texlive[58995] Master: profcollege runtime

commits+karl at tug.org commits+karl at tug.org
Tue Apr 27 14:58:55 CEST 2021


Revision: 58995
          http://tug.org/svn/texlive?view=revision&revision=58995
Author:   karl
Date:     2021-04-27 14:58:55 +0200 (Tue, 27 Apr 2021)
Log Message:
-----------
profcollege runtime

Modified Paths:
--------------
    trunk/Master/tlpkg/libexec/ctan2tds

Added Paths:
-----------
    trunk/Master/texmf-dist/tex/latex/profcollege/PfCEquationComposition2.tex
    trunk/Master/texmf-dist/tex/latex/profcollege/PfCEquationLaurent1.tex
    trunk/Master/texmf-dist/tex/latex/profcollege/PfCEquationPose1.tex
    trunk/Master/texmf-dist/tex/latex/profcollege/PfCEquationSoustraction2.tex
    trunk/Master/texmf-dist/tex/latex/profcollege/PfCEquationSymbole1.tex
    trunk/Master/texmf-dist/tex/latex/profcollege/PfCEquationTerme1.tex

Removed Paths:
-------------
    trunk/Master/texmf-dist/doc/latex/profcollege/PfCEquationComposition2.tex
    trunk/Master/texmf-dist/doc/latex/profcollege/PfCEquationLaurent1.tex
    trunk/Master/texmf-dist/doc/latex/profcollege/PfCEquationPose1.tex
    trunk/Master/texmf-dist/doc/latex/profcollege/PfCEquationSoustraction2.tex
    trunk/Master/texmf-dist/doc/latex/profcollege/PfCEquationSymbole1.tex
    trunk/Master/texmf-dist/doc/latex/profcollege/PfCEquationTerme1.tex

Deleted: trunk/Master/texmf-dist/doc/latex/profcollege/PfCEquationComposition2.tex
===================================================================
--- trunk/Master/texmf-dist/doc/latex/profcollege/PfCEquationComposition2.tex	2021-04-26 23:48:27 UTC (rev 58994)
+++ trunk/Master/texmf-dist/doc/latex/profcollege/PfCEquationComposition2.tex	2021-04-27 12:58:55 UTC (rev 58995)
@@ -1,275 +0,0 @@
-% Licence    : Released under the LaTeX Project Public License v1.3c
-% or later, see http://www.latex-project.org/lppl.txtf
-\newcommand{\EquaDeuxComposition}[5][]{%type ax+b=d ou b=cx+d$
-  \useKVdefault[ClesEquation]%
-  \setKV[ClesEquation]{#1}%
-  \ifx\bla#2\bla%On échange en faisant attention à ne pas boucler : c doit être non vide
-    \EquaDeuxComposition[#1]{#4}{#5}{#2}{#3}
-  \else%cas ax+b=d
-    \xintifboolexpr{#2=0}{%
-      \xintifboolexpr{#3=#5}{%b=d
-        L'équation $\num{#3}=\num{#5}$ a une infinité de solutions.}%
-      {%b<>d
-        L'équation $\num{#3}=\num{#5}$ n'a aucune solution.%
-      }%
-    }{%ELSE
-      \xintifboolexpr{#3=0}{%ax+b=d
-        \EquaBase[#1]{#2}{}{}{#5}%
-      }{%ax+b=d$ Ici
-        \ifboolKV[ClesEquation]{Decomposition}{\colorlet{Ccompo}{\useKV[ClesEquation]{CouleurCompo}}}{}
-        \begin{align*}
-          \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{\num{#5}}\tikzmark{E-\theNbequa}\\
-          \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{\num{\fpeval{#5-#3}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}}\\
-          \tikzmark{C-\theNbequa}\xdef\Coeffa{#2}\xdef\Coeffb{\fpeval{#5-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}\tikzmark{G-\theNbequa}%\\
-          \xintifboolexpr{\Coeffa=1}{}{\\}
-          \ifboolKV[ClesEquation]{Fleches}{%
-          \leftcomment{A-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}%
-          \rightcomment{E-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}%
-          }{}
-          \xintifboolexpr{\Coeffa=1}{% 
-          }{%\ifnum\cmtd>1
-          \tikzmark{D-\theNbequa}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}\tikzmark{H-\theNbequa}%\\
-          \ifboolKV[ClesEquation]{Fleches}{%
-          \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
-          \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
-          }{%ICI ?
-          \ifboolKV[ClesEquation]{FlecheDiv}{%
-          \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
-          \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
-          }{}
-          }
-          }
-          \ifboolKV[ClesEquation]{Entier}{%
-          \SSimpliTest{\Coeffb}{\Coeffa}%
-          \ifboolKV[ClesEquation]{Simplification}{%
-          \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\
-          }{}
-          }{}
-          \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}}
-        \end{align*}
-        \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\num{#5}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.
-        }{}
-      }
-    }
-  \fi
-}
-
-\newcommand{\EquaTroisComposition}[5][]{%ax+b=cx ou ax=cx+d
-  \useKVdefault[ClesEquation]%
-  \setKV[ClesEquation]{#1}%
-  \ifx\bla#3\bla%on inverse en faisant attention à la boucle #3<->#5
-  \ifx\bla#5\bla%
-  %% paramètre oublié
-  \else
-  \EquaTroisComposition[#1]{#4}{#5}{#2}{}%
-  \fi
-  \else
-  \xintifboolexpr{#2=0}{%b=cx
-    \EquaBase[#1]{#4}{}{}{#3}
-  }{%
-    \xintifboolexpr{#4=0}{%ax+b=0
-      \EquaDeuxComposition[#1]{#2}{#3}{}{0}
-    }{%ax+b=cx
-      \xintifboolexpr{#2=#4}{%
-        \xintifboolexpr{#3=0}{%ax=ax
-          L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une infinité de solutions.}%
-        {%ax+b=ax
-          L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ n'a aucune solution.%
-        }%
-      }{%% Cas délicat
-        \xintifboolexpr{#2>#4}{%ax+b=cx avec a>c
-          \ifboolKV[ClesEquation]{Decomposition}{\colorlet{Ccompo}{\useKV[ClesEquation]{CouleurCompo}}}{}
-          \begin{align*}
-            \tikzmark{A-\theNbequa}\mathcolor{Ccompo}{\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\tikzmark{E-\theNbequa}\\
-            \mathcolor{Ccompo}{\num{\fpeval{#2-#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#4>0}{+\num{#4}\useKV[ClesEquation]{Lettre}}{-\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\\
-            \tikzmark{B-\theNbequa}\xdef\Coeffa{\fpeval{#2-#4}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{0}\tikzmark{F-\theNbequa}\\
-            \xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{\num{\fpeval{0-#3}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}}\tikzmark{F-\theNbequa}\\
-            \tikzmark{C-\theNbequa}\xdef\Coeffb{\fpeval{0-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}\tikzmark{G-\theNbequa}%\\
-            \xintifboolexpr{\Coeffa=1}{}{\\}
-            \ifboolKV[ClesEquation]{Fleches}{%
-            \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$}
-            \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$}
-            \leftcomment{B-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}%
-            \rightcomment{F-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}%
-            }{}
-            \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1
-            \tikzmark{D-\theNbequa}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}\tikzmark{H-\theNbequa}%\\
-            \ifboolKV[ClesEquation]{Fleches}{%
-            \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
-            \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%            
-            }{
-            \ifboolKV[ClesEquation]{FlecheDiv}{%
-            \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
-            \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%                 
-            }{}
-            }
-            \ifboolKV[ClesEquation]{Entier}{%
-            \SSimpliTest{\Coeffb}{\Coeffa}%
-            \ifboolKV[ClesEquation]{Simplification}{%
-            \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\
-            }{}
-            }{}
-            }
-            \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}}
-          \end{align*}
-          \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}
-        }{%ax+b=cx+d avec a<c              % Autre cas délicat
-          \ifboolKV[ClesEquation]{Decomposition}{\colorlet{Ccompo}{\useKV[ClesEquation]{CouleurCompo}}}{}
-          \begin{align*}%
-            \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}}\tikzmark{E-\theNbequa}\\
-            \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{\num{\fpeval{#4-#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#2>0}{+\num{#2}\useKV[ClesEquation]{Lettre}}{-\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\\
-            \tikzmark{B-\theNbequa}\xdef\Coeffb{#3}\xdef\Coeffa{\fpeval{#4-#2}}\xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\tikzmark{F-\theNbequa}
-                                                                                                                                      \xintifboolexpr{\Coeffa=1}{}{\\}
-            \ifboolKV[ClesEquation]{Fleches}{%
-            \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#2>0}{-\num{#2}}{+\num{\fpeval{0-#2}}}\useKV[ClesEquation]{Lettre}$}
-            \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#2>0}{-\num{#2}}{+\num{\fpeval{0-#2}}}\useKV[ClesEquation]{Lettre}$}
-            }{}
-            \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1
-            \tikzmark{D-\theNbequa}\frac{\num{\Coeffb}}{\num{\Coeffa}}&=\useKV[ClesEquation]{Lettre}\tikzmark{H-\theNbequa}%\\
-            \ifboolKV[ClesEquation]{Fleches}{%
-            \leftcomment{B-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
-            \rightcomment{F-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%            
-            }{
-            \ifboolKV[ClesEquation]{FlecheDiv}{%
-            \leftcomment{B-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
-            \rightcomment{F-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%                 
-            }{}
-            }
-            \ifboolKV[ClesEquation]{Entier}{%
-            \SSimpliTest{\Coeffb}{\Coeffa}%
-            \ifboolKV[ClesEquation]{Simplification}{%
-            \ifthenelse{\boolean{Simplification}}{\\\SSimplifie{\Coeffb}{\Coeffa}&=\useKV[ClesEquation]{Lettre}}{}%\\
-            }{}
-            }{}
-            }
-            \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}}
-          \end{align*}
-          \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}%
-        }%
-      }%
-    }%
-  }%
-  \fi
-}%
-
-
-\newcommand{\ResolEquationComposition}[5][]{%
-  \useKVdefault[ClesEquation]%
-  \setKV[ClesEquation]{#1}%
-  \xintifboolexpr{#2=0}{%
-    \xintifboolexpr{#4=0}{%
-      \xintifboolexpr{#3=#5}{%b=d
-        L'équation $\num{#3}=\num{#5}$ a une infinité de solutions.}%
-      {%b<>d
-        L'équation $\num{#3}=\num{#5}$ n'a aucune solution.%
-      }%
-    }%
-    {%0x+b=cx+d$
-      \EquaDeuxComposition[#1]{#4}{#5}{#2}{#3}%
-    }%
-  }{%
-    \xintifboolexpr{#4=0}{%ax+b=0x+d
-      \EquaDeuxComposition[#1]{#2}{#3}{}{#5}%
-    }
-    {%ax+b=cx+d$
-      \xintifboolexpr{#3=0}{%
-        \xintifboolexpr{#5=0}{%ax=cx
-          \EquaTroisComposition[#1]{#2}{0}{#4}{}%
-        }%
-        {%ax=cx+d
-          \EquaTroisComposition[#1]{#4}{#5}{#2}{}%
-        }%
-      }%
-      {\xintifboolexpr{#5=0}{%ax+b=cx
-          \EquaTroisComposition[#1]{#2}{#3}{#4}{}%
-        }%
-        {%ax+b=cx+d -- ici
-          \xintifboolexpr{#2=#4}{%
-            \xintifboolexpr{#3=#5}{%b=d
-              L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une infinité de solutions.}%
-            {%b<>d
-              L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ n'a aucune solution.%
-            }%
-          }{
-            %% Cas délicat
-            \xintifboolexpr{#2>#4}{%ax+b=cx+d avec a>c
-              \ifboolKV[ClesEquation]{Decomposition}{\colorlet{Ccompo}{\useKV[ClesEquation]{CouleurCompo}}}{}
-              \begin{align*}
-                \tikzmark{A-\theNbequa}\mathcolor{Ccompo}{\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\tikzmark{E-\theNbequa}\\
-                \mathcolor{Ccompo}{\num{\fpeval{#2-#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#4>0}{+\num{#4}\useKV[ClesEquation]{Lettre}}{-\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\
-                \tikzmark{B-\theNbequa}\xdef\Coeffa{\fpeval{#2-#4}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{\num{#5}}\tikzmark{F-\theNbequa}\\
-                \xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{\num{\fpeval{#5-#3}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}}\\
-                \tikzmark{C-\theNbequa}\xdef\Coeffb{\fpeval{#5-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}\tikzmark{G-\theNbequa}%\\
-                \xintifboolexpr{\Coeffa=1}{}{\\}
-                \ifboolKV[ClesEquation]{Fleches}{%
-                \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$}
-                \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$}
-                \leftcomment{B-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}%
-                \rightcomment{F-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}%
-                }{}
-                \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1
-                \tikzmark{D-\theNbequa}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}\tikzmark{H-\theNbequa}%\\
-                \ifboolKV[ClesEquation]{Fleches}{%
-                \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
-                \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%            
-                }{
-                \ifboolKV[ClesEquation]{FlecheDiv}{%
-                \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
-                \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%                 
-                }{}
-                }
-                \ifboolKV[ClesEquation]{Entier}{%
-                \SSimpliTest{\Coeffb}{\Coeffa}%
-                \ifboolKV[ClesEquation]{Simplification}{%
-                \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\
-                }{}
-                }{}
-                }
-                \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}}
-              \end{align*}
-              \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.%
-              }{}
-            }{%ax+b=cx+d avec a<c              % Autre cas délicat
-              \ifboolKV[ClesEquation]{Decomposition}{\colorlet{Ccompo}{\useKV[ClesEquation]{CouleurCompo}}}{}%
-              \begin{align*}%
-                \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\tikzmark{E-\theNbequa}\\
-                \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{\num{\fpeval{#4-#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#2>0}{+\num{#2}\useKV[ClesEquation]{Lettre}}{-\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\
-                \tikzmark{B-\theNbequa}\xdef\Coeffa{\fpeval{#4-#2}}\xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\tikzmark{F-\theNbequa}\\
-                \mathcolor{Ccompo}{\num{\fpeval{#3-#5}}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\
-                \tikzmark{C-\theNbequa}\xdef\Coeffb{\fpeval{#3-#5}}\num{\Coeffb}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\tikzmark{G-\theNbequa}%\\
-                \xintifboolexpr{\Coeffa=1}{}{\\}
-                \ifboolKV[ClesEquation]{Fleches}{%
-                \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#2>0}{-\num{#2}}{+\num{\fpeval{0-#2}}}\useKV[ClesEquation]{Lettre}$}
-                \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#2>0}{-\num{#2}}{+\num{\fpeval{0-#2}}}\useKV[ClesEquation]{Lettre}$}
-                \leftcomment{B-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#5>0}{-\num{#5}}{+\num{\fpeval{0-#5}}}$}%
-                \rightcomment{F-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#5>0}{-\num{#5}}{+\num{\fpeval{0-#5}}}$}%
-                }{}
-                \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1
-                \tikzmark{D-\theNbequa}\frac{\num{\Coeffb}}{\num{\Coeffa}}&=\useKV[ClesEquation]{Lettre}\tikzmark{H-\theNbequa}%\\
-                \ifboolKV[ClesEquation]{Fleches}{%
-                \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
-                \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%            
-                }{
-                \ifboolKV[ClesEquation]{FlecheDiv}{%
-                \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
-                \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%                 
-                }{}
-                }
-                \ifboolKV[ClesEquation]{Entier}{%
-                \SSimpliTest{\Coeffb}{\Coeffa}%
-                \ifboolKV[ClesEquation]{Simplification}{%
-                \ifthenelse{\boolean{Simplification}}{\\\SSimplifie{\Coeffb}{\Coeffa}&=\useKV[ClesEquation]{Lettre}}{}%\\
-                }{}
-                }{}
-                }
-                \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}}
-              \end{align*}
-              \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.%
-              }{}%
-            }%
-          }%
-        }%
-      }%
-    }%
-  }%
-}%
\ No newline at end of file

Deleted: trunk/Master/texmf-dist/doc/latex/profcollege/PfCEquationLaurent1.tex
===================================================================
--- trunk/Master/texmf-dist/doc/latex/profcollege/PfCEquationLaurent1.tex	2021-04-26 23:48:27 UTC (rev 58994)
+++ trunk/Master/texmf-dist/doc/latex/profcollege/PfCEquationLaurent1.tex	2021-04-27 12:58:55 UTC (rev 58995)
@@ -1,226 +0,0 @@
-% Licence    : Released under the LaTeX Project Public License v1.3c
-% or later, see http://www.latex-project.org/lppl.txtf
-\newcommand{\EquaBaseLaurent}[5][]{%type ax=d ou b=cx
-  \useKVdefault[ClesEquation]%
-  \setKV[ClesEquation]{#1}%
-  \ifx\bla#2\bla%on teste si le paramètre #2 est vide:
-  % si oui, on est dans le cas b=cx. Eh bien on échange :)
-  % Mais attention si les deux paramètres a et c sont vides...
-  \EquaBase[#1]{#4}{}{}{#3}
-  \else
-  % si non, on est dans le cas ax=d
-  \xintifboolexpr{#2=0}{%
-    \xintifboolexpr{#5=0}{%
-      L'équation $0\useKV[ClesEquation]{ELettre}=0$ a une infinité de solutions.}{L'équation $0\useKV[ClesEquation]{Lettre}=\num{#5}$ n'a aucune solution.}%
-  }{%\else
-    \xintifboolexpr{#5=0}{L'équation $\num{#2}\useKV[ClesEquation]{Lettre}=0$ a une unique solution : $\useKV[ClesEquation]{Lettre}=0$.}{%\else
-      \begin{align*}%
-        \xintifboolexpr{#2=1}{\useKV[ClesEquation]{Lettre}}{\color{Cdecomp}\frac{\cancel{\color{black}\num{#2}}\color{black}\useKV[ClesEquation]{Lettre}}{\cancel{\num{#2}}}}&=\xintifboolexpr{#2=1}{\num{#5}}{\color{Cdecomp}\frac{\color{black}\num{#5}}{\num{#2}}}
-        \xintifboolexpr{#2=1}{}{\\\useKV[ClesEquation]{Lettre}&=\frac{\num{#5}}{\num{#2}}}%\\
-        \ifboolKV[ClesEquation]{Entier}{%
-        \SSimpliTest{#5}{#2}%
-        \ifboolKV[ClesEquation]{Simplification}{%
-        \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{#5}{#2}}{}%\\
-        }{}
-        }{}
-      \end{align*}
-      \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{\useKV[ClesEquation]{Lettre}=\num{#5}}{\num{#2}\useKV[ClesEquation]{Lettre}=\num{#5}}$ a une unique solution : $\displaystyle\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\opdiv*{#5}{#2}{numequa}{resteequa}\opcmp{resteequa}{0}\ifopeq\opexport{numequa}{\numequa}\num{\numequa}\else\ifboolKV[ClesEquation]{Simplification}{\SSimplifie{#5}{#2}}{\frac{\num{#5}}{\num{#2}}}\fi$.%
-      }{}
-    }
-  }
-  \fi
-}
-
-\newcommand{\EquaDeuxLaurent}[5][]{%type ax+b=d ou b=cx+d$
-  \useKVdefault[ClesEquation]%
-  \setKV[ClesEquation]{#1}%
-  \ifx\bla#2\bla%On échange en faisant attention à ne pas boucler : c doit être non vide
-  \EquaDeuxLaurent[#1]{#4}{#5}{#2}{#3}
-  \else%cas ax+b=d
-  \xintifboolexpr{#2=0}{%
-    \xintifboolexpr{#3=#5}{%b=d
-      L'équation $\num{#3}=\num{#5}$ a une infinité de solutions.}%
-    {%b<>d
-      L'équation $\num{#3}=\num{#5}$ n'a aucune solution.%
-    }%
-  }{%ELSE
-    \xintifboolexpr{#3=0}{%ax+b=d
-      \EquaBaseLaurent[#1]{#2}{}{}{#5}%
-    }{%ax+b=d$ Ici
-      \begin{align*}
-        \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#3} {}}\stackText}{-\num{\fpeval{0-#3}}\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#3}}}\stackText}&=\num{#5}\xintifboolexpr{#3>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#3} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#3}}}\stackText}\\
-        \xdef\Coeffa{#2}\xdef\Coeffb{\fpeval{#5-#3}}%\\
-        \xintifboolexpr{\Coeffa=1}{\useKV[ClesEquation]{Lettre}}{\color{Cdecomp}\frac{\cancel{\color{black}\num{\Coeffa}}\color{black}\useKV[ClesEquation]{Lettre}}{\cancel{\num{\Coeffa}}}}&=\xintifboolexpr{\Coeffa=1}{\num{\Coeffb}}{\color{Cdecomp}\frac{\color{black}\num{\Coeffb}}{\num{\Coeffa}}}%\\
-        \xintifboolexpr{\Coeffa=1}{}{\\}
-        \xintifboolexpr{\Coeffa=1}{% 
-        }{%\ifnum\cmtd>1
-        \useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}%\\
-        \ifboolKV[ClesEquation]{Entier}{%
-        \SSimpliTest{\Coeffb}{\Coeffa}%
-        \ifboolKV[ClesEquation]{Simplification}{%
-        \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\
-        }{}
-        }{}
-        }
-      \end{align*}
-      \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\num{#5}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.
-      }{}
-    }
-  }
-}
-
-\newcommand{\EquaTroisLaurent}[5][]{%ax+b=cx ou ax=cx+d
-  \useKVdefault[ClesEquation]%
-  \setKV[ClesEquation]{#1}%
-  \ifx\bla#3\bla%on inverse en faisant attention à la boucle #3<->#5
-    \ifx\bla#5\bla%
-      %% paramètre oublié
-    \else
-      \EquaTroisLaurent[#1]{#4}{#5}{#2}{}%
-    \fi
-  \else
-  \xintifboolexpr{#2=0}{%b=cx
-    \EquaBaseLaurent[#1]{#4}{}{}{#3}
-  }{%
-    \xintifboolexpr{#4=0}{%ax+b=0
-      \EquaDeuxLaurent[#1]{#2}{#3}{}{0}
-    }{%ax+b=cx
-      \xintifboolexpr{#2=#4}{%
-        \xintifboolexpr{#3=0}{%ax=ax
-          L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une infinité de solutions.}%
-        {%ax+b=ax
-          L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ n'a aucune solution.%
-        }%
-      }{%% Cas délicat
-        \xintifboolexpr{#2>#4}{%ax+b=cx avec a>c
-          \begin{align*}
-            \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#3} {}}\stackText}{-\num{\fpeval{0-#3}}\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#3}}}\stackText}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#3} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#3}}}\stackText}\\
-            \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#4>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#4}\useKV[ClesEquation]{Lettre} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre} {}}\stackText}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#4>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#4}\useKV[ClesEquation]{Lettre} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre} {}}\stackText}\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}\\
-            \xdef\Coeffa{\fpeval{#2-#4}}\xdef\Coeffb{\fpeval{0-#3}}%\\
-            \xintifboolexpr{\Coeffa=1}{\useKV[ClesEquation]{Lettre}}{\color{Cdecomp}\frac{\cancel{\color{black}\num{\Coeffa}}\color{black}\useKV[ClesEquation]{Lettre}}{\cancel{\num{\Coeffa}}}}&=\xintifboolexpr{\Coeffa=1}{\num{\Coeffb}}{\color{Cdecomp}\frac{\color{black}\num{\Coeffb}}{\num{\Coeffa}}}%\\
-            \xintifboolexpr{\Coeffa=1}{}{\\}
-            \xintifboolexpr{\Coeffa=1}{% 
-            }{%\ifnum\cmtd>1
-            \useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}%\\
-            \ifboolKV[ClesEquation]{Entier}{%
-            \SSimpliTest{\Coeffb}{\Coeffa}%
-            \ifboolKV[ClesEquation]{Simplification}{%
-            \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\
-            }{}
-            }{}
-            }
-          \end{align*}
-          \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}
-        }{%ax+b=cx avec a<c              % Autre cas délicat
-          \begin{align*}%
-            \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#4>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#4}\useKV[ClesEquation]{Lettre} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre} {}}\stackText}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#4>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#4}\useKV[ClesEquation]{Lettre} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre} {}}\stackText}\\
-            \xdef\Coeffa{\fpeval{#2-#4}}\xdef\Coeffb{\fpeval{0-#3}}%\\
-            \xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#3} {}}\stackText}{-\num{\fpeval{0-#3}}\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#3}}}\stackText}&=0\xintifboolexpr{#3>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#3} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#3}}}\stackText}\\
-            \xintifboolexpr{\Coeffa=1}{\useKV[ClesEquation]{Lettre}}{\color{Cdecomp}\frac{\cancel{\color{black}\num{\Coeffa}}\color{black}\useKV[ClesEquation]{Lettre}}{\cancel{\num{\Coeffa}}}}&=\xintifboolexpr{\Coeffa=1}{\num{\Coeffb}}{\color{Cdecomp}\frac{\color{black}\num{\Coeffb}}{\num{\Coeffa}}}%\\
-            \xintifboolexpr{\Coeffa=1}{}{\\}
-            \xintifboolexpr{\Coeffa=1}{% 
-            }{%\ifnum\cmtd>1
-            \useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}%\\
-            \ifboolKV[ClesEquation]{Entier}{%
-            \SSimpliTest{\Coeffb}{\Coeffa}%
-            \ifboolKV[ClesEquation]{Simplification}{%
-            \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\
-            }{}
-            }{}
-            }
-          \end{align*}
-          \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}%
-        }%
-      }%
-    }%
-  }%
-  \fi
-}%
-
-\newcommand{\ResolEquationLaurent}[5][]{%
-  \useKVdefault[ClesEquation]%
-  \setKV[ClesEquation]{#1}%
-  \xintifboolexpr{#2=0}{%
-    \xintifboolexpr{#4=0}{%
-      \xintifboolexpr{#3=#5}{%b=d
-        L'équation $\num{#3}=\num{#5}$ a une infinité de solutions.}%
-      {%b<>d
-        L'équation $\num{#3}=\num{#5}$ n'a aucune solution.%
-      }%
-    }%
-    {%0x+b=cx+d
-      \EquaDeuxLaurent[#1]{#4}{#5}{}{#3}%
-    }%
-  }{%
-    \xintifboolexpr{#4=0}{%ax+b=0x+d
-      \EquaDeuxLaurent[#1]{#2}{#3}{}{#5}%
-    }
-    {%ax+b=cx+d
-      \xintifboolexpr{#3=0}{%
-        \xintifboolexpr{#5=0}{%ax=cx
-          \EquaTroisLaurent[#1]{#2}{0}{#4}{}%
-        }%
-        {%ax=cx+d
-          \EquaTroisLaurent[#1]{#4}{#5}{#2}{}%
-        }%
-      }%
-      {\xintifboolexpr{#5=0}{%ax+b=cx
-          \EquaTroisLaurent[#1]{#2}{#3}{#4}{}%
-        }%
-        {%ax+b=cx+d -- ici
-          \xintifboolexpr{#2=#4}{%
-            \xintifboolexpr{#3=#5}{%b=d
-              L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une infinité de solutions.}%
-            {%b<>d
-              L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ n'a aucune solution.%
-            }%
-          }{%% Cas délicat
-            \xintifboolexpr{#2>#4}{%ax+b=cx+d avec a>c
-              \begin{align*}
-                \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#3} {}}\stackText}{-\num{\fpeval{0-#3}}\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#3}}}\stackText}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\xintifboolexpr{#3>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#3} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#3}}}\stackText}\\
-                \xdef\Coeffa{\fpeval{#2-#4}}\xdef\Coeffb{\fpeval{#5-#3}}%\\
-                \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#4>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#4}\useKV[ClesEquation]{Lettre} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre} {}}\stackText}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#4>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#4}\useKV[ClesEquation]{Lettre} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre} {}}\stackText}\xintifboolexpr{\Coeffb>0}{+\num{\Coeffb}}{-\num{\fpeval{0-\Coeffb}}}\\
-                \xintifboolexpr{\Coeffa=1}{\useKV[ClesEquation]{Lettre}}{\color{Cdecomp}\frac{\cancel{\color{black}\num{\Coeffa}}\color{black}\useKV[ClesEquation]{Lettre}}{\cancel{\num{\Coeffa}}}}&=\xintifboolexpr{\Coeffa=1}{\num{\Coeffb}}{\color{Cdecomp}\frac{\color{black}\num{\Coeffb}}{\num{\Coeffa}}}%\\
-                \xintifboolexpr{\Coeffa=1}{}{\\}
-                \xintifboolexpr{\Coeffa=1}{% 
-                }{%\ifnum\cmtd>1
-                \useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}%\\
-                \ifboolKV[ClesEquation]{Entier}{%
-                \SSimpliTest{\Coeffb}{\Coeffa}%
-                \ifboolKV[ClesEquation]{Simplification}{%
-                \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\
-                }{}
-                }{}
-                }
-              \end{align*}
-              \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.%
-              }{}
-            }{%ax+b=cx+d avec a<c              % Autre cas délicat
-              \begin{align*}%
-                \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}\xintifboolexpr{#3>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#3} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#3}} {}}\stackText}%
-                &=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\xintifboolexpr{#3>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#3} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#3}} {}}\stackText}
-                \\
-                \xdef\Coeffa{\fpeval{#2-#4}}\xdef\Coeffb{\fpeval{#5-#3}}%\\
-                \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#4>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#4}\useKV[ClesEquation]{Lettre} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre} {}}\stackText}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#4>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#4}\useKV[ClesEquation]{Lettre} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre} {}}\stackText}\xintifboolexpr{\Coeffb>0}{+\num{\Coeffb}}{-\num{\fpeval{0-\Coeffb}}}\\
-                \xintifboolexpr{\Coeffa=1}{\useKV[ClesEquation]{Lettre}}{\color{Cdecomp}\frac{\cancel{\color{black}\num{\Coeffa}}\color{black}\useKV[ClesEquation]{Lettre}}{\cancel{\num{\Coeffa}}}}&=\xintifboolexpr{\Coeffa=1}{\num{\Coeffb}}{\color{Cdecomp}\frac{\color{black}\num{\Coeffb}}{\num{\Coeffa}}}%\\
-                \xintifboolexpr{\Coeffa=1}{}{\\}
-                \xintifboolexpr{\Coeffa=1}{% 
-                }{%\ifnum\cmtd>1
-                \useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}%\\
-                \ifboolKV[ClesEquation]{Entier}{%
-                \SSimpliTest{\Coeffb}{\Coeffa}%
-                \ifboolKV[ClesEquation]{Simplification}{%
-                \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\
-                }{}
-                }{}
-                }
-              \end{align*}
-              \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.%
-              }{}%
-            }%
-          }%
-        }%
-      }%
-    }%
-  }%
-}%
\ No newline at end of file

