounter{CompteurMotEmpile}
+
+\newcommand\MotsEmpiles[2][]{%
+ \useKVdefault[ClesMotEmpile]%
+ \setKV[ClesMotEmpile]{#1}%
+ \setcounter{CompteurMotEmpile}{0}%
+ \setsepchar[*]{,*/}%
+ \readlist*\ListeMotsEmpiles{#2}
+ \xdef\ListeMotsEmpilesMax{0}%
+ \colorlet{MotEmpileCouleur}{\useKV[ClesMotEmpile]{Couleur}}%
+ \foreachitem\compteur\in\ListeMotsEmpiles{%
+ \StrLen{\ListeMotsEmpiles[\compteurcnt,2]}[\LongueurMot]%
+ \xintifboolexpr{\ListeMotsEmpilesMax<\fpeval{\ListeMotsEmpiles[\compteurcnt,1]+\LongueurMot}}{\xdef\ListeMotsEmpilesMax{\fpeval{\ListeMotsEmpiles[\compteurcnt,1]+\LongueurMot}}}{}%
+ }%
+ \begin{NiceTabular}{c|*{\fpeval{\ListeMotsEmpilesMax}}{m{0.5em}}}
+ \Block{1-\fpeval{\useKV[ClesMotEmpile]{Colonne}+2}}{}\xintFor* ##1 in {\xintSeq {1}{\fpeval{\useKV[ClesMotEmpile]{Colonne}}}}\do{&}&$\downarrow$\xintFor* ##1 in {\xintSeq {1}{\fpeval{\ListeMotsEmpilesMax-\useKV[ClesMotEmpile]{Colonne}-1}}}\do{&}\\
+ \xintFor* ##1 in {\xintSeq {1}{\fpeval{\ListeMotsEmpileslen}}}\do{%
+ \rule[-1.2ex]{0pt}{3.8ex}\stepcounter{CompteurMotEmpile}\Alph{CompteurMotEmpile}&\Block{1-\fpeval{\ListeMotsEmpiles[##1,1]}}{}\xintFor* ##2 in {\xintSeq {1}{\fpeval{\ListeMotsEmpiles[##1,1]}}}\do{%
+ &
+ }%
+ \StrLen{\ListeMotsEmpiles[##1,2]}[\LongueurMot]%
+ \xintFor* ##3 in {\xintSeq {1}{\fpeval{\LongueurMot}}}\do{%
+ \xintifForFirst{}{&}\Block[draw=black]{1-1}{\ifboolKV[ClesMotEmpile]{Solution}{\centering\arraybackslash\StrMid{\ListeMotsEmpiles[##1,2]}{##3}{##3}}{}}%%
+ }
+ \\
+ }%
+ \CodeAfter\tikz\draw[line width=1.5pt,MotEmpileCouleur](row-2-|col-\fpeval{\useKV[ClesMotEmpile]{Colonne}+2}) rectangle (row-\fpeval{\ListeMotsEmpileslen+2}-|col-\fpeval{\useKV[ClesMotEmpile]{Colonne}+3});
+ \end{NiceTabular}
+}%
+
+%%%
+% Colorilude
+%%%
+\setKVdefault[Colorilude]{Largeur=10,Lignes=10,Legende=false,Coef=0.6,Solution=false}
+
+\newcommand{\dispogpfc}[3][]{%
+ \setbox1=\hbox{#2}%
+ \setbox2=\hbox{#3}%
+ \begin{minipage}{\wd2}%
+ #3%
+ \end{minipage}%
+ \quad%
+ \begin{minipage}{\wd1}%
+ #2%
+ \end{minipage}%
+}%
+
+\newcommand\TraceEchiquierColorilude{%
+ \ifluatex
+ \begin{mplibcode}
+ pair A,B,C,D;%pour la grille
+ A=(0,0);
+ B-A=u*\useKV[Colorilude]{Coef}*(\useKV[Colorilude]{Largeur},0);
+ C-B=u*\useKV[Colorilude]{Coef}*(0,-\useKV[Colorilude]{Lignes});
+ D-C=A-B;
+ nblargeur=\useKV[Colorilude]{Largeur};
+ nblignes=\useKV[Colorilude]{Lignes};
+ for k=1 upto nblargeur-1:
+ draw (k/nblargeur)[A,B]--(k/nblargeur)[D,C];
+ endfor;
+ for k=1 upto nblignes-1:
+ draw (k/nblignes)[A,D]--(k/nblignes)[B,C];
+ endfor;
+ draw polygone(A,B,C,D) withpen pensquare scaled 1.5;
+ if \useKV[Colorilude]{Legende}:
+ label.lrt(btex \tiny d'après APMEP etex rotated 90,B);
+ fi;
+ \end{mplibcode}
+ \else
+ \begin{mpost}[mpsettings={boolean Legende;
+ Legende=\useKV[Colorilude]{Legende};
+ nblargeur:=\useKV[Colorilude]{Largeur};
+ nblignes:=\useKV[Colorilude]{Lignes};
+ coef:=\useKV[Colorilude]{Coef};}]
+ pair A,B,C,D;%pour la grille
+ A=(0,0);
+ B-A=u*coef*(nblargeur,0);
+ C-B=u*coef*(0,-nblignes);
+ D-C=A-B;
+ for k=1 upto nblargeur-1:
+ draw (k/nblargeur)[A,B]--(k/nblargeur)[D,C];
+ endfor;
+ for k=1 upto nblignes-1:
+ draw (k/nblignes)[A,D]--(k/nblignes)[B,C];
+ endfor;
+ draw polygone(A,B,C,D) withpen pensquare scaled 1.5;
+ if Legende:
+ label.lrt(\btex \tiny d'après APMEP etex rotated 90,B);
+ fi;
+ \end{mpost}
+ \fi
+}%
+
+\newcommand\TraceEchiquierColoreColorilude{%
+ \ifluatex%
+ \mplibforcehmode%
+ \begin{mplibcode}
+ pair A,B,C,D;%pour la grille
+ A=(0,0);
+ B-A=u*\useKV[Colorilude]{Coef}*(\useKV[Colorilude]{Largeur},0);
+ C-B=u*\useKV[Colorilude]{Coef}*(0,-\useKV[Colorilude]{Lignes});
+ D-C=A-B;
+ numeric nblargeur,nblignes;
+ nblargeur:=\useKV[Colorilude]{Largeur};
+ nblignes:=\useKV[Colorilude]{Lignes};
+ % on récupère les données de coloriage
+ numeric n;
+ n:=0;
+ numeric nbCases[];
+ color ColorSucc[];
+ for p_=\the\toklisteremplissage:
+ n:=n+1;
+ if (n mod 2)=0:
+ nbCases[n div 2]:=p_;
+ else:
+ ColorSucc[n div 2]:=p_;
+ fi;
+ endfor;
+ % on colorie :)
+ numeric NBCASES;
+ NBCASES:=0;
+ for l=1 upto (n div 2):
+ fill ((unitsquare xscaled (\useKV[Colorilude]{Coef}*u*nbCases[l]) yscaled (\useKV[Colorilude]{Coef}*u)) shifted(\useKV[Colorilude]{Coef}*u*(NBCASES mod nblargeur,-1-(NBCASES div nblargeur)))) withcolor ColorSucc[l-1];
+ NBCASES:=NBCASES+nbCases[l];
+ endfor;
+ % on trace le quadrillage
+ for k=1 upto nblargeur-1:
+ draw (k/nblargeur)[A,B]--(k/nblargeur)[D,C];
+ endfor;
+ for k=1 upto nblignes-1:
+ draw (k/nblignes)[A,D]--(k/nblignes)[B,C];
+ endfor;
+ draw polygone(A,B,C,D) withpen pensquare scaled 1.5;
+ if \useKV[Colorilude]{Legende}:
+ label.lrt(btex \tiny d'après APMEP etex rotated 90,B);
+ fi;
+ \end{mplibcode}
+ \else
+ \begin{mpost}[mpsettings={boolean Legende;
+ Legende=\useKV[Colorilude]{Legende};
+ nblargeur:=\useKV[Colorilude]{Largeur};
+ nblignes:=\useKV[Colorilude]{Lignes};
+ coef:=\useKV[Colorilude]{Coef};
+ numeric n;
+ n:=0;
+ numeric nbCases[];
+ color ColorSucc[];
+ for p_=\the\toklisteremplissage:
+ n:=n+1;
+ if (n mod 2)=0:
+ nbCases[n div 2]:=p_;
+ else:
+ ColorSucc[n div 2]:=p_;
+ fi;
+ endfor;
+ }]
+ pair A,B,C,D;%pour la grille
+ A=(0,0);
+ B-A=u*coef*(nblargeur,0);
+ C-B=u*coef*(0,-nblignes);
+ D-C=A-B;
+ % on colorie :)
+ numeric NBCASES;
+ NBCASES:=0;
+ for l=1 upto (n div 2):
+ fill ((unitsquare xscaled (coef*u*nbCases[l]) yscaled (coef*u)) shifted(coef*u*(NBCASES mod nblargeur,-1-(NBCASES div nblargeur)))) withcolor ColorSucc[l-1];
+ NBCASES:=NBCASES+nbCases[l];
+ endfor;
+ % on trace le quadrillage
+ for k=1 upto nblargeur-1:
+ draw (k/nblargeur)[A,B]--(k/nblargeur)[D,C];
+ endfor;
+ for k=1 upto nblignes-1:
+ draw (k/nblignes)[A,D]--(k/nblignes)[B,C];
+ endfor;
+ draw polygone(A,B,C,D) withpen pensquare scaled 1.5;
+ if Legende:
+ label.lrt(\btex \tiny d'après APMEP etex rotated 90,B);
+ fi;
+ \end{mpost}
+ \fi
+}%
+
+\newtoks\toklisteremplissage%
+\toklisteremplissage{}%
+\def\UpdateRemplissage#1\nil{\addtotok\toklisteremplissage{#1,}}%
+
+\newcommand\ColoriludeEnonce{%
+Pour chaque ligne de la grille, colorie de gauche à droite, de la
+couleur indiquée, le nombre de cases donné par le résultat du calcul.
+}%
+
+\newcommand\ColoriludeListeCouleur[1]{%
+ \setsepchar{ }%
+ \readlist\ListeColoriludeCouleurs{#1}%
+ \foreachitem\compteur\in\ListeColoriludeCouleurs{%
+ \ifodd\compteurcnt\fbox{\begin{minipage}{1em}\centering\text{\ttfamily\bfseries\compteur}\end{minipage}}~\else\compteur\quad\fi%
+ }%
+}%
+
+\newcommand\Colorilude[2][]{%
+ \useKVdefault[Colorilude]%
+ \setKV[Colorilude]{#1}%
+ \setsepchar{\\/ }%
+ \readlist\ListeColorilude{#2}%
+ \ifboolKV[Colorilude]{Solution}{%
+ \toklisteremplissage{}%
+ \foreachitem\compteur\in\ListeColorilude{%
+ \foreachitem\couleur\in\ListeColorilude[\compteurcnt]{%
+ \expandafter\UpdateRemplissage\couleur\nil}%
+ }%
+ \TraceEchiquierColoreColorilude%
+ }{%
+ \dispogpfc{%
+ \TraceEchiquierColorilude%
+ }{%
+ % On cherche le nombre max de colonnes
+ \xdef\ListeColoriludeMax{0}%
+ \xintFor* ##1 in {\xintSeq {1}{\ListeColoriludelen}}\do{%
+ \xintifboolexpr{\listlen\ListeColorilude[##1]>\ListeColoriludeMax}{%
+ \xdef\ListeColoriludeMax{\listlen\ListeColorilude[##1]}%
+ }{}%
+ }%
+ %
+ % On affiche le tableau
+ \setlength{\tabcolsep}{0.2\tabcolsep}%
+ \begin{NiceTabular}{*{\fpeval{\ListeColoriludeMax/2}}{rl}}%
+ \xintFor* ##1 in {\xintSeq {1}{\ListeColoriludelen}}\do{%
+ \xintifboolexpr{\listlen\ListeColorilude[##1]==\ListeColoriludeMax}{%
+ \xintFor* ##2 in {\xintSeq {1}{\listlen\ListeColorilude[##1]}}\do{%
+ \xintifForFirst{}{&~}\ifodd##2\fbox{\begin{minipage}{1em}\centering\text{\ttfamily\bfseries\ListeColorilude[##1,##2]}\end{minipage}}~\else$\ListeColorilude[##1,##2]$\fi%
+ }%
+ }{%
+ \xintFor* ##2 in {\xintSeq {1}{\listlen\ListeColorilude[##1]}}\do{%
+ \xintifForFirst{}{&~}\ifodd##2\fbox{\begin{minipage}{1em}\centering\text{\ttfamily\bfseries\ListeColorilude[##1,##2]}\end{minipage}}~\else$\ListeColorilude[##1,##2]$\fi%
+ }%
+ &\hbox to1em{~}&\Cdots%
+ }%
+ \\[0.5em]%
+ }%
+ \end{NiceTabular}%
+ }%
+ }%
+}%
+
+%%%
+% Mosaique
+%%%
+\setKVdefault[ClesMosaique]{Largeur=2,Hauteur=2,Solution=false,Type=1,Label,Echelle=1cm}
+
+\newcommand\DessineMosaique[2][]{%
+ \useKVdefault[ClesMosaique]%
+ \setKV[ClesMosaique]{#1}%
+ \ifluatex%
+ \mplibforcehmode%
+ \begin{mplibcode}
+ u:=\useKV[ClesMosaique]{Echelle};
+ Type:=\useKV[ClesMosaique]{Type};
+ input PfCMosaique;
+ trace if Type=1:MosaiqueUn[#2] elseif Type=2: MosaiqueDeux[#2] fi;
+ \end{mplibcode}%
+ \else%
+ \begin{mpost}[mpsettings={u:=\useKV[ClesMosaique]{Echelle};Type:=\useKV[ClesMosaique]{Type};}]%
+ input PfCMosaique;
+ trace if Type=1:MosaiqueUn[#2] elseif Type=2: MosaiqueDeux[#2] fi;
+ \end{mpost}%
+ \fi%
+}%
+
+\newcommand\DessineMosaiqueComplet[1]{%
+ \ifluatex
+ \mplibforcehmode
+ \begin{mplibcode}
+ input PfCMosaique;
+ Largeur=\useKV[ClesMosaique]{Largeur};
+ Hauteur=\useKV[ClesMosaique]{Hauteur};
+ Type=\useKV[ClesMosaique]{Type};
+ boolean Solution,Label;
+ Solution=\useKV[ClesMosaique]{Solution};
+ Label=\useKV[ClesMosaique]{Label};
+ pair A,B,C,D;
+ A=u*(0,1);
+ B-A=u*(Largeur,0);
+ C-B=u*(0,-Hauteur);
+ D-C=A-B;
+ picture mosaique;
+ path case;
+ case=unitsquare scaled 1cm;
+ if Type=1:
+ mosaique=image(
+ trace case withcolor 0.5white;
+ trace (point(0) of case)--(point(2) of case) withcolor 0.75white;
+ trace (point(1) of case)--(point(3) of case) withcolor 0.75white;
+ trace (point(0.5) of case)--(point(2.5) of case) withcolor 0.75white;
+ trace (point(1.5) of case)--(point(3.5) of case) withcolor 0.75white;
+ );
+ else:
+ mosaique=image(
+ trace case withcolor 0.5white;
+ trace (point(0.5) of case)--(point(2.5) of case) withcolor 0.75white;
+ trace (point(1.5) of case)--(point(3.5) of case) withcolor 0.75white;
+ trace (point(0.5) of case)--(point(1.5) of case)--(point(2.5) of case)--(point(3.5) of case)--cycle withcolor 0.75white;
+ );
+ fi;
+ if Solution:
+ nbmos:=0;
+ for p_=#1:
+ trace if Type=1:MosaiqueUn[xpart(p_)] else: MosaiqueDeux[xpart(p_)] fi shifted(u*(nbmos mod Largeur,-(nbmos div Largeur)));
+ nbmos:=nbmos+1;
+ endfor;
+ else:
+ nbmos:=0;
+ for p_=#1:
+ trace mosaique shifted(u*(nbmos mod Largeur,-(nbmos div Largeur)));
+ if Label:
+ label(TEX("\num{"&decimal(ypart(p_))&"}"),center (mosaique shifted(u*(nbmos mod Largeur,-(nbmos div Largeur)))));
+ fi;
+ nbmos:=nbmos+1;
+ endfor;
+ fi;
+ trace polygone(A,B,C,D);
+ \end{mplibcode}
+ \else
+ \begin{mpost}[mpsettings={Largeur=\useKV[ClesMosaique]{Largeur};Hauteur=\useKV[ClesMosaique]{Hauteur};Type=\useKV[ClesMosaique]{Type};boolean Solution,Label;Solution=\useKV[ClesMosaique]{Solution};}]
+ Label=\useKV[ClesMosaique]{Label};
+ input PfCMosaique;
+ pair A,B,C,D;
+ A=u*(0,1);
+ B-A=u*(Largeur,0);
+ C-B=u*(0,-Hauteur);
+ D-C=A-B;
+ picture mosaique;
+ path case;
+ case=unitsquare scaled 1cm;
+ if Type=1:
+ mosaique=image(
+ trace case withcolor 0.5white;
+ trace (point(0) of case)--(point(2) of case) withcolor 0.75white;
+ trace (point(1) of case)--(point(3) of case) withcolor 0.75white;
+ trace (point(0.5) of case)--(point(2.5) of case) withcolor 0.75white;
+ trace (point(1.5) of case)--(point(3.5) of case) withcolor 0.75white;
+ );
+ else:
+ mosaique=image(
+ trace case withcolor 0.5white;
+ trace (point(0.5) of case)--(point(2.5) of case) withcolor 0.75white;
+ trace (point(1.5) of case)--(point(3.5) of case) withcolor 0.75white;
+ trace (point(0.5) of case)--(point(1.5) of case)--(point(2.5) of case)--(point(3.5) of case)--cycle withcolor 0.75white;
+ );
+ fi;
+ if Solution:
+ nbmos:=0;
+ for p_=#1:
+ trace if Type=1:MosaiqueUn[xpart(p_)] else: MosaiqueDeux[xpart(p_)] fi shifted(u*(nbmos mod Largeur,-(nbmos div Largeur)));
+ nbmos:=nbmos+1;
+ endfor;
+ else:
+ nbmos:=0;
+ for p_=#1:
+ trace mosaique shifted(u*(nbmos mod Largeur,-(nbmos div Largeur)));
+ if Label:
+ label(LATEX("\num{"&decimal(ypart(p_))&"}"),center (mosaique shifted(u*(nbmos mod Largeur,-(nbmos div Largeur)))));
+ fi;
+ nbmos:=nbmos+1;
+ endfor;
+ fi;
+ trace polygone(A,B,C,D);
+ \end{mpost}
+ \fi
+}%
+
+\newtoks\toklistecaseM%
+\def\UpdatetoksMosaique#1/#2\nil{\addtotok\toklistecaseM{(#1,#2),}}%
+
+\newcommand\Mosaique[2][]{%
+ \useKVdefault[ClesMosaique]%
+ \setKV[ClesMosaique]{#1}%
+ \setsepchar[*]{,*/}%
+ \readlist*\ListeMosaique{#2}%
+ \toklistecaseM{}%
+ \foreachitem\compteur\in\ListeMosaique{\expandafter\UpdatetoksMosaique\compteur\nil}%
+ \DessineMosaiqueComplet{\the\toklistecaseM}%
+}%
+
+%%%
+% Qui suis-je
+%%%
+\setKVdefault[Quisuisje]{Solution=false,Largeur=5mm,Colonnes=5,CodePerso=false}%
+
+\newcommand\QuisuisjeEnonce{%
+ Chaque lettre du mot à découvrir porte un numéro qui correspond à un
+ calcul à effectuer. Pour trouver les lettres de ce mot, tu dois donc
+ effectuer les calculs proposés. Les résultats que tu auras trouvés
+ te donneront, à l'aide du tableau de correspondance ci-dessous, les
+ lettres du mot.
