Direct and reverse synchronization with SyncITEX

Jérome Laurens

Département de mathématiques

Université de Bourgogne

21078 Dijon Cedex

FRANCE

jerome (dot) laurens (at) u-bourgogne (dot) fr
http://itexmac.sourceforge.net/SyncTeX.html

Abstract

We present a new technology named SyncIEX used to synchronize between the

TEX input and the output.

1 What is synchronization?

Creating documents with the TEX typesetting system
often requires two windows, one for entering the
text, the other one for viewing the resulting output.
In general, documents are too long to fit in the
visible frame of a window on screen, and what is
really visible is only some part of either the input
or the output. We say that the input view and the
output view are synchronized if they are displaying
the “same” portion of the document. Forwards or
direct synchronization is the ability, for an output
viewer, to scroll the window to a part corresponding
to a given location in the input file. Backwards
or reverse synchronization is the ability, for a text
editor, to scroll the text view to a part corresponding
to a given location in the output file.

Figure 1 is a screenshot illustrating SyncTEX
supported in iTEXMac2, the TEX front end devel-
oped by the author on Mac OSX. The top window
is a text editor where an extract of the “Not so
short introduction to BKTEX 2”7 is displayed. The
word “lscommand” has been selected and the viewer
window at the bottom automatically scrolled to the
position of this word in the output, highlighting it
with a small red arrow. The grey background was
added afterwards in the bottom window for the sake
of visibility on printed media.

2 What is SyncTEX?

This is a new technology embedded in both pdfTEX
and XHTEX, available in the 2008 TEX Live and cor-
responding MiKTEX distributions. When activated,
it gives both text editors and output viewers the nec-
essary information to complete the synchronization
process. It will be available in LuaTEX soon.

In order to activate SyncTEX, there is a new
command line option:

pdftex -synctex=1 foo.tex

¥l custom.tex (revisited Ishort-4.16)

If I ever decide that | do not like the commands to be
typeset in a box any more, | can simply change the
definition of the \texttt{lIscommand} environment to
create a new look. This is much easier than going
through the whole document to hunt down all the
places where | have used some generic \LaTeX{}
commands to draw a box around some word.

Ligne 45 sur 909

¥| Ishort.pdf (revisited Ishort-4.16)

nat I do not like the commands to be typeset in a box
ly change the definition of the 1scommand environment
. This is much easier than going through the whole
wn all the places where I have used some generic BTEX
box around some word.

Figure 1: Synchronization in ¢{7TgXMac2 based on
SyncIEX technology with text analysis.

(or --synctex=1) and the same for xetex. With this
option, a new informational line is printed at the end
of the command output and reads SyncTeX written
on foo.synctex.gz. The new (compressed) auxil-
iary file named foo.synctex.gz is used by appli-
cations for the synchronization process; this is the
SyncTEX output file.

Setting the synctex option to -1 creates an
uncompressed foo.synctex auxiliary file, more suit-
able for certain operations. Setting it to 0 definitively
prevents SyncTEX activation.

There is also an eponymous new TEX primitive
that you can set to 1 for SyncTEX activation from the
source file: \synctex=1. It can be used, for example,
to temporarily disable SyncITEX operations for some
input file by properly using \synctex=0. This prim-
itive has no effect if the -synctex=0 command line
option was given, or if the first page has already been
shipped out (it is then too late to activate SyncTEX).

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting 365

Jérome Laurens

3 Other synchronization technologies

The commercial software Visual TpX available on
Windows has had the PDF synchronization capabil-
ity embedded in its TEX engine since 1999. The
commercial software TEXtures available on Mac OS X
has had embedded synchronization since 2000, but
between the text source and the DVI output. Neither
implementation is freely available to the public and
will not be considered in the remainder of this article.

Turning to the TEX macro level, Aleksander Si-
monic, the author of the WinEdt TEX shell on Win-
dows, wrote before 1998 the srcltx macro package
to enable synchronization between the text source
and the DVI output. It is based on the powerful
\special command and was later integrated into
the TEX engine as “source specials”. Heiko Oberdiek
wrote vpe in 1999 where PDF technologies are used
for reverse synchronization from the PDF output
to the text input. In 2003, the author wrote the
pdfsync package discussed in [5], [6] and [7], to al-
low synchronization between the PDF output and
the text input, following ideas from Piero d’Ancona.
This was based on the use of pdfTEX commands sim-
ilar to \special, with the same limitations, namely
an incompatibility with very useful packages and
unwanted changes in the layout.