Deleted: trunk/Master/texmf-dist/doc/latex/profcollege/PfCEquationPose1.tex
===================================================================
--- trunk/Master/texmf-dist/doc/latex/profcollege/PfCEquationPose1.tex	2021-04-26 23:48:27 UTC (rev 58994)
+++ trunk/Master/texmf-dist/doc/latex/profcollege/PfCEquationPose1.tex	2021-04-27 12:58:55 UTC (rev 58995)
@@ -1,246 +0,0 @@
-% Licence    : Released under the LaTeX Project Public License v1.3c
-% or later, see http://www.latex-project.org/lppl.txtf
-\newcommand{\EquaBaseL}[5][]{%type ax=d ou b=cx
-  \useKVdefault[ClesEquation]%
-  \setKV[ClesEquation]{#1}%
-  \ifx\bla#2\bla%on teste si le paramètre #2 est vide:
-  % si oui, on est dans le cas b=cx. Eh bien on échange :)
-  % Mais attention si les deux paramètres a et c sont vides...
-  \EquaBaseL[#1]{#4}{}{}{#3}
-  \else
-  % si non, on est dans le cas ax=d
-  \xintifboolexpr{#2=0}{%
-    \xintifboolexpr{#5=0}{%
-      L'équation $0\useKV[ClesEquation]{Lettre}=0$ a une infinité de solutions.}{L'équation $0\useKV[ClesEquation]{Lettre}=\num{#5}$ n'a aucune solution.}%
-  }{%\else
-    \xintifboolexpr{#5=0}{L'équation $\num{#2}\useKV[ClesEquation]{Lettre}=0$ a une unique solution : $\useKV[ClesEquation]{Lettre}=0$.}{%\else
-      \begin{align*}%
-        \xintifboolexpr{#2=1}{\useKV[ClesEquation]{Lettre}}{\num{#2}\useKV[ClesEquation]{Lettre}}&=\num{#5}\\
-        \xintifboolexpr{#2=1}{}{%
-        \mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{#2<0}{(\num{#2})}{\num{#2}}}\phantom{\useKV[ClesEquation]{Lettre}}&\phantom{=}\mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{#2<0}{(\num{#2})}{\num{#2}}}\\}
-        \useKV[ClesEquation]{Lettre}&=\frac{\num{#5}}{\num{#2}}%\\
-        \ifboolKV[ClesEquation]{Entier}{%
-        \SSimpliTest{#5}{#2}%
-        \ifboolKV[ClesEquation]{Simplification}{%
-        \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{#5}{#2}}{}%\\
-        }{}
-        }{}
-        %\ifboolKV[ClesEquation]{Fleches}{%
-        %\stepcounter{Nbequa}}%
-        %{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}
-        %}
-      \end{align*}
-      \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{\useKV[ClesEquation]{Lettre}=\num{#5}}{\num{#2}\useKV[ClesEquation]{Lettre}=\num{#5}}$ a une unique solution : $\displaystyle\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\opdiv*{#5}{#2}{numequa}{resteequa}\opcmp{resteequa}{0}\ifopeq\opexport{numequa}{\numequa}\num{\numequa}\else\ifboolKV[ClesEquation]{Simplification}{\SSimplifie{#5}{#2}}{\frac{\num{#5}}{\num{#2}}}\fi$.%
-      }{}
-    }
-  }
-  \fi
-}
-
-\newcommand{\EquaDeuxL}[5][]{%type ax+b=d ou b=cx+d$
-  \useKVdefault[ClesEquation]%
-  \setKV[ClesEquation]{#1}%
-  \ifx\bla#2\bla%On échange en faisant attention à ne pas boucler : c doit être non vide
-    \EquaDeuxL[#1]{#4}{#5}{#2}{#3}
-  \else%cas ax+b=d
-    \xintifboolexpr{#2=0}{%
-      \xintifboolexpr{#3=#5}{%b=d
-        L'équation $\num{#3}=\num{#5}$ a une infinité de solutions.}%
-      {%b<>d
-        L'équation $\num{#3}=\num{#5}$ n'a aucune solution.%
-      }%
-    }{%ELSE
-      \xintifboolexpr{#3=0}{%ax+b=d
-        \EquaBaseL[#1]{#2}{}{}{#5}%
-      }{%ax+b=d$ Ici
-        \begin{align*}
-          \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\num{#5}\\
-          \phantom{\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}&\phantom{\mathrel{=}}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}\\
-          \xdef\Coeffa{#2}\xdef\Coeffb{\fpeval{#5-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&=\num{\Coeffb}%\\
-          \xintifboolexpr{\Coeffa=1}{}{\\}
-          \xintifboolexpr{\Coeffa=1}{% 
-          }{%\ifnum\cmtd>1
-          \mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{#2<0}{(\num{#2})}{\num{#2}}}\phantom{\useKV[ClesEquation]{Lettre}}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&\phantom{=}\mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{#2<0}{(\num{#2})}{\num{#2}}}\\
-          \useKV[ClesEquation]{Lettre}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}%\\
-          }
-          \ifboolKV[ClesEquation]{Entier}{%
-          \SSimpliTest{\Coeffb}{\Coeffa}%
-          \ifboolKV[ClesEquation]{Simplification}{%
-          \ifthenelse{\boolean{Simplification}}{%
-          \\\useKV[ClesEquation]{Lettre}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&=\SSimplifie{\Coeffb}{\Coeffa}%
-                                                                                                                   }{}%\\
-          }{}
-          }{}
-        \end{align*}
-        \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\num{#5}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.
-        }{}
-      }
-    }
-  \fi
-}
-
-\newcommand{\EquaTroisL}[5][]{%ax+b=cx ou ax=cx+d
-  \useKVdefault[ClesEquation]%
-  \setKV[ClesEquation]{#1}%
-  \ifx\bla#3\bla%on inverse en faisant attention à la boucle #3<->#5
-    \ifx\bla#5\bla%
-      %% paramètre oublié
-    \else
-      \EquaTroisL[#1]{#4}{#5}{#2}{}%
-    \fi
-  \else
-  \xintifboolexpr{#2=0}{%b=cx
-    \EquaBaseL[#1]{#4}{}{}{#3}
-  }{%
-    \xintifboolexpr{#4=0}{%ax+b=0
-      \EquaDeuxL[#1]{#2}{#3}{}{0}
-      }{%ax+b=cx
-        \xintifboolexpr{#2=#4}{%
-          \xintifboolexpr{#3=0}{%ax=ax
-            L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une infinité de solutions.}%
-          {%ax+b=ax
-            L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ n'a aucune solution.%
-          }%
-        }{%% Cas délicat
-          \xintifboolexpr{#2>#4}{%ax+b=cx avec a>c
-            \begin{align*}
-              \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\\
-                \mathcolor{Cdecomp}{\xintifboolexpr{#4>0}{{}-{}\num{#4}\useKV[ClesEquation]{Lettre}}{{}+{}\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&\phantom{{}={}}\mathcolor{Cdecomp}{\xintifboolexpr{#4>0}{-\num{#4}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\\
-              \xdef\Coeffa{\fpeval{#2-#4}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=0\\
-              \phantom{\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{{}-{}\num{#3}}{{}+{}\num{\fpeval{0-#3}}}}&\phantom{\mathrel{=}}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{{}-{}\num{#3}}{{}+{}\num{\fpeval{0-#3}}}}\\
-              \xdef\Coeffb{\fpeval{0-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&=\num{\Coeffb}%\\
-              \xintifboolexpr{\Coeffa=1}{}{\\}
-              \xintifboolexpr{\Coeffa=1}{% 
-              }{%\ifnum\cmtd>1
-              \mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}}\phantom{\useKV[ClesEquation]{Lettre}}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&\phantom{=}\mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}}\\
-              \useKV[ClesEquation]{Lettre}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}%\\
-              }
-              \ifboolKV[ClesEquation]{Entier}{%
-              \SSimpliTest{\Coeffb}{\Coeffa}%
-              \ifboolKV[ClesEquation]{Simplification}{%
-              \ifthenelse{\boolean{Simplification}}{\\%
-              \useKV[ClesEquation]{Lettre}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&=\SSimplifie{\Coeffb}{\Coeffa}%\\
-              }{}
-              }{}
-              }{}
-            \end{align*}
-            \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}
-            }{%ax+b=cx+d avec a<c              % Autre cas délicat
-              \begin{align*}%
-                \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\\
-                \mathcolor{Cdecomp}{\xintifboolexpr{#2>0}{{}-{}\num{#2}\useKV[ClesEquation]{Lettre}}{{}+{}\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&\phantom{{}={}}\mathcolor{Cdecomp}{\xintifboolexpr{#2>0}{{}-{}\num{#2}\useKV[ClesEquation]{Lettre}}{{}+{}\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\\
-                \xdef\Coeffb{#3}\xdef\Coeffa{\fpeval{#4-#2}}\xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}%\\
-                \xintifboolexpr{\Coeffa=1}{}{\\}
-                \xintifboolexpr{\Coeffa=1}{% 
-                }{%\ifnum\cmtd>1
-                \mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}}&\phantom{=}\mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}}\\
-              \frac{\num{\Coeffb}}{\num{\Coeffa}}&=\phantom{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}%\\
-              }
-              \ifboolKV[ClesEquation]{Entier}{%
-              \SSimpliTest{\Coeffb}{\Coeffa}%
-              \ifboolKV[ClesEquation]{Simplification}{%
-              \ifthenelse{\boolean{Simplification}}{\\%
-              \SSimplifie{\Coeffb}{\Coeffa}&=\phantom{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}%\\
-              }{}
-              }{}
-              }{}
-              \end{align*}
-              \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}%
-            }%
-          }%
-        }%
-      }%
-    \fi
-  }%\\
-  % \\
-
-\newcommand{\ResolEquationL}[5][]{%
-  \useKVdefault[ClesEquation]%
-  \setKV[ClesEquation]{#1}%
-  \xintifboolexpr{#2=0}{%
-    \xintifboolexpr{#4=0}{%
-      \xintifboolexpr{#3=#5}{%b=d
-        L'équation $\num{#3}=\num{#5}$ a une infinité de solutions.}%
-      {%b<>d
-        L'équation $\num{#3}=\num{#5}$ n'a aucune solution.%
-      }%
-    }%
-    {%0x+b=cx+d$
-      \EquaDeuxL[#1]{#4}{#5}{}{#3}%
-    }%
-  }{%
-    \xintifboolexpr{#4=0}{%ax+b=0x+d
-      \EquaDeuxL[#1]{#2}{#3}{}{#5}%
-    }
-    {%ax+b=cx+d$
-      \xintifboolexpr{#3=0}{%
-        \xintifboolexpr{#5=0}{%ax=cx
-          \EquaTroisL[#1]{#2}{0}{#4}{}%
-        }%
-        {%ax=cx+d
-          \EquaTroisL[#1]{#4}{#5}{#2}{}%
-        }%
-      }%
-      {\xintifboolexpr{#5=0}{%ax+b=cx
-          \EquaTroisL[#1]{#2}{#3}{#4}{}%
-        }%
-        {%ax+b=cx+d -- ici
-          \xintifboolexpr{#2=#4}{%
-            \xintifboolexpr{#3=#5}{%b=d
-              L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une infinité de solutions.}%
-            {%b<>d
-              L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ n'a aucune solution.%
-            }%
-          }{
-            %% Cas délicat
-            \xintifboolexpr{#2>#4}{%ax+b=cx+d avec a>c
-              \begin{align*}
-                \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\
-                \mathcolor{Cdecomp}{\xintifboolexpr{#4>0}{{}-{}\num{#4}\useKV[ClesEquation]{Lettre}}{{}+{}\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&\mathcolor{Cdecomp}{\xintifboolexpr{#4>0}{{}-{}\num{#4}\useKV[ClesEquation]{Lettre}}{\phantom{{}={}}+{}\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\\
-                \xdef\Coeffa{\fpeval{#2-#4}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\phantom{\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}}\xintifboolexpr{#5>0}{\phantom{{}+{}}\num{#5}}{-\num{\fpeval{0-#5}}}\\
-                \mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{{}-{}\num{#3}}{{}+{}\num{\fpeval{0-#3}}}}&\phantom{{}={}\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{{}-{}\num{#3}}{{}+{}\num{\fpeval{0-#3}}}}\\
-                \xdef\Coeffb{\fpeval{#5-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&=\phantom{\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}}\xintifboolexpr{\Coeffb>0}{\phantom{{}+{}}\num{\Coeffb}}{{}-{}\num{\fpeval{0-\Coeffb}}}%\\
-                \xintifboolexpr{\Coeffa=1}{}{\\}
-                \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1
-                \mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}}\phantom{\useKV[ClesEquation]{Lettre}}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&\phantom{{}={}}\phantom{\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}}\mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}}\\
-                \phantom{\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}}\useKV[ClesEquation]{Lettre}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&=\phantom{\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{\Coeffb>0}{{}+{}}{}}\frac{\num{\Coeffb}}{\num{\Coeffa}}%\\
-                }
-                \ifboolKV[ClesEquation]{Entier}{%
-                \SSimpliTest{\Coeffb}{\Coeffa}%
-                \ifboolKV[ClesEquation]{Simplification}{%
-                \ifthenelse{\boolean{Simplification}}{\\%
-                \useKV[ClesEquation]{Lettre}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&=\phantom{\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{\Coeffb>0}{{}+{}}{}}\SSimplifie{\Coeffb}{\Coeffa}%\\
-                }{}
-                }{}
-                }{}
-              \end{align*}
-              \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.%
-              }{}
-            }{%ax+b=cx+d avec a<c              % Autre cas délicat
-              \begin{align*}%
-                \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\
-                \mathcolor{Cdecomp}{\xintifboolexpr{#2>0}{{}-{}\num{#2}\useKV[ClesEquation]{Lettre}}{{}+{}\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&\xintifboolexpr{#4<0}{\phantom{={}}}{}\mathcolor{Cdecomp}{\xintifboolexpr{#2>0}{{}-{}\num{#2}\useKV[ClesEquation]{Lettre}}{{}+{}\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\\
-                \xdef\Coeffa{\fpeval{#4-#2}}\xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\
-                \mathcolor{Cdecomp}{\xintifboolexpr{#5>0}{{}-{}\num{#5}}{{}+{}\num{\fpeval{0-#5}}}}&\phantom{{}={}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}}\mathcolor{Cdecomp}{\xintifboolexpr{#5>0}{-\num{#5}}{+\num{\fpeval{0-#5}}}}\\
-                \xdef\Coeffb{\fpeval{#3-#5}}\num{\Coeffb}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}%\\
-                \xintifboolexpr{\Coeffa=1}{}{\\}
-                \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1
-                \mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}}&\xintifboolexpr{\Coeffa<0}{\phantom{{}={}}}{\phantom{=}}\mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}}\\
-                \frac{\num{\Coeffb}}{\num{\Coeffa}}&=\useKV[ClesEquation]{Lettre}%\\
-                }
-                \ifboolKV[ClesEquation]{Entier}{%
-                \SSimpliTest{\Coeffb}{\Coeffa}%
-                \ifboolKV[ClesEquation]{Simplification}{%
-                \ifthenelse{\boolean{Simplification}}{\\\SSimplifie{\Coeffb}{\Coeffa}&=\useKV[ClesEquation]{Lettre}}{}%\\
-                }{}
-                }{}
-              \end{align*}
-              \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.%
-              }{}%
-            }%
-          }%
-        }%
-      }%
-    }%
-  }%
-}%