+}%
+
+\newcommand\QuisuisjeTableau[2][]{%
+ \setKV[Quisuisje]{#1}%
+ \setsepchar[*]{§*/}\ignoreemptyitems%
+ \readlist*\ListeQuisuisje{#2}%
+ \begin{NiceTabular}{|l|*{\ListeQuisuisjelen}{m{\useKV[Quisuisje]{Largeur}}|}}%
+ \hline
+ Lettre\xintFor* ##1 in {\xintSeq {1}{\ListeQuisuisjelen}}\do{%
+ &\centering\arraybackslash\ListeQuisuisje[##1,1]
+ }\\
+ \hline
+ R\'esultat du calcul\xintFor* ##1 in {\xintSeq {1}{\ListeQuisuisjelen}}\do{%
+ &\centering\arraybackslash\ListeQuisuisje[##1,2]
+ }\\
+ \hline
+ \end{NiceTabular}%
+}%
+
+\newcommand\QuisuisjeCodePerso[3][]{%
+ \setKV[Quisuisje]{#1}%
+ \setsepchar{ }%
+ \readlist*\ListeQuisuisjeCode{#2}%
+ \readlist*\ListeQuisuisjeLettres{#3}%
+ \par\hfill%
+ \begin{NiceTabular}{|*{\ListeQuisuisjeLettreslen}{m{7mm}|}}
+ \hline
+ \xintFor* ##1 in {\xintSeq {1}{\ListeQuisuisjeLettreslen}}\do{%
+ \xintifForFirst{}{&}\ifboolKV[Quisuisje]{Solution}{\hfill\ListeQuisuisjeLettres[##1]}{\phantom{1}}
+ }\\
+ \xintFor* ##1 in {\xintSeq {1}{\ListeQuisuisjeLettreslen}}\do{%
+ \xintifForFirst{}{&}\tiny\ListeQuisuisjeCode[##1]%
+ }\\
+ \hline
+ \end{NiceTabular}%
+}%
+
+\newcommand\Quisuisje[3][]{%
+ \useKVdefault[Quisuisje]%
+ \setKV[Quisuisje]{#1}%
+ \ifboolKV[Quisuisje]{CodePerso}{}{%
+ \setsepchar{ }%
+ \readlist\ListeLettres{#3}%
+ }%
+ \setsepchar{§}%
+ \readlist\ListeCalculs{#2}%
+ \ifboolKV[Quisuisje]{CodePerso}{}{%
+ \par\hfill%
+ \begin{NiceTabular}{|*{\ListeLettreslen}{m{7mm}|}}
+ \hline
+ \xintFor* ##1 in {\xintSeq {1}{\ListeLettreslen}}\do{%
+ \xintifForFirst{}{&} \ifboolKV[Quisuisje]{Solution}{\hfill\ListeLettres[##1]}{\phantom{1}}
+ }\\
+ \xintFor* ##1 in {\xintSeq {1}{\ListeLettreslen}}\do{%
+ \xintifForFirst{}{&}\tiny\num{##1}%
+ }\\
+ \hline
+ \end{NiceTabular}%
+ }%
+ \par\bigskip\par
+ \ifboolKV[Quisuisje]{Solution}{}{%
+ \begin{multicols}{\useKV[Quisuisje]{Colonnes}}%
+ \begin{enumerate}
+ \xintFor* ##1 in {\xintSeq {1}{\ListeCalculslen}}\do{%
+ \item\ListeCalculs[##1]
+ }
+ \end{enumerate}%
+ \end{multicols}%
+ }%
+}%
+
+%%%
+% Dessin Gradue
+%%%
+\setKVdefault[DessinGradue]{Lignes=10,Debut=-5,Fin=5,Pas=10,Solution=false,EcartVertical=1.5,LignesIdentiques,Longueur=10,Echelle=1}
+
+\def\TraceDessinGradue#1#2#3#4{%
+ \ifluatex
+ \mplibforcehmode
+ \begin{mplibcode}
+ pair La,Lb,Lab[];
+ La=(0,0);
+ Lb-La=u*(\useKV[DessinGradue]{Longueur},0);
+ for k=0 upto #4:
+ Lab[k]=(k/#4)[La,Lb];
+ endfor;
+ picture EnsembleLignes,Lignes;
+ Lignes=image(
+ trace segment(La,Lb);
+ for k=0 upto #4:
+ trace (Lab[k]+u*(0,-0.1))--(Lab[k]+u*(0,0.1));
+ endfor;
+ labeloffset:=labeloffset*1.5;
+ label.top(TEX("\num{"&decimal(#2)&"}"),La);
+ label.top(TEX("\num{"&decimal(#3)&"}"),Lb);
+ labeloffset:=labeloffset/1.5;
+ );
+ EnsembleLignes=image(
+ for k=0 upto #1-1:
+ trace Lignes shifted(k*u*(0,-\useKV[DessinGradue]{EcartVertical}));
+ label(TEX("(\num{"&decimal(k+1)&"})"),La+u*(-1.5,-k*\useKV[DessinGradue]{EcartVertical}));
+ endfor;
+ );
+ trace EnsembleLignes scaled \useKV[DessinGradue]{Echelle};
+ \end{mplibcode}
+ \else
+ \begin{mpost}[mpsettings={numeric LongueurLigne; LongueurLigne=\useKV[DessinGradue]{Longueur};numeric EcartVertical; EcartVertical=\useKV[DessinGradue]{EcartVertical}; numeric Echelle; Echelle=\useKV[DessinGradue]{Echelle};}]
+ pair La,Lb,Lab[];
+ La=(0,0);
+ Lb-La=u*(LongueurLigne,0);
+ for k=0 upto #4:
+ Lab[k]=(k/#4)[La,Lb];
+ endfor;
+ picture EnsembleLignes,Lignes;
+ Lignes=image(
+ trace segment(La,Lb);
+ for k=0 upto #4:
+ trace (Lab[k]+u*(0,-0.1))--(Lab[k]+u*(0,0.1));
+ endfor;
+ labeloffset:=labeloffset*1.5;
+ label.top(LATEX("\num{"&decimal(#2)&"}"),La);
+ label.top(LATEX("\num{"&decimal(#3)&"}"),Lb);
+ labeloffset:=labeloffset/1.5;
+ );
+ EnsembleLignes=image(
+ for k=0 upto #1-1:
+ trace Lignes shifted(k*u*(0,-EcartVertical));
+ label(LATEX("(\num{"&decimal(k+1)&"})"),La+u*(-1.5,-k*EcartVertical));
+ endfor;
+ );
+ trace EnsembleLignes scaled Echelle;
+ \end{mpost}
+ \fi
+}
+
+\def\TraceDessinGradueSolution#1#2#3#4#5#6{%
+ \ifluatex
+ \mplibforcehmode
+ \begin{mplibcode}
+ pair La,Lb,Lab[];
+ pair A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A',B',C',D',E',F',G',H',I',J',K',L',M',N',O',P',Q',R',S',T',U',V',W',X',Y',Z',A'',B'',C'',D'',E'',F'',G'',H'',I'',J'',K'',L'',M'',N'',O'',P'',Q'',R'',S'',T'',U'',V'',W'',X'',Y'',Z'';
+ La=(0,0);
+ Lb-La=u*(\useKV[DessinGradue]{Longueur},0);
+ for k=0 upto #4:
+ Lab[k]=(k/#4)[La,Lb];
+ endfor;
+ picture EnsembleLignes,Lignes;
+ Lignes=image(
+ trace segment(La,Lb);
+ for k=0 upto #4:
+ trace (Lab[k]+u*(0,-0.1))--(Lab[k]+u*(0,0.1));
+ endfor;
+ labeloffset:=labeloffset*1.5;
+ label.top(TEX("\num{"&decimal(#2)&"}"),La);
+ label.top(TEX("\num{"&decimal(#3)&"}"),Lb);
+ labeloffset:=labeloffset/1.5;
+ );
+ EnsembleLignes=image(%
+ drawoptions(withcolor 0.5white);
+ for k=0 upto #1-1:
+ trace Lignes shifted(k*u*(0,-\useKV[DessinGradue]{EcartVertical}));
+ label(TEX("(\num{"&decimal(k+1)&"})"),La+u*(-1.5,k*(-\useKV[DessinGradue]{EcartVertical})));
+ endfor;
+ drawoptions();
+ n:=0;
+ numeric nblignes,nbpas;
+ for p_=#5:
+ n:=n+1;
+ if (n mod 3)=1:
+ nblignes:=p_;
+ elseif (n mod 3)=2:
+ nbpas:=p_;
+ elseif (n mod 3)=0:
+ p_=(nbpas/#4)[La,Lb] shifted(u*(0,(nblignes-1)*(-\useKV[DessinGradue]{EcartVertical})));
+ fi;
+ endfor;
+ for p_=#6:
+ trace p_ withpen pencircle scaled 1.5;
+ endfor;
+ );
+ trace EnsembleLignes scaled \useKV[DessinGradue]{Echelle};
+ \end{mplibcode}
+ \else
+ \begin{mpost}[mpsettings={numeric LongueurLigne; LongueurLigne=\useKV[DessinGradue]{Longueur};numeric EcartVertical; EcartVertical=\useKV[DessinGradue]{EcartVertical}; numeric Echelle; Echelle=\useKV[DessinGradue]{Echelle};}]
+ pair La,Lb,Lab[];
+ pair A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A',B',C',D',E',F',G',H',I',J',K',L',M',N',O',P',Q',R',S',T',U',V',W',X',Y',Z',A'',B'',C'',D'',E'',F'',G'',H'',I'',J'',K'',L'',M'',N'',O'',P'',Q'',R'',S'',T'',U'',V'',W'',X'',Y'',Z'';
+ La=(0,0);
+ Lb-La=u*(LongueurLigne,0);
+ for k=0 upto #4:
+ Lab[k]=(k/#4)[La,Lb];
+ endfor;
+ picture EnsembleLignes,Lignes;
+ Lignes=image(
+ trace segment(La,Lb);
+ for k=0 upto #4:
+ trace (Lab[k]+u*(0,-0.1))--(Lab[k]+u*(0,0.1));
+ endfor;
+ labeloffset:=labeloffset*1.5;
+ label.top(LATEX("\num{"&decimal(#2)&"}"),La);
+ label.top(LATEX("\num{"&decimal(#3)&"}"),Lb);
+ labeloffset:=labeloffset/1.5;
+ );
+ EnsembleLignes=image(
+ drawoptions(withcolor 0.5white);
+ for k=0 upto #1-1:
+ trace Lignes shifted(k*u*(0,-EcartVertical));
+ label(LATEX("(\num{"&decimal(k+1)&"})"),La+u*(-1.5,k*(-EcartVertical)));
+ endfor;
+ drawoptions();
+ n:=0;
+ numeric nblignes,nbpas;
+ for p_=#5:
+ n:=n+1;
+ if (n mod 3)=1:
+ nblignes:=p_;
+ elseif (n mod 3)=2:
+ nbpas:=p_;
+ elseif (n mod 3)=0:
+ p_=(nbpas/#4)[La,Lb] shifted(u*(0,(nblignes-1)*(-EcartVertical)));
+ fi;
+ endfor;
+ for p_=#6:
+ trace p_ withpen pencircle scaled 1.5;
+ endfor;
+ );
+ trace EnsembleLignes scaled Echelle;
+ \end{mpost}
+ \fi
+}
+
+\def\TraceDessinGradueMul#1{%
+ \ifluatex
+ \mplibforcehmode
+ \begin{mplibcode}
+ pair La,Lb,Lab[];
+ La=(0,0);
+ Lb-La=u*(\useKV[DessinGradue]{Longueur},0);
+ picture EnsembleLignes,Lignes;
+ EnsembleLignes=image(
+ n:=0;
+ m:=0;
+ for p_=#1:
+ n:=n+1;
+ trace segment(La,Lb) shifted((n-1)*u*(0,-\useKV[DessinGradue]{EcartVertical}));
+ label(TEX("(\num{"&decimal(n)&"})"),La+u*(-1.5,-(n-1)*\useKV[DessinGradue]{EcartVertical}));
+ for k=0 upto bluepart(p_):
+ m:=bluepart(p_);
+ Lab[k]:=(k/m)[La,Lb];
+ trace ((Lab[k]+u*(0,-0.1))--(Lab[k]+u*(0,0.1))) shifted((n-1)*u*(0,-\useKV[DessinGradue]{EcartVertical}));
+ endfor;
+ labeloffset:=labeloffset*1.5;
+ label.top(TEX("\num{"&decimal(redpart(p_))&"}"),La shifted((n-1)*u*(0,-\useKV[DessinGradue]{EcartVertical})));
+ label.top(TEX("\num{"&decimal(greenpart(p_))&"}"),Lb shifted((n-1)*u*(0,-\useKV[DessinGradue]{EcartVertical})));
+ labeloffset:=labeloffset/1.5;
+ endfor;
+ );
+ trace EnsembleLignes scaled \useKV[DessinGradue]{Echelle};
+ \end{mplibcode}
+ \else
+ \begin{mpost}[mpsettings={numeric LongueurLigne; LongueurLigne=\useKV[DessinGradue]{Longueur};numeric EcartVertical; EcartVertical=\useKV[DessinGradue]{EcartVertical}; numeric Echelle; Echelle=\useKV[DessinGradue]{Echelle};}]
+ pair La,Lb,Lab[];
+ La=(0,0);
+ Lb-La=u*(LongueurLigne,0);
+ picture EnsembleLignes,Lignes;
+ EnsembleLignes=image(
+ n:=0;
+ m:=0;
+ for p_=#1:
+ n:=n+1;
+ trace segment(La,Lb) shifted((n-1)*u*(0,-EcartVertical));
+ for k=0 upto bluepart(p_):
+ m:=bluepart(p_);
+ Lab[k]:=(k/m)[La,Lb];
+ trace ((Lab[k]+u*(0,-0.1))--(Lab[k]+u*(0,0.1))) shifted((n-1)*u*(0,-EcartVertical));
+ label(LATEX("(\num{"&decimal(n)&"})"),La+u*(-1.5,-(n-1)*\useKV[DessinGradue]{EcartVertical}));
+ endfor;
+ labeloffset:=labeloffset*1.5;
+ label.top(LATEX("\num{"&decimal(redpart(p_))&"}"),La shifted((n-1)*u*(0,-EcartVertical)));
+ label.top(LATEX("\num{"&decimal(greenpart(p_))&"}"),Lb shifted((n-1)*u*(0,-EcartVertical)));
+ labeloffset:=labeloffset/1.5;
+ endfor;
+ );
+ trace EnsembleLignes scaled Echelle;
+ \end{mpost}
+ \fi
+}
+
+\def\TraceDessinGradueMulSolution#1#2#3{%
+ \ifluatex
+ \mplibforcehmode
+ \begin{mplibcode}
+ pair La,Lb,Lab[];
+ pair A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A',B',C',D',E',F',G',H',I',J',K',L',M',N',O',P',Q',R',S',T',U',V',W',X',Y',Z',A'',B'',C'',D'',E'',F'',G'',H'',I'',J'',K'',L'',M'',N'',O'',P'',Q'',R'',S'',T'',U'',V'',W'',X'',Y'',Z'';
+ La=(0,0);
+ Lb-La=u*(\useKV[DessinGradue]{Longueur},0);
+ picture EnsembleLignes,Lignes;
+ EnsembleLignes=image(%
+ drawoptions(withcolor 0.5white);
+ n:=0;
+ m:=0;
+ numeric retienspas[];
+ for p_=#1:
+ n:=n+1;
+ trace segment(La,Lb) shifted((n-1)*u*(0,-\useKV[DessinGradue]{EcartVertical}));
+ label(TEX("(\num{"&decimal(n)&"})"),La+u*(-1.5,-(n-1)*\useKV[DessinGradue]{EcartVertical}));
+ for k=0 upto bluepart(p_):
+ m:=bluepart(p_);
+ retienspas[n]:=bluepart(p_);
+ Lab[k]:=(k/m)[La,Lb];
+ trace ((Lab[k]+u*(0,-0.1))--(Lab[k]+u*(0,0.1))) shifted((n-1)*u*(0,-\useKV[DessinGradue]{EcartVertical}));
+ endfor;
+ labeloffset:=labeloffset*1.5;
+ label.top(TEX("\num{"&decimal(redpart(p_))&"}"),La shifted((n-1)*u*(0,-\useKV[DessinGradue]{EcartVertical})));
+ label.top(TEX("\num{"&decimal(greenpart(p_))&"}"),Lb shifted((n-1)*u*(0,-\useKV[DessinGradue]{EcartVertical})));
+ labeloffset:=labeloffset/1.5;
+ endfor;
+ drawoptions();
+ n:=0;
+ numeric nblignes,nbpas;
+ for p_=#2:
+ n:=n+1;
+ if (n mod 3)=1:
+ nblignes:=p_;
+ elseif (n mod 3)=2:
+ nbpas:=p_;
+ elseif (n mod 3)=0:
+ p_=(nbpas/retienspas[nblignes])[La,Lb] shifted(u*(0,(nblignes-1)*(-\useKV[DessinGradue]{EcartVertical})));
+ fi;
+ endfor;
+ %Differents traces
+ for p_=#3:
+ trace p_ withpen pencircle scaled 1.5;
+ endfor;
+ );
+ trace EnsembleLignes scaled \useKV[DessinGradue]{Echelle};
+ \end{mplibcode}
+ \else
+ \begin{mpost}[mpsettings={numeric LongueurLigne; LongueurLigne=\useKV[DessinGradue]{Longueur};numeric EcartVertical; EcartVertical=\useKV[DessinGradue]{EcartVertical}; numeric Echelle; Echelle=\useKV[DessinGradue]{Echelle};}]
+ pair La,Lb,Lab[];
+ pair A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A',B',C',D',E',F',G',H',I',J',K',L',M',N',O',P',Q',R',S',T',U',V',W',X',Y',Z',A'',B'',C'',D'',E'',F'',G'',H'',I'',J'',K'',L'',M'',N'',O'',P'',Q'',R'',S'',T'',U'',V'',W'',X'',Y'',Z'';
+ La=(0,0);
+ Lb-La=u*(LongueurLigne,0);
+ picture EnsembleLignes,Lignes;
+ EnsembleLignes=image(
+ n:=0;
+ m:=0;
+ numeric retienspas[];
+ drawoptions(withcolor 0.5white);
+ for p_=#1:
+ n:=n+1;
+ trace segment(La,Lb) shifted((n-1)*u*(0,-EcartVertical));
+ label(LATEX("(\num{"&decimal(n)&"})"),La+u*(-1.5,-(n-1)*\useKV[DessinGradue]{EcartVertical}));
+ for k=0 upto bluepart(p_):
+ m:=bluepart(p_);
+ retienspas[n]:=bluepart(p_);
+ Lab[k]:=(k/m)[La,Lb];
+ trace ((Lab[k]+u*(0,-0.1))--(Lab[k]+u*(0,0.1))) shifted((n-1)*u*(0,-EcartVertical));
+ endfor;
+ labeloffset:=labeloffset*1.5;
+ label.top(TEX("\num{"&decimal(redpart(p_))&"}"),La shifted((n-1)*u*(0,-EcartVertical)));
+ label.top(TEX("\num{"&decimal(greenpart(p_))&"}"),Lb shifted((n-1)*u*(0,-EcartVertical)));
+ labeloffset:=labeloffset/1.5;
+ endfor;
+ drawoptions();
+ n:=0;
+ numeric nblignes,nbpas;
+ for p_=#2:
+ n:=n+1;
+ if (n mod 3)=1:
+ nblignes:=p_;
+ elseif (n mod 3)=2:
+ nbpas:=p_;
+ elseif (n mod 3)=0:
+ p_=(nbpas/retienspas[nblignes])[La,Lb] shifted(u*(0,(nblignes-1)*(-EcartVertical)));
+ fi;
+ endfor;
+ %Differents traces
+ for p_=#3:
+ trace p_ withpen pencircle scaled 1.5;
+ endfor;
+ );
+ trace EnsembleLignes scaled Echelle;
+ \end{mpost}
+ \fi
+}
+
+\def\UpdateLignes#1/#2/#3\nil{\addtotok\toklisteptsgrad{#1,#3,#2,}}
+\def\UpdateTraces#1\nil{\addtotok\toklistetracesgrad{#1,}}
+\def\UpdateDefLignes#1/#2/#3\nil{\addtotok\toklistedefligne{(#1,#2,#3),}}
+
+\newcommand\DessinGradue[4][]{%
+ \useKVdefault[DessinGradue]%
+ \setKV[DessinGradue]{#1}%
+ \ifboolKV[DessinGradue]{LignesIdentiques}{%
+ \ifboolKV[DessinGradue]{Solution}{%
+ \setsepchar[*]{,*/}%
+ \readlist\ListePG{#3}%
+ \setsepchar[*]{§*/}%
+ \readlist\ListeTraces{#4}%
+ \newtoks\toklisteptsgrad%
+ \foreachitem\compteur\in\ListePG{\expandafter\UpdateLignes\compteur\nil}%
+ \newtoks\toklistetracesgrad%
+ \foreachitem\compteur\in\ListeTraces{\expandafter\UpdateTraces\compteur\nil}%
+ \TraceDessinGradueSolution{\useKV[DessinGradue]{Lignes}}{\useKV[DessinGradue]{Debut}}{\useKV[DessinGradue]{Fin}}{\useKV[DessinGradue]{Pas}}{\the\toklisteptsgrad}{\the\toklistetracesgrad}%
+ }{%
+ \TraceDessinGradue{\useKV[DessinGradue]{Lignes}}{\useKV[DessinGradue]{Debut}}{\useKV[DessinGradue]{Fin}}{\useKV[DessinGradue]{Pas}}%
+ }
+ }{%
+ \setsepchar[*]{,*/}%
+ \readlist\ListeDefLigne{#2}%
+ \newtoks\toklistedefligne%
+ \foreachitem\compteur\in\ListeDefLigne{\expandafter\UpdateDefLignes\compteur\nil}%
+ \ifboolKV[DessinGradue]{Solution}{%
+ %
+ \setsepchar[*]{,*/}%
+ \readlist\ListePG{#3}%
+ \setsepchar[*]{§*/}%
+ \readlist\ListeTraces{#4}%
+ \newtoks\toklisteptsgrad%
+ \foreachitem\compteur\in\ListePG{\expandafter\UpdateLignes\compteur\nil}%
+ \newtoks\toklistetracesgrad%
+ \foreachitem\compteur\in\ListeTraces{\expandafter\UpdateTraces\compteur\nil}%
+ \TraceDessinGradueMulSolution{\the\toklistedefligne}{\the\toklisteptsgrad}{\the\toklistetracesgrad}%
+ }{%
+ \TraceDessinGradueMul{\the\toklistedefligne}%
+ }%
+ }%
+}%
+
+%%%
+% Autonomie
+%%%
+\setKVdefault[Autonomie]{AfficheMarge=false,TitreEnigme=Enigme,TitreAtoi=\`A toi,Enigme=false,TexteCorrection=\bfseries Correction}%
+
+\newcommand\Autonomie[3][]{%
+ \useKVdefault[Autonomie]%
+ \setKV[Autonomie]{#1}%
+ \setsepchar[*]{§*/}
+ \readlist*\ListeAutoQ{#2}%
+ % \setsepchar{§}
+ % \readlist*\ListeAutoR{#3}%
+ \setsepchar[*]{§*/}
+ \readlist*\ListeAutoEn{#3}%
+ \clearpage
+ \begin{tikzpicture}[remember picture,overlay]%
+ \ifboolKV[Autonomie]{AfficheMarge}{%
+ \node[xshift=5mm,yshift=-5mm,circle] (A) at (current page.north west) {};
+ \node[xshift=-5mm,yshift=5mm] (B) at (current page.south east) {};
+ \draw[blue,dashed] (A) rectangle (B);
+ }{}%
+ \foreach \i in {1,...,3}{
+ \coordinate[xshift=\i*0.25*\paperwidth] (A\i) at (current page.north west);%
+ \coordinate[xshift=\i*0.25*\paperwidth] (B\i) at (current page.south west);%
+ }
+ \foreach \i in{1,...,4}{%
+ \coordinate[yshift=-\i*0.25*\paperheight] (C\i) at (current page.north west);%
+ \coordinate[yshift=-\i*0.25*\paperheight] (F\i) at (current page.north east);%
+ \coordinate[yshift=-\i*0.25*\paperheight] (D\i) at (A1);%
+ \coordinate[yshift=-\i*0.25*\paperheight] (E\i) at (A3);%
+ \draw (C\i) to (D\i);
+ \draw (E\i) to (F\i);
+ }
+ \coordinate (Q1) at ($(F1)!0.5!(A3)$);
+ \coordinate (Q2) at ($(F2)!0.5!(E1)$);
+ \coordinate (Q3) at ($(F3)!0.5!(E2)$);
+ \coordinate (Q4) at ($(F4)!0.5!(E3)$);
+ \coordinate (Q5) at ($(C1)!0.5!(A1)$);
+ \coordinate (Q6) at ($(C2)!0.5!(D1)$);
+ \coordinate (Q7) at ($(C3)!0.5!(D2)$);
+ \coordinate (Q8) at ($(C4)!0.5!(D3)$);
+ \draw[dashed] (A1) to (B1);%
+ \draw[dashed] (A3) to (B3);%
+ \foreach \i in {1,...,4}{%
+ \node[xshift=-5mm,align=justify,anchor=center,text width=0.8*0.25\textwidth] (Test\i) at (Q\i) {\ding{\fpeval{171+\i}}~\ListeAutoQ[\i,1]};
+ }
+ \foreach \i in {5,...,8}{%
+ \node[align=justify,anchor=center,text width=0.8*0.25\textwidth] (Test\i) at (Q\i) {\ding{\fpeval{171+\i}}~\ListeAutoQ[\i,1]};
+ }
+ \end{tikzpicture}
+ \clearpage
+ \begin{tikzpicture}[remember picture,overlay]%
+ \ifboolKV[Autonomie]{AfficheMarge}{%