Deleted: trunk/Master/texmf-dist/doc/latex/profcollege/PfCEquationSoustraction2.tex
===================================================================
--- trunk/Master/texmf-dist/doc/latex/profcollege/PfCEquationSoustraction2.tex	2021-04-26 23:48:27 UTC (rev 58994)
+++ trunk/Master/texmf-dist/doc/latex/profcollege/PfCEquationSoustraction2.tex	2021-04-27 12:58:55 UTC (rev 58995)
@@ -1,345 +0,0 @@
-% Licence    : Released under the LaTeX Project Public License v1.3c
-% or later, see http://www.latex-project.org/lppl.txtf
-\newcommand{\EquaBase}[5][]{%type ax=d ou b=cx
-  \useKVdefault[ClesEquation]%
-  \setKV[ClesEquation]{#1}%
-  \ifx\bla#2\bla%on teste si le paramètre #2 est vide:
-  % si oui, on est dans le cas b=cx. Eh bien on échange :)
-  % Mais attention si les deux paramètres a et c sont vides...
-  \EquaBase[#1]{#4}{}{}{#3}
-  \else
-  % si non, on est dans le cas ax=d
-  \xintifboolexpr{#2=0}{%
-    \xintifboolexpr{#5=0}{%
-      L'équation $0\useKV[ClesEquation]{ELettre}=0$ a une infinité de solutions.}{L'équation $0\useKV[ClesEquation]{Lettre}=\num{#5}$ n'a aucune solution.}%
-  }{%\else
-    \xintifboolexpr{#5=0}{L'équation $\num{#2}\useKV[ClesEquation]{Lettre}=0$ a une unique solution : $\useKV[ClesEquation]{Lettre}=0$.}{%\else
-      \begin{align*}%
-        \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{\useKV[ClesEquation]{Lettre}}{\num{#2}\useKV[ClesEquation]{Lettre}}&=\num{#5}\tikzmark{C-\theNbequa}\\
-        \tikzmark{B-\theNbequa}\useKV[ClesEquation]{Lettre}&=\frac{\num{#5}}{\num{#2}}\tikzmark{D-\theNbequa}%\\
-        \ifboolKV[ClesEquation]{Fleches}{%
-        \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{#2<0}{(\num{#2})}{\num{#2}}$}%
-        \rightcomment{C-\theNbequa}{D-\theNbequa}{D-\theNbequa}{$\div\xintifboolexpr{#2<0}{(\num{#2})}{\num{#2}}$}%
-        }{%
-        \ifboolKV[ClesEquation]{FlecheDiv}{%
-        \Leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{#2<0}{(\num{#2})}{\num{#2}}$}%
-        \Rightcomment{C-\theNbequa}{D-\theNbequa}{D-\theNbequa}{$\div\xintifboolexpr{#2<0}{(\num{#2})}{\num{#2}}$}%
-        }{}%
-        }%%
-        \ifboolKV[ClesEquation]{Entier}{%
-        \SSimpliTest{#5}{#2}%
-        \ifboolKV[ClesEquation]{Simplification}{%
-        \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{#5}{#2}}{}%\\
-        }{}
-        }{}
-        \ifboolKV[ClesEquation]{Fleches}{%
-        \stepcounter{Nbequa}}%
-        {\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}
-        }
-      \end{align*}
-      \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{\useKV[ClesEquation]{Lettre}=\num{#5}}{\num{#2}\useKV[ClesEquation]{Lettre}=\num{#5}}$ a une unique solution : $\displaystyle\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\opdiv*{#5}{#2}{numequa}{resteequa}\opcmp{resteequa}{0}\ifopeq\opexport{numequa}{\numequa}\num{\numequa}\else\ifboolKV[ClesEquation]{Simplification}{\SSimplifie{#5}{#2}}{\frac{\num{#5}}{\num{#2}}}\fi$.%
-      }{}
-    }
-  }
-  \fi
-}
-
-\newcommand{\EquaDeuxSoustraction}[5][]{%type ax+b=d ou b=cx+d$
-  \useKVdefault[ClesEquation]%
-  \setKV[ClesEquation]{#1}%
-  \ifx\bla#2\bla%On échange en faisant attention à ne pas boucler : c doit être non vide
-    \EquaDeuxSoustraction[#1]{#4}{#5}{#2}{#3}
-  \else%cas ax+b=d
-    \xintifboolexpr{#2=0}{%
-      \xintifboolexpr{#3=#5}{%b=d
-        L'équation $\num{#3}=\num{#5}$ a une infinité de solutions.}%
-      {%b<>d
-        L'équation $\num{#3}=\num{#5}$ n'a aucune solution.%
-      }%
-    }{%ELSE
-      \xintifboolexpr{#3=0}{%ax+b=d
-        \EquaBase[#1]{#2}{}{}{#5}%
-      }{%ax+b=d$ Ici
-        \begin{align*}
-          \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\num{#5}\tikzmark{E-\theNbequa}\\
-          \ifboolKV[ClesEquation]{Decomposition}{%
-          \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}&=\num{#5}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}\\
-          }{}%
-          \tikzmark{C-\theNbequa}\xdef\Coeffa{#2}\xdef\Coeffb{\fpeval{#5-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}\tikzmark{G-\theNbequa}
-          \ifboolKV[ClesEquation]{Decomposition}{\\\xintifboolexpr{\Coeffa=1}{}{\frac{\num{\Coeffa}}{\mathcolor{Cdecomp}{\num{\Coeffa}}}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\mathcolor{Cdecomp}{\num{\Coeffa}}}}}{}
-          \xintifboolexpr{\Coeffa=1}{}{\\}
-          \ifboolKV[ClesEquation]{Fleches}{%
-          \leftcomment{A-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}%
-          \rightcomment{E-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}%
-          }{}
-          \xintifboolexpr{\Coeffa=1}{% 
-          }{%\ifnum\cmtd>1
-          \tikzmark{D-\theNbequa}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}\tikzmark{H-\theNbequa}%\\
-          \ifboolKV[ClesEquation]{Fleches}{%
-          \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
-          \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
-          }{%ICI ?
-          \ifboolKV[ClesEquation]{FlecheDiv}{%
-          \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
-          \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
-          }{}
-          }
-          }
-          \ifboolKV[ClesEquation]{Entier}{%
-          \SSimpliTest{\Coeffb}{\Coeffa}%
-          \ifboolKV[ClesEquation]{Simplification}{%
-          \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\
-          }{}
-          }{}
-          \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}}
-        \end{align*}
-        \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\num{#5}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.
-        }{}
-      }
-    }
-  \fi
-}
-
-\newcommand{\EquaTroisSoustraction}[5][]{%ax+b=cx ou ax=cx+d
-  \useKVdefault[ClesEquation]%
-  \setKV[ClesEquation]{#1}%
-  \ifx\bla#3\bla%on inverse en faisant attention à la boucle #3<->#5
-    \ifx\bla#5\bla%
-      %% paramètre oublié
-    \else
-      \EquaTroisSoustraction[#1]{#4}{#5}{#2}{}%
-    \fi
-  \else
-  \xintifboolexpr{#2=0}{%b=cx
-    \EquaBase[#1]{#4}{}{}{#3}
-  }{%
-    \xintifboolexpr{#4=0}{%ax+b=0
-      \EquaDeuxSoustraction[#1]{#2}{#3}{}{0}
-      }{%ax+b=cx
-        \xintifboolexpr{#2=#4}{%
-          \xintifboolexpr{#3=0}{%ax=ax
-            L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une infinité de solutions.}%
-          {%ax+b=ax
-            L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ n'a aucune solution.%
-          }%
-        }{%% Cas délicat
-          \xintifboolexpr{#2>#4}{%ax+b=cx avec a>c
-            \begin{align*}
-              \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\tikzmark{E-\theNbequa}\\
-                \ifboolKV[ClesEquation]{Decomposition}{%
-                \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\mathcolor{Cdecomp}{\xintifboolexpr{#4>0}{-\num{#4}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\mathcolor{Cdecomp}{\xintifboolexpr{#4>0}{-\num{#4}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\\
-                }{}
-                \tikzmark{B-\theNbequa}\xdef\Coeffa{\fpeval{#2-#4}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=0\tikzmark{F-\theNbequa}\\
-                \ifboolKV[ClesEquation]{Decomposition}{%
-                \xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}&=0\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}\tikzmark{F-\theNbequa}\\
-                }{}%
-              \tikzmark{C-\theNbequa}\xdef\Coeffb{\fpeval{0-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}\tikzmark{G-\theNbequa}%\\
-              %eric
-              \ifboolKV[ClesEquation]{Decomposition}{\\\xintifboolexpr{\Coeffa=1}{}{\frac{\num{\Coeffa}}{\mathcolor{Cdecomp}{\num{\Coeffa}}}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\mathcolor{Cdecomp}{\num{\Coeffa}}}}}{}
-              % eric
-                \xintifboolexpr{\Coeffa=1}{}{\\}
-                \ifboolKV[ClesEquation]{Fleches}{%
-                \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$}
-                \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$}
-                \leftcomment{B-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}%
-                \rightcomment{F-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}%
-                }{}
-                \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1
-                \tikzmark{D-\theNbequa}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}\tikzmark{H-\theNbequa}%\\
-                \ifboolKV[ClesEquation]{Fleches}{%
-                \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
-                \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%            
-                }{
-                \ifboolKV[ClesEquation]{FlecheDiv}{%
-                \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
-                \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%                 
-                }{}
-                }
-                \ifboolKV[ClesEquation]{Entier}{%
-                \SSimpliTest{\Coeffb}{\Coeffa}%
-                \ifboolKV[ClesEquation]{Simplification}{%
-                \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\
-                }{}
-                }{}
-                }
-                \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}}
-              \end{align*}
-              \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}
-            }{%ax+b=cx+d avec a<c              % Autre cas délicat
-              \begin{align*}%
-                \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\tikzmark{E-\theNbequa}\\
-                \ifboolKV[ClesEquation]{Decomposition}{%
-                \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\mathcolor{Cdecomp}{\xintifboolexpr{#2>0}{-\num{#2}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\mathcolor{Cdecomp}{\xintifboolexpr{#2>0}{-\num{#2}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\\
-                }{}
-                \tikzmark{B-\theNbequa}\xdef\Coeffb{#3}\xdef\Coeffa{\fpeval{#4-#2}}\xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\tikzmark{F-\theNbequa}
-                \xintifboolexpr{\Coeffa=1}{}{\\}
-                \ifboolKV[ClesEquation]{Fleches}{%
-                \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#2>0}{-\num{#2}}{+\num{\fpeval{0-#2}}}\useKV[ClesEquation]{Lettre}$}
-                \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#2>0}{-\num{#2}}{+\num{\fpeval{0-#2}}}\useKV[ClesEquation]{Lettre}$}
-                }{}
-                % eric
-                \ifboolKV[ClesEquation]{Decomposition}{\\\xintifboolexpr{\Coeffa=1}{}{\frac{\num{\Coeffb}}{\mathcolor{Cdecomp}{\num{\Coeffa}}}&=\frac{\num{\Coeffa}}{\mathcolor{Cdecomp}{\num{\Coeffa}}}\useKV[ClesEquation]{Lettre}}}{}
-                % eric
-                \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1
-                \tikzmark{D-\theNbequa}\frac{\num{\Coeffb}}{\num{\Coeffa}}&=\useKV[ClesEquation]{Lettre}\tikzmark{H-\theNbequa}%\\
-                \ifboolKV[ClesEquation]{Fleches}{%
-                \leftcomment{B-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
-                \rightcomment{F-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%            
-                }{
-                \ifboolKV[ClesEquation]{FlecheDiv}{%
-                \leftcomment{B-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
-                \rightcomment{F-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%                 
-                }{}
-                }
-                \ifboolKV[ClesEquation]{Entier}{%
-                \SSimpliTest{\Coeffb}{\Coeffa}%
-                \ifboolKV[ClesEquation]{Simplification}{%
-                \ifthenelse{\boolean{Simplification}}{\\\SSimplifie{\Coeffb}{\Coeffa}&=\useKV[ClesEquation]{Lettre}}{}%\\
-                }{}
-                }{}
-                }
-                \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}}
-              \end{align*}
-              \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}%
-            }%
-          }%
-        }%
-      }%
-    \fi
-  }%
-
-
-\newcommand{\ResolEquationSoustraction}[5][]{%
-  \useKVdefault[ClesEquation]%
-  \setKV[ClesEquation]{#1}%
-  \xintifboolexpr{#2=0}{%
-    \xintifboolexpr{#4=0}{%
-      \xintifboolexpr{#3=#5}{%b=d
-        L'équation $\num{#3}=\num{#5}$ a une infinité de solutions.}%
-      {%b<>d
-        L'équation $\num{#3}=\num{#5}$ n'a aucune solution.%
-      }%
-    }%
-    {%0x+b=cx+d$
-      \EquaDeuxSoustraction[#1]{#4}{#5}{}{#3}%
-    }%
-  }{%
-    \xintifboolexpr{#4=0}{%ax+b=0x+d
-      \EquaDeuxSoustraction[#1]{#2}{#3}{}{#5}%
-    }
-    {%ax+b=cx+d$
-      \xintifboolexpr{#3=0}{%
-        \xintifboolexpr{#5=0}{%ax=cx
-          \EquaTroisSoustraction[#1]{#2}{0}{#4}{}%
-        }%
-        {%ax=cx+d
-          \EquaTroisSoustraction[#1]{#4}{#5}{#2}{}%
-        }%
-      }%
-      {\xintifboolexpr{#5=0}{%ax+b=cx
-          \EquaTroisSoustraction[#1]{#2}{#3}{#4}{}%
-        }%
-        {%ax+b=cx+d -- ici
-          \xintifboolexpr{#2=#4}{%
-            \xintifboolexpr{#3=#5}{%b=d
-              L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une infinité de solutions.}%
-            {%b<>d
-              L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ n'a aucune solution.%
-            }%
-          }{
-            %% Cas délicat
-            \xintifboolexpr{#2>#4}{%ax+b=cx+d avec a>c
-              \begin{align*}
-                \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\tikzmark{E-\theNbequa}\\
-                \ifboolKV[ClesEquation]{Decomposition}{%
-                \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\mathcolor{Cdecomp}{\xintifboolexpr{#4>0}{-\num{#4}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\mathcolor{Cdecomp}{\xintifboolexpr{#4>0}{-\num{#4}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\
-                }{}
-                \tikzmark{B-\theNbequa}\xdef\Coeffa{\fpeval{#2-#4}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\num{#5}\tikzmark{F-\theNbequa}\\
-                \ifboolKV[ClesEquation]{Decomposition}{%
-                \xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}&=\num{#5}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}\\
-                }{}%
-                \tikzmark{C-\theNbequa}\xdef\Coeffb{\fpeval{#5-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}\tikzmark{G-\theNbequa}%\\
-                % eric
-                \ifboolKV[ClesEquation]{Decomposition}{\\\xintifboolexpr{\Coeffa=1}{}{\frac{\num{\Coeffa}}{\mathcolor{Cdecomp}{\num{\Coeffa}}}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\mathcolor{Cdecomp}{\num{\Coeffa}}}}}{}
-                % eric
-                \xintifboolexpr{\Coeffa=1}{}{\\}
-                \ifboolKV[ClesEquation]{Fleches}{%
-                \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$}
-                \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$}
-                \leftcomment{B-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}%
-                \rightcomment{F-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}%
-                }{}
-                \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1
-                \tikzmark{D-\theNbequa}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}\tikzmark{H-\theNbequa}%\\
-                \ifboolKV[ClesEquation]{Fleches}{%
-                \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
-                \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%            
-                }{
-                \ifboolKV[ClesEquation]{FlecheDiv}{%
-                \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
-                \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%                 
-                }{}
-                }
-                \ifboolKV[ClesEquation]{Entier}{%
-                \SSimpliTest{\Coeffb}{\Coeffa}%
-                \ifboolKV[ClesEquation]{Simplification}{%
-                \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\
-                }{}
-                }{}
-                }
-                \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}}
-              \end{align*}
-              \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.%
-              }{}
-            }{%ax+b=cx+d avec a<c              % Autre cas délicat
-              \begin{align*}%
-                \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\tikzmark{E-\theNbequa}\\
-                \ifboolKV[ClesEquation]{Decomposition}{%
-                \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\mathcolor{Cdecomp}{\xintifboolexpr{#2>0}{-\num{#2}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\mathcolor{Cdecomp}{\xintifboolexpr{#2>0}{-\num{#2}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\
-                }{}
-                \tikzmark{B-\theNbequa}\xdef\Coeffa{\fpeval{#4-#2}}\xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\tikzmark{F-\theNbequa}\\
-                \ifboolKV[ClesEquation]{Decomposition}{%
-                \num{#3}\mathcolor{Cdecomp}{\xintifboolexpr{#5>0}{-\num{#5}}{+\num{\fpeval{0-#5}}}}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\mathcolor{Cdecomp}{\xintifboolexpr{#5>0}{-\num{#5}}{+\num{\fpeval{0-#5}}}}\\
-                }{}%
-                \tikzmark{C-\theNbequa}\xdef\Coeffb{\fpeval{#3-#5}}\num{\Coeffb}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\tikzmark{G-\theNbequa}%\\
-                % eric
-                \ifboolKV[ClesEquation]{Decomposition}{\\\xintifboolexpr{\Coeffa=1}{}{\frac{\num{\Coeffb}}{\mathcolor{Cdecomp}{\num{\Coeffa}}}&=\frac{\num{\Coeffa}}{\mathcolor{Cdecomp}{\num{\Coeffa}}}\useKV[ClesEquation]{Lettre}}}{}
-                % eric
-                \xintifboolexpr{\Coeffa=1}{}{\\}
-                \ifboolKV[ClesEquation]{Fleches}{%
-                \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#2>0}{-\num{#2}}{+\num{\fpeval{0-#2}}}\useKV[ClesEquation]{Lettre}$}
-                \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#2>0}{-\num{#2}}{+\num{\fpeval{0-#2}}}\useKV[ClesEquation]{Lettre}$}
-                \leftcomment{B-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#5>0}{-\num{#5}}{+\num{\fpeval{0-#5}}}$}%
-                \rightcomment{F-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#5>0}{-\num{#5}}{+\num{\fpeval{0-#5}}}$}%
-                }{}
-                \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1
-                \tikzmark{D-\theNbequa}\frac{\num{\Coeffb}}{\num{\Coeffa}}&=\useKV[ClesEquation]{Lettre}\tikzmark{H-\theNbequa}%\\
-                \ifboolKV[ClesEquation]{Fleches}{%
-                \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
-                \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%            
-                }{
-                \ifboolKV[ClesEquation]{FlecheDiv}{%
-                \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
-                \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%                 
-                }{}
-                }
-                \ifboolKV[ClesEquation]{Entier}{%
-                \SSimpliTest{\Coeffb}{\Coeffa}%
-                \ifboolKV[ClesEquation]{Simplification}{%
-                \ifthenelse{\boolean{Simplification}}{\\\SSimplifie{\Coeffb}{\Coeffa}&=\useKV[ClesEquation]{Lettre}}{}%\\
-                }{}
-                }{}
-                }
-                \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}}
-              \end{align*}
-              \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.%
-              }{}%
-            }%
-          }%
-        }%
-      }%
-    }%
-  }%
-}%
-
-

Deleted: trunk/Master/texmf-dist/doc/latex/profcollege/PfCEquationSymbole1.tex
===================================================================
--- trunk/Master/texmf-dist/doc/latex/profcollege/PfCEquationSymbole1.tex	2021-04-26 23:48:27 UTC (rev 58994)
+++ trunk/Master/texmf-dist/doc/latex/profcollege/PfCEquationSymbole1.tex	2021-04-27 12:58:55 UTC (rev 58995)
@@ -1,225 +0,0 @@
-% Licence    : Released under the LaTeX Project Public License v1.3c
-% or later, see http://www.latex-project.org/lppl.txtf
-\newcommand{\EquaBaseSymbole}[5][]{%type ax=d ou b=cx
-  \useKVdefault[ClesEquation]%
-  \setKV[ClesEquation]{#1}%
-  \setKV[ClesEquation]{Fleches=false,FlecheDiv=false,Terme=false,Decomposition=false}
-  \ifx\bla#2\bla%on teste si le paramètre #2 est vide:
-  % si oui, on est dans le cas b=cx. Eh bien on échange :)
-  % Mais attention si les deux paramètres a et c sont vides...
-    \ifx\bla#4\bla
-  %% il manque un paramètre
-    \else
-      \EquaBaseSymbole[#1]{#4}{}{}{#3}
-    \fi
-  \else
-  % si non, on est dans le cas ax=d
-  \xintifboolexpr{#2=0}{%
-    \xintifboolexpr{#5=0}{%
-      L'équation $0\times\useKV[ClesEquation]{Lettre}=0$ a une infinité de solutions.}{L'équation $0\times\useKV[ClesEquation]{Lettre}=\num{#5}$ n'a aucune solution.}%
-  }{%\else
-    \xintifboolexpr{#5=0}{L'équation $\num{#2}\times\useKV[ClesEquation]{Lettre}=0$ a une unique solution : $\useKV[ClesEquation]{Lettre}=0$.}{%\else
-      \begin{align*}%
-         \xintifboolexpr{#2=1}{\useKV[ClesEquation]{Lettre}}{\multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}}&=\num{#5}\\
-        \useKV[ClesEquation]{Lettre}&=\frac{\num{#5}}{\num{#2}}%\\
-        \ifboolKV[ClesEquation]{Entier}{%
-                \SSimpliTest{#5}{#2}%
-                \ifboolKV[ClesEquation]{Simplification}{%
-                \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{#5}{#2}}{}%\\
-                }{}
-                }{}
-      \end{align*}
-    }
-  }
-  \fi
-}
-
-\newcommand{\EquaDeuxSymbole}[5][]{%type ax+b=d ou b=cx+d$
-  \useKVdefault[ClesEquation]%
-  \setKV[ClesEquation]{#1}%
-  \setKV[ClesEquation]{Fleches=false,FlecheDiv=false,Terme=false,Decomposition=false}
-  \ifx\bla#2\bla%On échange en faisant attention à ne pas boucler : c doit être non vide
-    \EquaDeuxSymbole[#1]{#4}{#5}{#2}{#3}
-  \else%cas ax+b=d
-    \xintifboolexpr{#2=0}{%
-      \xintifboolexpr{#3=#5}{%b=d
-        L'équation $\num{#3}=\num{#5}$ a une infinité de solutions.}%
-      {%b<>d
-        L'équation $\num{#3}=\num{#5}$ n'a aucune solution.%
-      }%
-    }{%ELSE
-      \xintifboolexpr{#3=0}{%ax+b=d
-        \EquaBaseSymbole[#1]{#2}{}{}{#5}%
-      }{%ax+b=d$ Ici
-        \begin{align*}
-          \xintifboolexpr{#2=1}{\useKV[ClesEquation]{Lettre}}{\multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\num{#5}\\
-          \ifboolKV[ClesEquation]{Bloc}{\Fdash{$\xintifboolexpr{#2=1}{\useKV[ClesEquation]{Lettre}}{\multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}}$}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\num{#5}\\}{}%
-          \xdef\Coeffa{#2}\xdef\Coeffb{\fpeval{#5-#3}}\xintifboolexpr{\Coeffa=1}{\useKV[ClesEquation]{Lettre}}{\multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}}&=\num{\Coeffb}%\\
-          \xintifboolexpr{\Coeffa=1}{% 
-          }{%\ifnum\cmtd>1
-          \\
-          \useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}%\\
-          \ifboolKV[ClesEquation]{Entier}{%
-          \SSimpliTest{\Coeffb}{\Coeffa}%
-          \ifboolKV[ClesEquation]{Simplification}{%
-          \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\
-          }{}
-          }{}
-          }
-        \end{align*}
-      }
-    }
-  \fi
-}
-
-\newcommand{\EquaTroisSymbole}[5][]{%ax+b=cx ou ax=cx+d
-  \useKVdefault[ClesEquation]%
-  \setKV[ClesEquation]{#1}%
-  \setKV[ClesEquation]{Fleches=false,FlecheDiv=false,Terme=false,Decomposition=false}
-  \ifx\bla#3\bla%on inverse en faisant attention à la boucle #3<->#5
-    \ifx\bla#5\bla%
-      %% paramètre oublié
-    \else
-      \EquaTroisSymbole[#1]{#4}{#5}{#2}{}%
-    \fi
-  \else
-  \xintifboolexpr{#2=0}{%b=cx
-    \EquaBaseSymbole[#1]{#4}{}{}{#3}
-  }{%
-    \xintifboolexpr{#4=0}{%ax+b=0
-      \EquaDeuxSymbole[#1]{#2}{#3}{}{0}
-      }{%ax+b=cx
-        \xintifboolexpr{#2=#4}{%
-          \xintifboolexpr{#3=0}{%ax=ax
-            L'équation $\multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}=\multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}$ a une infinité de solutions.}%
-          {%ax+b=ax
-            L'équation $\multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}$ n'a aucune solution.%
-          }%
-        }{%% Cas délicat
-          \xintifboolexpr{#2>#4}{%ax+b=cx avec a>c
-            \begin{align*}
-              \multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\multido{\i=1+1}{\fpeval{#4-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}\\
-              \mathcolor{Csymbole}{\useKV[ClesEquation]{Lettre}\multido{\i=1+1}{\fpeval{#4-1}}{+\useKV[ClesEquation]{Lettre}}}\multido{\i=1+1}{\fpeval{#2-#4}}{+\useKV[ClesEquation]{Lettre}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Csymbole}{\multido{\i=1+1}{\fpeval{#4-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}}\\              
-              \xdef\Coeffa{\fpeval{#2-#4}}\multido{\i=1+1}{\fpeval{\Coeffa-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=0\\
-              \ifboolKV[ClesEquation]{Bloc}{\Fdash{\mathcolor{Csymbole}{$\multido{\i=1+1}{\fpeval{\Coeffa-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}$}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=0\\}{}
-              \xdef\Coeffb{\fpeval{0-#3}}\multido{\i=1+1}{\fpeval{\Coeffa-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}%\\
-              \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1
-              \\\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}%\\
-                \ifboolKV[ClesEquation]{Entier}{%
-                \SSimpliTest{\Coeffb}{\Coeffa}%
-                \ifboolKV[ClesEquation]{Simplification}{%
-                \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\
-                }{}
-                }{}
-                }
-              \end{align*}
-            }{%ax+b=cx+d avec a<c              % Autre cas délicat
-              \begin{align*}%
-                \multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\multido{\i=1+1}{\fpeval{#4-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}\\
-                \mathcolor{Csymbole}{\useKV[ClesEquation]{Lettre}\multido{\i=1+1}{\fpeval{#2-1}}{+\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Csymbole}{\useKV[ClesEquation]{Lettre}\multido{\i=1+1}{\fpeval{#2-1}}{+\useKV[ClesEquation]{Lettre}}}\multido{\i=1+1}{\fpeval{#4-#2}}{+\useKV[ClesEquation]{Lettre}}\\
-                \xdef\Coeffb{#3}\xdef\Coeffa{\fpeval{#4-#2}}\xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\multido{\i=1+1}{\fpeval{\Coeffa-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}% \\
-                \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1
-                \\\frac{\num{\Coeffb}}{\num{\Coeffa}}&=\useKV[ClesEquation]{Lettre}%\\
-                \ifboolKV[ClesEquation]{Entier}{%
-                \SSimpliTest{\Coeffb}{\Coeffa}%
-                \ifboolKV[ClesEquation]{Simplification}{%
-                \ifthenelse{\boolean{Simplification}}{\\\SSimplifie{\Coeffb}{\Coeffa}&=\useKV[ClesEquation]{Lettre}}{}%\\
-                }{}
-                }{}
-                }
-              \end{align*}
-            }%
-          }%
-        }%
-      }%
-    \fi
-  }%
-
-
-\newcommand{\ResolEquationSymbole}[5][]{%
-  \useKVdefault[ClesEquation]%
-  \setKV[ClesEquation]{#1}%
-  \setKV[ClesEquation]{Fleches=false,FlecheDiv=false,Terme=false,Decomposition=false}
-  \xintifboolexpr{#2=0}{%
-    \xintifboolexpr{#4=0}{%
-      \xintifboolexpr{#3=#5}{%b=d
-        L'équation $\num{#3}=\num{#5}$ a une infinité de solutions.}%
-      {%b<>d
-        L'équation $\num{#3}=\num{#5}$ n'a aucune solution.%
-      }%
-    }%
-    {%0x+b=cx+d$
-      \EquaDeuxSymbole[#1]{#4}{#5}{#2}{#3}%
-    }%
-  }{%
-    \xintifboolexpr{#4=0}{%ax+b=0x+d
-      \EquaDeuxSymbole[#1]{#2}{#3}{}{#5}%
-    }
-    {%ax+b=cx+d$
-      \xintifboolexpr{#3=0}{%
-        \xintifboolexpr{#5=0}{%ax=cx
-          \EquaTroisSymbole[#1]{#2}{0}{#4}{}%
-        }%
-        {%ax=cx+d
-          \EquaTroisSymbole[#1]{#4}{#5}{#2}{}%
-        }%
-      }%
-      {\xintifboolexpr{#5=0}{%ax+b=cx
-          \EquaTroisSymbole[#1]{#2}{#3}{#4}{}%
-        }%
-        {%ax+b=cx+d -- ici
-          \xintifboolexpr{#2=#4}{%
-            \xintifboolexpr{#3=#5}{%b=d
-              L'équation $\multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\multido{\i=1+1}{\fpeval{#4-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une infinité de solutions.}%
-            {%b<>d
-              L'équation $\multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\multido{\i=1+1}{\fpeval{#4-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ n'a aucune solution.%
-            }%
-          }{
-            %% Cas délicat
-            \xintifboolexpr{#2>#4}{%ax+b=cx+d avec a>c
-              \begin{align*}
-                \multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\multido{\i=1+1}{\fpeval{#4-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\
-                \mathcolor{Csymbole}{\useKV[ClesEquation]{Lettre}\multido{\i=1+1}{\fpeval{#4-1}}{+\useKV[ClesEquation]{Lettre}}}\multido{\i=1+1}{\fpeval{#2-#4}}{+\useKV[ClesEquation]{Lettre}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Csymbole}{\multido{\i=1+1}{\fpeval{#4-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\
-                \xdef\Coeffa{\fpeval{#2-#4}}\useKV[ClesEquation]{Lettre}\multido{\i=1+1}{\fpeval{\Coeffa-1}}{+\useKV[ClesEquation]{Lettre}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\num{#5}\\
-                \ifboolKV[ClesEquation]{Bloc}{%
-                \Fdash{$\mathcolor{Csymbole}{\useKV[ClesEquation]{Lettre}\multido{\i=1+1}{\fpeval{\Coeffa-1}}{+\useKV[ClesEquation]{Lettre}}}$}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\num{#5}\\
-                }{}%
-                \xdef\Coeffb{\fpeval{#5-#3}}\useKV[ClesEquation]{Lettre}\multido{\i=1+1}{\fpeval{\Coeffa-1}}{+\useKV[ClesEquation]{Lettre}}&=\num{\Coeffb}%\\
-                \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1
-                \\\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}\tikzmark{H-\theNbequa}%\\
-                \ifboolKV[ClesEquation]{Entier}{%
-                \SSimpliTest{\Coeffb}{\Coeffa}%
-                \ifboolKV[ClesEquation]{Simplification}{%
-                \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\
-                }{}
-                }{}
-                }
-              \end{align*}
-            }{%ax+b=cx+d avec a<c              % Autre cas délicat
-              \begin{align*}%
-                \multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\multido{\i=1+1}{\fpeval{#4-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\
-                \mathcolor{Csymbole}{\multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Csymbole}{\useKV[ClesEquation]{Lettre}\multido{\i=1+1}{\fpeval{#2-1}}{+\useKV[ClesEquation]{Lettre}}}\multido{\i=1+1}{\fpeval{#4-#2}}{+\useKV[ClesEquation]{Lettre}}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\
-                \xdef\Coeffa{\fpeval{#4-#2}}\num{#3}&=\useKV[ClesEquation]{Lettre}\multido{\i=1+1}{\fpeval{\Coeffa-1}}{+\useKV[ClesEquation]{Lettre}}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\
-                \ifboolKV[ClesEquation]{Bloc}{%
-                \num{#3}&=\Fdash{$\mathcolor{Csymbole}{\useKV[ClesEquation]{Lettre}\multido{\i=1+1}{\fpeval{\Coeffa-1}}{+\useKV[ClesEquation]{Lettre}}}$}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\
-                }{}%
-                \xdef\Coeffb{\fpeval{#3-#5}}\num{\Coeffb}&=\useKV[ClesEquation]{Lettre}\multido{\i=1+1}{\fpeval{\Coeffa-1}}{+\useKV[ClesEquation]{Lettre}}%\\
-                \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1
-                \\\frac{\num{\Coeffb}}{\num{\Coeffa}}&=\useKV[ClesEquation]{Lettre}%\\
-                \ifboolKV[ClesEquation]{Entier}{%
-                \SSimpliTest{\Coeffb}{\Coeffa}%
-                \ifboolKV[ClesEquation]{Simplification}{%
-                \ifthenelse{\boolean{Simplification}}{\\\SSimplifie{\Coeffb}{\Coeffa}&=\useKV[ClesEquation]{Lettre}}{}%\\
-                }{}
-                }{}
-                }
-              \end{align*}
-            }%
-          }%
-        }%
-      }%
-    }%
-  }%
-}%
-
-

Deleted: trunk/Master/texmf-dist/doc/latex/profcollege/PfCEquationTerme1.tex
===================================================================
--- trunk/Master/texmf-dist/doc/latex/profcollege/PfCEquationTerme1.tex	2021-04-26 23:48:27 UTC (rev 58994)
+++ trunk/Master/texmf-dist/doc/latex/profcollege/PfCEquationTerme1.tex	2021-04-27 12:58:55 UTC (rev 58995)
@@ -1,276 +0,0 @@
-% Licence    : Released under the LaTeX Project Public License v1.3c
-% or later, see http://www.latex-project.org/lppl.txtf
-\newcommand{\EquaDeuxTerme}[5][]{%type ax+b=d ou b=cx+d$
-  \useKVdefault[ClesEquation]%
-  \setKV[ClesEquation]{#1}%
-  \ifx\bla#2\bla%On échange en faisant attention à ne pas boucler : c doit être non vide
-    \EquaDeuxTerme[#1]{#4}{#5}{#2}{#3}
-  \else%cas ax+b=d
-    \xintifboolexpr{#2=0}{%
-      \xintifboolexpr{#3=#5}{%b=d
-        L'équation $\num{#3}=\num{#5}$ a une infinité de solutions.}%
-      {%b<>d
-        L'équation $\num{#3}=\num{#5}$ n'a aucune solution.%
-      }%
-    }{%ELSE
-      \xintifboolexpr{#3=0}{%ax+b=d
-        \EquaBase[#1]{#2}{}{}{#5}%
-      }{%ax+b=d$ Ici
-        \ifboolKV[ClesEquation]{Decomposition}{\colorlet{Cterme}{\useKV[ClesEquation]{CouleurTerme}}}{}
-        \begin{align*}
-          \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\num{#5}\tikzmark{E-\theNbequa}\\
-          \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}&=\num{#5}\mathcolor{Cterme}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}\\
-          \tikzmark{C-\theNbequa}\xdef\Coeffa{#2}\xdef\Coeffb{\fpeval{#5-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}\tikzmark{G-\theNbequa}%\\
-          \xintifboolexpr{\Coeffa=1}{}{\\}
-          \ifboolKV[ClesEquation]{Fleches}{%
-          \leftcomment{A-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}%
-          \rightcomment{E-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}%
-          }{}
-          \xintifboolexpr{\Coeffa=1}{% 
-          }{%\ifnum\cmtd>1
-          \tikzmark{D-\theNbequa}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}\tikzmark{H-\theNbequa}%\\
-          \ifboolKV[ClesEquation]{Fleches}{%
-          \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
-          \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
-          }{%ICI ?
-          \ifboolKV[ClesEquation]{FlecheDiv}{%
-          \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
-          \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
-          }{}
-          }
-          }
-          \ifboolKV[ClesEquation]{Entier}{%
-          \SSimpliTest{\Coeffb}{\Coeffa}%
-          \ifboolKV[ClesEquation]{Simplification}{%
-          \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\
-          }{}
-          }{}
-          \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}}
-        \end{align*}
-        \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\num{#5}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.
-        }{}
-      }
-    }
-  \fi
-}
-
-\newcommand{\EquaTroisTerme}[5][]{%ax+b=cx ou ax=cx+d
-  \useKVdefault[ClesEquation]%
-  \setKV[ClesEquation]{#1}%
-  \ifx\bla#3\bla%on inverse en faisant attention à la boucle #3<->#5
-    \ifx\bla#5\bla%
-      %% paramètre oublié
-    \else
-      \EquaTroisTerme[#1]{#4}{#5}{#2}{}%
-    \fi
-  \else
-  \xintifboolexpr{#2=0}{%b=cx
-    \EquaBase[#1]{#4}{}{}{#3}
-  }{%
-    \xintifboolexpr{#4=0}{%ax+b=0
-      \EquaDeuxTerme[#1]{#2}{#3}{}{0}
-      }{%ax+b=cx
-        \xintifboolexpr{#2=#4}{%
-          \xintifboolexpr{#3=0}{%ax=ax
-            L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une infinité de solutions.}%
-          {%ax+b=ax
-            L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ n'a aucune solution.%
-          }%
-        }{%% Cas délicat
-          \xintifboolexpr{#2>#4}{%ax+b=cx avec a>c
-            \ifboolKV[ClesEquation]{Decomposition}{\colorlet{Cterme}{\useKV[ClesEquation]{CouleurTerme}}}{}
-            \begin{align*}
-              \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\tikzmark{E-\theNbequa}\\
-                \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\mathcolor{Cterme}{\xintifboolexpr{#4>0}{-\num{#4}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=0\\
-              \tikzmark{B-\theNbequa}\xdef\Coeffa{\fpeval{#2-#4}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=0\tikzmark{F-\theNbequa}\\
-              \xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=0\mathcolor{Cterme}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}\\
-              \tikzmark{C-\theNbequa}\xdef\Coeffb{\fpeval{0-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}\tikzmark{G-\theNbequa}%\\
-                \xintifboolexpr{\Coeffa=1}{}{\\}
-                \ifboolKV[ClesEquation]{Fleches}{%
-                \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$}
-                \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$}
-                \leftcomment{B-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}%
-                \rightcomment{F-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}%
-                }{}
-                \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1
-                \tikzmark{D-\theNbequa}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}\tikzmark{H-\theNbequa}%\\
-                \ifboolKV[ClesEquation]{Fleches}{%
-                \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
-                \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%            
-                }{
-                \ifboolKV[ClesEquation]{FlecheDiv}{%
-                \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
-                \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%                 
-                }{}
-                }
-                \ifboolKV[ClesEquation]{Entier}{%
-                \SSimpliTest{\Coeffb}{\Coeffa}%
-                \ifboolKV[ClesEquation]{Simplification}{%
-                \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\
-                }{}
-                }{}
-                }
-                \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}}
-              \end{align*}
-              \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}
-            }{%ax+b=cx+d avec a<c              % Autre cas délicat
-              \ifboolKV[ClesEquation]{Decomposition}{\colorlet{Cterme}{\useKV[ClesEquation]{CouleurTerme}}}{}
-              \begin{align*}%
-                \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\tikzmark{E-\theNbequa}\\
-                \xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\mathcolor{Cterme}{\xintifboolexpr{#2>0}{-\num{#2}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\\
-                \tikzmark{B-\theNbequa}\xdef\Coeffb{#3}\xdef\Coeffa{\fpeval{#4-#2}}\xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\tikzmark{F-\theNbequa}
-                \xintifboolexpr{\Coeffa=1}{}{\\}
-                \ifboolKV[ClesEquation]{Fleches}{%
-                \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#2>0}{-\num{#2}}{+\num{\fpeval{0-#2}}}\useKV[ClesEquation]{Lettre}$}
-                \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#2>0}{-\num{#2}}{+\num{\fpeval{0-#2}}}\useKV[ClesEquation]{Lettre}$}
-                }{}
-                \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1
-                \tikzmark{D-\theNbequa}\frac{\num{\Coeffb}}{\num{\Coeffa}}&=\useKV[ClesEquation]{Lettre}\tikzmark{H-\theNbequa}%\\
-                \ifboolKV[ClesEquation]{Fleches}{%
-                \leftcomment{B-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
-                \rightcomment{F-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%            
-                }{
-                \ifboolKV[ClesEquation]{FlecheDiv}{%
-                \leftcomment{B-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
-                \rightcomment{F-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%                 
-                }{}
-                }
-                \ifboolKV[ClesEquation]{Entier}{%
-                \SSimpliTest{\Coeffb}{\Coeffa}%
-                \ifboolKV[ClesEquation]{Simplification}{%
-                \ifthenelse{\boolean{Simplification}}{\\\SSimplifie{\Coeffb}{\Coeffa}&=\useKV[ClesEquation]{Lettre}}{}%\\
-                }{}
-                }{}
-                }
-                \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}}
-              \end{align*}
-              \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}%
-            }%
-          }%
-        }%
-      }%
-    \fi
-  }%
-
-\newcommand{\ResolEquationTerme}[5][]{%
-  \useKVdefault[ClesEquation]%
-  \setKV[ClesEquation]{#1}%
-  \xintifboolexpr{#2=0}{%
-    \xintifboolexpr{#4=0}{%
-      \xintifboolexpr{#3=#5}{%b=d
-        L'équation $\num{#3}=\num{#5}$ a une infinité de solutions.}%
-      {%b<>d
-        L'équation $\num{#3}=\num{#5}$ n'a aucune solution.%
-      }%
-    }%
-    {%0x+b=cx+d$
-      \EquaDeuxTerme[#1]{#4}{#5}{#2}{#3}%
-    }%
-  }{%
-    \xintifboolexpr{#4=0}{%ax+b=0x+d
-      \EquaDeuxTerme[#1]{#2}{#3}{}{#5}%
-    }
-    {%ax+b=cx+d$
-      \xintifboolexpr{#3=0}{%
-        \xintifboolexpr{#5=0}{%ax=cx
-          \EquaTroisTerme[#1]{#2}{0}{#4}{}%
-        }%
-        {%ax=cx+d
-          \EquaTroisTerme[#1]{#4}{#5}{#2}{}%
-        }%
-      }%
-      {\xintifboolexpr{#5=0}{%ax+b=cx
-          \EquaTroisTerme[#1]{#2}{#3}{#4}{}%
-        }%
-        {%ax+b=cx+d -- ici
-          \xintifboolexpr{#2=#4}{%
-            \xintifboolexpr{#3=#5}{%b=d
-              L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une infinité de solutions.}%
-            {%b<>d
-              L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ n'a aucune solution.%
-            }%
-          }{
-            %% Cas délicat
-            \xintifboolexpr{#2>#4}{%ax+b=cx+d avec a>c
-              \ifboolKV[ClesEquation]{Decomposition}{\colorlet{Cterme}{\useKV[ClesEquation]{CouleurTerme}}}{}
-              \begin{align*}
-                \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\tikzmark{E-\theNbequa}\\
-                \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\mathcolor{Cterme}{\xintifboolexpr{#4>0}{-\num{#4}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#5>0}{\num{#5}}{-\num{\fpeval{0-#5}}}\\
-                \tikzmark{B-\theNbequa}\xdef\Coeffa{\fpeval{#2-#4}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\num{#5}\tikzmark{F-\theNbequa}\tikzmark{F-\theNbequa}\\
-                \xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{#5}\mathcolor{Cterme}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}\\
-                \tikzmark{C-\theNbequa}\xdef\Coeffb{\fpeval{#5-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}\tikzmark{G-\theNbequa}%\\
-                \xintifboolexpr{\Coeffa=1}{}{\\}
-                \ifboolKV[ClesEquation]{Fleches}{%
-                \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$}
-                \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$}
-                \leftcomment{B-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}%
-                \rightcomment{F-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}%
-                }{}
-                \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1
-                \tikzmark{D-\theNbequa}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}\tikzmark{H-\theNbequa}%\\
-                \ifboolKV[ClesEquation]{Fleches}{%
-                \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
-                \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%            
-                }{
-                \ifboolKV[ClesEquation]{FlecheDiv}{%
-                \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
-                \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%                 
-                }{}
-                }
-                \ifboolKV[ClesEquation]{Entier}{%
-                \SSimpliTest{\Coeffb}{\Coeffa}%
-                \ifboolKV[ClesEquation]{Simplification}{%
-                \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\
-                }{}
-                }{}
-                }
-                \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}}
-              \end{align*}
-              \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.%
-              }{}
-            }{%ax+b=cx+d avec a<c              % Autre cas délicat
-              \ifboolKV[ClesEquation]{Decomposition}{\colorlet{Cterme}{\useKV[ClesEquation]{CouleurTerme}}}{}
-              \begin{align*}%
-                \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\tikzmark{E-\theNbequa}\\
-                \xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\mathcolor{Cterme}{\xintifboolexpr{#2>0}{-\num{#2}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\
-                \tikzmark{B-\theNbequa}\xdef\Coeffa{\fpeval{#4-#2}}\xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\tikzmark{F-\theNbequa}\\
-                \num{#3}\mathcolor{Cterme}{\xintifboolexpr{#5>0}{-\num{#5}}{+\num{\fpeval{0-#5}}}}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\\
-                \tikzmark{C-\theNbequa}\xdef\Coeffb{\fpeval{#3-#5}}\num{\Coeffb}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\tikzmark{G-\theNbequa}%\\
-                \xintifboolexpr{\Coeffa=1}{}{\\}
-                \ifboolKV[ClesEquation]{Fleches}{%
-                \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#2>0}{-\num{#2}}{+\num{\fpeval{0-#2}}}\useKV[ClesEquation]{Lettre}$}
-                \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#2>0}{-\num{#2}}{+\num{\fpeval{0-#2}}}\useKV[ClesEquation]{Lettre}$}
-                \leftcomment{B-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#5>0}{-\num{#5}}{+\num{\fpeval{0-#5}}}$}%
-                \rightcomment{F-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#5>0}{-\num{#5}}{+\num{\fpeval{0-#5}}}$}%
-                }{}
-                \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1
-                \tikzmark{D-\theNbequa}\frac{\num{\Coeffb}}{\num{\Coeffa}}&=\useKV[ClesEquation]{Lettre}\tikzmark{H-\theNbequa}%\\
-                \ifboolKV[ClesEquation]{Fleches}{%
-                \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
-                \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%            
-                }{
-                \ifboolKV[ClesEquation]{FlecheDiv}{%
-                \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
-                \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%                 
-                }{}
-                }
-                \ifboolKV[ClesEquation]{Entier}{%
-                \SSimpliTest{\Coeffb}{\Coeffa}%
-                \ifboolKV[ClesEquation]{Simplification}{%
-                \ifthenelse{\boolean{Simplification}}{\\\SSimplifie{\Coeffb}{\Coeffa}&=\useKV[ClesEquation]{Lettre}}{}%\\
-                }{}
-                }{}
-                }
-                \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}}
-              \end{align*}
-              \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.%
-              }{}%
-            }%
-          }%
-        }%
-      }%
-    }%
-  }%
-}%
-
-