+ \node[xshift=5mm,yshift=-5mm,circle] (A) at (current page.north west) {};
+ \node[xshift=-5mm,yshift=5mm] (B) at (current page.south east) {};
+ \draw[blue,dashed] (A) rectangle (B);
+ }{}%
+ \foreach \i in {1,...,3}{%
+ \coordinate[xshift=\i*0.25*\paperwidth] (A\i) at (current page.north west);%
+ \coordinate[xshift=\i*0.25*\paperwidth] (B\i) at (current page.south west);%
+ }
+ \foreach \i in{1,...,4}{%
+ \coordinate[yshift=-\i*0.25*\paperheight] (C\i) at (current page.north west);%
+ \coordinate[yshift=-\i*0.25*\paperheight] (F\i) at (current page.north east);%
+ \coordinate[yshift=-\i*0.25*\paperheight] (D\i) at (A1);%
+ \coordinate[yshift=-\i*0.25*\paperheight] (G\i) at (A2);%
+ \coordinate[yshift=-\i*0.25*\paperheight] (E\i) at (A3);%
+ \draw (C\i) to (F\i);
+ }
+ \coordinate (T1) at ($(current page.north west)!0.5!(A1)$);
+ \coordinate (T2) at ($(C1)!0.5!(D1)$);
+ \coordinate (T3) at ($(C2)!0.5!(D2)$);
+ \coordinate (T4) at ($(C3)!0.5!(D3)$);
+ \coordinate (T5) at ($(current page.north east)!0.5!(A3)$);
+ \coordinate (T6) at ($(E1)!0.5!(F1)$);
+ \coordinate (T7) at ($(E2)!0.5!(F2)$);
+ \coordinate (T8) at ($(E3)!0.5!(F3)$);
+ \coordinate (U1) at ($(C1)!0.5!(D1)$);
+ \coordinate (U2) at ($(C2)!0.5!(D2)$);
+ \coordinate (U3) at ($(C3)!0.5!(D3)$);
+ \coordinate (U4) at ($(current page.south west)!0.5!(B1)$);
+ \coordinate (U5) at ($(E1)!0.5!(F1)$);
+ \coordinate (U6) at ($(E2)!0.5!(F2)$);
+ \coordinate (U7) at ($(E3)!0.5!(F3)$);
+ \coordinate (U8) at ($(B3)!0.5!(current page.south east)$);
+ \coordinate (R1) at ($(D1)!0.5!(A2)$);
+ \coordinate (R2) at ($(D2)!0.5!(G1)$);
+ \coordinate (R3) at ($(D3)!0.5!(G2)$);
+ \coordinate (R4) at ($(D4)!0.5!(G3)$);
+ \coordinate (R5) at ($(E1)!0.5!(A2)$);
+ \coordinate (R6) at ($(E2)!0.5!(G1)$);
+ \coordinate (R7) at ($(E3)!0.5!(G2)$);
+ \coordinate (R8) at ($(E4)!0.5!(G3)$);
+ \coordinate (S1) at ($(A1)!0.5!(D1)$);
+ \coordinate (S2) at ($(D1)!0.5!(D2)$);
+ \coordinate (S3) at ($(D2)!0.5!(D3)$);
+ \coordinate (S4) at ($(D3)!0.5!(B1)$);
+ \coordinate (S5) at ($(R1)!0.5!(R5)$);
+ \coordinate (S6) at ($(R2)!0.5!(R6)$);
+ \coordinate (S7) at ($(R3)!0.5!(R7)$);
+ \coordinate (S8) at ($(R4)!0.5!(R8)$);
+ \draw[dashed] (A1) to (B1);%
+ \draw[dashed] (A2) to (B2);
+ \draw[dashed] (A3) to (B3);%
+ \foreach \i in {1,...,8}{%
+ \node[rotate=90,anchor=north] (Cor\i) at (S\i) {\useKV[Autonomie]{TexteCorrection}};
+ \node[anchor=west,xshift=2em,text width=0.8*0.25\paperwidth] (Test\i)
+ at (S\i) {\ListeAutoQ[\i,2]};
+ \node[anchor=north,yshift=-1em,text width=0.85*0.25\paperwidth] (TestEn\i)
+ at (T\i) {\textbf{\useKV[Autonomie]{TitreAtoi} :} \ListeAutoEn[\i,1]};
+ \ifboolKV[Autonomie]{Enigme}{%
+ \node[anchor=south,yshift=1em,text width=0.85*0.25\paperwidth] (TestREn\i)
+ at (U\i) {%
+ \ListeAutoEn[\i,2] : \pointilles\\
+ Lettre \ding{\fpeval{171+\i}} : \pointilles
+ };%
+ }{%
+ \node[anchor=south,yshift=1em,text width=0.85*0.25\paperwidth] (TestREn\i)
+ at (U\i) {%
+ \ListeAutoEn[\i,2]%
+ };%
+ }%
+ }
+ \end{tikzpicture}
+}
+
+%%%
% Calculatrice
%%%
%https://tex.stackexchange.com/questions/290321/mimicking-a-calculator-inputs-and-screen
@@ -2562,12 +4209,13 @@
\end{tabular}%
}%
}%
+ \renewcommand{\arraystretch}{1}%
}
%%%
% Somme des angles
%%%
-\setKVdefault[ClesSommeAngle]{Detail=true,Isocele=false,Figure=false,FigureSeule=false,Angle=0,Perso=false}%
+\setKVdefault[ClesSommeAngle]{Detail=true,Isocele=false,Figure=false,FigureSeule=false,Angle=0,Perso=false,Echelle=1cm}%
\def\MPFigureSommeAngle#1#2#3#4#5#6#7{
% #1 Premier sommet
@@ -2581,6 +4229,7 @@
\mplibforcehmode
\begin{mplibcode}
pair A,B,C,O,I;%
+ u:=\useKV[ClesSommeAngle]{Echelle};
% On place les points A,B,C sur le cercle de mani\`ere \`a faciliter la rotation de la figure
A=u*(1,1);
B-A=u*(4,0);
@@ -2640,9 +4289,7 @@
\end{mplibcode}
\mplibcodeinherit{disable}
\else
- \begin{mpost}
- input PfCGeometrie;
- u:=1cm;
+ \begin{mpost}[mpsettings={u:=\useKV[ClesSommeAngle]{Echelle};}]
pair A,B,C,O,I;%
% On place les points A,B,C sur le cercle de mani\`ere \`a faciliter la rotation de la figure
A=u*(1,1);
@@ -2807,7 +4454,7 @@
%%%
% Le th\'eor\`eme de Pythagore
%%%
-\setKVdefault[ClesPythagore]{Exact=false,AvantRacine=false,Racine=false,Entier=false,Egalite=false,Precision=2,Soustraction=false,Figure=false,FigureSeule=false,Angle=0,Reciproque=false,ReciColonnes=false,Faible=false,Unite=cm,EnchaineA=false,EnchaineB=false,EnchaineC=false,ValeurA=0,ValeurB=0,ValeurC=0,Perso=false}
+\setKVdefault[ClesPythagore]{Exact=false,AvantRacine=false,Racine=false,Entier=false,Egalite=false,Precision=2,Soustraction=false,Figure=false,FigureSeule=false,Angle=0,Echelle=1cm,Reciproque=false,ReciColonnes=false,Faible=false,Unite=cm,EnchaineA=false,EnchaineB=false,EnchaineC=false,ValeurA=0,ValeurB=0,ValeurC=0,Perso=false}
% On d\'efinit les figures \`a utiliser
\def\MPFigurePytha#1#2#3#4#5#6{%
@@ -2820,7 +4467,7 @@
\ifluatex
\mplibforcehmode
\begin{mplibcode}
- u:=1cm;
+ u:=\useKV[ClesPythagore]{Echelle};
pair A,B,C,O,D,E,F;%B est le sommet de l'angle droit
O=u*(2.5,2.5);
path cc;
@@ -2841,6 +4488,7 @@
draw B{dir(angle(C-B)+5)}..C{dir(angle(C-B)+5)};
draw C{dir(angle(A-C)+5)}..A{dir(angle(A-C)+5)};
draw D--E--F;
+ numeric decalage;
decalage=3mm;
if #4<#5 :
if ypart(B)>ypart(O) :
@@ -2865,8 +4513,7 @@
label(btex #1 etex,1.2[O,C]);
\end{mplibcode}
\else
- \begin{mpost}
- u:=1cm;
+ \begin{mpost}[mpsettings={u:=\useKV[ClesPythagore]{Echelle};}]
pair A,B,C,O,D,E,F;%B est le sommet de l'angle droit
O=u*(2.5,2.5);
path cc;
@@ -2924,7 +4571,7 @@
\ifluatex
\mplibforcehmode
\begin{mplibcode}
- u:=1cm;
+ u:=\useKV[ClesPythagore]{Echelle};
pair A,B,C,O,D,E,F;%B est le sommet de l'angle droit
O=u*(2.5,2.5);
path cc;
@@ -2955,8 +4602,7 @@
label(btex #3 etex,1.2[O,C]);
\end{mplibcode}
\else
- \begin{mpost}
- u:=1cm;
+ \begin{mpost}[mpsettings={u:=\useKV[ClesPythagore]{Echelle};}]
pair A,B,C,O,D,E,F;%B est le sommet de l'angle droit
O=u*(2.5,2.5);
path cc;
@@ -3095,6 +4741,11 @@
\xdef\NomSommetC{\NomC}%
% On trace une figure ou pas ?
\ifboolKV[ClesPythagore]{FigureSeule}{%
+ \xintifboolexpr{#3<#4 || #3==#4}{%\ifnum#3<#4%
+ \xdef\ResultatPytha{\fpeval{round(sqrt(#3^2+#4^2),\useKV[ClesPythagore]{Precision})}}%
+ }{%
+ \xdef\ResultatPytha{\fpeval{round(sqrt(#3^2-#4^2),\useKV[ClesPythagore]{Precision})}}%
+ }%
\MPFigurePytha{\NomA}{\NomB}{\NomC}{#3}{#4}{\useKV[ClesPythagore]{Angle}}
}{%
\ifboolKV[ClesPythagore]{Figure}{%Utilisation obligatoire de l'option --shell-escape de la compilation
@@ -3108,7 +4759,7 @@
}%
\xintifboolexpr{#3<#4 || #3==#4}{%\ifnum#3<#4%
\xdef\ResultatPytha{\fpeval{round(sqrt(#3^2+#4^2),\useKV[ClesPythagore]{Precision})}}%
- \xdef\ResultatPytha{\fpeval{round(sqrt(#3^2+#4^2),\useKV[ClesPythagore]{Precision})}}%
+ %\xdef\ResultatPytha{\fpeval{round(sqrt(#3^2+#4^2),\useKV[ClesPythagore]{Precision})}}%
\begin{align*}
\NomA\NomC^2&=\NomA\NomB^2+\NomB\NomC^2\\
\NomA\NomC^2&=\ifboolKV[ClesPythagore]{EnchaineA}{\opcopy{\useKV[ClesPythagore]{ValeurA}}{a1}\opexport{a1}{\Aun}\num{\Aun}}{\opexport{A1}{\Aun}\num{\Aun}^2}+\ifboolKV[ClesPythagore]{EnchaineB}{\opcopy{\useKV[ClesPythagore]{ValeurB}}{a2}\opexport{a2}{\Adeux}\num{\Adeux}}{\opexport{A2}{\Adeux}\num{\Adeux}^2}\\
@@ -3222,14 +4873,15 @@
% y a dans un "seul calcul".
\setcounter{NbCalculDistri}{0}
-\setKVdefault[ClesDistributivite]{Etape=1,Lettre=x,Fleches=false,AideMul=false,Reduction=false,AideAdda=false,AideAddb=false,CouleurAide=red,CouleurReduction=black,CouleurFH=blue,CouleurFB=red,Somme=false,Difference=false,RAZ=false,Oppose=false,All=false,NomExpression=A,Fin=4,Numerique=false,Remarquable=false,Echange=0,Tuile=false,Vide=false}%,AideAdd=false:inutile ?
+\setKVdefault[ClesDistributivite]{Etape=1,Lettre=x,Fleches=false,AideMul=false,Reduction=false,AideAdda=false,AideAddb=false,CouleurAide=red,CouleurReduction=black,CouleurFH=blue,CouleurFB=red,Somme=false,Difference=false,RAZ=false,Oppose=false,All=false,NomExpression=A,Fin=4,Numerique=false,Remarquable=false,Echange=0,Tuile=false,Vide=false,Impression=false}%,AideAdd=false:inutile ?
\newcommand\Tuile[4]{%
\ifluatex
\mplibforcehmode
\begin{mplibcode}
- boolean Vide;
+ boolean Vide,Print;
Vide=\useKV[ClesDistributivite]{Vide};
+ Print=\useKV[ClesDistributivite]{Impression};
pair _CoinTuilev;
_CoinTuilev=(0,0);
numeric largeur,longueur,ecart;
@@ -3244,7 +4896,9 @@
TT=image(
path cc;
cc=polygone((0,0),u*(LL,0),u*(LL,-ll),u*(0,-ll));
+ if Print=false:
fill cc withcolor col;
+ fi;
trace cc;
label(TEX(t),iso((0,0),u*(LL,0),u*(LL,-ll),u*(0,-ll)));
);
@@ -3262,7 +4916,9 @@
TT=image(
path cc;
cc=polygone((0,0),u*(LL,0),u*(LL,ll),u*(0,ll));
+ if Print=false:
fill cc withcolor col;
+ fi;
trace cc;
label(TEX(t),iso((0,0),u*(LL,0),u*(LL,ll),u*(0,ll)));
);
@@ -3324,7 +4980,9 @@
for l=0 upto (abs(#1)-1):
path titi;
titi=polygone((0,0),u*(longueur,0),u*(longueur,-longueur),u*(0,-longueur)) shifted (u*(largeur+ecart,0)+(u*(k*longueur,-l*longueur)));
+ if Print=false:
fill titi withcolor if #1*#3>0:ColorCarrePos else: ColorCarreNeg fi;
+ fi;
trace titi;
if #1*#3>0:
label(TEX("$x^2$"),iso((0,0),u*(longueur,0),u*(longueur,-longueur),u*(0,-longueur)) shifted (u*(largeur+ecart,0)+(u*(k*longueur,-l*longueur))));
@@ -3340,7 +4998,9 @@
for l=0 upto (abs(#1)-1):
path titi;
titi=polygone((0,0),u*(largeur,0),u*(largeur,-longueur),u*(0,-longueur)) shifted (u*(largeur+ecart+abs(#3)*longueur,0)+(u*(k*largeur,-l*longueur)));
+ if Print=false:
fill titi withcolor if #1*#4>0:ColorLetterPos else: ColorLetterNeg fi;
+ fi;
trace titi;
if #1*#4>0:
label(TEX("$x$"),iso((0,0),u*(largeur,0),u*(largeur,-longueur),u*(0,-longueur)) shifted (u*(largeur+ecart+abs(#3)*longueur,0)+(u*(k*largeur,-l*longueur))));
@@ -3356,7 +5016,9 @@
for l=0 upto (abs(#2)-1):
path titi;
titi=polygone((0,0),u*(longueur,0),u*(longueur,-largeur),u*(0,-largeur)) shifted (u*(largeur+ecart,-abs(#1)*longueur)+(u*(k*longueur,-l*largeur)));
+ if Print=false:
fill titi withcolor if #2*#3>0:ColorLetterPos else: ColorLetterNeg fi;
+ fi;
trace titi;
if #2*#3>0:
label(TEX("$x$"),iso((0,0),u*(longueur,0),u*(longueur,-largeur),u*(0,-largeur)) shifted (u*(largeur+ecart,-abs(#1)*longueur)+(u*(k*longueur,-l*largeur))));
@@ -3372,7 +5034,9 @@
for l=0 upto (abs(#2)-1):
path titi;
titi=polygone((0,0),u*(largeur,0),u*(largeur,-largeur),u*(0,-largeur)) shifted (u*(largeur+ecart+abs(#3)*longueur,-abs(#1)*longueur)+(u*(k*largeur,-l*largeur)));
+ if Print=false:
fill titi withcolor if #2*#4>0:ColorNumPos else: ColorNumNeg fi;
+ fi;
trace titi;
if #2*#4>0:
label(TEX("$1$"),iso((0,0),u*(largeur,0),u*(largeur,-largeur),u*(0,-largeur)) shifted (u*(largeur+ecart+abs(#3)*longueur,-abs(#1)*longueur)+(u*(k*largeur,-l*largeur))));
@@ -3385,7 +5049,7 @@
fi;
\end{mplibcode}
\else
- \begin{mpost}[mpsettings={boolean Vide; Vide=\useKV[ClesDistributivite]{Vide};}]
+ \begin{mpost}[mpsettings={boolean Vide,Print; Vide=\useKV[ClesDistributivite]{Vide}; Print=\useKV[ClesDistributivite]{Impression};}]
pair _CoinTuilev;
_CoinTuilev=(0,0);
numeric largeur,longueur,ecart;
@@ -3400,7 +5064,9 @@
TT=image(
path cc;
cc=polygone((0,0),u*(LL,0),u*(LL,-ll),u*(0,-ll));
+ if Print=false:
fill cc withcolor col;
+ fi;
trace cc;
label(LATEX(t),iso((0,0),u*(LL,0),u*(LL,-ll),u*(0,-ll)));
);
@@ -3418,7 +5084,9 @@
TT=image(
path cc;
cc=polygone((0,0),u*(LL,0),u*(LL,ll),u*(0,ll));
+ if Print=false:
fill cc withcolor col;
+ fi;
trace cc;
label(LATEX(t),iso((0,0),u*(LL,0),u*(LL,ll),u*(0,ll)));
);
@@ -3480,7 +5148,9 @@
for l=0 upto (abs(#1)-1):
path titi;
titi=polygone((0,0),u*(longueur,0),u*(longueur,-longueur),u*(0,-longueur)) shifted (u*(largeur+ecart,0)+(u*(k*longueur,-l*longueur)));
+ if Print=false:
fill titi withcolor if #1*#3>0:ColorCarrePos else: ColorCarreNeg fi;
+ fi;
trace titi;
if #1*#3>0:
label(LATEX("$x^2$"),iso((0,0),u*(longueur,0),u*(longueur,-longueur),u*(0,-longueur)) shifted (u*(largeur+ecart,0)+(u*(k*longueur,-l*longueur))));
@@ -3496,7 +5166,9 @@
for l=0 upto (abs(#1)-1):
path titi;
titi=polygone((0,0),u*(largeur,0),u*(largeur,-longueur),u*(0,-longueur)) shifted (u*(largeur+ecart+abs(#3)*longueur,0)+(u*(k*largeur,-l*longueur)));
+ if Print=false:
fill titi withcolor if #1*#4>0:ColorLetterPos else: ColorLetterNeg fi;
+ fi;
trace titi;
if #1*#4>0:
label(LATEX("$x$"),iso((0,0),u*(largeur,0),u*(largeur,-longueur),u*(0,-longueur)) shifted (u*(largeur+ecart+abs(#3)*longueur,0)+(u*(k*largeur,-l*longueur))));
@@ -3512,7 +5184,9 @@
for l=0 upto (abs(#2)-1):
path titi;
titi=polygone((0,0),u*(longueur,0),u*(longueur,-largeur),u*(0,-largeur)) shifted (u*(largeur+ecart,-abs(#1)*longueur)+(u*(k*longueur,-l*largeur)));
+ if Print=false:
fill titi withcolor if #2*#3>0:ColorLetterPos else: ColorLetterNeg fi;
+ fi;
trace titi;
if #2*#3>0:
label(LATEX("$x$"),iso((0,0),u*(longueur,0),u*(longueur,-largeur),u*(0,-largeur)) shifted (u*(largeur+ecart,-abs(#1)*longueur)+(u*(k*longueur,-l*largeur))));
@@ -3528,7 +5202,9 @@
for l=0 upto (abs(#2)-1):
path titi;
titi=polygone((0,0),u*(largeur,0),u*(largeur,-largeur),u*(0,-largeur)) shifted (u*(largeur+ecart+abs(#3)*longueur,-abs(#1)*longueur)+(u*(k*largeur,-l*largeur)));
+ if Print=false:
fill titi withcolor if #2*#4>0:ColorNumPos else: ColorNumNeg fi;
+ fi;
trace titi;
if #2*#4>0:
label(LATEX("$1$"),iso((0,0),u*(largeur,0),u*(largeur,-largeur),u*(0,-largeur)) shifted (u*(largeur+ecart+abs(#3)*longueur,-abs(#1)*longueur)+(u*(k*largeur,-l*largeur))));
@@ -4100,11 +5776,15 @@
%%%
% Nombre Premier
%%%
-\setKVdefault[ClesNombrePremier]{Tableau=false,TableauVertical=false,TableauVerticalVide=false,Exposant=false,Longue=false,All=false,Arbre=false,ArbreVide=false,ArbreComplet=false,Diviseurs=false,DiviseursT=false,Dot=\dotfill}
+\setKVdefault[ClesNombrePremier]{Tableau=false,TableauVertical=false,TableauVerticalVide=false,Exposant=false,Longue=false,All=false,Arbre=false,ArbreVide=false,ArbreComplet=false,Diviseurs=false,DiviseursT=false,Dot=\dotfill,Impose=false,ImposeAll=false}
+\defKV[ClesNombrePremier]{Nombre=\setKV[ClesNombrePremier]{Impose}}
+\defKV[ClesNombrePremier]{AllNombre=\setKV[ClesNombrePremier]{ImposeAll}}
\newcommand\Decomposition[2][]{%
\useKVdefault[ClesNombrePremier]%
\setKV[ClesNombrePremier]{#1}%
+ \ifboolKV[ClesNombrePremier]{Impose}{\NombrePremierImpose{#2}{\useKV[ClesNombrePremier]{Nombre}}{\fpeval{#2/\useKV[ClesNombrePremier]{Nombre}}}}{}%
+ \ifboolKV[ClesNombrePremier]{ImposeAll}{\NombrePremierImposeAll{#2}{\useKV[ClesNombrePremier]{AllNombre}}{\fpeval{#2/\useKV[ClesNombrePremier]{AllNombre}}}}{}%
\ifboolKV[ClesNombrePremier]{Tableau}{\NombrePremier{#2}}{}%
\ifboolKV[ClesNombrePremier]{TableauVertical}{\NombrePremierVertical{#2}}{}%
\ifboolKV[ClesNombrePremier]{TableauVerticalVide}{\NombrePremierVerticalVide{#2}}{}%
@@ -4116,7 +5796,7 @@
\ifboolKV[ClesNombrePremier]{Diviseurs}{\ListeDiviseur{#2}}{}%
\ifboolKV[ClesNombrePremier]{DiviseursT}{\ListeDiviseurT{#2}}{}%
\ifboolKV[ClesNombrePremier]{ArbreVide}{\MPArbreVide{#2}}{}%
-}
+}%
\def\MPArbre#1{%
\ifluatex
@@ -4546,6 +6226,131 @@
\fi
}
+\newcount\premierun
+\newcount\premierdeux
+
+\newcommand\NombrePremierImpose[3]{%\'ecrire la d\'ecomposition compl\`ete
+ % #1 le nombre premier \`a tester
+ % #2 est le premier facteur imposé
+ % #3 est le deuxième facteur imposé
+ \newcount\anp\newcount\bnp\newcount\cnp%\newcount\e\newcount\f%
+ % Pour d\'eterminer le nombre d'\'etapes pour #1
+ \anp=#1\relax
+ \bnp=2\relax
+ \premier=-1\relax
+ \whiledo{\anp > 1}{%
+ \modulo{\the\anp}{\the\bnp}
+ \ifnum\remainder=0\relax
+ \global\premier=\numexpr\premier+1\relax
+ \cnp=\numexpr\anp/\bnp\relax
+ \anp=\cnp\relax
+ \else%
+ \bnp=\numexpr\bnp+1\relax%
+ \fi%
+ }%
+ % Pour d\'eterminer le nombre d'\'etapes pour #2
+ \anp=#2\relax
+ \bnp=2\relax
+ \premierun=-1\relax
+ \whiledo{\anp > 1}{%
+ \modulo{\the\anp}{\the\bnp}
+ \ifnum\remainder=0\relax
+ \global\premierun=\numexpr\premierun+1\relax
+ \cnp=\numexpr\anp/\bnp\relax
+ \anp=\cnp\relax
+ \else%
+ \bnp=\numexpr\bnp+1\relax%
+ \fi%
+ }%
+ % Pour d\'eterminer le nombre d'\'etapes pour #3
+ \anp=#3\relax
+ \bnp=2\relax
+ \premierdeux=-1\relax
+ \whiledo{\anp > 1}{%
+ \modulo{\the\anp}{\the\bnp}
+ \ifnum\remainder=0\relax
+ \global\premierdeux=\numexpr\premierdeux+1\relax
+ \cnp=\numexpr\anp/\bnp\relax
+ \anp=\cnp\relax
+ \else%
+ \bnp=\numexpr\bnp+1\relax%
+ \fi%
+ }%
+ \ifnum\premier=0
+ Le nombre \num{#1} est un nombre premier.