Added: trunk/Master/texmf-dist/tex/latex/profcollege/PfCEquationComposition2.tex
===================================================================
--- trunk/Master/texmf-dist/tex/latex/profcollege/PfCEquationComposition2.tex	                        (rev 0)
+++ trunk/Master/texmf-dist/tex/latex/profcollege/PfCEquationComposition2.tex	2021-04-27 12:58:55 UTC (rev 58995)
@@ -0,0 +1,275 @@
+% Licence    : Released under the LaTeX Project Public License v1.3c
+% or later, see http://www.latex-project.org/lppl.txtf
+\newcommand{\EquaDeuxComposition}[5][]{%type ax+b=d ou b=cx+d$
+  \useKVdefault[ClesEquation]%
+  \setKV[ClesEquation]{#1}%
+  \ifx\bla#2\bla%On échange en faisant attention à ne pas boucler : c doit être non vide
+    \EquaDeuxComposition[#1]{#4}{#5}{#2}{#3}
+  \else%cas ax+b=d
+    \xintifboolexpr{#2=0}{%
+      \xintifboolexpr{#3=#5}{%b=d
+        L'équation $\num{#3}=\num{#5}$ a une infinité de solutions.}%
+      {%b<>d
+        L'équation $\num{#3}=\num{#5}$ n'a aucune solution.%
+      }%
+    }{%ELSE
+      \xintifboolexpr{#3=0}{%ax+b=d
+        \EquaBase[#1]{#2}{}{}{#5}%
+      }{%ax+b=d$ Ici
+        \ifboolKV[ClesEquation]{Decomposition}{\colorlet{Ccompo}{\useKV[ClesEquation]{CouleurCompo}}}{}
+        \begin{align*}
+          \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{\num{#5}}\tikzmark{E-\theNbequa}\\
+          \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{\num{\fpeval{#5-#3}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}}\\
+          \tikzmark{C-\theNbequa}\xdef\Coeffa{#2}\xdef\Coeffb{\fpeval{#5-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}\tikzmark{G-\theNbequa}%\\
+          \xintifboolexpr{\Coeffa=1}{}{\\}
+          \ifboolKV[ClesEquation]{Fleches}{%
+          \leftcomment{A-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}%
+          \rightcomment{E-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}%
+          }{}
+          \xintifboolexpr{\Coeffa=1}{% 
+          }{%\ifnum\cmtd>1
+          \tikzmark{D-\theNbequa}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}\tikzmark{H-\theNbequa}%\\
+          \ifboolKV[ClesEquation]{Fleches}{%
+          \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
+          \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
+          }{%ICI ?
+          \ifboolKV[ClesEquation]{FlecheDiv}{%
+          \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
+          \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
+          }{}
+          }
+          }
+          \ifboolKV[ClesEquation]{Entier}{%
+          \SSimpliTest{\Coeffb}{\Coeffa}%
+          \ifboolKV[ClesEquation]{Simplification}{%
+          \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\
+          }{}
+          }{}
+          \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}}
+        \end{align*}
+        \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\num{#5}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.
+        }{}
+      }
+    }
+  \fi
+}
+
+\newcommand{\EquaTroisComposition}[5][]{%ax+b=cx ou ax=cx+d
+  \useKVdefault[ClesEquation]%
+  \setKV[ClesEquation]{#1}%
+  \ifx\bla#3\bla%on inverse en faisant attention à la boucle #3<->#5
+  \ifx\bla#5\bla%
+  %% paramètre oublié
+  \else
+  \EquaTroisComposition[#1]{#4}{#5}{#2}{}%
+  \fi
+  \else
+  \xintifboolexpr{#2=0}{%b=cx
+    \EquaBase[#1]{#4}{}{}{#3}
+  }{%
+    \xintifboolexpr{#4=0}{%ax+b=0
+      \EquaDeuxComposition[#1]{#2}{#3}{}{0}
+    }{%ax+b=cx
+      \xintifboolexpr{#2=#4}{%
+        \xintifboolexpr{#3=0}{%ax=ax
+          L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une infinité de solutions.}%
+        {%ax+b=ax
+          L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ n'a aucune solution.%
+        }%
+      }{%% Cas délicat
+        \xintifboolexpr{#2>#4}{%ax+b=cx avec a>c
+          \ifboolKV[ClesEquation]{Decomposition}{\colorlet{Ccompo}{\useKV[ClesEquation]{CouleurCompo}}}{}
+          \begin{align*}
+            \tikzmark{A-\theNbequa}\mathcolor{Ccompo}{\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\tikzmark{E-\theNbequa}\\
+            \mathcolor{Ccompo}{\num{\fpeval{#2-#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#4>0}{+\num{#4}\useKV[ClesEquation]{Lettre}}{-\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\\
+            \tikzmark{B-\theNbequa}\xdef\Coeffa{\fpeval{#2-#4}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{0}\tikzmark{F-\theNbequa}\\
+            \xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{\num{\fpeval{0-#3}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}}\tikzmark{F-\theNbequa}\\
+            \tikzmark{C-\theNbequa}\xdef\Coeffb{\fpeval{0-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}\tikzmark{G-\theNbequa}%\\
+            \xintifboolexpr{\Coeffa=1}{}{\\}
+            \ifboolKV[ClesEquation]{Fleches}{%
+            \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$}
+            \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$}
+            \leftcomment{B-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}%
+            \rightcomment{F-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}%
+            }{}
+            \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1
+            \tikzmark{D-\theNbequa}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}\tikzmark{H-\theNbequa}%\\
+            \ifboolKV[ClesEquation]{Fleches}{%
+            \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
+            \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%            
+            }{
+            \ifboolKV[ClesEquation]{FlecheDiv}{%
+            \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
+            \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%                 
+            }{}
+            }
+            \ifboolKV[ClesEquation]{Entier}{%
+            \SSimpliTest{\Coeffb}{\Coeffa}%
+            \ifboolKV[ClesEquation]{Simplification}{%
+            \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\
+            }{}
+            }{}
+            }
+            \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}}
+          \end{align*}
+          \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}
+        }{%ax+b=cx+d avec a<c              % Autre cas délicat
+          \ifboolKV[ClesEquation]{Decomposition}{\colorlet{Ccompo}{\useKV[ClesEquation]{CouleurCompo}}}{}
+          \begin{align*}%
+            \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}}\tikzmark{E-\theNbequa}\\
+            \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{\num{\fpeval{#4-#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#2>0}{+\num{#2}\useKV[ClesEquation]{Lettre}}{-\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\\
+            \tikzmark{B-\theNbequa}\xdef\Coeffb{#3}\xdef\Coeffa{\fpeval{#4-#2}}\xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\tikzmark{F-\theNbequa}
+                                                                                                                                      \xintifboolexpr{\Coeffa=1}{}{\\}
+            \ifboolKV[ClesEquation]{Fleches}{%
+            \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#2>0}{-\num{#2}}{+\num{\fpeval{0-#2}}}\useKV[ClesEquation]{Lettre}$}
+            \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#2>0}{-\num{#2}}{+\num{\fpeval{0-#2}}}\useKV[ClesEquation]{Lettre}$}
+            }{}
+            \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1
+            \tikzmark{D-\theNbequa}\frac{\num{\Coeffb}}{\num{\Coeffa}}&=\useKV[ClesEquation]{Lettre}\tikzmark{H-\theNbequa}%\\
+            \ifboolKV[ClesEquation]{Fleches}{%
+            \leftcomment{B-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
+            \rightcomment{F-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%            
+            }{
+            \ifboolKV[ClesEquation]{FlecheDiv}{%
+            \leftcomment{B-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
+            \rightcomment{F-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%                 
+            }{}
+            }
+            \ifboolKV[ClesEquation]{Entier}{%
+            \SSimpliTest{\Coeffb}{\Coeffa}%
+            \ifboolKV[ClesEquation]{Simplification}{%
+            \ifthenelse{\boolean{Simplification}}{\\\SSimplifie{\Coeffb}{\Coeffa}&=\useKV[ClesEquation]{Lettre}}{}%\\
+            }{}
+            }{}
+            }
+            \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}}
+          \end{align*}
+          \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}%
+        }%
+      }%
+    }%
+  }%
+  \fi
+}%
+
+
+\newcommand{\ResolEquationComposition}[5][]{%
+  \useKVdefault[ClesEquation]%
+  \setKV[ClesEquation]{#1}%
+  \xintifboolexpr{#2=0}{%
+    \xintifboolexpr{#4=0}{%
+      \xintifboolexpr{#3=#5}{%b=d
+        L'équation $\num{#3}=\num{#5}$ a une infinité de solutions.}%
+      {%b<>d
+        L'équation $\num{#3}=\num{#5}$ n'a aucune solution.%
+      }%
+    }%
+    {%0x+b=cx+d$
+      \EquaDeuxComposition[#1]{#4}{#5}{#2}{#3}%
+    }%
+  }{%
+    \xintifboolexpr{#4=0}{%ax+b=0x+d
+      \EquaDeuxComposition[#1]{#2}{#3}{}{#5}%
+    }
+    {%ax+b=cx+d$
+      \xintifboolexpr{#3=0}{%
+        \xintifboolexpr{#5=0}{%ax=cx
+          \EquaTroisComposition[#1]{#2}{0}{#4}{}%
+        }%
+        {%ax=cx+d
+          \EquaTroisComposition[#1]{#4}{#5}{#2}{}%
+        }%
+      }%
+      {\xintifboolexpr{#5=0}{%ax+b=cx
+          \EquaTroisComposition[#1]{#2}{#3}{#4}{}%
+        }%
+        {%ax+b=cx+d -- ici
+          \xintifboolexpr{#2=#4}{%
+            \xintifboolexpr{#3=#5}{%b=d
+              L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une infinité de solutions.}%
+            {%b<>d
+              L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ n'a aucune solution.%
+            }%
+          }{
+            %% Cas délicat
+            \xintifboolexpr{#2>#4}{%ax+b=cx+d avec a>c
+              \ifboolKV[ClesEquation]{Decomposition}{\colorlet{Ccompo}{\useKV[ClesEquation]{CouleurCompo}}}{}
+              \begin{align*}
+                \tikzmark{A-\theNbequa}\mathcolor{Ccompo}{\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\tikzmark{E-\theNbequa}\\
+                \mathcolor{Ccompo}{\num{\fpeval{#2-#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#4>0}{+\num{#4}\useKV[ClesEquation]{Lettre}}{-\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\
+                \tikzmark{B-\theNbequa}\xdef\Coeffa{\fpeval{#2-#4}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{\num{#5}}\tikzmark{F-\theNbequa}\\
+                \xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{\num{\fpeval{#5-#3}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}}\\
+                \tikzmark{C-\theNbequa}\xdef\Coeffb{\fpeval{#5-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}\tikzmark{G-\theNbequa}%\\
+                \xintifboolexpr{\Coeffa=1}{}{\\}
+                \ifboolKV[ClesEquation]{Fleches}{%
+                \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$}
+                \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$}
+                \leftcomment{B-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}%
+                \rightcomment{F-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}%
+                }{}
+                \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1
+                \tikzmark{D-\theNbequa}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}\tikzmark{H-\theNbequa}%\\
+                \ifboolKV[ClesEquation]{Fleches}{%
+                \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
+                \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%            
+                }{
+                \ifboolKV[ClesEquation]{FlecheDiv}{%
+                \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
+                \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%                 
+                }{}
+                }
+                \ifboolKV[ClesEquation]{Entier}{%
+                \SSimpliTest{\Coeffb}{\Coeffa}%
+                \ifboolKV[ClesEquation]{Simplification}{%
+                \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\
+                }{}
+                }{}
+                }
+                \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}}
+              \end{align*}
+              \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.%
+              }{}
+            }{%ax+b=cx+d avec a<c              % Autre cas délicat
+              \ifboolKV[ClesEquation]{Decomposition}{\colorlet{Ccompo}{\useKV[ClesEquation]{CouleurCompo}}}{}%
+              \begin{align*}%
+                \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\tikzmark{E-\theNbequa}\\
+                \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Ccompo}{\num{\fpeval{#4-#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#2>0}{+\num{#2}\useKV[ClesEquation]{Lettre}}{-\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\
+                \tikzmark{B-\theNbequa}\xdef\Coeffa{\fpeval{#4-#2}}\xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\tikzmark{F-\theNbequa}\\
+                \mathcolor{Ccompo}{\num{\fpeval{#3-#5}}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\
+                \tikzmark{C-\theNbequa}\xdef\Coeffb{\fpeval{#3-#5}}\num{\Coeffb}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\tikzmark{G-\theNbequa}%\\
+                \xintifboolexpr{\Coeffa=1}{}{\\}
+                \ifboolKV[ClesEquation]{Fleches}{%
+                \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#2>0}{-\num{#2}}{+\num{\fpeval{0-#2}}}\useKV[ClesEquation]{Lettre}$}
+                \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#2>0}{-\num{#2}}{+\num{\fpeval{0-#2}}}\useKV[ClesEquation]{Lettre}$}
+                \leftcomment{B-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#5>0}{-\num{#5}}{+\num{\fpeval{0-#5}}}$}%
+                \rightcomment{F-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#5>0}{-\num{#5}}{+\num{\fpeval{0-#5}}}$}%
+                }{}
+                \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1
+                \tikzmark{D-\theNbequa}\frac{\num{\Coeffb}}{\num{\Coeffa}}&=\useKV[ClesEquation]{Lettre}\tikzmark{H-\theNbequa}%\\
+                \ifboolKV[ClesEquation]{Fleches}{%
+                \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
+                \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%            
+                }{
+                \ifboolKV[ClesEquation]{FlecheDiv}{%
+                \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
+                \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%                 
+                }{}
+                }
+                \ifboolKV[ClesEquation]{Entier}{%
+                \SSimpliTest{\Coeffb}{\Coeffa}%
+                \ifboolKV[ClesEquation]{Simplification}{%
+                \ifthenelse{\boolean{Simplification}}{\\\SSimplifie{\Coeffb}{\Coeffa}&=\useKV[ClesEquation]{Lettre}}{}%\\
+                }{}
+                }{}
+                }
+                \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}}
+              \end{align*}
+              \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.%
+              }{}%
+            }%
+          }%
+        }%
+      }%
+    }%
+  }%
+}%
\ No newline at end of file


Property changes on: trunk/Master/texmf-dist/tex/latex/profcollege/PfCEquationComposition2.tex
___________________________________________________________________
Added: svn:eol-style
## -0,0 +1 ##
+native
\ No newline at end of property
Added: trunk/Master/texmf-dist/tex/latex/profcollege/PfCEquationLaurent1.tex
===================================================================
--- trunk/Master/texmf-dist/tex/latex/profcollege/PfCEquationLaurent1.tex	                        (rev 0)
+++ trunk/Master/texmf-dist/tex/latex/profcollege/PfCEquationLaurent1.tex	2021-04-27 12:58:55 UTC (rev 58995)
@@ -0,0 +1,226 @@
+% Licence    : Released under the LaTeX Project Public License v1.3c
+% or later, see http://www.latex-project.org/lppl.txtf
+\newcommand{\EquaBaseLaurent}[5][]{%type ax=d ou b=cx
+  \useKVdefault[ClesEquation]%
+  \setKV[ClesEquation]{#1}%
+  \ifx\bla#2\bla%on teste si le paramètre #2 est vide:
+  % si oui, on est dans le cas b=cx. Eh bien on échange :)
+  % Mais attention si les deux paramètres a et c sont vides...
+  \EquaBase[#1]{#4}{}{}{#3}
+  \else
+  % si non, on est dans le cas ax=d
+  \xintifboolexpr{#2=0}{%
+    \xintifboolexpr{#5=0}{%
+      L'équation $0\useKV[ClesEquation]{ELettre}=0$ a une infinité de solutions.}{L'équation $0\useKV[ClesEquation]{Lettre}=\num{#5}$ n'a aucune solution.}%
+  }{%\else
+    \xintifboolexpr{#5=0}{L'équation $\num{#2}\useKV[ClesEquation]{Lettre}=0$ a une unique solution : $\useKV[ClesEquation]{Lettre}=0$.}{%\else
+      \begin{align*}%
+        \xintifboolexpr{#2=1}{\useKV[ClesEquation]{Lettre}}{\color{Cdecomp}\frac{\cancel{\color{black}\num{#2}}\color{black}\useKV[ClesEquation]{Lettre}}{\cancel{\num{#2}}}}&=\xintifboolexpr{#2=1}{\num{#5}}{\color{Cdecomp}\frac{\color{black}\num{#5}}{\num{#2}}}
+        \xintifboolexpr{#2=1}{}{\\\useKV[ClesEquation]{Lettre}&=\frac{\num{#5}}{\num{#2}}}%\\
+        \ifboolKV[ClesEquation]{Entier}{%
+        \SSimpliTest{#5}{#2}%
+        \ifboolKV[ClesEquation]{Simplification}{%
+        \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{#5}{#2}}{}%\\
+        }{}
+        }{}
+      \end{align*}
+      \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{\useKV[ClesEquation]{Lettre}=\num{#5}}{\num{#2}\useKV[ClesEquation]{Lettre}=\num{#5}}$ a une unique solution : $\displaystyle\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\opdiv*{#5}{#2}{numequa}{resteequa}\opcmp{resteequa}{0}\ifopeq\opexport{numequa}{\numequa}\num{\numequa}\else\ifboolKV[ClesEquation]{Simplification}{\SSimplifie{#5}{#2}}{\frac{\num{#5}}{\num{#2}}}\fi$.%
+      }{}
+    }
+  }
+  \fi
+}
+
+\newcommand{\EquaDeuxLaurent}[5][]{%type ax+b=d ou b=cx+d$
+  \useKVdefault[ClesEquation]%
+  \setKV[ClesEquation]{#1}%
+  \ifx\bla#2\bla%On échange en faisant attention à ne pas boucler : c doit être non vide
+  \EquaDeuxLaurent[#1]{#4}{#5}{#2}{#3}
+  \else%cas ax+b=d
+  \xintifboolexpr{#2=0}{%
+    \xintifboolexpr{#3=#5}{%b=d
+      L'équation $\num{#3}=\num{#5}$ a une infinité de solutions.}%
+    {%b<>d
+      L'équation $\num{#3}=\num{#5}$ n'a aucune solution.%
+    }%
+  }{%ELSE
+    \xintifboolexpr{#3=0}{%ax+b=d
+      \EquaBaseLaurent[#1]{#2}{}{}{#5}%
+    }{%ax+b=d$ Ici
+      \begin{align*}
+        \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#3} {}}\stackText}{-\num{\fpeval{0-#3}}\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#3}}}\stackText}&=\num{#5}\xintifboolexpr{#3>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#3} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#3}}}\stackText}\\
+        \xdef\Coeffa{#2}\xdef\Coeffb{\fpeval{#5-#3}}%\\
+        \xintifboolexpr{\Coeffa=1}{\useKV[ClesEquation]{Lettre}}{\color{Cdecomp}\frac{\cancel{\color{black}\num{\Coeffa}}\color{black}\useKV[ClesEquation]{Lettre}}{\cancel{\num{\Coeffa}}}}&=\xintifboolexpr{\Coeffa=1}{\num{\Coeffb}}{\color{Cdecomp}\frac{\color{black}\num{\Coeffb}}{\num{\Coeffa}}}%\\
+        \xintifboolexpr{\Coeffa=1}{}{\\}
+        \xintifboolexpr{\Coeffa=1}{% 
+        }{%\ifnum\cmtd>1
+        \useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}%\\
+        \ifboolKV[ClesEquation]{Entier}{%
+        \SSimpliTest{\Coeffb}{\Coeffa}%
+        \ifboolKV[ClesEquation]{Simplification}{%
+        \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\
+        }{}
+        }{}
+        }
+      \end{align*}
+      \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\num{#5}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.
+      }{}
+    }
+  }
+}
+
+\newcommand{\EquaTroisLaurent}[5][]{%ax+b=cx ou ax=cx+d
+  \useKVdefault[ClesEquation]%
+  \setKV[ClesEquation]{#1}%
+  \ifx\bla#3\bla%on inverse en faisant attention à la boucle #3<->#5
+    \ifx\bla#5\bla%
+      %% paramètre oublié
+    \else
+      \EquaTroisLaurent[#1]{#4}{#5}{#2}{}%
+    \fi
+  \else
+  \xintifboolexpr{#2=0}{%b=cx
+    \EquaBaseLaurent[#1]{#4}{}{}{#3}
+  }{%
+    \xintifboolexpr{#4=0}{%ax+b=0
+      \EquaDeuxLaurent[#1]{#2}{#3}{}{0}
+    }{%ax+b=cx
+      \xintifboolexpr{#2=#4}{%
+        \xintifboolexpr{#3=0}{%ax=ax
+          L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une infinité de solutions.}%
+        {%ax+b=ax
+          L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ n'a aucune solution.%
+        }%
+      }{%% Cas délicat
+        \xintifboolexpr{#2>#4}{%ax+b=cx avec a>c
+          \begin{align*}
+            \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#3} {}}\stackText}{-\num{\fpeval{0-#3}}\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#3}}}\stackText}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#3} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#3}}}\stackText}\\
+            \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#4>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#4}\useKV[ClesEquation]{Lettre} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre} {}}\stackText}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#4>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#4}\useKV[ClesEquation]{Lettre} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre} {}}\stackText}\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}\\
+            \xdef\Coeffa{\fpeval{#2-#4}}\xdef\Coeffb{\fpeval{0-#3}}%\\
+            \xintifboolexpr{\Coeffa=1}{\useKV[ClesEquation]{Lettre}}{\color{Cdecomp}\frac{\cancel{\color{black}\num{\Coeffa}}\color{black}\useKV[ClesEquation]{Lettre}}{\cancel{\num{\Coeffa}}}}&=\xintifboolexpr{\Coeffa=1}{\num{\Coeffb}}{\color{Cdecomp}\frac{\color{black}\num{\Coeffb}}{\num{\Coeffa}}}%\\
+            \xintifboolexpr{\Coeffa=1}{}{\\}
+            \xintifboolexpr{\Coeffa=1}{% 
+            }{%\ifnum\cmtd>1
+            \useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}%\\
+            \ifboolKV[ClesEquation]{Entier}{%
+            \SSimpliTest{\Coeffb}{\Coeffa}%
+            \ifboolKV[ClesEquation]{Simplification}{%
+            \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\
+            }{}
+            }{}
+            }
+          \end{align*}
+          \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}
+        }{%ax+b=cx avec a<c              % Autre cas délicat
+          \begin{align*}%
+            \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#4>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#4}\useKV[ClesEquation]{Lettre} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre} {}}\stackText}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#4>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#4}\useKV[ClesEquation]{Lettre} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre} {}}\stackText}\\
+            \xdef\Coeffa{\fpeval{#2-#4}}\xdef\Coeffb{\fpeval{0-#3}}%\\
+            \xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#3} {}}\stackText}{-\num{\fpeval{0-#3}}\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#3}}}\stackText}&=0\xintifboolexpr{#3>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#3} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#3}}}\stackText}\\
+            \xintifboolexpr{\Coeffa=1}{\useKV[ClesEquation]{Lettre}}{\color{Cdecomp}\frac{\cancel{\color{black}\num{\Coeffa}}\color{black}\useKV[ClesEquation]{Lettre}}{\cancel{\num{\Coeffa}}}}&=\xintifboolexpr{\Coeffa=1}{\num{\Coeffb}}{\color{Cdecomp}\frac{\color{black}\num{\Coeffb}}{\num{\Coeffa}}}%\\
+            \xintifboolexpr{\Coeffa=1}{}{\\}
+            \xintifboolexpr{\Coeffa=1}{% 
+            }{%\ifnum\cmtd>1
+            \useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}%\\
+            \ifboolKV[ClesEquation]{Entier}{%
+            \SSimpliTest{\Coeffb}{\Coeffa}%
+            \ifboolKV[ClesEquation]{Simplification}{%
+            \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\
+            }{}
+            }{}
+            }
+          \end{align*}
+          \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}%
+        }%
+      }%
+    }%
+  }%
+  \fi
+}%
+
+\newcommand{\ResolEquationLaurent}[5][]{%
+  \useKVdefault[ClesEquation]%
+  \setKV[ClesEquation]{#1}%
+  \xintifboolexpr{#2=0}{%
+    \xintifboolexpr{#4=0}{%
+      \xintifboolexpr{#3=#5}{%b=d
+        L'équation $\num{#3}=\num{#5}$ a une infinité de solutions.}%
+      {%b<>d
+        L'équation $\num{#3}=\num{#5}$ n'a aucune solution.%
+      }%
+    }%
+    {%0x+b=cx+d
+      \EquaDeuxLaurent[#1]{#4}{#5}{}{#3}%
+    }%
+  }{%
+    \xintifboolexpr{#4=0}{%ax+b=0x+d
+      \EquaDeuxLaurent[#1]{#2}{#3}{}{#5}%
+    }
+    {%ax+b=cx+d
+      \xintifboolexpr{#3=0}{%
+        \xintifboolexpr{#5=0}{%ax=cx
+          \EquaTroisLaurent[#1]{#2}{0}{#4}{}%
+        }%
+        {%ax=cx+d
+          \EquaTroisLaurent[#1]{#4}{#5}{#2}{}%
+        }%
+      }%
+      {\xintifboolexpr{#5=0}{%ax+b=cx
+          \EquaTroisLaurent[#1]{#2}{#3}{#4}{}%
+        }%
+        {%ax+b=cx+d -- ici
+          \xintifboolexpr{#2=#4}{%
+            \xintifboolexpr{#3=#5}{%b=d
+              L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une infinité de solutions.}%
+            {%b<>d
+              L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ n'a aucune solution.%
+            }%
+          }{%% Cas délicat
+            \xintifboolexpr{#2>#4}{%ax+b=cx+d avec a>c
+              \begin{align*}
+                \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#3} {}}\stackText}{-\num{\fpeval{0-#3}}\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#3}}}\stackText}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\xintifboolexpr{#3>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#3} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#3}}}\stackText}\\
+                \xdef\Coeffa{\fpeval{#2-#4}}\xdef\Coeffb{\fpeval{#5-#3}}%\\
+                \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#4>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#4}\useKV[ClesEquation]{Lettre} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre} {}}\stackText}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#4>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#4}\useKV[ClesEquation]{Lettre} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre} {}}\stackText}\xintifboolexpr{\Coeffb>0}{+\num{\Coeffb}}{-\num{\fpeval{0-\Coeffb}}}\\
+                \xintifboolexpr{\Coeffa=1}{\useKV[ClesEquation]{Lettre}}{\color{Cdecomp}\frac{\cancel{\color{black}\num{\Coeffa}}\color{black}\useKV[ClesEquation]{Lettre}}{\cancel{\num{\Coeffa}}}}&=\xintifboolexpr{\Coeffa=1}{\num{\Coeffb}}{\color{Cdecomp}\frac{\color{black}\num{\Coeffb}}{\num{\Coeffa}}}%\\
+                \xintifboolexpr{\Coeffa=1}{}{\\}
+                \xintifboolexpr{\Coeffa=1}{% 
+                }{%\ifnum\cmtd>1
+                \useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}%\\
+                \ifboolKV[ClesEquation]{Entier}{%
+                \SSimpliTest{\Coeffb}{\Coeffa}%
+                \ifboolKV[ClesEquation]{Simplification}{%
+                \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\
+                }{}
+                }{}
+                }
+              \end{align*}
+              \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.%
+              }{}
+            }{%ax+b=cx+d avec a<c              % Autre cas délicat
+              \begin{align*}%
+                \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}\xintifboolexpr{#3>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#3} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#3}} {}}\stackText}%
+                &=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\xintifboolexpr{#3>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#3} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#3}} {}}\stackText}
+                \\
+                \xdef\Coeffa{\fpeval{#2-#4}}\xdef\Coeffb{\fpeval{#5-#3}}%\\
+                \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#4>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#4}\useKV[ClesEquation]{Lettre} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre} {}}\stackText}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#4>0}{\stackMath\Longstack{$\tiny$\color{Cdecomp}-\num{#4}\useKV[ClesEquation]{Lettre} {}}\stackText}{\stackMath\Longstack{$\tiny$\color{Cdecomp}+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre} {}}\stackText}\xintifboolexpr{\Coeffb>0}{+\num{\Coeffb}}{-\num{\fpeval{0-\Coeffb}}}\\
+                \xintifboolexpr{\Coeffa=1}{\useKV[ClesEquation]{Lettre}}{\color{Cdecomp}\frac{\cancel{\color{black}\num{\Coeffa}}\color{black}\useKV[ClesEquation]{Lettre}}{\cancel{\num{\Coeffa}}}}&=\xintifboolexpr{\Coeffa=1}{\num{\Coeffb}}{\color{Cdecomp}\frac{\color{black}\num{\Coeffb}}{\num{\Coeffa}}}%\\
+                \xintifboolexpr{\Coeffa=1}{}{\\}
+                \xintifboolexpr{\Coeffa=1}{% 
+                }{%\ifnum\cmtd>1
+                \useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}%\\
+                \ifboolKV[ClesEquation]{Entier}{%
+                \SSimpliTest{\Coeffb}{\Coeffa}%
+                \ifboolKV[ClesEquation]{Simplification}{%
+                \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\
+                }{}
+                }{}
+                }
+              \end{align*}
+              \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.%
+              }{}%
+            }%
+          }%
+        }%
+      }%
+    }%
+  }%
+}%
\ No newline at end of file