+ \else
+ \xintifboolexpr{\premierun>\premierdeux}{\premier=\premierun}{\premier=\premierdeux}
+ \begin{align*}
+ \num{#1}&=\num{#2}\times\num{#3}%\\
+ \xintifboolexpr{\premier>0}{\\%
+ \xintFor* ##1 in {\xintSeq {1}{\premier}}\do {\num{#1}&=\xintifboolexpr{##1<\premierun}{\PremierEtape{#2}{##1}}{\Decomposition[Longue]{#2}}\mathrel{\times}\xintifboolexpr{##1<\premierdeux}{\PremierEtape{#3}{##1}}{\Decomposition[Longue]{#3}}\xintifboolexpr{##1<\premier}{\\}{}}%
+ }{}%
+ \end{align*}
+ \fi
+}%
+
+\newcommand\NombrePremierImposeAll[3]{%\'ecrire la d\'ecomposition compl\`ete
+ % #1 le nombre premier \`a tester
+ % #2 est le premier facteur imposé
+ % #3 est le deuxième facteur imposé
+ \newcount\anp\newcount\bnp\newcount\cnp%\newcount\e\newcount\f%
+ % Pour d\'eterminer le nombre d'\'etapes pour #1
+ \anp=#1\relax
+ \bnp=2\relax
+ \premier=-1\relax
+ \whiledo{\anp > 1}{%
+ \modulo{\the\anp}{\the\bnp}
+ \ifnum\remainder=0\relax
+ \global\premier=\numexpr\premier+1\relax
+ \cnp=\numexpr\anp/\bnp\relax
+ \anp=\cnp\relax
+ \else%
+ \bnp=\numexpr\bnp+1\relax%
+ \fi%
+ }
+ % Pour d\'eterminer le nombre d'\'etapes pour #2
+ \anp=#2\relax
+ \bnp=2\relax
+ \premierun=-1\relax
+ \whiledo{\anp > 1}{%
+ \modulo{\the\anp}{\the\bnp}
+ \ifnum\remainder=0\relax
+ \global\premierun=\numexpr\premierun+1\relax
+ \cnp=\numexpr\anp/\bnp\relax
+ \anp=\cnp\relax
+ \else%
+ \bnp=\numexpr\bnp+1\relax%
+ \fi%
+ }
+ % Pour d\'eterminer le nombre d'\'etapes pour #3
+ \anp=#3\relax
+ \bnp=2\relax
+ \premierdeux=-1\relax
+ \whiledo{\anp > 1}{%
+ \modulo{\the\anp}{\the\bnp}
+ \ifnum\remainder=0\relax
+ \global\premierdeux=\numexpr\premierdeux+1\relax
+ \cnp=\numexpr\anp/\bnp\relax
+ \anp=\cnp\relax
+ \else%
+ \bnp=\numexpr\bnp+1\relax%
+ \fi%
+ }%
+ \ifnum\premier=0
+ Le nombre \num{#1} est un nombre premier.
+ \else%
+ \xintifboolexpr{\premierun>\premierdeux}{\premier=\premierun}{\premier=\premierdeux}%
+ \begin{align*}
+ \num{#1}&=\num{#2}\times\num{#3}%\\
+ \xintifboolexpr{\premier>0}{\\%
+ \xintFor* ##1 in {\xintSeq {1}{\premier}}\do {\num{#1}&=\xintifboolexpr{##1<\premierun}{\PremierEtape{#2}{##1}}{\Decomposition[Longue]{#2}}\mathrel{\times}\xintifboolexpr{##1<\premierdeux}{\PremierEtape{#3}{##1}}{\Decomposition[Longue]{#3}}\\
+ }%
+ \num{#1}&=\PremierExposant{#1}%
+ }{}
+ \end{align*}
+ \fi%
+}%
+
\newcommand{\NombrePremierVertical}[1]{%\'ecrire la d\'ecomposition compl\`ete
% #1 le nombre premier \`a tester
\newcount\anpv\newcount\bnpv\newcount\cnpv%\newcount\e\newcount\f%
@@ -5048,7 +6853,7 @@
\ppcm=\numexpr#1*#2/\pgcd\relax
}
-\setKVdefault[ClesThales]{Calcul=true,Droites=false,Propor=false,Segment=false,Figure=false,FigureSeule=false,Figurecroisee=false,FigurecroiseeSeule=false,Angle=0,Precision=2,Entier=false,Unite=cm,Reciproque=false,Produit=false,ChoixCalcul=0,Simplification,Redaction=false,Remediation=false}
+\setKVdefault[ClesThales]{Calcul=true,Droites=false,Propor=false,Segment=false,Figure=false,FigureSeule=false,Figurecroisee=false,FigurecroiseeSeule=false,Angle=0,Precision=2,Entier=false,Unite=cm,Reciproque=false,Produit=false,ChoixCalcul=0,Simplification,Redaction=false,Remediation=false,Echelle=1cm}
%On d\'efinit la figure \`a utiliser
\def\MPFigThales#1#2#3#4#5#6{
@@ -5061,7 +6866,7 @@
\mplibcodeinherit{enable}
\mplibforcehmode
\begin{mplibcode}
- u:=1cm;
+ u:=\useKV[ClesThales]{Echelle};
pair A,B,C,M,N,O;%
%On place les points A,B,C sur le cercle de mani\`ere \`a faciliter la rotation de la figure
A=u*(1,1);
@@ -5109,8 +6914,7 @@
\end{mplibcode}
\mplibcodeinherit{disable}
\else
- \begin{mpost}
- u:=1cm;
+ \begin{mpost}[mpsettings={u:=\useKV[ClesThales]{Echelle};}]
pair A,B,C,M,N,O;%
%On place les points A,B,C sur le cercle de mani\`ere \`a faciliter la rotation de la figure
A=u*(1,1);
@@ -5170,7 +6974,7 @@
\mplibcodeinherit{enable}
\mplibforcehmode
\begin{mplibcode}
- u:=1cm;
+ u:=\useKV[ClesThales]{Echelle};
pair A,B,C,M,N,O;%
%On place les points A,B,C sur le cercle de mani\`ere \`a faciliter la rotation de la figure
A=u*(1,1);
@@ -5206,8 +7010,7 @@
\end{mplibcode}
\mplibcodeinherit{disable}
\else
- \begin{mpost}
- u:=1cm;
+ \begin{mpost}[mpsettings={u:=\useKV[ClesThales]{Echelle};}]
pair A,B,C,M,N,O;%
%On place les points A,B,C sur le cercle de mani\`ere \`a faciliter la rotation de la figure
A=u*(1,1);
@@ -5255,7 +7058,7 @@
\mplibforcehmode
\mplibcodeinherit{enable}
\begin{mplibcode}
- u:=1cm;
+ u:=\useKV[ClesThales]{Echelle};
pair A,B,C,M,N,O;%
O=(2.5u,2.5u);
path cc;
@@ -5308,8 +7111,7 @@
\end{mplibcode}
\mplibcodeinherit{disable}
\else
- \begin{mpost}
- u:=1cm;
+ \begin{mpost}[mpsettings={u:=\useKV[ClesThales]{Echelle};}]
pair A,B,C,M,N,O;%
O=(2.5u,2.5u);
path cc;
@@ -5374,7 +7176,7 @@
\mplibforcehmode
\mplibcodeinherit{enable}
\begin{mplibcode}
- u:=1cm;
+ u:=\useKV[ClesThales]{Echelle};
pair A,B,C,M,N,O;%
O=(2.5u,2.5u);
path cc;
@@ -5417,8 +7219,7 @@
\end{mplibcode}
\mplibcodeinherit{disable}
\else
- \begin{mpost}
- u:=1cm;
+ \begin{mpost}[mpsettings={u:=\useKV[ClesThales]{Echelle};}]
pair A,B,C,M,N,O;%
O=(2.5u,2.5u);
path cc;
@@ -6350,8 +8151,7 @@
\end{mplibcode}
\mplibcodeinherit{disable}
\else
- \begin{mpost}
- u:=1cm;
+ \begin{mpost}[mpsettings={u:=\useKV[ClesTrigo]{Echelle};}]
pair A,B,C,O,I,D,E,F;%
% On place les points A,B,C sur le cercle de mani\`ere \`a faciliter la rotation de la figure
A=u*(1,1);
@@ -6528,7 +8328,7 @@
\end{mplibcode}
\mplibcodeinherit{disable}
\else
- \begin{mpost}
+ \begin{mpost}[mpsettings={u:=\useKV[ClesTrigo]{Echelle};}]
u:=1cm;
pair A,B,C,O,I,D,E,F;%
%On place les points A,B,C sur le cercle de mani\`ere \`a faciliter la rotation de la figure
@@ -6925,115 +8725,90 @@
% La construction du tableau
\def\addtotok#1#2{#1\expandafter{\the#1#2}}
\newtoks\tabtoksa\newtoks\tabtoksb\newtoks\tabtoksc
-\def\updatetoks#1/#2\nil{\addtotok\tabtoksa{\ifboolKV[ClesStat]{Qualitatif}{}{&\num{#1}}}\addtotok\tabtoksb{&\num{#2}}}
+\def\updatetoks#1/#2\nil{\addtotok\tabtoksa{\ifboolKV[ClesStat]{Qualitatif}{&\cellcolor{\useKV[ClesStat]{CouleurTab}}#1}{&\cellcolor{\useKV[ClesStat]{CouleurTab}}\num{#1}}}\addtotok\tabtoksb{&\num{#2}}}
\def\buildtab{% %%Tableau sans total
\tabtoksa{\useKV[ClesStat]{Donnee}}\tabtoksb{\useKV[ClesStat]{Effectif}}%
\foreachitem\compteur\in\ListeComplete{\expandafter\updatetoks\compteur\nil}%
\[%
- %\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen}}\do{\ListeComplete[##1,2]}%
\renewcommand{\arraystretch}{\useKV[ClesStat]{Stretch}}%
- \begin{tabular}{|>{\columncolor{\useKV[ClesStat]{CouleurTab}}}c|*{\number\numexpr\ListeCompletelen}{>{\centering\arraybackslash}p{\useKV[ClesStat]{Largeur}}|}}%
- \hline%
- \rowcolor{\useKV[ClesStat]{CouleurTab}}\the\tabtoksa\\\hline%
- \ifnum\number\numexpr\useKV[ClesStat]{ColVide}<1%
- \ifboolKV[ClesStat]{EffVide}{\useKV[ClesStat]{Effectif}\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen}}\do{&}}{\the\tabtoksb}\\\hline%
- \ifboolKV[ClesStat]{Frequence}{Fr\'equence (\%)\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{FreqVide}{}{\CalculFrequence{##1}}}}\\\hline}{}%
- \ifboolKV[ClesStat]{Angle}{Angle (\si{\degree})\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{AngVide}{}{\CalculAngle{##1}}}}\\\hline}{}%
- \ifboolKV[ClesStat]{SemiAngle}{Angle (\si{\degree})\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{AngVide}{}{\CalculSemiAngle{##1}}}}\\\hline}{}%
- \ifboolKV[ClesStat]{ECC}{E.C.C.\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{ECCVide}{}{\CalculECC{##1}}}}\\\hline}{}%
- \end{tabular}
- \else%
- \ifnum\number\numexpr\useKV[ClesStat]{ColVide}>\ListeCompletelen%
- \ifboolKV[ClesStat]{EffVide}{\useKV[ClesStat]{Effectif}\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen}}\do{&}}{\the\tabtoksb}\\\hline%
- \ifboolKV[ClesStat]{Frequence}{Fr\'equence (\%)\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{FreqVide}{}{\CalculFrequence{##1}}}}\\\hline}{}%
- \ifboolKV[ClesStat]{Angle}{Angle (\si{\degree})\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{AngVide}{}{\CalculAngle{##1}}}}\\\hline}{}%
- \ifboolKV[ClesStat]{SemiAngle}{Angle (\si{\degree})\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{AngVide}{}{\CalculSemiAngle{##1}}}}\\\hline}{}%
- \ifboolKV[ClesStat]{ECC}{E.C.C.\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{ECCVide}{}{\CalculECC{##1}}}}\\\hline}{}%
- \end{tabular}
- \else%
- \ifnum\number\numexpr\useKV[ClesStat]{ColVide}=1%
- \ifboolKV[ClesStat]{EffVide}{\useKV[ClesStat]{Effectif}\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen}}\do{&}}{\useKV[ClesStat]{Effectif}&\xintFor* ##1 in {\xintSeq {2}{\ListeCompletelen}}\do{&\ListeComplete[##1,2]}}\\\hline%
- \ifboolKV[ClesStat]{Frequence}{Fr\'equence (\%)&\xintFor* ##1 in {\xintSeq {2}{\ListeCompletelen}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{FreqVide}{}{\CalculFrequence{##1}}}}\\\hline}{}%
- \ifboolKV[ClesStat]{Angle}{Angle (\si{\degree})&\xintFor* ##1 in {\xintSeq {2}{\ListeCompletelen}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{AngVide}{}{\CalculAngle{##1}}}}\\\hline}{}%
- \ifboolKV[ClesStat]{SemiAngle}{Angle (\si{\degree})&\xintFor* ##1 in {\xintSeq {2}{\ListeCompletelen}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{AngVide}{}{\CalculSemiAngle{##1}}}}\\\hline}{}%
- \ifboolKV[ClesStat]{ECC}{E.C.C.&\xintFor* ##1 in {\xintSeq {2}{\ListeCompletelen}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{ECCVide}{}{\CalculECC{##1}}}}\\\hline}{}%
- \end{tabular}
- \else%
- \ifnum\number\numexpr\useKV[ClesStat]{ColVide}=\ListeCompletelen%
- \ifboolKV[ClesStat]{EffVide}{\useKV[ClesStat]{Effectif}\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen}}\do{&}}{\useKV[ClesStat]{Effectif}\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen-1}}\do{&\ListeComplete[##1,2]}}&\\\hline%
- \ifboolKV[ClesStat]{Frequence}{Fr\'equence (\%)\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen-1}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{FreqVide}{}{\CalculFrequence{##1}}}}&\\\hline}{}%
- \ifboolKV[ClesStat]{Angle}{Angle (\si{\degree})\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen-1}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{AngVide}{}{\CalculAngle{##1}}}}&\\\hline}{}%
- \ifboolKV[ClesStat]{SemiAngle}{Angle (\si{\degree})\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen-1}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{AngVide}{}{\CalculSemiAngle{##1}}}}&\\\hline}{}%
- \ifboolKV[ClesStat]{ECC}{E.C.C.\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen-1}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{ECCVide}{}{\CalculECC{##1}}}}&\\\hline}{}%
- \end{tabular}
- \else%
- \ifboolKV[ClesStat]{EffVide}{\useKV[ClesStat]{Effectif}\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen}}\do{&}}{\useKV[ClesStat]{Effectif}\xintFor* ##1 in {\xintSeq {1}{\number\numexpr\useKV[ClesStat]{ColVide}-1}}\do{&\ListeComplete[##1,2]}&\xintFor* ##1 in {\xintSeq {\number\numexpr\useKV[ClesStat]{ColVide}+1}{\ListeCompletelen}}\do{&\ListeComplete[##1,2]}}\\\hline%
- \ifboolKV[ClesStat]{Frequence}{Fr\'equence (\%)\xintFor* ##1 in {\xintSeq {1}{\number\numexpr\useKV[ClesStat]{ColVide}-1}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{FreqVide}{}{\CalculFrequence{##1}}}}&\xintFor* ##1 in {\xintSeq {\number\numexpr\useKV[ClesStat]{ColVide}+1}{\ListeCompletelen}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{FreqVide}{}{\CalculFrequence{##1}}}}\\\hline}{}%
- \ifboolKV[ClesStat]{Angle}{Angle (\si{\degree})\xintFor* ##1 in {\xintSeq {1}{\number\numexpr\useKV[ClesStat]{ColVide}-1}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{AngVide}{}{\CalculAngle{##1}}}}&\xintFor* ##1 in {\xintSeq {\number\numexpr\useKV[ClesStat]{ColVide}+1}{\ListeCompletelen}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{FreqVide}{}{\CalculAngle{##1}}}}\\\hline}{}%
- \ifboolKV[ClesStat]{SemiAngle}{Angle (\si{\degree})\xintFor* ##1 in {\xintSeq {1}{\number\numexpr\useKV[ClesStat]{ColVide}-1}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{AngVide}{}{\CalculSemiAngle{##1}}}}&\xintFor* ##1 in {\xintSeq {\number\numexpr\useKV[ClesStat]{ColVide}+1}{\ListeCompletelen}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{FreqVide}{}{\CalculSemiAngle{##1}}}}\\\hline}{}%
- \ifboolKV[ClesStat]{ECC}{E.C.C.\xintFor* ##1 in {\xintSeq {1}{\number\numexpr\useKV[ClesStat]{ColVide}-1}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{ECCVide}{}{\CalculECC{##1}}}}&\xintFor* ##1 in {\xintSeq {\number\numexpr\useKV[ClesStat]{ColVide}+1}{\ListeCompletelen}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{ECCVide}{}{\CalculECC{##1}}}}\\\hline}{}%
- \end{tabular}
- \fi%
- \fi%
- \fi%
- \fi%
+ \begin{tabular}{|>{\columncolor{\useKV[ClesStat]{CouleurTab}}}c|*{\fpeval{\ListeCompletelen}}{>{\centering\arraybackslash}p{\useKV[ClesStat]{Largeur}}|}}%
+ \hline%
+ \the\tabtoksa\\\hline%
+ \xintifboolexpr{\useKV[ClesStat]{ColVide}<1 || \useKV[ClesStat]{ColVide}>\ListeCompletelen}{%
+ \ifboolKV[ClesStat]{EffVide}{\useKV[ClesStat]{Effectif}\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen}}\do{&}}{\the\tabtoksb}\\\hline%
+ \ifboolKV[ClesStat]{Frequence}{Fr\'equence (\%)\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{FreqVide}{}{\CalculFrequence{##1}}}}\\\hline}{}%
+ \ifboolKV[ClesStat]{Angle}{Angle (\si{\degree})\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{AngVide}{}{\CalculAngle{##1}}}}\\\hline}{}%
+ \ifboolKV[ClesStat]{SemiAngle}{Angle (\si{\degree})\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{AngVide}{}{\CalculSemiAngle{##1}}}}\\\hline}{}%
+ \ifboolKV[ClesStat]{ECC}{E.C.C.\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{ECCVide}{}{\CalculECC{##1}}}}\\\hline}{}%
+ }{%
+ \xintifboolexpr{\useKV[ClesStat]{ColVide}==1}{%
+ \ifboolKV[ClesStat]{EffVide}{\useKV[ClesStat]{Effectif}\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen}}\do{&}}{\useKV[ClesStat]{Effectif}&\xintFor* ##1 in {\xintSeq {2}{\ListeCompletelen}}\do{&\ListeComplete[##1,2]}}\\\hline%
+ \ifboolKV[ClesStat]{Frequence}{Fr\'equence (\%)&\xintFor* ##1 in {\xintSeq {2}{\ListeCompletelen}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{FreqVide}{}{\CalculFrequence{##1}}}}\\\hline}{}%
+ \ifboolKV[ClesStat]{Angle}{Angle (\si{\degree})&\xintFor* ##1 in {\xintSeq {2}{\ListeCompletelen}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{AngVide}{}{\CalculAngle{##1}}}}\\\hline}{}%
+ \ifboolKV[ClesStat]{SemiAngle}{Angle (\si{\degree})&\xintFor* ##1 in {\xintSeq {2}{\ListeCompletelen}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{AngVide}{}{\CalculSemiAngle{##1}}}}\\\hline}{}%
+ \ifboolKV[ClesStat]{ECC}{E.C.C.&\xintFor* ##1 in {\xintSeq {2}{\ListeCompletelen}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{ECCVide}{}{\CalculECC{##1}}}}\\\hline}{}%
+ }{%
+ \xintifboolexpr{\useKV[ClesStat]{ColVide}==\ListeCompletelen}{%
+ \ifboolKV[ClesStat]{EffVide}{\useKV[ClesStat]{Effectif}\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen}}\do{&}}{\useKV[ClesStat]{Effectif}\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen-1}}\do{&\ListeComplete[##1,2]}}&\\\hline%
+ \ifboolKV[ClesStat]{Frequence}{Fr\'equence (\%)\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen-1}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{FreqVide}{}{\CalculFrequence{##1}}}}&\\\hline}{}%
+ \ifboolKV[ClesStat]{Angle}{Angle (\si{\degree})\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen-1}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{AngVide}{}{\CalculAngle{##1}}}}&\\\hline}{}%
+ \ifboolKV[ClesStat]{SemiAngle}{Angle (\si{\degree})\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen-1}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{AngVide}{}{\CalculSemiAngle{##1}}}}&\\\hline}{}%
+ \ifboolKV[ClesStat]{ECC}{E.C.C.\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen-1}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{ECCVide}{}{\CalculECC{##1}}}}&\\\hline}{}%
+ }{%
+ \ifboolKV[ClesStat]{EffVide}{\useKV[ClesStat]{Effectif}\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen}}\do{&}}{\useKV[ClesStat]{Effectif}\xintFor* ##1 in {\xintSeq {1}{\fpeval{\useKV[ClesStat]{ColVide}-1}}}\do{&\ListeComplete[##1,2]}&\xintFor* ##1 in {\xintSeq {\fpeval{\useKV[ClesStat]{ColVide}+1}}{\ListeCompletelen}}\do{&\ListeComplete[##1,2]}}\\\hline%
+ \ifboolKV[ClesStat]{Frequence}{Fr\'equence (\%)\xintFor* ##1 in {\xintSeq {1}{\fpeval{\useKV[ClesStat]{ColVide}-1}}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{FreqVide}{}{\CalculFrequence{##1}}}}&\xintFor* ##1 in {\xintSeq {\fpeval{\useKV[ClesStat]{ColVide}+1}}{\ListeCompletelen}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{FreqVide}{}{\CalculFrequence{##1}}}}\\\hline}{}%
+ \ifboolKV[ClesStat]{Angle}{Angle (\si{\degree})\xintFor* ##1 in {\xintSeq {1}{\fpeval{\useKV[ClesStat]{ColVide}-1}}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{AngVide}{}{\CalculAngle{##1}}}}&\xintFor* ##1 in {\xintSeq {\fpeval{\useKV[ClesStat]{ColVide}+1}}{\ListeCompletelen}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{FreqVide}{}{\CalculAngle{##1}}}}\\\hline}{}%
+ \ifboolKV[ClesStat]{SemiAngle}{Angle (\si{\degree})\xintFor* ##1 in {\xintSeq {1}{\fpeval{\useKV[ClesStat]{ColVide}-1}}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{AngVide}{}{\CalculSemiAngle{##1}}}}&\xintFor* ##1 in {\xintSeq {\fpeval{\useKV[ClesStat]{ColVide}+1}}{\ListeCompletelen}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{FreqVide}{}{\CalculSemiAngle{##1}}}}\\\hline}{}%
+ \ifboolKV[ClesStat]{ECC}{E.C.C.\xintFor* ##1 in {\xintSeq {1}{\fpeval{\useKV[ClesStat]{ColVide}-1}}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{ECCVide}{}{\CalculECC{##1}}}}&\xintFor* ##1 in {\xintSeq {\fpeval{\useKV[ClesStat]{ColVide}+1}}{\ListeCompletelen}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{ECCVide}{}{\CalculECC{##1}}}}\\\hline}{}%
+ }%
+ }%
+ }%
+ \end{tabular}
\renewcommand{\arraystretch}{1}%
- \]
-}
+ \]%
+}%
\def\buildtabt{% %%Tableau avec total
\tabtoksa{\useKV[ClesStat]{Donnee}}\tabtoksb{\useKV[ClesStat]{Effectif}}%
\foreachitem\compteur\in\ListeComplete{\expandafter\updatetoks\compteur\nil}%
- \[%
+ \[%
\renewcommand{\arraystretch}{\useKV[ClesStat]{Stretch}}%
- \begin{tabular}{|>{\columncolor{\useKV[ClesStat]{CouleurTab}}}c|*{\number\numexpr\ListeCompletelen+1}{>{\centering\arraybackslash}p{\useKV[ClesStat]{Largeur}}|}}%
- \hline%
- \rowcolor{\useKV[ClesStat]{CouleurTab}}\the\tabtoksa&Total\\\hline%
- \ifnum\number\numexpr\useKV[ClesStat]{ColVide}<1%
- \ifboolKV[ClesStat]{EffVide}{\useKV[ClesStat]{Effectif}\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen+1}}\do{&}}{\the\tabtoksb&\ifboolKV[ClesStat]{TotalVide}{}{\num{\EffectifTotal}}}\\\hline%
- \ifboolKV[ClesStat]{Frequence}{Fr\'equence (\%)\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{FreqVide}{}{\CalculFrequence{##1}}}}&\ifboolKV[ClesStat]{TotalVide}{}{\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{FreqVide}{}{100}}}\\\hline}{}%
- \ifboolKV[ClesStat]{Angle}{Angle (\si{\degree})\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{AngVide}{}{\CalculAngle{##1}}}}&\ifboolKV[ClesStat]{TotalVide}{}{\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{AngVide}{}{360}}}\\\hline}{}%
+ \begin{tabular}{|>{\columncolor{\useKV[ClesStat]{CouleurTab}}}c|*{\fpeval{\ListeCompletelen+1}}{>{\centering\arraybackslash}p{\useKV[ClesStat]{Largeur}}|}}%
+ \hline%
+ \the\tabtoksa&\cellcolor{\useKV[ClesStat]{CouleurTab}}Total\\\hline%
+ \xintifboolexpr{\useKV[ClesStat]{ColVide}<1 || \useKV[ClesStat]{ColVide}>\ListeCompletelen}{%
+ \ifboolKV[ClesStat]{EffVide}{\useKV[ClesStat]{Effectif}\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen}}\do{&}}{\the\tabtoksb&\ifboolKV[ClesStat]{TotalVide}{}{\num{\EffectifTotal}}}\\\hline%
+ \ifboolKV[ClesStat]{Frequence}{Fr\'equence (\%)\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{FreqVide}{}{\CalculFrequence{##1}}}}&\ifboolKV[ClesStat]{TotalVide}{}{\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{FreqVide}{}{100}}}\\\hline}{}%
+ \ifboolKV[ClesStat]{Angle}{Angle (\si{\degree})\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{AngVide}{}{\CalculAngle{##1}}}}&\ifboolKV[ClesStat]{TotalVide}{}{\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{AngVide}{}{360}}}\\\hline}{}%
\ifboolKV[ClesStat]{SemiAngle}{Angle (\si{\degree})\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{AngVide}{}{\CalculSemiAngle{##1}}}}&\ifboolKV[ClesStat]{TotalVide}{}{\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{AngVide}{}{180}}}\\\hline}{}%
- \ifboolKV[ClesStat]{ECC}{E.C.C.\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{ECCVide}{}{\CalculECC{##1}}}}&\ifboolKV[ClesStat]{TotalVide}{}{\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{ECCVide}{}{\num{\EffectifTotal}}}}\\\hline}{}%
- \end{tabular}
- \else%
- \ifnum\number\numexpr\useKV[ClesStat]{ColVide}>\ListeCompletelen%
- \ifboolKV[ClesStat]{EffVide}{\useKV[ClesStat]{Effectif}\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen+1}}\do{&}}{\the\tabtoksb&\ifboolKV[ClesStat]{TotalVide}{}{\num{\EffectifTotal}}}\\\hline%
- \ifboolKV[ClesStat]{Frequence}{Fr\'equence (\%)\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{FreqVide}{}{\CalculFrequence{##1}}}}&\ifboolKV[ClesStat]{TotalVide}{}{\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{FreqVide}{}{100}}}\\\hline}{}%
- \ifboolKV[ClesStat]{Angle}{Angle (\si{\degree})\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{AngVide}{}{\CalculAngle{##1}}}}&\ifboolKV[ClesStat]{TotalVide}{}{\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{AngVide}{}{360}}}\\\hline}{}%
- \ifboolKV[ClesStat]{SemiAngle}{Angle (\si{\degree})\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{AngVide}{}{\CalculSemiAngle{##1}}}}&\ifboolKV[ClesStat]{TotalVide}{}{\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{AngVide}{}{180}}}\\\hline}{}%
- \ifboolKV[ClesStat]{ECC}{E.C.C.\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{ECCVide}{}{\CalculECC{##1}}}}&\ifboolKV[ClesStat]{TotalVide}{}{\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{ECCVide}{}{\num{\EffectifTotal}}}}\\\hline}{}%
- \end{tabular}
- \else%
- \ifnum\number\numexpr\useKV[ClesStat]{ColVide}=1%
- \ifboolKV[ClesStat]{EffVide}{\useKV[ClesStat]{Effectif}\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen+1}}\do{&}}{\useKV[ClesStat]{Effectif}&\xintFor* ##1 in {\xintSeq {2}{\ListeCompletelen}}\do{&\ListeComplete[##1,2]}&\ifboolKV[ClesStat]{TotalVide}{}{\num{\EffectifTotal}}}\\\hline%
- \ifboolKV[ClesStat]{Frequence}{Fr\'equence (\%)&\xintFor* ##1 in {\xintSeq {2}{\ListeCompletelen}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{FreqVide}{}{\CalculFrequence{##1}}}}&\ifboolKV[ClesStat]{TotalVide}{}{\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{FreqVide}{}{100}}}\\\hline}{}%
- \ifboolKV[ClesStat]{Angle}{Angle (\si{\degree})&\xintFor* ##1 in {\xintSeq {2}{\ListeCompletelen}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{AngVide}{}{\CalculAngle{##1}}}}&\ifboolKV[ClesStat]{TotalVide}{}{\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{AngVide}{}{360}}}\\\hline}{}%
+ \ifboolKV[ClesStat]{ECC}{E.C.C.\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{ECCVide}{}{\CalculECC{##1}}}}\ifboolKV[ClesStat]{TotalVide}{}{\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{ECCVide}{}{\num{\EffectifTotal}}}}\\\hline}{}%
+ }{%
+ \xintifboolexpr{\useKV[ClesStat]{ColVide}==1}{%
+ \ifboolKV[ClesStat]{EffVide}{\useKV[ClesStat]{Effectif}\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen}}\do{&}}{\useKV[ClesStat]{Effectif}&\xintFor* ##1 in {\xintSeq {2}{\ListeCompletelen}}\do{&\ListeComplete[##1,2]}&\ifboolKV[ClesStat]{TotalVide}{}{\num{\EffectifTotal}}}\\\hline%
+ \ifboolKV[ClesStat]{Frequence}{Fr\'equence (\%)&\xintFor* ##1 in {\xintSeq {2}{\ListeCompletelen}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{FreqVide}{}{\CalculFrequence{##1}}}}&\ifboolKV[ClesStat]{TotalVide}{}{\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{FreqVide}{}{100}}}\\\hline}{}%
+ \ifboolKV[ClesStat]{Angle}{Angle (\si{\degree})&\xintFor* ##1 in {\xintSeq {2}{\ListeCompletelen}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{AngVide}{}{\CalculAngle{##1}}}}&\ifboolKV[ClesStat]{TotalVide}{}{\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{AngVide}{}{360}}}\\\hline}{}%
\ifboolKV[ClesStat]{SemiAngle}{Angle (\si{\degree})&\xintFor* ##1 in {\xintSeq {2}{\ListeCompletelen}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{AngVide}{}{\CalculSemiAngle{##1}}}}&\ifboolKV[ClesStat]{TotalVide}{}{\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{AngVide}{}{180}}}\\\hline}{}%
\ifboolKV[ClesStat]{ECC}{E.C.C.&\xintFor* ##1 in {\xintSeq {2}{\ListeCompletelen}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{ECCVide}{}{\CalculECC{##1}}}}&\ifboolKV[ClesStat]{TotalVide}{}{\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{ECCVide}{}{\num{\EffectifTotal}}}}\\\hline}{}%
- \end{tabular}
- \else%
- \ifnum\number\numexpr\useKV[ClesStat]{ColVide}=\ListeCompletelen%
- \ifboolKV[ClesStat]{EffVide}{\useKV[ClesStat]{Effectif}\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen+1}}\do{&}}{\useKV[ClesStat]{Effectif}\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen-1}}\do{&\ListeComplete[##1,2]}&&\ifboolKV[ClesStat]{TotalVide}{}{\num{\EffectifTotal}}}\\\hline%
- \ifboolKV[ClesStat]{Frequence}{Fr\'equence (\%)\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen-1}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{FreqVide}{}{\CalculFrequence{##1}}}}&&\ifboolKV[ClesStat]{TotalVide}{}{\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{FreqVide}{}{100}}}\\\hline}{}%
- \ifboolKV[ClesStat]{Angle}{Angle (\si{\degree})\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen-1}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{AngVide}{}{\CalculAngle{##1}}}}&&\ifboolKV[ClesStat]{TotalVide}{}{\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{AngVide}{}{360}}}\\\hline}{}%
+ }{%
+ \xintifboolexpr{\useKV[ClesStat]{ColVide}==\ListeCompletelen}{%
+ \ifboolKV[ClesStat]{EffVide}{\useKV[ClesStat]{Effectif}\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen}}\do{&}}{\useKV[ClesStat]{Effectif}\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen-1}}\do{&\ListeComplete[##1,2]}&&\ifboolKV[ClesStat]{TotalVide}{}{\num{\EffectifTotal}}}\\\hline%
+ \ifboolKV[ClesStat]{Frequence}{Fr\'equence (\%)\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen-1}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{FreqVide}{}{\CalculFrequence{##1}}}}&&\ifboolKV[ClesStat]{TotalVide}{}{\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{FreqVide}{}{100}}}\\\hline}{}%
+ \ifboolKV[ClesStat]{Angle}{Angle (\si{\degree})\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen-1}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{AngVide}{}{\CalculAngle{##1}}}}&&\ifboolKV[ClesStat]{TotalVide}{}{\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{AngVide}{}{360}}}\\\hline}{}%
\ifboolKV[ClesStat]{SemiAngle}{Angle (\si{\degree})\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen-1}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{AngVide}{}{\CalculSemiAngle{##1}}}}&&\ifboolKV[ClesStat]{TotalVide}{}{\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{AngVide}{}{180}}}\\\hline}{}%
\ifboolKV[ClesStat]{ECC}{E.C.C.\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen-1}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{ECCVide}{}{\CalculECC{##1}}}}&&\ifboolKV[ClesStat]{TotalVide}{}{\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{ECCVide}{}{\num{\EffectifTotal}}}}\\\hline}{}%
+ }{%
+ \ifboolKV[ClesStat]{EffVide}{\useKV[ClesStat]{Effectif}\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen}}\do{&}}{\useKV[ClesStat]{Effectif}\xintFor* ##1 in {\xintSeq {1}{\fpeval{\useKV[ClesStat]{ColVide}-1}}}\do{&\ListeComplete[##1,2]}&\xintFor* ##1 in {\xintSeq {\fpeval{\useKV[ClesStat]{ColVide}+1}}{\ListeCompletelen}}\do{&\ListeComplete[##1,2]}&\ifboolKV[ClesStat]{TotalVide}{}{\num{\EffectifTotal}}}\\\hline%
+ \ifboolKV[ClesStat]{Frequence}{Fr\'equence (\%)\xintFor* ##1 in {\xintSeq {1}{\fpeval{\useKV[ClesStat]{ColVide}-1}}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{FreqVide}{}{\CalculFrequence{##1}}}}&\xintFor* ##1 in {\xintSeq {\fpeval{\useKV[ClesStat]{ColVide}+1}}{\ListeCompletelen}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{FreqVide}{}{\CalculFrequence{##1}}}}&\ifboolKV[ClesStat]{TotalVide}{}{\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{FreqVide}{}{100}}}\\\hline}{}%
+ \ifboolKV[ClesStat]{Angle}{Angle (\si{\degree})\xintFor* ##1 in {\xintSeq {1}{\fpeval{\useKV[ClesStat]{ColVide}-1}}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{AngVide}{}{\CalculAngle{##1}}}}&\xintFor* ##1 in {\xintSeq {\fpeval{\useKV[ClesStat]{ColVide}+1}}{\ListeCompletelen}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{FreqVide}{}{\CalculAngle{##1}}}}&\ifboolKV[ClesStat]{TotalVide}{}{\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{AngVide}{}{360}}}\\\hline}{}%
+ \ifboolKV[ClesStat]{SemiAngle}{Angle (\si{\degree})\xintFor* ##1 in {\xintSeq {1}{\fpeval{\useKV[ClesStat]{ColVide}-1}}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{AngVide}{}{\CalculSemiAngle{##1}}}}&\xintFor* ##1 in {\xintSeq {\fpeval{\useKV[ClesStat]{ColVide}+1}}{\ListeCompletelen}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{FreqVide}{}{\CalculSemiAngle{##1}}}}&\ifboolKV[ClesStat]{TotalVide}{}{\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{AngVide}{}{180}}}\\\hline}{}%
+ \ifboolKV[ClesStat]{ECC}{E.C.C.\xintFor* ##1 in {\xintSeq {1}{\fpeval{\useKV[ClesStat]{ColVide}-1}}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{ECCVide}{}{\CalculECC{##1}}}}&\xintFor* ##1 in {\xintSeq {\fpeval{\useKV[ClesStat]{ColVide}+1}}{\ListeCompletelen}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{ECCVide}{}{\CalculECC{##1}}}}&\ifboolKV[ClesStat]{TotalVide}{}{\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{ECCVide}{}{\num{\EffectifTotal}}}}\\\hline}{}%
+ }%
+ }%
+ }%
\end{tabular}
- \else%
- \ifboolKV[ClesStat]{EffVide}{\useKV[ClesStat]{Effectif}\xintFor* ##1 in {\xintSeq {1}{\ListeCompletelen+1}}\do{&}}{\useKV[ClesStat]{Effectif}\xintFor* ##1 in {\xintSeq {1}{\number\numexpr\useKV[ClesStat]{ColVide}-1}}\do{&\ListeComplete[##1,2]}&\xintFor* ##1 in {\xintSeq {\number\numexpr\useKV[ClesStat]{ColVide}+1}{\ListeCompletelen}}\do{&\ListeComplete[##1,2]}&\ifboolKV[ClesStat]{TotalVide}{}{\num{\EffectifTotal}}}\\\hline%
- \ifboolKV[ClesStat]{Frequence}{Fr\'equence (\%)\xintFor* ##1 in {\xintSeq {1}{\number\numexpr\useKV[ClesStat]{ColVide}-1}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{FreqVide}{}{\CalculFrequence{##1}}}}&\xintFor* ##1 in {\xintSeq {\number\numexpr\useKV[ClesStat]{ColVide}+1}{\ListeCompletelen}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{FreqVide}{}{\CalculFrequence{##1}}}}&\ifboolKV[ClesStat]{TotalVide}{}{\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{FreqVide}{}{100}}}\\\hline}{}%
- \ifboolKV[ClesStat]{Angle}{Angle (\si{\degree})\xintFor* ##1 in {\xintSeq {1}{\number\numexpr\useKV[ClesStat]{ColVide}-1}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{AngVide}{}{\CalculAngle{##1}}}}&\xintFor* ##1 in {\xintSeq {\number\numexpr\useKV[ClesStat]{ColVide}+1}{\ListeCompletelen}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{AngVide}{}{\CalculAngle{##1}}}}&\ifboolKV[ClesStat]{TotalVide}{}{\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{AngVide}{}{360}}}\\\hline}{}%
- \ifboolKV[ClesStat]{SemiAngle}{Angle (\si{\degree})\xintFor* ##1 in {\xintSeq {1}{\number\numexpr\useKV[ClesStat]{ColVide}-1}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{AngVide}{}{\CalculSemiAngle{##1}}}}&\xintFor* ##1 in {\xintSeq {\number\numexpr\useKV[ClesStat]{ColVide}+1}{\ListeCompletelen}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{AngVide}{}{\CalculSemiAngle{##1}}}}&\ifboolKV[ClesStat]{TotalVide}{}{\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{AngVide}{}{180}}}\\\hline}{}%
- \ifboolKV[ClesStat]{ECC}{E.C.C.\xintFor* ##1 in {\xintSeq {1}{\number\numexpr\useKV[ClesStat]{ColVide}-1}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{ECCVide}{}{\CalculECC{##1}}}}&\xintFor* ##1 in {\xintSeq {\number\numexpr\useKV[ClesStat]{ColVide}+1}{\ListeCompletelen}}\do{&\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{ECCVide}{}{\CalculECC{##1}}}}&\ifboolKV[ClesStat]{TotalVide}{}{\ifboolKV[ClesStat]{TableauVide}{}{\ifboolKV[ClesStat]{ECCVide}{}{\num{\EffectifTotal}}}}\\\hline}{}%
- \end{tabular}
- \fi%
- \fi%
- \fi%
- \fi%
\renewcommand{\arraystretch}{1}%
- \]
-}
+ \]%
+}%
% Pour construire le diagramme en bâtons
\def\Updatetoks#1/#2\nil{\addtotok\toklistepoint{(#1,#2),}}
@@ -7117,7 +8892,7 @@
\xdef\TotalECC{0}%
\CompteurECC=1%
\CompteurECCTotal=\numexpr#1+1%
- \whiledo{\CompteurECC < \CompteurECCTotal}{
+ \whiledo{\CompteurECC < \CompteurECCTotal}{%
\xdef\TotalECC{\fpeval{\TotalECC+\ListeComplete[\the\CompteurECC,2]}}%
\CompteurECC=\numexpr\CompteurECC+1%
}%
@@ -7406,9 +9181,9 @@
if #4=1:
if round(p_*(#3/total[N]))>15:
if (n mod 2)=0:
- marque_a:=3.1*20
+ marque_a:=20*0.75*#1/cm;
else:
- marque_a:=3.1*20/0.9
+ marque_a:=20*0.5*#1/cm;
fi;
if #6=1:
if #7=0:
@@ -7531,9 +9306,9 @@
if #4=1:
if round(p_*(#3/total[N]))>15:
if (n mod 2)=0:
- marque_a:=3.1*20
+ marque_a:=20*0.75*#1/cm;
else:
- marque_a:=3.1*20/0.9
+ marque_a:=20*0.5*#1/cm;
fi;
if #6=1:
if #7=0:
@@ -7938,7 +9713,10 @@
}%
}{}%
% Construction de tableau
- \ifboolKV[ClesStat]{Tableau}{\ifboolKV[ClesStat]{Total}{\buildtabt}{\buildtab}}{}%
+ \ifboolKV[ClesStat]{Tableau}{\ifboolKV[ClesStat]{Total}{\buildtabt}{%
+ \buildtab%
+ }
+ }{}%
% Construction du graphique ??