Property changes on: trunk/Master/texmf-dist/tex/latex/profcollege/PfCEquationLaurent1.tex
___________________________________________________________________
Added: svn:eol-style
## -0,0 +1 ##
+native
\ No newline at end of property
Added: trunk/Master/texmf-dist/tex/latex/profcollege/PfCEquationPose1.tex
===================================================================
--- trunk/Master/texmf-dist/tex/latex/profcollege/PfCEquationPose1.tex	                        (rev 0)
+++ trunk/Master/texmf-dist/tex/latex/profcollege/PfCEquationPose1.tex	2021-04-27 12:58:55 UTC (rev 58995)
@@ -0,0 +1,246 @@
+% Licence    : Released under the LaTeX Project Public License v1.3c
+% or later, see http://www.latex-project.org/lppl.txtf
+\newcommand{\EquaBaseL}[5][]{%type ax=d ou b=cx
+  \useKVdefault[ClesEquation]%
+  \setKV[ClesEquation]{#1}%
+  \ifx\bla#2\bla%on teste si le paramètre #2 est vide:
+  % si oui, on est dans le cas b=cx. Eh bien on échange :)
+  % Mais attention si les deux paramètres a et c sont vides...
+  \EquaBaseL[#1]{#4}{}{}{#3}
+  \else
+  % si non, on est dans le cas ax=d
+  \xintifboolexpr{#2=0}{%
+    \xintifboolexpr{#5=0}{%
+      L'équation $0\useKV[ClesEquation]{Lettre}=0$ a une infinité de solutions.}{L'équation $0\useKV[ClesEquation]{Lettre}=\num{#5}$ n'a aucune solution.}%
+  }{%\else
+    \xintifboolexpr{#5=0}{L'équation $\num{#2}\useKV[ClesEquation]{Lettre}=0$ a une unique solution : $\useKV[ClesEquation]{Lettre}=0$.}{%\else
+      \begin{align*}%
+        \xintifboolexpr{#2=1}{\useKV[ClesEquation]{Lettre}}{\num{#2}\useKV[ClesEquation]{Lettre}}&=\num{#5}\\
+        \xintifboolexpr{#2=1}{}{%
+        \mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{#2<0}{(\num{#2})}{\num{#2}}}\phantom{\useKV[ClesEquation]{Lettre}}&\phantom{=}\mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{#2<0}{(\num{#2})}{\num{#2}}}\\}
+        \useKV[ClesEquation]{Lettre}&=\frac{\num{#5}}{\num{#2}}%\\
+        \ifboolKV[ClesEquation]{Entier}{%
+        \SSimpliTest{#5}{#2}%
+        \ifboolKV[ClesEquation]{Simplification}{%
+        \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{#5}{#2}}{}%\\
+        }{}
+        }{}
+        %\ifboolKV[ClesEquation]{Fleches}{%
+        %\stepcounter{Nbequa}}%
+        %{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}
+        %}
+      \end{align*}
+      \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{\useKV[ClesEquation]{Lettre}=\num{#5}}{\num{#2}\useKV[ClesEquation]{Lettre}=\num{#5}}$ a une unique solution : $\displaystyle\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\opdiv*{#5}{#2}{numequa}{resteequa}\opcmp{resteequa}{0}\ifopeq\opexport{numequa}{\numequa}\num{\numequa}\else\ifboolKV[ClesEquation]{Simplification}{\SSimplifie{#5}{#2}}{\frac{\num{#5}}{\num{#2}}}\fi$.%
+      }{}
+    }
+  }
+  \fi
+}
+
+\newcommand{\EquaDeuxL}[5][]{%type ax+b=d ou b=cx+d$
+  \useKVdefault[ClesEquation]%
+  \setKV[ClesEquation]{#1}%
+  \ifx\bla#2\bla%On échange en faisant attention à ne pas boucler : c doit être non vide
+    \EquaDeuxL[#1]{#4}{#5}{#2}{#3}
+  \else%cas ax+b=d
+    \xintifboolexpr{#2=0}{%
+      \xintifboolexpr{#3=#5}{%b=d
+        L'équation $\num{#3}=\num{#5}$ a une infinité de solutions.}%
+      {%b<>d
+        L'équation $\num{#3}=\num{#5}$ n'a aucune solution.%
+      }%
+    }{%ELSE
+      \xintifboolexpr{#3=0}{%ax+b=d
+        \EquaBaseL[#1]{#2}{}{}{#5}%
+      }{%ax+b=d$ Ici
+        \begin{align*}
+          \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\num{#5}\\
+          \phantom{\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}&\phantom{\mathrel{=}}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}\\
+          \xdef\Coeffa{#2}\xdef\Coeffb{\fpeval{#5-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&=\num{\Coeffb}%\\
+          \xintifboolexpr{\Coeffa=1}{}{\\}
+          \xintifboolexpr{\Coeffa=1}{% 
+          }{%\ifnum\cmtd>1
+          \mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{#2<0}{(\num{#2})}{\num{#2}}}\phantom{\useKV[ClesEquation]{Lettre}}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&\phantom{=}\mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{#2<0}{(\num{#2})}{\num{#2}}}\\
+          \useKV[ClesEquation]{Lettre}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}%\\
+          }
+          \ifboolKV[ClesEquation]{Entier}{%
+          \SSimpliTest{\Coeffb}{\Coeffa}%
+          \ifboolKV[ClesEquation]{Simplification}{%
+          \ifthenelse{\boolean{Simplification}}{%
+          \\\useKV[ClesEquation]{Lettre}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&=\SSimplifie{\Coeffb}{\Coeffa}%
+                                                                                                                   }{}%\\
+          }{}
+          }{}
+        \end{align*}
+        \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\num{#5}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.
+        }{}
+      }
+    }
+  \fi
+}
+
+\newcommand{\EquaTroisL}[5][]{%ax+b=cx ou ax=cx+d
+  \useKVdefault[ClesEquation]%
+  \setKV[ClesEquation]{#1}%
+  \ifx\bla#3\bla%on inverse en faisant attention à la boucle #3<->#5
+    \ifx\bla#5\bla%
+      %% paramètre oublié
+    \else
+      \EquaTroisL[#1]{#4}{#5}{#2}{}%
+    \fi
+  \else
+  \xintifboolexpr{#2=0}{%b=cx
+    \EquaBaseL[#1]{#4}{}{}{#3}
+  }{%
+    \xintifboolexpr{#4=0}{%ax+b=0
+      \EquaDeuxL[#1]{#2}{#3}{}{0}
+      }{%ax+b=cx
+        \xintifboolexpr{#2=#4}{%
+          \xintifboolexpr{#3=0}{%ax=ax
+            L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une infinité de solutions.}%
+          {%ax+b=ax
+            L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ n'a aucune solution.%
+          }%
+        }{%% Cas délicat
+          \xintifboolexpr{#2>#4}{%ax+b=cx avec a>c
+            \begin{align*}
+              \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\\
+                \mathcolor{Cdecomp}{\xintifboolexpr{#4>0}{{}-{}\num{#4}\useKV[ClesEquation]{Lettre}}{{}+{}\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&\phantom{{}={}}\mathcolor{Cdecomp}{\xintifboolexpr{#4>0}{-\num{#4}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\\
+              \xdef\Coeffa{\fpeval{#2-#4}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=0\\
+              \phantom{\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{{}-{}\num{#3}}{{}+{}\num{\fpeval{0-#3}}}}&\phantom{\mathrel{=}}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{{}-{}\num{#3}}{{}+{}\num{\fpeval{0-#3}}}}\\
+              \xdef\Coeffb{\fpeval{0-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&=\num{\Coeffb}%\\
+              \xintifboolexpr{\Coeffa=1}{}{\\}
+              \xintifboolexpr{\Coeffa=1}{% 
+              }{%\ifnum\cmtd>1
+              \mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}}\phantom{\useKV[ClesEquation]{Lettre}}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&\phantom{=}\mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}}\\
+              \useKV[ClesEquation]{Lettre}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}%\\
+              }
+              \ifboolKV[ClesEquation]{Entier}{%
+              \SSimpliTest{\Coeffb}{\Coeffa}%
+              \ifboolKV[ClesEquation]{Simplification}{%
+              \ifthenelse{\boolean{Simplification}}{\\%
+              \useKV[ClesEquation]{Lettre}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&=\SSimplifie{\Coeffb}{\Coeffa}%\\
+              }{}
+              }{}
+              }{}
+            \end{align*}
+            \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}
+            }{%ax+b=cx+d avec a<c              % Autre cas délicat
+              \begin{align*}%
+                \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\\
+                \mathcolor{Cdecomp}{\xintifboolexpr{#2>0}{{}-{}\num{#2}\useKV[ClesEquation]{Lettre}}{{}+{}\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&\phantom{{}={}}\mathcolor{Cdecomp}{\xintifboolexpr{#2>0}{{}-{}\num{#2}\useKV[ClesEquation]{Lettre}}{{}+{}\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\\
+                \xdef\Coeffb{#3}\xdef\Coeffa{\fpeval{#4-#2}}\xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}%\\
+                \xintifboolexpr{\Coeffa=1}{}{\\}
+                \xintifboolexpr{\Coeffa=1}{% 
+                }{%\ifnum\cmtd>1
+                \mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}}&\phantom{=}\mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}}\\
+              \frac{\num{\Coeffb}}{\num{\Coeffa}}&=\phantom{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}%\\
+              }
+              \ifboolKV[ClesEquation]{Entier}{%
+              \SSimpliTest{\Coeffb}{\Coeffa}%
+              \ifboolKV[ClesEquation]{Simplification}{%
+              \ifthenelse{\boolean{Simplification}}{\\%
+              \SSimplifie{\Coeffb}{\Coeffa}&=\phantom{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}%\\
+              }{}
+              }{}
+              }{}
+              \end{align*}
+              \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}%
+            }%
+          }%
+        }%
+      }%
+    \fi
+  }%\\
+  % \\
+
+\newcommand{\ResolEquationL}[5][]{%
+  \useKVdefault[ClesEquation]%
+  \setKV[ClesEquation]{#1}%
+  \xintifboolexpr{#2=0}{%
+    \xintifboolexpr{#4=0}{%
+      \xintifboolexpr{#3=#5}{%b=d
+        L'équation $\num{#3}=\num{#5}$ a une infinité de solutions.}%
+      {%b<>d
+        L'équation $\num{#3}=\num{#5}$ n'a aucune solution.%
+      }%
+    }%
+    {%0x+b=cx+d$
+      \EquaDeuxL[#1]{#4}{#5}{}{#3}%
+    }%
+  }{%
+    \xintifboolexpr{#4=0}{%ax+b=0x+d
+      \EquaDeuxL[#1]{#2}{#3}{}{#5}%
+    }
+    {%ax+b=cx+d$
+      \xintifboolexpr{#3=0}{%
+        \xintifboolexpr{#5=0}{%ax=cx
+          \EquaTroisL[#1]{#2}{0}{#4}{}%
+        }%
+        {%ax=cx+d
+          \EquaTroisL[#1]{#4}{#5}{#2}{}%
+        }%
+      }%
+      {\xintifboolexpr{#5=0}{%ax+b=cx
+          \EquaTroisL[#1]{#2}{#3}{#4}{}%
+        }%
+        {%ax+b=cx+d -- ici
+          \xintifboolexpr{#2=#4}{%
+            \xintifboolexpr{#3=#5}{%b=d
+              L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une infinité de solutions.}%
+            {%b<>d
+              L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ n'a aucune solution.%
+            }%
+          }{
+            %% Cas délicat
+            \xintifboolexpr{#2>#4}{%ax+b=cx+d avec a>c
+              \begin{align*}
+                \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\
+                \mathcolor{Cdecomp}{\xintifboolexpr{#4>0}{{}-{}\num{#4}\useKV[ClesEquation]{Lettre}}{{}+{}\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&\mathcolor{Cdecomp}{\xintifboolexpr{#4>0}{{}-{}\num{#4}\useKV[ClesEquation]{Lettre}}{\phantom{{}={}}+{}\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\\
+                \xdef\Coeffa{\fpeval{#2-#4}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\phantom{\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}}\xintifboolexpr{#5>0}{\phantom{{}+{}}\num{#5}}{-\num{\fpeval{0-#5}}}\\
+                \mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{{}-{}\num{#3}}{{}+{}\num{\fpeval{0-#3}}}}&\phantom{{}={}\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{{}-{}\num{#3}}{{}+{}\num{\fpeval{0-#3}}}}\\
+                \xdef\Coeffb{\fpeval{#5-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&=\phantom{\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}}\xintifboolexpr{\Coeffb>0}{\phantom{{}+{}}\num{\Coeffb}}{{}-{}\num{\fpeval{0-\Coeffb}}}%\\
+                \xintifboolexpr{\Coeffa=1}{}{\\}
+                \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1
+                \mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}}\phantom{\useKV[ClesEquation]{Lettre}}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&\phantom{{}={}}\phantom{\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}}\mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}}\\
+                \phantom{\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}}\useKV[ClesEquation]{Lettre}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&=\phantom{\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{\Coeffb>0}{{}+{}}{}}\frac{\num{\Coeffb}}{\num{\Coeffa}}%\\
+                }
+                \ifboolKV[ClesEquation]{Entier}{%
+                \SSimpliTest{\Coeffb}{\Coeffa}%
+                \ifboolKV[ClesEquation]{Simplification}{%
+                \ifthenelse{\boolean{Simplification}}{\\%
+                \useKV[ClesEquation]{Lettre}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&=\phantom{\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{\Coeffb>0}{{}+{}}{}}\SSimplifie{\Coeffb}{\Coeffa}%\\
+                }{}
+                }{}
+                }{}
+              \end{align*}
+              \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.%
+              }{}
+            }{%ax+b=cx+d avec a<c              % Autre cas délicat
+              \begin{align*}%
+                \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\
+                \mathcolor{Cdecomp}{\xintifboolexpr{#2>0}{{}-{}\num{#2}\useKV[ClesEquation]{Lettre}}{{}+{}\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&\xintifboolexpr{#4<0}{\phantom{={}}}{}\mathcolor{Cdecomp}{\xintifboolexpr{#2>0}{{}-{}\num{#2}\useKV[ClesEquation]{Lettre}}{{}+{}\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\\
+                \xdef\Coeffa{\fpeval{#4-#2}}\xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\
+                \mathcolor{Cdecomp}{\xintifboolexpr{#5>0}{{}-{}\num{#5}}{{}+{}\num{\fpeval{0-#5}}}}&\phantom{{}={}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}}\mathcolor{Cdecomp}{\xintifboolexpr{#5>0}{-\num{#5}}{+\num{\fpeval{0-#5}}}}\\
+                \xdef\Coeffb{\fpeval{#3-#5}}\num{\Coeffb}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}%\\
+                \xintifboolexpr{\Coeffa=1}{}{\\}
+                \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1
+                \mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}}&\xintifboolexpr{\Coeffa<0}{\phantom{{}={}}}{\phantom{=}}\mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}}\\
+                \frac{\num{\Coeffb}}{\num{\Coeffa}}&=\useKV[ClesEquation]{Lettre}%\\
+                }
+                \ifboolKV[ClesEquation]{Entier}{%
+                \SSimpliTest{\Coeffb}{\Coeffa}%
+                \ifboolKV[ClesEquation]{Simplification}{%
+                \ifthenelse{\boolean{Simplification}}{\\\SSimplifie{\Coeffb}{\Coeffa}&=\useKV[ClesEquation]{Lettre}}{}%\\
+                }{}
+                }{}
+              \end{align*}
+              \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.%
+              }{}%
+            }%
+          }%
+        }%
+      }%
+    }%
+  }%
+}%