\ifboolKV[ClesStat]{Graphique}{%
\ifboolKV[ClesStat]{Angle}{\buildgraphcq{360}}{\ifboolKV[ClesStat]{SemiAngle}{\buildgraphcq{180}}{\buildgraph[#1]}}
@@ -7945,7 +9723,7 @@
}{}%
}%
}%
-}
+}%
%%%
% Radar
@@ -8290,6 +10068,30 @@
\definecolor{Cfleches}{RGB}{100,100,100}%
+\newcommand\AffichageEqua[4]{%
+ \def\LETTRE{\useKV[ClesEquation]{Lettre}}%
+ \ensuremath{%
+ % partie du x
+ \xintifboolexpr{#1==0}{}{\xintifboolexpr{#1==1}{}{\xintifboolexpr{#1==-1}{-}{\num{#1}}}\LETTRE}%
+ % partie du nombre
+ \xintifboolexpr{#2==0}{\xintifboolexpr{#1==0}{0}{}}{\xintifboolexpr{#2>0}{\xintifboolexpr{#1==0}{}{+}\num{#2}}{\num{#2}}}%
+ % egal
+ =
+ % partie du x
+ \xintifboolexpr{#3==0}{}{\xintifboolexpr{#3==1}{}{\xintifboolexpr{#3==-1}{-}{\num{#3}}}\LETTRE}%
+ % partie du nombre
+ \xintifboolexpr{#4==0}{%
+ \xintifboolexpr{#3==0}{0}{}
+ }{%
+ \xintifboolexpr{#4>0}{\xintifboolexpr{#3==0}{}{+}\num{#4}}{\num{#4}}%
+ }
+ }%
+}%
+
+\newcommand\EcrireSolutionEquation[4]{%
+ L'équation \AffichageEqua{#1}{#2}{#3}{#4} a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.
+}%
+
\input{PfCEquationSoustraction2}%
\input{PfCEquationTerme1}%
\input{PfCEquationComposition2}%
@@ -8297,7 +10099,7 @@
\input{PfCEquationSymbole1}%
\input{PfCEquationLaurent1}
-\newcommand{\ResolEquation}[5][]{%
+\newcommand\ResolEquation[5][]{%
\useKVdefault[ClesEquation]%
\setKV[ClesEquation]{#1}%
\colorlet{Cterme}{\useKV[ClesEquation]{CouleurTerme}}%
@@ -8457,6 +10259,7 @@
\hhline{*{\number\numexpr\ListeValeurlen+1}{-}}%
\multicolumn{1}{c}{\TikzPBD\setcounter{NbPropor}{1}}\xintFor* ##1 in {\xintSeq {1}{\ListeValeurlen}}\do{&\multicolumn{1}{c}{\TikzPB}}\\%
\end{tabular}%
+ \renewcommand{\arraystretch}{1}%
}%
\newcounter{NbPropor}
@@ -8526,7 +10329,7 @@
\useKVdefault[ClesPropor]%
\setKV[ClesPropor]{#1}%
\xdef\colorfill{\useKV[ClesPropor]{ColorFill}}%
- \xdef\EcartLargeur{\useKV[ClesPropor]{Largeur}}
+ \xdef\EcartLargeur{\useKV[ClesPropor]{Largeur}}%
% %on lit la liste \'ecrite sous la forme valeur/effectif
\setsepchar[*]{,*/}\ignoreemptyitems%
\readlist*\ListeValeur{#2}%
@@ -11845,7 +13648,7 @@
%%%
% Reperage
%%%
-\setKVdefault[ClesReperage]{Unitex=1,Pasx=1,Unitey=1,Pasy=1,Unitez=1,Pasz=1,DemiDroite=false,Droite=false,Plan=false,Trace=false,ListeSegment={},Espace=false,Sphere=false,AffichageNom=false,AffichageGrad=false,AffichageAbs=0,AffichageCoord=false,LectureCoord=false,ValeurUnitex=1,ValeurUnitey=1,ValeurOrigine=0,NomOrigine=O,EchelleEspace=50,CouleurCoord=black}
+\setKVdefault[ClesReperage]{Unitex=1,Pasx=1,Unitey=1,Pasy=1,Unitez=1,Pasz=1,DemiDroite=false,Droite=false,Plan=false,Trace=false,ListeSegment={},Espace=false,Sphere=false,AnglePhi=30,CouleurLa=white,CouleurLon=Tomato,AffichageNom=false,AffichageGrad=false,AffichageAbs=0,AffichageCoord=false,LectureCoord=false,ValeurUnitex=1,ValeurUnitey=1,ValeurOrigine=0,NomOrigine=O,EchelleEspace=50,CouleurCoord=black}
% ValeurOrigine permet de faire des morceaux de demi-droite gradu\'ee en passant par droite :)
\def\Updatetoksdroite#1/#2\nil{\addtotok\toklistepointdroite{#1,"#2",}}
@@ -11861,24 +13664,214 @@
\toklistepointespace{}%
\ifboolKV[ClesReperage]{Sphere}{%
\foreachitem\compteur\in\ListePointEspace{\expandafter\Updatetoksrepere\compteur\nil}%
+ \[\MPEspaceSphere{\the\toklistepointrepere}{\useKV[ClesReperage]{EchelleEspace}}\]
}{%
\foreachitem\compteur\in\ListePointEspace{\expandafter\Updatetoksespace\compteur\nil}%
- }
- \ifboolKV[ClesReperage]{AffichageNom}{%
- \ifboolKV[ClesReperage]{AffichageCoord}{%
- \[\MPEspacePave{\useKV[ClesReperage]{Unitex}}{\useKV[ClesReperage]{Pasx}}{\useKV[ClesReperage]{Unitey}}{\useKV[ClesReperage]{Pasy}}{\useKV[ClesReperage]{Unitez}}{\useKV[ClesReperage]{Pasz}}{\the\toklistepointespace}{3}{\useKV[ClesReperage]{EchelleEspace}}\]%
+ \ifboolKV[ClesReperage]{AffichageNom}{%
+ \ifboolKV[ClesReperage]{AffichageCoord}{%
+ \[\MPEspacePave{\useKV[ClesReperage]{Unitex}}{\useKV[ClesReperage]{Pasx}}{\useKV[ClesReperage]{Unitey}}{\useKV[ClesReperage]{Pasy}}{\useKV[ClesReperage]{Unitez}}{\useKV[ClesReperage]{Pasz}}{\the\toklistepointespace}{3}{\useKV[ClesReperage]{EchelleEspace}}\]%
+ }{%
+ \[\MPEspacePave{\useKV[ClesReperage]{Unitex}}{\useKV[ClesReperage]{Pasx}}{\useKV[ClesReperage]{Unitey}}{\useKV[ClesReperage]{Pasy}}{\useKV[ClesReperage]{Unitez}}{\useKV[ClesReperage]{Pasz}}{\the\toklistepointespace}{2}{\useKV[ClesReperage]{EchelleEspace}}\]%
+ }%
}{%
- \[\MPEspacePave{\useKV[ClesReperage]{Unitex}}{\useKV[ClesReperage]{Pasx}}{\useKV[ClesReperage]{Unitey}}{\useKV[ClesReperage]{Pasy}}{\useKV[ClesReperage]{Unitez}}{\useKV[ClesReperage]{Pasz}}{\the\toklistepointespace}{2}{\useKV[ClesReperage]{EchelleEspace}}\]%
- }
- }{%
- \ifboolKV[ClesReperage]{AffichageCoord}{%
- \[\MPEspacePave{\useKV[ClesReperage]{Unitex}}{\useKV[ClesReperage]{Pasx}}{\useKV[ClesReperage]{Unitey}}{\useKV[ClesReperage]{Pasy}}{\useKV[ClesReperage]{Unitez}}{\useKV[ClesReperage]{Pasz}}{\the\toklistepointespace}{1}{\useKV[ClesReperage]{EchelleEspace}}\]%
- }{%
- \[\MPEspacePave{\useKV[ClesReperage]{Unitex}}{\useKV[ClesReperage]{Pasx}}{\useKV[ClesReperage]{Unitey}}{\useKV[ClesReperage]{Pasy}}{\useKV[ClesReperage]{Unitez}}{\useKV[ClesReperage]{Pasz}}{\the\toklistepointespace}{0}{\useKV[ClesReperage]{EchelleEspace}}\]%
- }
+ \ifboolKV[ClesReperage]{AffichageCoord}{%
+ \[\MPEspacePave{\useKV[ClesReperage]{Unitex}}{\useKV[ClesReperage]{Pasx}}{\useKV[ClesReperage]{Unitey}}{\useKV[ClesReperage]{Pasy}}{\useKV[ClesReperage]{Unitez}}{\useKV[ClesReperage]{Pasz}}{\the\toklistepointespace}{1}{\useKV[ClesReperage]{EchelleEspace}}\]%
+ }{%
+ \[\MPEspacePave{\useKV[ClesReperage]{Unitex}}{\useKV[ClesReperage]{Pasx}}{\useKV[ClesReperage]{Unitey}}{\useKV[ClesReperage]{Pasy}}{\useKV[ClesReperage]{Unitez}}{\useKV[ClesReperage]{Pasz}}{\the\toklistepointespace}{0}{\useKV[ClesReperage]{EchelleEspace}}\]%
+ }%
+ }%
}%
}%
+\def\MPEspaceSphere#1#2{%
+ \ifluatex
+ \begin{mplibcode}
+ typetrace:="3D";
+ typerepre:="persp";
+ anglephi:=\useKV[ClesReperage]{AnglePhi};
+ Initialisation(1500,anglephi,10,#2);
+ color O,A,B,C,D,Z,M[];
+ O=(0,0,0);
+ A=(cosd(anglephi+90),sind(anglephi+90),0);
+ B=(cosd(anglephi+180),sind(anglephi+180),0);
+ C=(1,0,0);
+ D=(0,1,0);
+ Z=(0,0,1);
+ trace cercles(O,A,O,A,Z) withcolor 0.7white;
+ path Equateur;
+ Equateur=cercles(O,C,O,C,D);
+ trace (subpath((0.25+anglephi/360)*length Equateur,(0.75+anglephi/360)*length Equateur) of Equateur) dashed evenly withcolor 0.7white;
+ trace (subpath((0.75+anglephi/360)*length Equateur,(1.25+anglephi/360)*length Equateur) of Equateur) withcolor 0.7white;
+ path greenwich;
+ greenwich=cercles(O,C,O,C,Z);
+ trace subpath(3*length greenwich/4,5*length greenwich/4) of greenwich withcolor 0.7white;
+ clip currentpicture to cercles(O,A,O,A,Z);
+ trace chemin(C,O,Z) dashed evenly withcolor 0.85white;
+ trace chemin(O,2[Z,O]) dashed evenly withcolor 0.85white;
+
+ vardef toto(text t)=
+ n:=1;
+ for p_=t:
+ if (n mod 3)=1:
+ k:=p_;
+ fi;
+ if (n mod 3)=2:
+ l:=p_;
+ fi;
+ if (n mod 3)=0:
+ M[n]=(cosd(k)*cosd(l),sind(k)*cosd(l),sind(l));
+ path Codageun,Codagedeux;
+ if k>0:
+ Codageun=cercles(O,1[O,C],O,1[O,C],D) cutafter chemin(O,(cosd(k),sind(k),0));
+ else:
+ Codageun=cercles(O,1[O,C],O,1[O,C],D) cutbefore chemin(O,(cosd(k),sind(k),0));
+ fi;
+ if l>0:
+ Codagedeux=cercles(O,(cosd(k),sind(k),0),O,(cosd(k),sind(k),0),Z) cutafter chemin(O,M[n]);
+ else:
+ Codagedeux=cercles(O,(cosd(k),sind(k),0),O,(cosd(k),sind(k),0),Z) cutbefore chemin(O,M[n]);
+ fi;
+ %%%% if l>0:
+ %%%fill Projette(O)--Projette((cosd(k),sind(k),0))--Codagedeux--cycle withcolor \useKV[ClesReperage]{CouleurLa};
+ %%%fill Projette(O)--Projette(C)--Codageun--cycle withcolor \useKV[ClesReperage]{CouleurLon};
+ %%%else:
+ %%%fill Projette(O)--Codagedeux--Projette((cosd(k),sind(k),0))--cycle withcolor \useKV[ClesReperage]{CouleurLa};
+ %%%fill Projette(O)--Codageun--Projette(C)--cycle withcolor \useKV[ClesReperage]{CouleurLon};
+ %%%fi;
+ trace Codageun;
+ trace Codagedeux;
+ if \useKV[ClesReperage]{AffichageCoord}:
+ picture CodageUn,CodageDeux;
+ CodageUn=image(
+ if k>0:
+ label.bot(TEX("\scriptsize\ang{"&decimal(k)&"} E"),(0,0));
+ else:
+ label.bot(TEX("\scriptsize\ang{"&decimal(abs(k))&"} O"),(0,0));
+ fi;
+ );
+ CodageDeux=image(
+ if k>0:
+ label.rt(TEX("\scriptsize\ang{"&decimal(l)&"} N"),(0,0));
+ else:
+ label.lft(TEX("\scriptsize\ang{"&decimal(abs(l))&"} S"),(0,0));
+ fi;
+ );
+ fill (polygone(llcorner CodageUn,lrcorner CodageUn,urcorner CodageUn,ulcorner CodageUn) shifted(point(0.5*length Codageun) of Codageun)) withcolor blanc;
+ trace CodageUn shifted (point(0.5*length Codageun) of Codageun);
+ fill (polygone(llcorner CodageDeux,lrcorner CodageDeux,urcorner CodageDeux,ulcorner CodageDeux) shifted(point(0.5*length Codagedeux) of Codagedeux)) withcolor blanc;
+ trace CodageDeux shifted (point(0.5*length Codagedeux) of Codagedeux);
+ fi;
+ trace chemin(O,(cosd(k),sind(k),0)) dashed withdots scaled 0.5;
+ trace chemin(O,M[n]) dashed withdots scaled 0.5;
+ trace chemin(O,C) dashed withdots scaled 0.5;
+ if \useKV[ClesReperage]{AffichageNom}:
+ if l>0:dotlabel.top(p_,Projette(M[n]));
+ else:
+ dotlabel.bot(p_,Projette(M[n]));
+ fi;
+ fi;
+ fi;
+ n:=n+1;
+ endfor;
+ enddef;
+ toto(#1);
+ label.llft(btex \tiny \ang{0} etex,Projette(C));
+ \end{mplibcode}
+ \else
+ \begin{mpost}[mpsettings={boolean AffichageCoord; AffichageCoord=\useKV[ClesReperage]{AffichageCoord}; boolean AffichageNom; AffichageNom=\useKV[ClesReperage]{AffichageNom};anglephi:=\useKV[ClesReperage]{AnglePhi};}]
+ typetrace:="3D";
+ typerepre:="persp";
+ Initialisation(1500,anglephi,10,#2);
+ color O,A,B,C,D,Z,M[];
+ O=(0,0,0);
+ A=(cosd(anglephi+90),sind(anglephi+90),0);
+ B=(cosd(anglephi+180),sind(anglephi+180),0);
+ C=(1,0,0);
+ D=(0,1,0);
+ Z=(0,0,1);
+ trace cercles(O,A,O,A,Z) withcolor 0.7white;
+ path Equateur;
+ Equateur=cercles(O,C,O,C,D);
+ trace (subpath((0.25+anglephi/360)*length Equateur,(0.75+anglephi/360)*length Equateur) of Equateur) dashed evenly withcolor 0.7white;
+ trace (subpath((0.75+anglephi/360)*length Equateur,(1.25+anglephi/360)*length Equateur) of Equateur) withcolor 0.7white;
+ path greenwich;
+ greenwich=cercles(O,C,O,C,Z);
+ trace subpath(3*length greenwich/4,5*length greenwich/4) of greenwich withcolor 0.7white;
+ clip currentpicture to cercles(O,A,O,A,Z);
+ trace chemin(C,O,Z) dashed evenly withcolor 0.85white;
+ trace chemin(O,2[Z,O]) dashed evenly withcolor 0.85white;
+
+ vardef toto(text t)=
+ n:=1;
+ for p_=t:
+ if (n mod 3)=1:
+ k:=p_;
+ fi;
+ if (n mod 3)=2:
+ l:=p_;
+ fi;
+ if (n mod 3)=0:
+ M[n]=(cosd(k)*cosd(l),sind(k)*cosd(l),sind(l));
+ path Codageun,Codagedeux;
+ if k>0:
+ Codageun=cercles(O,1[O,C],O,1[O,C],D) cutafter chemin(O,(cosd(k),sind(k),0));
+ else:
+ Codageun=cercles(O,1[O,C],O,1[O,C],D) cutbefore chemin(O,(cosd(k),sind(k),0));
+ fi;
+ if l>0:
+ Codagedeux=cercles(O,(cosd(k),sind(k),0),O,(cosd(k),sind(k),0),Z) cutafter chemin(O,M[n]);
+ else:
+ Codagedeux=cercles(O,(cosd(k),sind(k),0),O,(cosd(k),sind(k),0),Z) cutbefore chemin(O,M[n]);
+ fi;
+ %if l>0:
+ %fill Projette(O)--Projette((cosd(k),sind(k),0))--Codagedeux--cycle withcolor \useKV[ClesReperage]{CouleurLa};
+ %fill Projette(O)--Projette(C)--Codageun--cycle withcolor \useKV[ClesReperage]{CouleurLon};
+ %else:
+ %fill Projette(O)--Codagedeux--Projette((cosd(k),sind(k),0))--cycle withcolor \useKV[ClesReperage]{CouleurLa};
+ %fill Projette(O)--Codageun--Projette(C)--cycle withcolor \useKV[ClesReperage]{CouleurLon};
+ %fi;
+ trace Codageun;
+ trace Codagedeux;
+ if AffichageCoord:
+ picture CodageUn,CodageDeux;
+ CodageUn=image(
+ if k>0:
+ label.bot(LATEX("\noexpand\scriptsize\ang{"&decimal(k)&"} E"),(0,0));
+ else:
+ label.bot(LATEX("\noexpand\scriptsize\ang{"&decimal(abs(k))&"} O"),(0,0));
+ fi;
+ );
+ CodageDeux=image(
+ if k>0:
+ label.rt(LATEX("\noexpand\scriptsize\ang{"&decimal(l)&"} N"),(0,0));
+ else:
+ label.lft(LATEX("\noexpand\scriptsize\ang{"&decimal(abs(l))&"} S"),(0,0));
+ fi;
+ );
+ fill (polygone(llcorner CodageUn,lrcorner CodageUn,urcorner CodageUn,ulcorner CodageUn) shifted(point(0.5*length Codageun) of Codageun)) withcolor blanc;
+ trace CodageUn shifted (point(0.5*length Codageun) of Codageun);
+ fill (polygone(llcorner CodageDeux,lrcorner CodageDeux,urcorner CodageDeux,ulcorner CodageDeux) shifted(point(0.5*length Codagedeux) of Codagedeux)) withcolor blanc;
+ trace CodageDeux shifted (point(0.5*length Codagedeux) of Codagedeux);
+ fi;
+ trace chemin(O,(cosd(k),sind(k),0)) dashed withdots scaled 0.5;
+ trace chemin(O,M[n]) dashed withdots scaled 0.5;
+ trace chemin(O,C) dashed withdots scaled 0.5;
+ if AffichageNom:
+ if l>0:dotlabel.top(p_,Projette(M[n]));
+ else:
+ dotlabel.bot(p_,Projette(M[n]));
+ fi;
+ fi;
+ fi;
+ n:=n+1;
+ endfor;
+ enddef;
+ toto(#1);
+ label.llft(btex \noexpand\tiny \ang{0} etex,Projette(C));
+ \end{mpost}
+ \fi
+}
+
\def\MPEspacePave#1#2#3#4#5#6#7#8#9{%
\ifluatex
\begin{mplibcode}
@@ -12938,7 +14931,7 @@
fi;
endfor;
fi;
- if #7=2:
+ if #7=3:
for p_=t:
if numeric p_:
k:=p_;
@@ -12945,6 +14938,19 @@
fi;
if string p_:
if p_<>"":
+ drawarrow (unitp*(k,-1))--(unitp*(k,-0.3));
+ label.bot(btex \hbox to2em{\dotfill} etex,(unitp*(k,-1)));
+ pointe(unitp*(k-#6,0));
+ fi;
+ fi;
+ endfor;
+ elseif #7=2:
+ for p_=t:
+ if numeric p_:
+ k:=p_;
+ fi;
+ if string p_:
+ if p_<>"":
if ((#5*k) mod pasx)<>0:
label.bot(TEX("\footnotesize$\frac{\num{\fpeval{"&decimal(#5)&"*"&decimal(k)&"}}}{\num{"&decimal(pasx)&"}}$"),unitp*(k,0));
else:
@@ -13031,7 +15037,7 @@
fi;
endfor;
fi;
- if #7=2:
+ if #7=3:
for p_=t:
if numeric p_:
k:=p_;
@@ -13038,6 +15044,19 @@
fi;
if string p_:
if p_<>"":
+ drawarrow (unitp*(k,-1))--(unitp*(k,-0.3));
+ label.bot(btex \hbox to2em{\dotfill} etex,(unitp*(k,-1)));
+ pointe(unitp*(k-#6,0));
+ fi;
+ fi;
+ endfor;
+ elseif #7=2:
+ for p_=t:
+ if numeric p_:
+ k:=p_;
+ fi;
+ if string p_:
+ if p_<>"":
if ((#5*k) mod pasx)<>0:
label.bot(LATEX("\noexpand\footnotesize$\noexpand\frac{\noexpand\num{\noexpand\fpeval{"&decimal(#5)&"*"&decimal(k)&"}}}{\noexpand\num{"&decimal(pasx)&"}}$"),unitp*(k,0));
else:
@@ -13355,6 +15374,7 @@
\setKV[ClesReperage]{#1}%
\ifboolKV[ClesReperage]{Espace}{%
\setKV[ClesReperage]{Unitex=2,Unitey=2.5,Unitez=1.5}%
+ \ifboolKV[ClesReperage]{Sphere}{\setKV[ClesReperage]{EchelleEspace=75}}{}%
\setKV[ClesReperage]{#1}%
\setsepchar[*]{,*/}\ignoreemptyitems%
\readlist*\ListePointEspace{#2}%
@@ -13460,8 +15480,8 @@
\SI{#2}{\kWh}%
}
-\newcommand\Prix[2][]{%
- \SI[round-mode=places,round-precision=2]{#2}{\EuRo}%
+\newcommand\Prix[2][2]{%
+ \SI[round-mode=places,round-precision=#1]{#2}{\EuRo}%
}
\newcommand\Octet[2][]{%
@@ -14347,53 +16367,83 @@
colbacktitle=TrameCouleur,
}
-\usetikzlibrary{backgrounds}
-
-\makeatletter
-%https://tex.stackexchange.com/questions/347434/clip-background-image-inside-tcolorbox
-\newtcolorbox{MyboxSimpleAv}[1]{%
+\newtcolorbox{MyboxJQ}[2]{%
enhanced,
nobeforeafter,
- left=0pt,right=0pt,top=\hauteurtitre,bottom=0pt,
+ left=0pt,right=0pt,top=0pt,
text fill,
width=\largeurcarte,
height=\hauteurcarte,
arc=5pt,
+ overlay unbroken and first={%
+ \coordinate[yshift=-0.5\hauteurtitre] (A1) at (frame.north west);
+ \coordinate[yshift=0\hauteurtitre] (S3) at (frame.center);
+ \coordinate[yshift=3mm] (C3) at (frame.south);
+ \coordinate[xshift=\largeurcarte/2] (A3) at (A1);
+ \node[rounded corners, draw=black, rectangle,minimum height=1cm,text width=\largeurcarte-6mm,fill=TrameCouleur] (T1) at (A3){};
+ \node[TexteCouleur] (T1a) at (T1){\Large J'ai};
+ \node[rounded corners, draw=black, rectangle,minimum height=1cm,text width=\largeurcarte-6mm,fill=TrameCouleur] (T2) at (S3){};
+ \node[TexteCouleur] (T2a) at (T2){\Large Qui a ?};
+ \node[minimum height=1cm,text width=\largeurcarte-6mm] (PointTexte1) at ($(A3)!0.5!(S3)$) {\begin{minipage}{\largeurcarte-6mm}%
+ \begin{center}%
+ #1%
+ \end{center}%
+ \end{minipage}};
+ \node[minimum height=1cm,text width=\largeurcarte-6mm] (PointTexte2) at ($(C3)!0.5!(S3)$) {\begin{minipage}{\largeurcarte-6mm}%
+ \begin{center}%
+ #2%
+ \end{center}%
+ \end{minipage}};
+ },
colback=white,
+}
+
+\usetikzlibrary{backgrounds}
+
+\makeatletter
+%https://tex.stackexchange.com/questions/347434/clip-background-image-inside-tcolorbox
+\newtcolorbox{MyboxSimpleAv}[1]{%
+ enhanced,%
+ nobeforeafter,%
+ left=0pt,right=0pt,top=\hauteurtitre,bottom=0pt,%
+ text fill,%
+ width=\largeurcarte,%
+ height=\hauteurcarte,%
+ arc=5pt,%
+ colback=white,%
underlay={%
\ifboolKV[Cards]{BackgroundAv}{%
- \begin{tcbclipinterior}
- \node[anchor=center,opacity=1]
- at (interior.center) {%
- \includegraphics[%
- height=\tcb at height,
- width=\tcb at width,
- ]{\useKV[Cards]{ImageAv}}};
- \end{tcbclipinterior},
- }{}
- },
+ \begin{tcbclipinterior}
+ \node[anchor=center,opacity=1]
+ at (interior.center) {%
+ \includegraphics[%
+ height=\tcb at height,
+ width=\tcb at width,
+ ]{\useKV[Cards]{ImageAv}}};%
+ \end{tcbclipinterior},%
+ }{}%
+ },%
overlay unbroken and first={%
- \coordinate[yshift=-0.5\hauteurtitre] (A) at (frame.north);
- \node[rounded corners, draw=black, rectangle,minimum height=1cm,text width=\largeurcarte-6mm,fill=TrameCouleur] (T1) at
- (A){\begin{minipage}{\largeurcarte-6mm}
- \begin{center}
- #1
- \end{center}
- \end{minipage}};
- \node[yshift=-0.5em-0.5\hauteurtitre] (B) at (A){};
- \ifboolKV[Cards]{Titre}{\node[fill=white] at (B) {\useKV[Cards]{NomTitre}};}{},
- }
-}
+ \coordinate[yshift=-0.5\hauteurtitre] (A) at (frame.north);%
+ \node[rounded corners, draw=black, rectangle,minimum height=1cm,text width=\largeurcarte-6mm,fill=TrameCouleur] (T1) at (A){\begin{minipage}{\largeurcarte-6mm}%
+ \begin{center}%
+ #1%
+ \end{center}%
+ \end{minipage}};%
+ \node[yshift=-0.5em-0.5\hauteurtitre] (B) at (A){};%
+ \ifboolKV[Cards]{Titre}{\node[fill=white] at (B) {\useKV[Cards]{NomTitre}};}{},%
+ }%
+}%
\newtcolorbox{MyboxSimpleAr}[1]{%
- enhanced,
- nobeforeafter,
- left=0pt,right=0pt,top=\hauteurtitre,bottom=0pt,
- text fill,
- width=\largeurcarte,
- height=\hauteurcarte,
- arc=5pt,
- colback=white,
+ enhanced,%
+ nobeforeafter,%
+ left=0pt,right=0pt,top=\hauteurtitre,bottom=0pt,%
+ text fill,%
+ width=\largeurcarte,%
+ height=\hauteurcarte,%
+ arc=5pt,%
+ colback=white,%
underlay={%
\ifboolKV[Cards]{BackgroundAr}{%
\begin{tcbclipinterior}
@@ -14403,79 +16453,78 @@
height=\tcb at height,
width=\tcb at width,
]{\useKV[Cards]{ImageAr}}};
- \end{tcbclipinterior},
+ \end{tcbclipinterior},%
}{}
- },
+ },%
overlay unbroken and first={%
- \coordinate[yshift=-0.5\hauteurtitre] (A) at (frame.north);
- \node[rounded corners, draw=black, rectangle,minimum height=1cm,text width=\largeurcarte-6mm,fill=TrameCouleur] (T1) at
- (A){\begin{minipage}{\largeurcarte-6mm}
- \begin{center}
- #1
- \end{center}
- \end{minipage}};
- %\node[yshift=-1em] (B) at (A){};
- %\ifboolKV[Cards]{Titre}{\node[fill=white] at (B) {\useKV[Cards]{NomTitre}};}{},
- }
-}
+ \coordinate[yshift=-0.5\hauteurtitre] (A) at (frame.north);%
+ \node[rounded corners, draw=black, rectangle,minimum height=1cm,text width=\largeurcarte-6mm,fill=TrameCouleur] (T1) at (A){\begin{minipage}{\largeurcarte-6mm}%
+ \begin{center}%
+ #1%
+ \end{center}%
+ \end{minipage}};%
+ % \node[yshift=-1em] (B) at (A){};
+ % \ifboolKV[Cards]{Titre}{\node[fill=white] at (B) {\useKV[Cards]{NomTitre}};}{},
+ }%
+}%
\makeatother
-\newlength{\largeurcards}
-\newlength{\hauteurcards}
-\newlength{\largeurcarte}
-\newlength{\hauteurcarte}
-\newlength{\hauteurtitre}
-\newlength{\largeurtitre}
+\newlength{\largeurcards}%
+\newlength{\hauteurcards}%
+\newlength{\largeurcarte}%
+\newlength{\hauteurcarte}%
+\newlength{\hauteurtitre}%
+\newlength{\largeurtitre}%
-\newlength{\margeh}
-\newlength{\margev}
+\newlength{\margeh}%
+\newlength{\margev}%
\NewEnviron{Trame}{%
\begin{tikzpicture}[remember picture,overlay]
% quadrillages horizontal et vertical
- \coordinate[yshift=-\margev] (A) at (current page.north west);
- \coordinate[yshift=-\margev] (B) at (current page.north east);
- \coordinate[yshift=-\hauteurcards] (A1) at (A);
- \coordinate[yshift=-\hauteurcards] (B1) at (B);
- \coordinate[yshift=-\hauteurcards] (A2) at (A1);
- \coordinate[yshift=-\hauteurcards] (B2) at (B1);
- \coordinate[yshift=-\hauteurcards] (A3) at (A2);
- \coordinate[yshift=-\hauteurcards] (B3) at (B2);
- \coordinate[yshift=-\hauteurcards] (A4) at (A3);
- \coordinate[yshift=-\hauteurcards] (B4) at (B3);
- \coordinate[xshift=\margeh] (C) at (current page.north west);
- \coordinate[xshift=\margeh] (D) at (current page.south west);
- \coordinate[xshift=\largeurcards] (C1) at (C);
- \coordinate[xshift=\largeurcards] (D1) at (D);
- \coordinate[xshift=\largeurcards] (C2) at (C1);
- \coordinate[xshift=\largeurcards] (D2) at (D1);
- \coordinate[xshift=\largeurcards] (C3) at (C2);
- \coordinate[xshift=\largeurcards] (D3) at (D2);
- \draw (A) -- (B);
- \draw (A1) -- (B1);
- \draw (A2) -- (B2);
- \draw (A3) -- (B3);
- \draw (A4) -- (B4);
- \draw (C)--(D);
- \draw (C1)--(D1);
- \draw (C2)--(D2);
- \draw (C3)--(D3);
+ \coordinate[yshift=-\margev] (A) at (current page.north west);%
+ \coordinate[yshift=-\margev] (B) at (current page.north east);%
+ \coordinate[yshift=-\hauteurcards] (A1) at (A);%
+ \coordinate[yshift=-\hauteurcards] (B1) at (B);%
+ \coordinate[yshift=-\hauteurcards] (A2) at (A1);%
+ \coordinate[yshift=-\hauteurcards] (B2) at (B1);%
+ \coordinate[yshift=-\hauteurcards] (A3) at (A2);%
+ \coordinate[yshift=-\hauteurcards] (B3) at (B2);%
+ \coordinate[yshift=-\hauteurcards] (A4) at (A3);%
+ \coordinate[yshift=-\hauteurcards] (B4) at (B3);%
+ \coordinate[xshift=\margeh] (C) at (current page.north west);%
+ \coordinate[xshift=\margeh] (D) at (current page.south west);%
+ \coordinate[xshift=\largeurcards] (C1) at (C);%
+ \coordinate[xshift=\largeurcards] (D1) at (D);%
+ \coordinate[xshift=\largeurcards] (C2) at (C1);%
+ \coordinate[xshift=\largeurcards] (D2) at (D1);%
+ \coordinate[xshift=\largeurcards] (C3) at (C2);%
+ \coordinate[xshift=\largeurcards] (D3) at (D2);%
+ \draw (A) -- (B);%
+ \draw (A1) -- (B1);%
+ \draw (A2) -- (B2);%
+ \draw (A3) -- (B3);%
+ \draw (A4) -- (B4);%
+ \draw (C)--(D);%
+ \draw (C1)--(D1);%
+ \draw (C2)--(D2);%
+ \draw (C3)--(D3);%
% point pour placer les cartes
- \coordinate[xshift=\margeh+0.5\largeurcards,yshift=-0.5\hauteurcards] (Carte1) at (A);
- \coordinate[xshift=\largeurcards,yshift=0mm] (Carte2) at (Carte1);
- \coordinate[xshift=2\largeurcards,yshift=0mm] (Carte3) at (Carte1);
- \coordinate[xshift=0mm,yshift=-\hauteurcards] (Carte4) at (Carte1);
- \coordinate[xshift=0mm,yshift=-\hauteurcards] (Carte5) at (Carte2);
- \coordinate[xshift=0mm,yshift=-\hauteurcards] (Carte6) at (Carte3);
- \coordinate[xshift=0mm,yshift=-\hauteurcards] (Carte7) at (Carte4);
- \coordinate[xshift=0mm,yshift=-\hauteurcards] (Carte8) at (Carte5);
- \coordinate[xshift=0mm,yshift=-\hauteurcards] (Carte9) at (Carte6);
- \BODY
- \end{tikzpicture}
-}
+ \coordinate[xshift=\margeh+0.5\largeurcards,yshift=-0.5\hauteurcards] (Carte1) at (A);%
+ \coordinate[xshift=\largeurcards,yshift=0mm] (Carte2) at (Carte1);%
+ \coordinate[xshift=2\largeurcards,yshift=0mm] (Carte3) at (Carte1);%
+ \coordinate[xshift=0mm,yshift=-\hauteurcards] (Carte4) at (Carte1);%
+ \coordinate[xshift=0mm,yshift=-\hauteurcards] (Carte5) at (Carte2);%
+ \coordinate[xshift=0mm,yshift=-\hauteurcards] (Carte6) at (Carte3);%
+ \coordinate[xshift=0mm,yshift=-\hauteurcards] (Carte7) at (Carte4);%
+ \coordinate[xshift=0mm,yshift=-\hauteurcards] (Carte8) at (Carte5);%
+ \coordinate[xshift=0mm,yshift=-\hauteurcards] (Carte9) at (Carte6);%
+ \BODY%
+ \end{tikzpicture}%
+}%
\setKVdefault[Cards]{Largeur=59,Hauteur=89,HauteurTheme=15,Marge=4,Landscape=false,Couleur=Cornsilk,Theme=Th\'eor\`eme\\de
- Pythagore,ThemeSol=Solution,Trame=false,Titre=false,NomTitre=Jeu 1,Loop,BackgroundAv=false,BackgroundAr=false,ImageAv=4813762.jpg,ImageAr=4813762.jpg,AffichageSolution=true}
+ Pythagore,ThemeSol=Solution,Trame=false,Titre=false,NomTitre=Jeu 1,Loop,JaiQuia=false,BackgroundAv=false,BackgroundAr=false,ImageAv=4813762.jpg,ImageAr=4813762.jpg,AffichageSolution=true}%
\newcommand\Cartes[2][]{%
\useKVdefault[Cards]%
@@ -14489,19 +16538,19 @@
\setlength{\hauteurcards}{65mm}%
\setlength{\margeh}{(297mm-3\largeurcards)/2}%
\setlength{\margev}{(210mm-3\hauteurcards)/2}%
- }{
+ }{%
\setlength{\hauteurcarte}{\fpeval{\useKV[Cards]{Hauteur}-\useKV[Cards]{Marge}}mm}%
\setlength{\largeurcarte}{\fpeval{\useKV[Cards]{Largeur}-\useKV[Cards]{Marge}}mm}%
- \setlength{\largeurcards}{65mm}
- \setlength{\hauteurcards}{95mm}
- \setlength{\margeh}{(210mm-3\largeurcards)/2}
- \setlength{\margev}{(297mm-3\hauteurcards)/2}
- }
+ \setlength{\largeurcards}{65mm}%
+ \setlength{\hauteurcards}{95mm}%
+ \setlength{\margeh}{(210mm-3\largeurcards)/2}%
+ \setlength{\margev}{(297mm-3\hauteurcards)/2}%
+ }%
\setlength{\hauteurtitre}{\fpeval{\useKV[Cards]{HauteurTheme}}mm}%
\setlength{\largeurtitre}{\fpeval{(\useKV[Cards]{Largeur}-\useKV[Cards]{Marge}-9)/2}mm}%
- \colorlet{TexteCouleur}{black}
- \colorlet{TrameCouleur}{\useKV[Cards]{Couleur}}
- \ifboolKV[Cards]{Loop}{%
+ \colorlet{TexteCouleur}{black}%
+ \colorlet{TrameCouleur}{\useKV[Cards]{Couleur}}%
+ \ifboolKV[Cards]{JaiQuia}{%
\ifboolKV[Cards]{Trame}{%
\clearpage%
\thispagestyle{empty}%
@@ -14508,69 +16557,92 @@
\begin{Trame}
\multido{\i=1+1}{9}{%
\node at (Carte\i) {%
- \begin{Mybox}{\ListeCards[\i,1]}{\useKV[Cards]{Theme}}{\ListeCards[\i,2]}%
- \ListeCards[\i,3]%
- \end{Mybox}%
+ \begin{MyboxJQ}{\ListeCards[\i,1]}{\ListeCards[\i,2]}%
+ %%
+ \end{MyboxJQ}%
};%
}%
\end{Trame}%
\clearpage%
}{%
- \begin{Mybox}{\ListeCards[1,1]}{\useKV[Cards]{Theme}}{\ListeCards[1,2]}%
- \ListeCards[1,3]%
- \end{Mybox}%
+ \begin{MyboxJQ}{\ListeCards[1,1]}{\ListeCards[1,2]}%
+ %%
+ \end{MyboxJQ}%
}%
}{%
- \ifboolKV[Cards]{Trame}{%
- \clearpage%
- \thispagestyle{empty}%
- \begin{Trame}
- \multido{\i=1+1}{9}{%
- \node[] at (Carte\i) {%
- \begin{MyboxSimpleAv}{\useKV[Cards]{Theme}}%
- \ListeCards[\i,1]%
- \end{MyboxSimpleAv}%
- };%
- }%
- \end{Trame}%
- \clearpage%
- \thispagestyle{empty}%
- \begin{Trame}
- \multido{\i=1+1}{3}{%
- \node at (Carte\i) {%
- \begin{MyboxSimpleAr}{\useKV[Cards]{ThemeSol}}%
- \ListeCards[\fpeval{4-\i},2]%
- \end{MyboxSimpleAr}%
- };%
- }%
- \multido{\i=4+1}{3}{%
- \node at (Carte\i) {%
- \begin{MyboxSimpleAr}{\useKV[Cards]{ThemeSol}}%
- \ListeCards[\fpeval{10-\i},2]%
- \end{MyboxSimpleAr}%
- };%
- }%
- \multido{\i=7+1}{3}{%
- \node at (Carte\i) {%
- \begin{MyboxSimpleAr}{\useKV[Cards]{ThemeSol}}%
- \ListeCards[\fpeval{16-\i},2]%