Property changes on: trunk/Master/texmf-dist/tex/latex/profcollege/PfCEquationPose1.tex
___________________________________________________________________
Added: svn:eol-style
## -0,0 +1 ##
+native
\ No newline at end of property
Added: trunk/Master/texmf-dist/tex/latex/profcollege/PfCEquationSoustraction2.tex
===================================================================
--- trunk/Master/texmf-dist/tex/latex/profcollege/PfCEquationSoustraction2.tex	                        (rev 0)
+++ trunk/Master/texmf-dist/tex/latex/profcollege/PfCEquationSoustraction2.tex	2021-04-27 12:58:55 UTC (rev 58995)
@@ -0,0 +1,345 @@
+% Licence    : Released under the LaTeX Project Public License v1.3c
+% or later, see http://www.latex-project.org/lppl.txtf
+\newcommand{\EquaBase}[5][]{%type ax=d ou b=cx
+  \useKVdefault[ClesEquation]%
+  \setKV[ClesEquation]{#1}%
+  \ifx\bla#2\bla%on teste si le paramètre #2 est vide:
+  % si oui, on est dans le cas b=cx. Eh bien on échange :)
+  % Mais attention si les deux paramètres a et c sont vides...
+  \EquaBase[#1]{#4}{}{}{#3}
+  \else
+  % si non, on est dans le cas ax=d
+  \xintifboolexpr{#2=0}{%
+    \xintifboolexpr{#5=0}{%
+      L'équation $0\useKV[ClesEquation]{ELettre}=0$ a une infinité de solutions.}{L'équation $0\useKV[ClesEquation]{Lettre}=\num{#5}$ n'a aucune solution.}%
+  }{%\else
+    \xintifboolexpr{#5=0}{L'équation $\num{#2}\useKV[ClesEquation]{Lettre}=0$ a une unique solution : $\useKV[ClesEquation]{Lettre}=0$.}{%\else
+      \begin{align*}%
+        \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{\useKV[ClesEquation]{Lettre}}{\num{#2}\useKV[ClesEquation]{Lettre}}&=\num{#5}\tikzmark{C-\theNbequa}\\
+        \tikzmark{B-\theNbequa}\useKV[ClesEquation]{Lettre}&=\frac{\num{#5}}{\num{#2}}\tikzmark{D-\theNbequa}%\\
+        \ifboolKV[ClesEquation]{Fleches}{%
+        \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{#2<0}{(\num{#2})}{\num{#2}}$}%
+        \rightcomment{C-\theNbequa}{D-\theNbequa}{D-\theNbequa}{$\div\xintifboolexpr{#2<0}{(\num{#2})}{\num{#2}}$}%
+        }{%
+        \ifboolKV[ClesEquation]{FlecheDiv}{%
+        \Leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{#2<0}{(\num{#2})}{\num{#2}}$}%
+        \Rightcomment{C-\theNbequa}{D-\theNbequa}{D-\theNbequa}{$\div\xintifboolexpr{#2<0}{(\num{#2})}{\num{#2}}$}%
+        }{}%
+        }%%
+        \ifboolKV[ClesEquation]{Entier}{%
+        \SSimpliTest{#5}{#2}%
+        \ifboolKV[ClesEquation]{Simplification}{%
+        \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{#5}{#2}}{}%\\
+        }{}
+        }{}
+        \ifboolKV[ClesEquation]{Fleches}{%
+        \stepcounter{Nbequa}}%
+        {\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}
+        }
+      \end{align*}
+      \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{\useKV[ClesEquation]{Lettre}=\num{#5}}{\num{#2}\useKV[ClesEquation]{Lettre}=\num{#5}}$ a une unique solution : $\displaystyle\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\opdiv*{#5}{#2}{numequa}{resteequa}\opcmp{resteequa}{0}\ifopeq\opexport{numequa}{\numequa}\num{\numequa}\else\ifboolKV[ClesEquation]{Simplification}{\SSimplifie{#5}{#2}}{\frac{\num{#5}}{\num{#2}}}\fi$.%
+      }{}
+    }
+  }
+  \fi
+}
+
+\newcommand{\EquaDeuxSoustraction}[5][]{%type ax+b=d ou b=cx+d$
+  \useKVdefault[ClesEquation]%
+  \setKV[ClesEquation]{#1}%
+  \ifx\bla#2\bla%On échange en faisant attention à ne pas boucler : c doit être non vide
+    \EquaDeuxSoustraction[#1]{#4}{#5}{#2}{#3}
+  \else%cas ax+b=d
+    \xintifboolexpr{#2=0}{%
+      \xintifboolexpr{#3=#5}{%b=d
+        L'équation $\num{#3}=\num{#5}$ a une infinité de solutions.}%
+      {%b<>d
+        L'équation $\num{#3}=\num{#5}$ n'a aucune solution.%
+      }%
+    }{%ELSE
+      \xintifboolexpr{#3=0}{%ax+b=d
+        \EquaBase[#1]{#2}{}{}{#5}%
+      }{%ax+b=d$ Ici
+        \begin{align*}
+          \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\num{#5}\tikzmark{E-\theNbequa}\\
+          \ifboolKV[ClesEquation]{Decomposition}{%
+          \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}&=\num{#5}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}\\
+          }{}%
+          \tikzmark{C-\theNbequa}\xdef\Coeffa{#2}\xdef\Coeffb{\fpeval{#5-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}\tikzmark{G-\theNbequa}
+          \ifboolKV[ClesEquation]{Decomposition}{\\\xintifboolexpr{\Coeffa=1}{}{\frac{\num{\Coeffa}}{\mathcolor{Cdecomp}{\num{\Coeffa}}}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\mathcolor{Cdecomp}{\num{\Coeffa}}}}}{}
+          \xintifboolexpr{\Coeffa=1}{}{\\}
+          \ifboolKV[ClesEquation]{Fleches}{%
+          \leftcomment{A-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}%
+          \rightcomment{E-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}%
+          }{}
+          \xintifboolexpr{\Coeffa=1}{% 
+          }{%\ifnum\cmtd>1
+          \tikzmark{D-\theNbequa}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}\tikzmark{H-\theNbequa}%\\
+          \ifboolKV[ClesEquation]{Fleches}{%
+          \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
+          \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
+          }{%ICI ?
+          \ifboolKV[ClesEquation]{FlecheDiv}{%
+          \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
+          \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
+          }{}
+          }
+          }
+          \ifboolKV[ClesEquation]{Entier}{%
+          \SSimpliTest{\Coeffb}{\Coeffa}%
+          \ifboolKV[ClesEquation]{Simplification}{%
+          \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\
+          }{}
+          }{}
+          \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}}
+        \end{align*}
+        \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\num{#5}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.
+        }{}
+      }
+    }
+  \fi
+}
+
+\newcommand{\EquaTroisSoustraction}[5][]{%ax+b=cx ou ax=cx+d
+  \useKVdefault[ClesEquation]%
+  \setKV[ClesEquation]{#1}%
+  \ifx\bla#3\bla%on inverse en faisant attention à la boucle #3<->#5
+    \ifx\bla#5\bla%
+      %% paramètre oublié
+    \else
+      \EquaTroisSoustraction[#1]{#4}{#5}{#2}{}%
+    \fi
+  \else
+  \xintifboolexpr{#2=0}{%b=cx
+    \EquaBase[#1]{#4}{}{}{#3}
+  }{%
+    \xintifboolexpr{#4=0}{%ax+b=0
+      \EquaDeuxSoustraction[#1]{#2}{#3}{}{0}
+      }{%ax+b=cx
+        \xintifboolexpr{#2=#4}{%
+          \xintifboolexpr{#3=0}{%ax=ax
+            L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une infinité de solutions.}%
+          {%ax+b=ax
+            L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ n'a aucune solution.%
+          }%
+        }{%% Cas délicat
+          \xintifboolexpr{#2>#4}{%ax+b=cx avec a>c
+            \begin{align*}
+              \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\tikzmark{E-\theNbequa}\\
+                \ifboolKV[ClesEquation]{Decomposition}{%
+                \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\mathcolor{Cdecomp}{\xintifboolexpr{#4>0}{-\num{#4}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\mathcolor{Cdecomp}{\xintifboolexpr{#4>0}{-\num{#4}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\\
+                }{}
+                \tikzmark{B-\theNbequa}\xdef\Coeffa{\fpeval{#2-#4}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=0\tikzmark{F-\theNbequa}\\
+                \ifboolKV[ClesEquation]{Decomposition}{%
+                \xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}&=0\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}\tikzmark{F-\theNbequa}\\
+                }{}%
+              \tikzmark{C-\theNbequa}\xdef\Coeffb{\fpeval{0-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}\tikzmark{G-\theNbequa}%\\
+              %eric
+              \ifboolKV[ClesEquation]{Decomposition}{\\\xintifboolexpr{\Coeffa=1}{}{\frac{\num{\Coeffa}}{\mathcolor{Cdecomp}{\num{\Coeffa}}}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\mathcolor{Cdecomp}{\num{\Coeffa}}}}}{}
+              % eric
+                \xintifboolexpr{\Coeffa=1}{}{\\}
+                \ifboolKV[ClesEquation]{Fleches}{%
+                \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$}
+                \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$}
+                \leftcomment{B-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}%
+                \rightcomment{F-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}%
+                }{}
+                \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1
+                \tikzmark{D-\theNbequa}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}\tikzmark{H-\theNbequa}%\\
+                \ifboolKV[ClesEquation]{Fleches}{%
+                \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
+                \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%            
+                }{
+                \ifboolKV[ClesEquation]{FlecheDiv}{%
+                \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
+                \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%                 
+                }{}
+                }
+                \ifboolKV[ClesEquation]{Entier}{%
+                \SSimpliTest{\Coeffb}{\Coeffa}%
+                \ifboolKV[ClesEquation]{Simplification}{%
+                \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\
+                }{}
+                }{}
+                }
+                \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}}
+              \end{align*}
+              \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}
+            }{%ax+b=cx+d avec a<c              % Autre cas délicat
+              \begin{align*}%
+                \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\tikzmark{E-\theNbequa}\\
+                \ifboolKV[ClesEquation]{Decomposition}{%
+                \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\mathcolor{Cdecomp}{\xintifboolexpr{#2>0}{-\num{#2}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\mathcolor{Cdecomp}{\xintifboolexpr{#2>0}{-\num{#2}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\\
+                }{}
+                \tikzmark{B-\theNbequa}\xdef\Coeffb{#3}\xdef\Coeffa{\fpeval{#4-#2}}\xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\tikzmark{F-\theNbequa}
+                \xintifboolexpr{\Coeffa=1}{}{\\}
+                \ifboolKV[ClesEquation]{Fleches}{%
+                \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#2>0}{-\num{#2}}{+\num{\fpeval{0-#2}}}\useKV[ClesEquation]{Lettre}$}
+                \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#2>0}{-\num{#2}}{+\num{\fpeval{0-#2}}}\useKV[ClesEquation]{Lettre}$}
+                }{}
+                % eric
+                \ifboolKV[ClesEquation]{Decomposition}{\\\xintifboolexpr{\Coeffa=1}{}{\frac{\num{\Coeffb}}{\mathcolor{Cdecomp}{\num{\Coeffa}}}&=\frac{\num{\Coeffa}}{\mathcolor{Cdecomp}{\num{\Coeffa}}}\useKV[ClesEquation]{Lettre}}}{}
+                % eric
+                \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1
+                \tikzmark{D-\theNbequa}\frac{\num{\Coeffb}}{\num{\Coeffa}}&=\useKV[ClesEquation]{Lettre}\tikzmark{H-\theNbequa}%\\
+                \ifboolKV[ClesEquation]{Fleches}{%
+                \leftcomment{B-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
+                \rightcomment{F-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%            
+                }{
+                \ifboolKV[ClesEquation]{FlecheDiv}{%
+                \leftcomment{B-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
+                \rightcomment{F-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%                 
+                }{}
+                }
+                \ifboolKV[ClesEquation]{Entier}{%
+                \SSimpliTest{\Coeffb}{\Coeffa}%
+                \ifboolKV[ClesEquation]{Simplification}{%
+                \ifthenelse{\boolean{Simplification}}{\\\SSimplifie{\Coeffb}{\Coeffa}&=\useKV[ClesEquation]{Lettre}}{}%\\
+                }{}
+                }{}
+                }
+                \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}}
+              \end{align*}
+              \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}%
+            }%
+          }%
+        }%
+      }%
+    \fi
+  }%
+
+
+\newcommand{\ResolEquationSoustraction}[5][]{%
+  \useKVdefault[ClesEquation]%
+  \setKV[ClesEquation]{#1}%
+  \xintifboolexpr{#2=0}{%
+    \xintifboolexpr{#4=0}{%
+      \xintifboolexpr{#3=#5}{%b=d
+        L'équation $\num{#3}=\num{#5}$ a une infinité de solutions.}%
+      {%b<>d
+        L'équation $\num{#3}=\num{#5}$ n'a aucune solution.%
+      }%
+    }%
+    {%0x+b=cx+d$
+      \EquaDeuxSoustraction[#1]{#4}{#5}{}{#3}%
+    }%
+  }{%
+    \xintifboolexpr{#4=0}{%ax+b=0x+d
+      \EquaDeuxSoustraction[#1]{#2}{#3}{}{#5}%
+    }
+    {%ax+b=cx+d$
+      \xintifboolexpr{#3=0}{%
+        \xintifboolexpr{#5=0}{%ax=cx
+          \EquaTroisSoustraction[#1]{#2}{0}{#4}{}%
+        }%
+        {%ax=cx+d
+          \EquaTroisSoustraction[#1]{#4}{#5}{#2}{}%
+        }%
+      }%
+      {\xintifboolexpr{#5=0}{%ax+b=cx
+          \EquaTroisSoustraction[#1]{#2}{#3}{#4}{}%
+        }%
+        {%ax+b=cx+d -- ici
+          \xintifboolexpr{#2=#4}{%
+            \xintifboolexpr{#3=#5}{%b=d
+              L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une infinité de solutions.}%
+            {%b<>d
+              L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ n'a aucune solution.%
+            }%
+          }{
+            %% Cas délicat
+            \xintifboolexpr{#2>#4}{%ax+b=cx+d avec a>c
+              \begin{align*}
+                \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\tikzmark{E-\theNbequa}\\
+                \ifboolKV[ClesEquation]{Decomposition}{%
+                \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\mathcolor{Cdecomp}{\xintifboolexpr{#4>0}{-\num{#4}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\mathcolor{Cdecomp}{\xintifboolexpr{#4>0}{-\num{#4}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\
+                }{}
+                \tikzmark{B-\theNbequa}\xdef\Coeffa{\fpeval{#2-#4}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\num{#5}\tikzmark{F-\theNbequa}\\
+                \ifboolKV[ClesEquation]{Decomposition}{%
+                \xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}&=\num{#5}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}\\
+                }{}%
+                \tikzmark{C-\theNbequa}\xdef\Coeffb{\fpeval{#5-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}\tikzmark{G-\theNbequa}%\\
+                % eric
+                \ifboolKV[ClesEquation]{Decomposition}{\\\xintifboolexpr{\Coeffa=1}{}{\frac{\num{\Coeffa}}{\mathcolor{Cdecomp}{\num{\Coeffa}}}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\mathcolor{Cdecomp}{\num{\Coeffa}}}}}{}
+                % eric
+                \xintifboolexpr{\Coeffa=1}{}{\\}
+                \ifboolKV[ClesEquation]{Fleches}{%
+                \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$}
+                \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$}
+                \leftcomment{B-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}%
+                \rightcomment{F-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}%
+                }{}
+                \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1
+                \tikzmark{D-\theNbequa}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}\tikzmark{H-\theNbequa}%\\
+                \ifboolKV[ClesEquation]{Fleches}{%
+                \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
+                \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%            
+                }{
+                \ifboolKV[ClesEquation]{FlecheDiv}{%
+                \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
+                \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%                 
+                }{}
+                }
+                \ifboolKV[ClesEquation]{Entier}{%
+                \SSimpliTest{\Coeffb}{\Coeffa}%
+                \ifboolKV[ClesEquation]{Simplification}{%
+                \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\
+                }{}
+                }{}
+                }
+                \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}}
+              \end{align*}
+              \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.%
+              }{}
+            }{%ax+b=cx+d avec a<c              % Autre cas délicat
+              \begin{align*}%
+                \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\tikzmark{E-\theNbequa}\\
+                \ifboolKV[ClesEquation]{Decomposition}{%
+                \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\mathcolor{Cdecomp}{\xintifboolexpr{#2>0}{-\num{#2}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\mathcolor{Cdecomp}{\xintifboolexpr{#2>0}{-\num{#2}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\
+                }{}
+                \tikzmark{B-\theNbequa}\xdef\Coeffa{\fpeval{#4-#2}}\xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\tikzmark{F-\theNbequa}\\
+                \ifboolKV[ClesEquation]{Decomposition}{%
+                \num{#3}\mathcolor{Cdecomp}{\xintifboolexpr{#5>0}{-\num{#5}}{+\num{\fpeval{0-#5}}}}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\mathcolor{Cdecomp}{\xintifboolexpr{#5>0}{-\num{#5}}{+\num{\fpeval{0-#5}}}}\\
+                }{}%
+                \tikzmark{C-\theNbequa}\xdef\Coeffb{\fpeval{#3-#5}}\num{\Coeffb}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\tikzmark{G-\theNbequa}%\\
+                % eric
+                \ifboolKV[ClesEquation]{Decomposition}{\\\xintifboolexpr{\Coeffa=1}{}{\frac{\num{\Coeffb}}{\mathcolor{Cdecomp}{\num{\Coeffa}}}&=\frac{\num{\Coeffa}}{\mathcolor{Cdecomp}{\num{\Coeffa}}}\useKV[ClesEquation]{Lettre}}}{}
+                % eric
+                \xintifboolexpr{\Coeffa=1}{}{\\}
+                \ifboolKV[ClesEquation]{Fleches}{%
+                \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#2>0}{-\num{#2}}{+\num{\fpeval{0-#2}}}\useKV[ClesEquation]{Lettre}$}
+                \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#2>0}{-\num{#2}}{+\num{\fpeval{0-#2}}}\useKV[ClesEquation]{Lettre}$}
+                \leftcomment{B-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#5>0}{-\num{#5}}{+\num{\fpeval{0-#5}}}$}%
+                \rightcomment{F-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#5>0}{-\num{#5}}{+\num{\fpeval{0-#5}}}$}%
+                }{}
+                \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1
+                \tikzmark{D-\theNbequa}\frac{\num{\Coeffb}}{\num{\Coeffa}}&=\useKV[ClesEquation]{Lettre}\tikzmark{H-\theNbequa}%\\
+                \ifboolKV[ClesEquation]{Fleches}{%
+                \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
+                \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%            
+                }{
+                \ifboolKV[ClesEquation]{FlecheDiv}{%
+                \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
+                \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%                 
+                }{}
+                }
+                \ifboolKV[ClesEquation]{Entier}{%
+                \SSimpliTest{\Coeffb}{\Coeffa}%
+                \ifboolKV[ClesEquation]{Simplification}{%
+                \ifthenelse{\boolean{Simplification}}{\\\SSimplifie{\Coeffb}{\Coeffa}&=\useKV[ClesEquation]{Lettre}}{}%\\
+                }{}
+                }{}
+                }
+                \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}}
+              \end{align*}
+              \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.%
+              }{}%
+            }%
+          }%
+        }%
+      }%
+    }%
+  }%
+}%
+
+


Property changes on: trunk/Master/texmf-dist/tex/latex/profcollege/PfCEquationSoustraction2.tex
___________________________________________________________________
Added: svn:eol-style
## -0,0 +1 ##
+native
\ No newline at end of property
Added: trunk/Master/texmf-dist/tex/latex/profcollege/PfCEquationSymbole1.tex
===================================================================
--- trunk/Master/texmf-dist/tex/latex/profcollege/PfCEquationSymbole1.tex	                        (rev 0)
+++ trunk/Master/texmf-dist/tex/latex/profcollege/PfCEquationSymbole1.tex	2021-04-27 12:58:55 UTC (rev 58995)
@@ -0,0 +1,225 @@
+% Licence    : Released under the LaTeX Project Public License v1.3c
+% or later, see http://www.latex-project.org/lppl.txtf
+\newcommand{\EquaBaseSymbole}[5][]{%type ax=d ou b=cx
+  \useKVdefault[ClesEquation]%
+  \setKV[ClesEquation]{#1}%
+  \setKV[ClesEquation]{Fleches=false,FlecheDiv=false,Terme=false,Decomposition=false}
+  \ifx\bla#2\bla%on teste si le paramètre #2 est vide:
+  % si oui, on est dans le cas b=cx. Eh bien on échange :)
+  % Mais attention si les deux paramètres a et c sont vides...
+    \ifx\bla#4\bla
+  %% il manque un paramètre
+    \else
+      \EquaBaseSymbole[#1]{#4}{}{}{#3}
+    \fi
+  \else
+  % si non, on est dans le cas ax=d
+  \xintifboolexpr{#2=0}{%
+    \xintifboolexpr{#5=0}{%
+      L'équation $0\times\useKV[ClesEquation]{Lettre}=0$ a une infinité de solutions.}{L'équation $0\times\useKV[ClesEquation]{Lettre}=\num{#5}$ n'a aucune solution.}%
+  }{%\else
+    \xintifboolexpr{#5=0}{L'équation $\num{#2}\times\useKV[ClesEquation]{Lettre}=0$ a une unique solution : $\useKV[ClesEquation]{Lettre}=0$.}{%\else
+      \begin{align*}%
+         \xintifboolexpr{#2=1}{\useKV[ClesEquation]{Lettre}}{\multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}}&=\num{#5}\\
+        \useKV[ClesEquation]{Lettre}&=\frac{\num{#5}}{\num{#2}}%\\
+        \ifboolKV[ClesEquation]{Entier}{%
+                \SSimpliTest{#5}{#2}%
+                \ifboolKV[ClesEquation]{Simplification}{%
+                \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{#5}{#2}}{}%\\
+                }{}
+                }{}
+      \end{align*}
+    }
+  }
+  \fi
+}
+
+\newcommand{\EquaDeuxSymbole}[5][]{%type ax+b=d ou b=cx+d$
+  \useKVdefault[ClesEquation]%
+  \setKV[ClesEquation]{#1}%
+  \setKV[ClesEquation]{Fleches=false,FlecheDiv=false,Terme=false,Decomposition=false}
+  \ifx\bla#2\bla%On échange en faisant attention à ne pas boucler : c doit être non vide
+    \EquaDeuxSymbole[#1]{#4}{#5}{#2}{#3}
+  \else%cas ax+b=d
+    \xintifboolexpr{#2=0}{%
+      \xintifboolexpr{#3=#5}{%b=d
+        L'équation $\num{#3}=\num{#5}$ a une infinité de solutions.}%
+      {%b<>d
+        L'équation $\num{#3}=\num{#5}$ n'a aucune solution.%
+      }%
+    }{%ELSE
+      \xintifboolexpr{#3=0}{%ax+b=d
+        \EquaBaseSymbole[#1]{#2}{}{}{#5}%
+      }{%ax+b=d$ Ici
+        \begin{align*}
+          \xintifboolexpr{#2=1}{\useKV[ClesEquation]{Lettre}}{\multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\num{#5}\\
+          \ifboolKV[ClesEquation]{Bloc}{\Fdash{$\xintifboolexpr{#2=1}{\useKV[ClesEquation]{Lettre}}{\multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}}$}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\num{#5}\\}{}%
+          \xdef\Coeffa{#2}\xdef\Coeffb{\fpeval{#5-#3}}\xintifboolexpr{\Coeffa=1}{\useKV[ClesEquation]{Lettre}}{\multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}}&=\num{\Coeffb}%\\
+          \xintifboolexpr{\Coeffa=1}{% 
+          }{%\ifnum\cmtd>1
+          \\
+          \useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}%\\
+          \ifboolKV[ClesEquation]{Entier}{%
+          \SSimpliTest{\Coeffb}{\Coeffa}%
+          \ifboolKV[ClesEquation]{Simplification}{%
+          \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\
+          }{}
+          }{}
+          }
+        \end{align*}
+      }
+    }
+  \fi
+}
+
+\newcommand{\EquaTroisSymbole}[5][]{%ax+b=cx ou ax=cx+d
+  \useKVdefault[ClesEquation]%
+  \setKV[ClesEquation]{#1}%
+  \setKV[ClesEquation]{Fleches=false,FlecheDiv=false,Terme=false,Decomposition=false}
+  \ifx\bla#3\bla%on inverse en faisant attention à la boucle #3<->#5
+    \ifx\bla#5\bla%
+      %% paramètre oublié
+    \else
+      \EquaTroisSymbole[#1]{#4}{#5}{#2}{}%
+    \fi
+  \else
+  \xintifboolexpr{#2=0}{%b=cx
+    \EquaBaseSymbole[#1]{#4}{}{}{#3}
+  }{%
+    \xintifboolexpr{#4=0}{%ax+b=0
+      \EquaDeuxSymbole[#1]{#2}{#3}{}{0}
+      }{%ax+b=cx
+        \xintifboolexpr{#2=#4}{%
+          \xintifboolexpr{#3=0}{%ax=ax
+            L'équation $\multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}=\multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}$ a une infinité de solutions.}%
+          {%ax+b=ax
+            L'équation $\multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}$ n'a aucune solution.%
+          }%
+        }{%% Cas délicat
+          \xintifboolexpr{#2>#4}{%ax+b=cx avec a>c
+            \begin{align*}
+              \multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\multido{\i=1+1}{\fpeval{#4-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}\\
+              \mathcolor{Csymbole}{\useKV[ClesEquation]{Lettre}\multido{\i=1+1}{\fpeval{#4-1}}{+\useKV[ClesEquation]{Lettre}}}\multido{\i=1+1}{\fpeval{#2-#4}}{+\useKV[ClesEquation]{Lettre}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Csymbole}{\multido{\i=1+1}{\fpeval{#4-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}}\\              
+              \xdef\Coeffa{\fpeval{#2-#4}}\multido{\i=1+1}{\fpeval{\Coeffa-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=0\\
+              \ifboolKV[ClesEquation]{Bloc}{\Fdash{\mathcolor{Csymbole}{$\multido{\i=1+1}{\fpeval{\Coeffa-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}$}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=0\\}{}
+              \xdef\Coeffb{\fpeval{0-#3}}\multido{\i=1+1}{\fpeval{\Coeffa-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}%\\
+              \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1
+              \\\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}%\\
+                \ifboolKV[ClesEquation]{Entier}{%
+                \SSimpliTest{\Coeffb}{\Coeffa}%
+                \ifboolKV[ClesEquation]{Simplification}{%
+                \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\
+                }{}
+                }{}
+                }
+              \end{align*}
+            }{%ax+b=cx+d avec a<c              % Autre cas délicat
+              \begin{align*}%
+                \multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\multido{\i=1+1}{\fpeval{#4-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}\\
+                \mathcolor{Csymbole}{\useKV[ClesEquation]{Lettre}\multido{\i=1+1}{\fpeval{#2-1}}{+\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Csymbole}{\useKV[ClesEquation]{Lettre}\multido{\i=1+1}{\fpeval{#2-1}}{+\useKV[ClesEquation]{Lettre}}}\multido{\i=1+1}{\fpeval{#4-#2}}{+\useKV[ClesEquation]{Lettre}}\\
+                \xdef\Coeffb{#3}\xdef\Coeffa{\fpeval{#4-#2}}\xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\multido{\i=1+1}{\fpeval{\Coeffa-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}% \\
+                \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1
+                \\\frac{\num{\Coeffb}}{\num{\Coeffa}}&=\useKV[ClesEquation]{Lettre}%\\
+                \ifboolKV[ClesEquation]{Entier}{%
+                \SSimpliTest{\Coeffb}{\Coeffa}%
+                \ifboolKV[ClesEquation]{Simplification}{%
+                \ifthenelse{\boolean{Simplification}}{\\\SSimplifie{\Coeffb}{\Coeffa}&=\useKV[ClesEquation]{Lettre}}{}%\\
+                }{}
+                }{}
+                }
+              \end{align*}
+            }%
+          }%
+        }%
+      }%
+    \fi
+  }%
+
+
+\newcommand{\ResolEquationSymbole}[5][]{%
+  \useKVdefault[ClesEquation]%
+  \setKV[ClesEquation]{#1}%
+  \setKV[ClesEquation]{Fleches=false,FlecheDiv=false,Terme=false,Decomposition=false}
+  \xintifboolexpr{#2=0}{%
+    \xintifboolexpr{#4=0}{%
+      \xintifboolexpr{#3=#5}{%b=d
+        L'équation $\num{#3}=\num{#5}$ a une infinité de solutions.}%
+      {%b<>d
+        L'équation $\num{#3}=\num{#5}$ n'a aucune solution.%
+      }%
+    }%
+    {%0x+b=cx+d$
+      \EquaDeuxSymbole[#1]{#4}{#5}{#2}{#3}%
+    }%
+  }{%
+    \xintifboolexpr{#4=0}{%ax+b=0x+d
+      \EquaDeuxSymbole[#1]{#2}{#3}{}{#5}%
+    }
+    {%ax+b=cx+d$
+      \xintifboolexpr{#3=0}{%
+        \xintifboolexpr{#5=0}{%ax=cx
+          \EquaTroisSymbole[#1]{#2}{0}{#4}{}%
+        }%
+        {%ax=cx+d
+          \EquaTroisSymbole[#1]{#4}{#5}{#2}{}%
+        }%
+      }%
+      {\xintifboolexpr{#5=0}{%ax+b=cx
+          \EquaTroisSymbole[#1]{#2}{#3}{#4}{}%
+        }%
+        {%ax+b=cx+d -- ici
+          \xintifboolexpr{#2=#4}{%
+            \xintifboolexpr{#3=#5}{%b=d
+              L'équation $\multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\multido{\i=1+1}{\fpeval{#4-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une infinité de solutions.}%
+            {%b<>d
+              L'équation $\multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\multido{\i=1+1}{\fpeval{#4-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ n'a aucune solution.%
+            }%
+          }{
+            %% Cas délicat
+            \xintifboolexpr{#2>#4}{%ax+b=cx+d avec a>c
+              \begin{align*}
+                \multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\multido{\i=1+1}{\fpeval{#4-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\
+                \mathcolor{Csymbole}{\useKV[ClesEquation]{Lettre}\multido{\i=1+1}{\fpeval{#4-1}}{+\useKV[ClesEquation]{Lettre}}}\multido{\i=1+1}{\fpeval{#2-#4}}{+\useKV[ClesEquation]{Lettre}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Csymbole}{\multido{\i=1+1}{\fpeval{#4-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\
+                \xdef\Coeffa{\fpeval{#2-#4}}\useKV[ClesEquation]{Lettre}\multido{\i=1+1}{\fpeval{\Coeffa-1}}{+\useKV[ClesEquation]{Lettre}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\num{#5}\\
+                \ifboolKV[ClesEquation]{Bloc}{%
+                \Fdash{$\mathcolor{Csymbole}{\useKV[ClesEquation]{Lettre}\multido{\i=1+1}{\fpeval{\Coeffa-1}}{+\useKV[ClesEquation]{Lettre}}}$}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\num{#5}\\
+                }{}%
+                \xdef\Coeffb{\fpeval{#5-#3}}\useKV[ClesEquation]{Lettre}\multido{\i=1+1}{\fpeval{\Coeffa-1}}{+\useKV[ClesEquation]{Lettre}}&=\num{\Coeffb}%\\
+                \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1
+                \\\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}\tikzmark{H-\theNbequa}%\\
+                \ifboolKV[ClesEquation]{Entier}{%
+                \SSimpliTest{\Coeffb}{\Coeffa}%
+                \ifboolKV[ClesEquation]{Simplification}{%
+                \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\
+                }{}
+                }{}
+                }
+              \end{align*}
+            }{%ax+b=cx+d avec a<c              % Autre cas délicat
+              \begin{align*}%
+                \multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\multido{\i=1+1}{\fpeval{#4-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\
+                \mathcolor{Csymbole}{\multido{\i=1+1}{\fpeval{#2-1}}{\useKV[ClesEquation]{Lettre}+}\useKV[ClesEquation]{Lettre}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\mathcolor{Csymbole}{\useKV[ClesEquation]{Lettre}\multido{\i=1+1}{\fpeval{#2-1}}{+\useKV[ClesEquation]{Lettre}}}\multido{\i=1+1}{\fpeval{#4-#2}}{+\useKV[ClesEquation]{Lettre}}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\
+                \xdef\Coeffa{\fpeval{#4-#2}}\num{#3}&=\useKV[ClesEquation]{Lettre}\multido{\i=1+1}{\fpeval{\Coeffa-1}}{+\useKV[ClesEquation]{Lettre}}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\
+                \ifboolKV[ClesEquation]{Bloc}{%
+                \num{#3}&=\Fdash{$\mathcolor{Csymbole}{\useKV[ClesEquation]{Lettre}\multido{\i=1+1}{\fpeval{\Coeffa-1}}{+\useKV[ClesEquation]{Lettre}}}$}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\
+                }{}%
+                \xdef\Coeffb{\fpeval{#3-#5}}\num{\Coeffb}&=\useKV[ClesEquation]{Lettre}\multido{\i=1+1}{\fpeval{\Coeffa-1}}{+\useKV[ClesEquation]{Lettre}}%\\
+                \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1
+                \\\frac{\num{\Coeffb}}{\num{\Coeffa}}&=\useKV[ClesEquation]{Lettre}%\\
+                \ifboolKV[ClesEquation]{Entier}{%
+                \SSimpliTest{\Coeffb}{\Coeffa}%
+                \ifboolKV[ClesEquation]{Simplification}{%
+                \ifthenelse{\boolean{Simplification}}{\\\SSimplifie{\Coeffb}{\Coeffa}&=\useKV[ClesEquation]{Lettre}}{}%\\
+                }{}
+                }{}
+                }
+              \end{align*}
+            }%
+          }%
+        }%
+      }%
+    }%
+  }%
+}%
+
+