- \end{MyboxSimpleAr}%
- };%
- }%
- \end{Trame}%
- \clearpage%
+ \ifboolKV[Cards]{Loop}{%
+ \ifboolKV[Cards]{Trame}{%
+ \clearpage%
+ \thispagestyle{empty}%
+ \begin{Trame}
+ \multido{\i=1+1}{9}{%
+ \node at (Carte\i) {%
+ \begin{Mybox}{\ListeCards[\i,1]}{\useKV[Cards]{Theme}}{\ListeCards[\i,2]}%
+ \ListeCards[\i,3]%
+ \end{Mybox}%
+ };%
+ }%
+ \end{Trame}%
+ \clearpage%
+ }{%
+ \begin{Mybox}{\ListeCards[1,1]}{\useKV[Cards]{Theme}}{\ListeCards[1,2]}%
+ \ListeCards[1,3]%
+ \end{Mybox}%
+ }%
}{%
- \begin{MyboxSimpleAv}{\useKV[Cards]{Theme}}%
- \ListeCards[1,1]%
- \end{MyboxSimpleAv}
- \ifboolKV[Cards]{AffichageSolution}{%
- \begin{MyboxSimpleAr}{\useKV[Cards]{ThemeSol}}%
- \ListeCards[1,2]%
- \end{MyboxSimpleAr}
- }{}%
+ \ifboolKV[Cards]{Trame}{%
+ \clearpage%
+ \thispagestyle{empty}%
+ \begin{Trame}
+ \multido{\i=1+1}{9}{%
+ \node[] at (Carte\i) {%
+ \begin{MyboxSimpleAv}{\useKV[Cards]{Theme}}%
+ \ListeCards[\i,1]%
+ \end{MyboxSimpleAv}%
+ };%
+ }%
+ \end{Trame}%
+ \ifboolKV[Cards]{AffichageSolution}{%
+ \clearpage%
+ \thispagestyle{empty}%
+ \begin{Trame}
+ \multido{\i=1+1}{3}{%
+ \node at (Carte\i) {%
+ \begin{MyboxSimpleAr}{\useKV[Cards]{ThemeSol}}%
+ \ListeCards[\fpeval{4-\i},2]%
+ \end{MyboxSimpleAr}%
+ };%
+ }%
+ \multido{\i=4+1}{3}{%
+ \node at (Carte\i) {%
+ \begin{MyboxSimpleAr}{\useKV[Cards]{ThemeSol}}%
+ \ListeCards[\fpeval{10-\i},2]%
+ \end{MyboxSimpleAr}%
+ };%
+ }%
+ \multido{\i=7+1}{3}{%
+ \node at (Carte\i) {%
+ \begin{MyboxSimpleAr}{\useKV[Cards]{ThemeSol}}%
+ \ListeCards[\fpeval{16-\i},2]%
+ \end{MyboxSimpleAr}%
+ };%
+ }%
+ \end{Trame}%
+ \clearpage%
+ }{}%
+ }{%
+ \begin{MyboxSimpleAv}{\useKV[Cards]{Theme}}%
+ \ListeCards[1,1]%
+ \end{MyboxSimpleAv}%
+ \ifboolKV[Cards]{AffichageSolution}{%
+ \begin{MyboxSimpleAr}{\useKV[Cards]{ThemeSol}}%
+ \ListeCards[1,2]%
+ \end{MyboxSimpleAr}%
+ }{}%
+ }%
}%
}%
-}
+}%
\newcommand\SolutionCarte[2]{%
\begin{center}
@@ -14769,77 +16841,202 @@
%%%%
% Prog de calculs "simples"
%%%%
-\setKVdefault[ClesProg]{Ecart=2em,SansCalcul=false,Direct=true}
+\setKVdefault[ClesProg]{%
+ Ecart=2em,%
+ Direct,%
+ SansCalcul=false,%
+ Application=false,
+ Details=false,
+ Enonce=false,
+ Nom={},
+ CouleurCadre=black,%
+ CouleurFond=gray!10,%
+ Largeur={.95\linewidth},%
+ Epaisseur=.75pt,%
+ Pointilles=0,
+ ThemePerso=false,
+}
-\newcounter{nbprog}
-\setcounter{nbprog}{0}%
+\newcounter{NBprog}%
+\setcounter{NBprog}{0}%
+\newlength{\PointillesClesProg}%
+
\newcommand\ProgCalcul[2][]{%
% #1 : cl\'es
% #2 : \'etapes
\useKVdefault[ClesProg]%
\setKV[ClesProg]{#1}%
- \setsepchar[*]{,* }\ignoreemptyitems%
- \readlist*\ListeProg{#2}%
- \stepcounter{nbprog}%
- \xdef\NbDepart{\ListeProg[1]}%
- \ifboolKV[ClesProg]{SansCalcul}{%
- $\NbDepart$\foreachitem\compteur\in\ListeProg[2]{%
- \hspace{0.2em}\tikzmark{A-\thenbprog-\compteurcnt}\hspace{\useKV[ClesProg]{Ecart}}\tikzmark{B-\thenbprog-\compteurcnt}\hspace{0.2em}$\ListeProg[3,\compteurcnt]$%
+ \ifboolKV[ClesProg]{ThemePerso}{}{%
+ \tcbset{ProgCalcul/.style={%
+ boxsep=1mm,
+ bottom=.75mm,
+ middle=2mm,
+ boxrule={\useKV[ClesProg]{Epaisseur}},
+ text width={\useKV[ClesProg]{Largeur}},
+ colframe={\useKV[ClesProg]{CouleurCadre}},
+ colback={\useKV[ClesProg]{CouleurFond}},
+ halign upper=center
+ }%
}%
- \begin{tikzpicture}[remember picture, overlay]
- \foreachitem\compteur\in\ListeProg[2]{%
- \edef\Test{\ListeProg[2,\compteurcnt]}
- \expandarg%
- \StrSubstitute{\Test}{^}{\empty\dots{}^}[\tempa]
- \StrSubstitute{\tempa}{**}{^}[\tempab]
- \StrSubstitute{\tempab}{*}{\times}[\tempac]
- \StrSubstitute{\tempac}{/}{\div}[\tempad]
- \draw[-stealth,transform canvas={yshift=0.25em}] (pic cs:A-\thenbprog-\compteurcnt) --
- node[above]{\scriptsize$\tempad$}(pic cs:B-\thenbprog-\compteurcnt);
- }
- \end{tikzpicture}
+ }%
+ \ifboolKV[ClesProg]{Application}{%
+ % % by Thomas Dehon and cp
+ \setsepchar[*]{§*,}
+ % \setsepchar[*]{,* }%
+ \ignoreemptyitems%
+ \readlist*\ListeTotale{#2}%
+ \xdef\foo{\ListeTotale[1]}%
+ \xdef\faa{\ListeTotale[2]}%
+ %%
+ \setsepchar{,}% \ignoreemptyitems%
+ \readlist*\ListeEtapes{\foo}%
+ \setsepchar[*]{,* }\ignoreemptyitems%
+ \readlist*\ListeProg{\faa}%
+ \begin{tcolorbox}[%
+ ProgCalcul,%
+ ]
+ \ifthenelse{\equal{\useKV[ClesProg]{Nom}}{}}%
+ {}%
+ {%
+ {\color{\useKV[ClesProg]{CouleurCadre}}{\bfseries\useKV[ClesProg]{Nom}}}%
+ \tcblower
+ }%
+ \ifboolKV[ClesProg]{SansCalcul}{%
+ \begin{enumerate}
+ \item Choisir un nombre~\pointilles[]~$\ListeProg[1]$%
+ \foreachitem\etape\in\ListeEtapes{%
+ \item \etape~\pointilles[]~$\ListeProg[3,\etapecnt]$
+ }%
+ \end{enumerate}
+ }{\begin{enumerate}
+ \item Choisir un nombre~\pointilles[]~\xdef\NbDepart{\ListeProg[1]}\num{\NbDepart}
+ \foreachitem\etape\in\ListeEtapes{%
+ \item \etape~\pointilles[]~\edef\Test{\ListeProg[2,\etapecnt]}%
+ \expandarg%
+ \StrSubstitute{\Test}{^}{\empty\dots{}^}[\tempa]%
+ \StrSubstitute{\tempa}{**}{^}[\tempab]%
+ \StrSubstitute{\tempab}{*}{\times}[\tempac]%
+ \StrSubstitute{\tempac}{/}{\div}[\tempad]%
+ $\ifboolKV[ClesProg]{Details}{\num{\NbDepart}\tempad=}{}\xdef\NbDepart{\fpeval{(\NbDepart)\ListeProg[2,\etapecnt]}}\num{\NbDepart}$%
+ }%
+ \end{enumerate}
+ }
+ \end{tcolorbox}
}{%
- \num{\NbDepart}\foreachitem\compteur\in\ListeProg[2]{%
- \hspace{0.2em}\tikzmark{A-\thenbprog-\compteurcnt}\hspace{\useKV[ClesProg]{Ecart}}\tikzmark{B-\thenbprog-\compteurcnt}\xdef\NbDepart{\fpeval{(\NbDepart)\ListeProg[2,\compteurcnt]}}\hspace{0.2em}\num{\NbDepart}%
- }%
- \ifboolKV[ClesProg]{Direct}{%
- \begin{tikzpicture}[remember picture, overlay]
- \foreachitem\compteur\in\ListeProg[2]{%
- \edef\Test{\ListeProg[2,\compteurcnt]}
- \expandarg%
- \StrSubstitute{\Test}{^}{\empty\dots{}^}[\tempa]
- \StrSubstitute{\tempa}{**}{^}[\tempab]
- \StrSubstitute{\tempab}{*}{\times}[\tempac]
- \StrSubstitute{\tempac}{/}{\div}[\tempad]
- \draw[-stealth,transform canvas={yshift=0.25em}] (pic cs:A-\thenbprog-\compteurcnt) --
- node[above]{\scriptsize$\tempad$}(pic
- cs:B-\thenbprog-\compteurcnt);
- }
- \end{tikzpicture}
+ \ifboolKV[ClesProg]{Enonce}{%
+ % by Thomas Dehon
+ \setsepchar[*]{,* }%
+ \ignoreemptyitems%
+ \readlist*\ListeEtapes{#2}%
+ \begin{tcolorbox}[%
+ ProgCalcul,%
+ ]
+ \ifthenelse{\equal{\useKV[ClesProg]{Nom}}{}}%
+ {}%
+ {%
+ {\color{\useKV[ClesProg]{CouleurCadre}}{\bfseries\useKV[ClesProg]{Nom}}}%
+ \tcblower
+ }%
+ \begin{enumerate}
+ \foreachitem\etape\in\ListeEtapes{%
+ \item \etape
+ \ifthenelse{\equal{\useKV[ClesProg]{Pointilles}}{0}}%
+ {}%
+ {%
+ \setlength{\PointillesClesProg}{\useKV[ClesProg]{Pointilles}}
+ \hfill \pointilles[\PointillesClesProg]%
+ }%
+ }
+ \end{enumerate}
+ \end{tcolorbox}
}{%
- \begin{tikzpicture}[remember picture, overlay]
- \foreachitem\compteur\in\ListeProg[2]{%
- \edef\Test{\ListeProg[2,\compteurcnt]}
- \expandarg%
- \StrSubstitute{\Test}{^2}{\empty\sqrt{\dots{}}}[\tempa]
- \StrSubstitute{\tempa}{**}{^}[\tempab]
- \StrSubstitute{\tempab}{*}{\div}[\tempac]
- \StrSubstitute{\tempac}{/}{\times}[\tempad]
- \StrSubstitute{\tempad}{-}{+}[\tempae]
- \StrSubstitute{\tempae}{++}{-}[\tempaf]
- \draw[-stealth,transform canvas={yshift=0.25em}] (pic cs:B-\thenbprog-\compteurcnt) -- node[above]{\scriptsize$\tempaf$}(pic cs:A-\thenbprog-\compteurcnt);
- }
- \end{tikzpicture}
+ \setsepchar[*]{,* }\ignoreemptyitems%
+ \readlist*\ListeProg{#2}%
+ \stepcounter{NBprog}%
+ \xdef\NbDepart{\ListeProg[1]}%
+ \ifboolKV[ClesProg]{SansCalcul}{%
+ $\NbDepart$\foreachitem\compteur\in\ListeProg[2]{%
+ \hspace{0.2em}\tikzmark{A-\theNBprog-\compteurcnt}\hspace{\useKV[ClesProg]{Ecart}}\tikzmark{B-\theNBprog-\compteurcnt}\hspace{0.2em}$\ListeProg[3,\compteurcnt]$%
+ }%
+ \begin{tikzpicture}[remember picture, overlay]
+ \foreachitem\compteur\in\ListeProg[2]{%
+ \edef\Test{\ListeProg[2,\compteurcnt]}
+ \expandarg%
+ \StrSubstitute{\Test}{^}{\empty\dots{}^}[\tempa]%
+ \StrSubstitute{\tempa}{**}{^}[\tempab]%
+ \StrSubstitute{\tempab}{*}{\times}[\tempac]%
+ \StrSubstitute{\tempac}{/}{\div}[\tempad]%
+ \draw[-stealth,transform canvas={yshift=0.25em}] (pic cs:A-\theNBprog-\compteurcnt) --
+ node[above]{\scriptsize$\tempad$}(pic cs:B-\theNBprog-\compteurcnt);
+ }
+ \end{tikzpicture}
+ }{%
+ \num{\NbDepart}\foreachitem\compteur\in\ListeProg[2]{%
+ \hspace{0.2em}\tikzmark{A-\theNBprog-\compteurcnt}\hspace{\useKV[ClesProg]{Ecart}}\tikzmark{B-\theNBprog-\compteurcnt}\xdef\NbDepart{\fpeval{(\NbDepart)\ListeProg[2,\compteurcnt]}}\hspace{0.2em}\num{\NbDepart}%
+ }%
+ \ifboolKV[ClesProg]{Direct}{%
+ \begin{tikzpicture}[remember picture, overlay]
+ \foreachitem\compteur\in\ListeProg[2]{%
+ \edef\Test{\ListeProg[2,\compteurcnt]}
+ \expandarg%
+ \StrSubstitute{\Test}{^}{\empty\dots{}^}[\tempa]%
+ \StrSubstitute{\tempa}{**}{^}[\tempab]%
+ \StrSubstitute{\tempab}{*}{\times}[\tempac]%
+ \StrSubstitute{\tempac}{/}{\div}[\tempad]%
+ \draw[-stealth,transform canvas={yshift=0.25em}] (pic cs:A-\theNBprog-\compteurcnt) --
+ node[above]{\scriptsize$\tempad$}(pic
+ cs:B-\theNBprog-\compteurcnt);
+ }
+ \end{tikzpicture}
+ }{%
+ \begin{tikzpicture}[remember picture, overlay]
+ \foreachitem\compteur\in\ListeProg[2]{%
+ \edef\Test{\ListeProg[2,\compteurcnt]}
+ \expandarg%
+ \StrSubstitute{\Test}{^2}{\empty\sqrt{\dots{}}}[\tempa]%
+ \StrSubstitute{\tempa}{**}{^}[\tempab]%
+ \StrSubstitute{\tempab}{*}{\div}[\tempac]%
+ \StrSubstitute{\tempac}{/}{\times}[\tempad]%
+ \StrSubstitute{\tempad}{-}{+}[\tempae]%
+ \StrSubstitute{\tempae}{++}{-}[\tempaf]%
+ \draw[-stealth,transform canvas={yshift=0.25em}] (pic cs:B-\theNBprog-\compteurcnt) -- node[above]{\scriptsize$\tempaf$}(pic cs:A-\theNBprog-\compteurcnt);
+ }
+ \end{tikzpicture}
+ }%
+ }%
}%
}%
-}
+}%
%%%
% Papiers
%%%
-\setKVdefault[Papiers]{Cinq=true,Seyes=false,Isometrique=false,Millimetre=false,Triangle=false,Largeur=5,Hauteur=4,Couleur=black,Grille=-1,PageEntiere=false,ZoneTexte=false}%
+\setKVdefault[Papiers]{Cinq=true,Seyes=false,Isometrique=false,Millimetre=false,Triangle=false,Largeur=5,Hauteur=4,Couleur=black,Grille=-1,PageEntiere=false,ZoneTexte=false,Baseline=false}%
+%\def\MPBaseLineSkip#1#2#3{%à retravailler : ne fonctionne pas :(
+% %
+% \ifluatex
+% \mplibforcehmode
+% \begin{mplibcode}
+% path horizon,verticon;
+% horizon=(0,0)--(#1*cm,0);
+% %verticon=(0,0)--(0,#2*cm);
+% drawoptions(withcolor #3);
+% %for k=0 step 0.5 until #1:
+% %draw verticon shifted((k*cm,0));
+% %endfor;
+% for k=(#2-(\mpdim{1.6ex}/1cm)) step (-\mpdim{\baselineskip}/1cm) until 0:
+% draw horizon shifted((0,k*cm));
+% endfor;
+% drawoptions(withcolor blue);
+% for k=#2 step (-\mpdim{\baselineskip}/1cm) until 0:
+% draw horizon shifted((0,k*cm));
+% endfor;
+% \end{mplibcode}
+% \fi
+%}
+
\def\MPGrille#1#2#3#4{%
\ifluatex%
%\mplibcodeinherit{enable}%
@@ -15123,15 +17320,19 @@
\node[anchor=south west,inner sep=0pt,transform canvas={xshift=\PapierLeft,yshift=\PapierBottom}] at (current page.south west) {%
\xintifboolexpr{\useKV[Papiers]{Grille}>0}{%
\MPGrille{\PapierLargeur}{\PapierHauteur}{\PapierCouleur}{\PapierGrille}%
- }{\ifboolKV[Papiers]{Triangle}{%
- \MPTriangulaire{\PapierLargeur}{\PapierHauteur}{\PapierCouleur}%
- }{\ifboolKV[Papiers]{Millimetre}{%
- \MPMillimetre{\PapierLargeur}{\PapierHauteur}{\PapierCouleur}%
- }{\ifboolKV[Papiers]{Isometrique}{%
- \MPIsometrique{\PapierLargeur}{\PapierHauteur}{\PapierCouleur}%
- }{\ifboolKV[Papiers]{Seyes}{%
- \MPSeyes{\PapierLargeur}{\PapierHauteur}{\PapierCouleur}%
- }{\MPCinq{\PapierLargeur}{\PapierHauteur}{\PapierCouleur}%
+ }{\ifboolKV[Papiers]{Baseline}{%
+ \MPBaseLineSkip{\PapierLargeur}{\PapierHauteur}{\PapierCouleur}%
+ }{%
+ \ifboolKV[Papiers]{Triangle}{%
+ \MPTriangulaire{\PapierLargeur}{\PapierHauteur}{\PapierCouleur}%
+ }{\ifboolKV[Papiers]{Millimetre}{%
+ \MPMillimetre{\PapierLargeur}{\PapierHauteur}{\PapierCouleur}%
+ }{\ifboolKV[Papiers]{Isometrique}{%
+ \MPIsometrique{\PapierLargeur}{\PapierHauteur}{\PapierCouleur}%
+ }{\ifboolKV[Papiers]{Seyes}{%
+ \MPSeyes{\PapierLargeur}{\PapierHauteur}{\PapierCouleur}%
+ }{\MPCinq{\PapierLargeur}{\PapierHauteur}{\PapierCouleur}%
+ }%
}%
}%
}%
@@ -15166,15 +17367,19 @@
}{%
\xintifboolexpr{\useKV[Papiers]{Grille}>0}{%
\MPGrille{\PapierLargeur}{\PapierHauteur}{\PapierCouleur}{\PapierGrille}%
- }{\ifboolKV[Papiers]{Triangle}{%
- \MPTriangulaire{\PapierLargeur}{\PapierHauteur}{\PapierCouleur}%
- }{\ifboolKV[Papiers]{Millimetre}{%
- \MPMillimetre{\PapierLargeur}{\PapierHauteur}{\PapierCouleur}%
- }{\ifboolKV[Papiers]{Isometrique}{%
- \MPIsometrique{\PapierLargeur}{\PapierHauteur}{\PapierCouleur}%
- }{\ifboolKV[Papiers]{Seyes}{%
- \MPSeyes{\PapierLargeur}{\PapierHauteur}{\PapierCouleur}%
- }{\MPCinq{\PapierLargeur}{\PapierHauteur}{\PapierCouleur}%
+ }{\ifboolKV[Papiers]{Baseline}{%
+ \MPBaseLineSkip{\PapierLargeur}{\PapierHauteur}{\PapierCouleur}%
+ }{%
+ \ifboolKV[Papiers]{Triangle}{%
+ \MPTriangulaire{\PapierLargeur}{\PapierHauteur}{\PapierCouleur}%
+ }{\ifboolKV[Papiers]{Millimetre}{%
+ \MPMillimetre{\PapierLargeur}{\PapierHauteur}{\PapierCouleur}%
+ }{\ifboolKV[Papiers]{Isometrique}{%
+ \MPIsometrique{\PapierLargeur}{\PapierHauteur}{\PapierCouleur}%
+ }{\ifboolKV[Papiers]{Seyes}{%
+ \MPSeyes{\PapierLargeur}{\PapierHauteur}{\PapierCouleur}%
+ }{\MPCinq{\PapierLargeur}{\PapierHauteur}{\PapierCouleur}%
+ }%
}%
}%
}%
More information about the tex-live-commits
mailing list.