Property changes on: trunk/Master/texmf-dist/tex/latex/profcollege/PfCEquationSymbole1.tex
___________________________________________________________________
Added: svn:eol-style
## -0,0 +1 ##
+native
\ No newline at end of property
Added: trunk/Master/texmf-dist/tex/latex/profcollege/PfCEquationTerme1.tex
===================================================================
--- trunk/Master/texmf-dist/tex/latex/profcollege/PfCEquationTerme1.tex	                        (rev 0)
+++ trunk/Master/texmf-dist/tex/latex/profcollege/PfCEquationTerme1.tex	2021-04-27 12:58:55 UTC (rev 58995)
@@ -0,0 +1,276 @@
+% Licence    : Released under the LaTeX Project Public License v1.3c
+% or later, see http://www.latex-project.org/lppl.txtf
+\newcommand{\EquaDeuxTerme}[5][]{%type ax+b=d ou b=cx+d$
+  \useKVdefault[ClesEquation]%
+  \setKV[ClesEquation]{#1}%
+  \ifx\bla#2\bla%On échange en faisant attention à ne pas boucler : c doit être non vide
+    \EquaDeuxTerme[#1]{#4}{#5}{#2}{#3}
+  \else%cas ax+b=d
+    \xintifboolexpr{#2=0}{%
+      \xintifboolexpr{#3=#5}{%b=d
+        L'équation $\num{#3}=\num{#5}$ a une infinité de solutions.}%
+      {%b<>d
+        L'équation $\num{#3}=\num{#5}$ n'a aucune solution.%
+      }%
+    }{%ELSE
+      \xintifboolexpr{#3=0}{%ax+b=d
+        \EquaBase[#1]{#2}{}{}{#5}%
+      }{%ax+b=d$ Ici
+        \ifboolKV[ClesEquation]{Decomposition}{\colorlet{Cterme}{\useKV[ClesEquation]{CouleurTerme}}}{}
+        \begin{align*}
+          \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\num{#5}\tikzmark{E-\theNbequa}\\
+          \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}&=\num{#5}\mathcolor{Cterme}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}\\
+          \tikzmark{C-\theNbequa}\xdef\Coeffa{#2}\xdef\Coeffb{\fpeval{#5-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}\tikzmark{G-\theNbequa}%\\
+          \xintifboolexpr{\Coeffa=1}{}{\\}
+          \ifboolKV[ClesEquation]{Fleches}{%
+          \leftcomment{A-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}%
+          \rightcomment{E-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}%
+          }{}
+          \xintifboolexpr{\Coeffa=1}{% 
+          }{%\ifnum\cmtd>1
+          \tikzmark{D-\theNbequa}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}\tikzmark{H-\theNbequa}%\\
+          \ifboolKV[ClesEquation]{Fleches}{%
+          \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
+          \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
+          }{%ICI ?
+          \ifboolKV[ClesEquation]{FlecheDiv}{%
+          \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
+          \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
+          }{}
+          }
+          }
+          \ifboolKV[ClesEquation]{Entier}{%
+          \SSimpliTest{\Coeffb}{\Coeffa}%
+          \ifboolKV[ClesEquation]{Simplification}{%
+          \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\
+          }{}
+          }{}
+          \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}}
+        \end{align*}
+        \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\num{#5}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.
+        }{}
+      }
+    }
+  \fi
+}
+
+\newcommand{\EquaTroisTerme}[5][]{%ax+b=cx ou ax=cx+d
+  \useKVdefault[ClesEquation]%
+  \setKV[ClesEquation]{#1}%
+  \ifx\bla#3\bla%on inverse en faisant attention à la boucle #3<->#5
+    \ifx\bla#5\bla%
+      %% paramètre oublié
+    \else
+      \EquaTroisTerme[#1]{#4}{#5}{#2}{}%
+    \fi
+  \else
+  \xintifboolexpr{#2=0}{%b=cx
+    \EquaBase[#1]{#4}{}{}{#3}
+  }{%
+    \xintifboolexpr{#4=0}{%ax+b=0
+      \EquaDeuxTerme[#1]{#2}{#3}{}{0}
+      }{%ax+b=cx
+        \xintifboolexpr{#2=#4}{%
+          \xintifboolexpr{#3=0}{%ax=ax
+            L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une infinité de solutions.}%
+          {%ax+b=ax
+            L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ n'a aucune solution.%
+          }%
+        }{%% Cas délicat
+          \xintifboolexpr{#2>#4}{%ax+b=cx avec a>c
+            \ifboolKV[ClesEquation]{Decomposition}{\colorlet{Cterme}{\useKV[ClesEquation]{CouleurTerme}}}{}
+            \begin{align*}
+              \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\tikzmark{E-\theNbequa}\\
+                \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\mathcolor{Cterme}{\xintifboolexpr{#4>0}{-\num{#4}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=0\\
+              \tikzmark{B-\theNbequa}\xdef\Coeffa{\fpeval{#2-#4}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=0\tikzmark{F-\theNbequa}\\
+              \xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=0\mathcolor{Cterme}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}\\
+              \tikzmark{C-\theNbequa}\xdef\Coeffb{\fpeval{0-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}\tikzmark{G-\theNbequa}%\\
+                \xintifboolexpr{\Coeffa=1}{}{\\}
+                \ifboolKV[ClesEquation]{Fleches}{%
+                \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$}
+                \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$}
+                \leftcomment{B-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}%
+                \rightcomment{F-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}%
+                }{}
+                \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1
+                \tikzmark{D-\theNbequa}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}\tikzmark{H-\theNbequa}%\\
+                \ifboolKV[ClesEquation]{Fleches}{%
+                \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
+                \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%            
+                }{
+                \ifboolKV[ClesEquation]{FlecheDiv}{%
+                \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
+                \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%                 
+                }{}
+                }
+                \ifboolKV[ClesEquation]{Entier}{%
+                \SSimpliTest{\Coeffb}{\Coeffa}%
+                \ifboolKV[ClesEquation]{Simplification}{%
+                \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\
+                }{}
+                }{}
+                }
+                \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}}
+              \end{align*}
+              \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}
+            }{%ax+b=cx+d avec a<c              % Autre cas délicat
+              \ifboolKV[ClesEquation]{Decomposition}{\colorlet{Cterme}{\useKV[ClesEquation]{CouleurTerme}}}{}
+              \begin{align*}%
+                \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\tikzmark{E-\theNbequa}\\
+                \xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\mathcolor{Cterme}{\xintifboolexpr{#2>0}{-\num{#2}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\\
+                \tikzmark{B-\theNbequa}\xdef\Coeffb{#3}\xdef\Coeffa{\fpeval{#4-#2}}\xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\tikzmark{F-\theNbequa}
+                \xintifboolexpr{\Coeffa=1}{}{\\}
+                \ifboolKV[ClesEquation]{Fleches}{%
+                \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#2>0}{-\num{#2}}{+\num{\fpeval{0-#2}}}\useKV[ClesEquation]{Lettre}$}
+                \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#2>0}{-\num{#2}}{+\num{\fpeval{0-#2}}}\useKV[ClesEquation]{Lettre}$}
+                }{}
+                \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1
+                \tikzmark{D-\theNbequa}\frac{\num{\Coeffb}}{\num{\Coeffa}}&=\useKV[ClesEquation]{Lettre}\tikzmark{H-\theNbequa}%\\
+                \ifboolKV[ClesEquation]{Fleches}{%
+                \leftcomment{B-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
+                \rightcomment{F-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%            
+                }{
+                \ifboolKV[ClesEquation]{FlecheDiv}{%
+                \leftcomment{B-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
+                \rightcomment{F-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%                 
+                }{}
+                }
+                \ifboolKV[ClesEquation]{Entier}{%
+                \SSimpliTest{\Coeffb}{\Coeffa}%
+                \ifboolKV[ClesEquation]{Simplification}{%
+                \ifthenelse{\boolean{Simplification}}{\\\SSimplifie{\Coeffb}{\Coeffa}&=\useKV[ClesEquation]{Lettre}}{}%\\
+                }{}
+                }{}
+                }
+                \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}}
+              \end{align*}
+              \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}%
+            }%
+          }%
+        }%
+      }%
+    \fi
+  }%
+
+\newcommand{\ResolEquationTerme}[5][]{%
+  \useKVdefault[ClesEquation]%
+  \setKV[ClesEquation]{#1}%
+  \xintifboolexpr{#2=0}{%
+    \xintifboolexpr{#4=0}{%
+      \xintifboolexpr{#3=#5}{%b=d
+        L'équation $\num{#3}=\num{#5}$ a une infinité de solutions.}%
+      {%b<>d
+        L'équation $\num{#3}=\num{#5}$ n'a aucune solution.%
+      }%
+    }%
+    {%0x+b=cx+d$
+      \EquaDeuxTerme[#1]{#4}{#5}{#2}{#3}%
+    }%
+  }{%
+    \xintifboolexpr{#4=0}{%ax+b=0x+d
+      \EquaDeuxTerme[#1]{#2}{#3}{}{#5}%
+    }
+    {%ax+b=cx+d$
+      \xintifboolexpr{#3=0}{%
+        \xintifboolexpr{#5=0}{%ax=cx
+          \EquaTroisTerme[#1]{#2}{0}{#4}{}%
+        }%
+        {%ax=cx+d
+          \EquaTroisTerme[#1]{#4}{#5}{#2}{}%
+        }%
+      }%
+      {\xintifboolexpr{#5=0}{%ax+b=cx
+          \EquaTroisTerme[#1]{#2}{#3}{#4}{}%
+        }%
+        {%ax+b=cx+d -- ici
+          \xintifboolexpr{#2=#4}{%
+            \xintifboolexpr{#3=#5}{%b=d
+              L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une infinité de solutions.}%
+            {%b<>d
+              L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ n'a aucune solution.%
+            }%
+          }{
+            %% Cas délicat
+            \xintifboolexpr{#2>#4}{%ax+b=cx+d avec a>c
+              \ifboolKV[ClesEquation]{Decomposition}{\colorlet{Cterme}{\useKV[ClesEquation]{CouleurTerme}}}{}
+              \begin{align*}
+                \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\tikzmark{E-\theNbequa}\\
+                \xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\mathcolor{Cterme}{\xintifboolexpr{#4>0}{-\num{#4}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#5>0}{\num{#5}}{-\num{\fpeval{0-#5}}}\\
+                \tikzmark{B-\theNbequa}\xdef\Coeffa{\fpeval{#2-#4}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\num{#5}\tikzmark{F-\theNbequa}\tikzmark{F-\theNbequa}\\
+                \xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{#5}\mathcolor{Cterme}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}\\
+                \tikzmark{C-\theNbequa}\xdef\Coeffb{\fpeval{#5-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}&=\num{\Coeffb}\tikzmark{G-\theNbequa}%\\
+                \xintifboolexpr{\Coeffa=1}{}{\\}
+                \ifboolKV[ClesEquation]{Fleches}{%
+                \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$}
+                \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#4>0}{-\num{#4}}{+\num{\fpeval{0-#4}}}\useKV[ClesEquation]{Lettre}$}
+                \leftcomment{B-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}%
+                \rightcomment{F-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}$}%
+                }{}
+                \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1
+                \tikzmark{D-\theNbequa}\useKV[ClesEquation]{Lettre}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}\tikzmark{H-\theNbequa}%\\
+                \ifboolKV[ClesEquation]{Fleches}{%
+                \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
+                \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%            
+                }{
+                \ifboolKV[ClesEquation]{FlecheDiv}{%
+                \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
+                \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%                 
+                }{}
+                }
+                \ifboolKV[ClesEquation]{Entier}{%
+                \SSimpliTest{\Coeffb}{\Coeffa}%
+                \ifboolKV[ClesEquation]{Simplification}{%
+                \ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{\Coeffb}{\Coeffa}}{}%\\
+                }{}
+                }{}
+                }
+                \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}}
+              \end{align*}
+              \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.%
+              }{}
+            }{%ax+b=cx+d avec a<c              % Autre cas délicat
+              \ifboolKV[ClesEquation]{Decomposition}{\colorlet{Cterme}{\useKV[ClesEquation]{CouleurTerme}}}{}
+              \begin{align*}%
+                \tikzmark{A-\theNbequa}\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\tikzmark{E-\theNbequa}\\
+                \xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\mathcolor{Cterme}{\xintifboolexpr{#2>0}{-\num{#2}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\
+                \tikzmark{B-\theNbequa}\xdef\Coeffa{\fpeval{#4-#2}}\xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\tikzmark{F-\theNbequa}\\
+                \num{#3}\mathcolor{Cterme}{\xintifboolexpr{#5>0}{-\num{#5}}{+\num{\fpeval{0-#5}}}}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\\
+                \tikzmark{C-\theNbequa}\xdef\Coeffb{\fpeval{#3-#5}}\num{\Coeffb}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\tikzmark{G-\theNbequa}%\\
+                \xintifboolexpr{\Coeffa=1}{}{\\}
+                \ifboolKV[ClesEquation]{Fleches}{%
+                \leftcomment{A-\theNbequa}{B-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#2>0}{-\num{#2}}{+\num{\fpeval{0-#2}}}\useKV[ClesEquation]{Lettre}$}
+                \rightcomment{E-\theNbequa}{F-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#2>0}{-\num{#2}}{+\num{\fpeval{0-#2}}}\useKV[ClesEquation]{Lettre}$}
+                \leftcomment{B-\theNbequa}{C-\theNbequa}{A-\theNbequa}{$\xintifboolexpr{#5>0}{-\num{#5}}{+\num{\fpeval{0-#5}}}$}%
+                \rightcomment{F-\theNbequa}{G-\theNbequa}{E-\theNbequa}{$\xintifboolexpr{#5>0}{-\num{#5}}{+\num{\fpeval{0-#5}}}$}%
+                }{}
+                \xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1
+                \tikzmark{D-\theNbequa}\frac{\num{\Coeffb}}{\num{\Coeffa}}&=\useKV[ClesEquation]{Lettre}\tikzmark{H-\theNbequa}%\\
+                \ifboolKV[ClesEquation]{Fleches}{%
+                \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
+                \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%            
+                }{
+                \ifboolKV[ClesEquation]{FlecheDiv}{%
+                \leftcomment{C-\theNbequa}{D-\theNbequa}{A-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%
+                \rightcomment{G-\theNbequa}{H-\theNbequa}{E-\theNbequa}{$\div\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}$}%                 
+                }{}
+                }
+                \ifboolKV[ClesEquation]{Entier}{%
+                \SSimpliTest{\Coeffb}{\Coeffa}%
+                \ifboolKV[ClesEquation]{Simplification}{%
+                \ifthenelse{\boolean{Simplification}}{\\\SSimplifie{\Coeffb}{\Coeffa}&=\useKV[ClesEquation]{Lettre}}{}%\\
+                }{}
+                }{}
+                }
+                \ifboolKV[ClesEquation]{Fleches}{\stepcounter{Nbequa}}{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}}
+              \end{align*}
+              \ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\ifboolKV[ClesEquation]{LettreSol}{\useKV[ClesEquation]{Lettre}=}{}\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.%
+              }{}%
+            }%
+          }%
+        }%
+      }%
+    }%
+  }%
+}%
+
+


Property changes on: trunk/Master/texmf-dist/tex/latex/profcollege/PfCEquationTerme1.tex
___________________________________________________________________
Added: svn:eol-style
## -0,0 +1 ##
+native
\ No newline at end of property
Modified: trunk/Master/tlpkg/libexec/ctan2tds
===================================================================
--- trunk/Master/tlpkg/libexec/ctan2tds	2021-04-26 23:48:27 UTC (rev 58994)
+++ trunk/Master/tlpkg/libexec/ctan2tds	2021-04-27 12:58:55 UTC (rev 58995)
@@ -2113,7 +2113,7 @@
  'pdfx',        '\.(def|dfu|icc|xmp)$|(glyph|Profiles).*tex|pdfx\.sty|ICC_LIC',
  'pdfxup',	'(template\.tex|\.xup)$',
  'petri-nets',  'pnets\.tex|pntext\.tex|\.sty|pndraw\.tex|pnversion\.tex|\.sty|pndraw\.tex',
- 'profcollege',	'PfC-.*\.tex|' . $standardtex,
+ 'profcollege',	'PfC.*\.tex|' . $standardtex,
  'pgf-blur',    'tikzlibraryshadows.blur.code.tex',
  'pgf-spectra', 'spectra.data.*tex|' . $standardtex,
  'pgfmolbio',   'pgfmolbio\..*\.|' . $standardtex, # .lua+.tex submodules



More information about the tex-live-commits mailing list.