None of these solutions is satisfying, being either
incomplete or unsafe, as we shall see.

4 Solving the synchronization problem
4.1 Stating the problem

The problem is to define a mapping between an input
record given by an input file name and a line number
in that file, and an output record given by a page
number and a location in that page of the output
file. The input record describes a certain part of the
input text whereas the output record describes the
corresponding location where this text appears in the
output. The original TEX engine does not provide
any facility for such a correspondence, except the
debugging information used to report syntax errors
(we call it the current input record). More precisely,
TEX does not know at the same time both the input
records and their corresponding output records. In
short, TEX parses each different line of the input
text file and expands the macros with its “eyes” and
“mouth” (according to [2], page 38), then it sends a
list of tokens into its “stomach”. In turn, the stomach
creates lines of text, stacks them into paragraphs,
and stacks the paragraphs into pages. Once a page
is complete with the objects properly positioned, it
is shipped out to the output file. During this process,
TEX keeps the input record information until macro

expansion only (in its head), and it does not know
the corresponding output record until ship out time
which occurs later (in its stomach). The problem is to
force TEX to remember the input record information
until ship out time.

4.2 Partial solutions using macros

The first idea, developed in the srcltx package,
is to use the \special macro to keep track of the
input record information until ship out time. By this
method, it inserts in the text flow invisible material
that dedicated DVI viewers can understand. The
main problem is that this invisible material is not
expected to be there and can alter significantly the
line breaking mechanism or cause other packages to
malfunction, which is extremely troublesome.

The second idea, developed in the pdfsync pack-
age, is also to use macros, but in a different way
because it is more difficult to manage PDF contents
than DVI contents. This package automatically adds
in the input source some macros that act in two
steps. At macro expansion time, they write to an
auxiliary file the input record information with a
unique identifying tag. They also insert in the text
flow invisible material to prepare TEX to write the
output record information at ship out time, with
exactly the same identifying tag. In this design,
the problems concerning line breaking and package
incompatibility remain. Moreover, the mapping be-
tween input and output records is not one to one,
which renders synchronization support very hard to
implement for developers.

In these two different solutions, we see the in-
herent limits of synchronization using macros. More
generally, we can say that those macros are active
observers of the input records. In fact, by inserting
invisible material in the text flow they interact with
the typesetting process. On the contrary, SyncITEX
is a neutral observer that never interacts with the
typesetting process.

4.3 How SyncTEX works

In fact, the only object that ever knows both the
input and output records is the TEX engine itself,
so it seems natural to embed some synchronization
technology into it.

We first have to determine what kind of infor-
mation is needed to achieve synchronization. For
that purpose, we follow [2] at page 63: “TEX makes
complicated pages by starting with simple individ-
ual characters and putting them together in larger
units, and putting these together in still larger units,
and so on. Conceptually, it’s a big paste-up job.

366 TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

The TEXnical terms used to describe such page con-
struction are boxes and glue.” The key words are
“characters”, “boxes” and “glue”. But since an in-
dividual character requires a considerable amount
of extra memory, only horizontal boxes and vertical
boxes are taken into account at first. For these boxes,
we ask TEX to store in memory, at creation time and
during their entire lifetime, the current input record.
At ship out time, we ask TEX to report for each box
the stored file name, the stored line number, the
horizontal and vertical positions, and the dimensions
as computed during typesetting. This information
will be available for synchronization: for example
when the user clicks on some location of the PDF
document, we can really find out in which box the
click occurred, and then deduce the corresponding
file name and line number. We have here the design
for a neutral observer.

But if this new information is sufficient for lo-
cating, it cannot be used for synchronization due
to the way TEX processes files. In fact, boxes can
be created in TEX’s mouth where the current input
record is accurate, but in general, they are created
in the stomach when breaking lines into paragraphs,
for text that was parsed a long time ago and no
longer corresponds to the current input record. This
is particularly obvious when a paragraph spans many
lines of the input text: the line breaking mechanism
is engaged after the last line is parsed, and every hor-
izontal box then created will refer to the last input
line number even if the contained material comes
from a previous input line. For that reason, we also
ask TEX to store input records for glue items, be-
cause they are created in TEX’s mouth, when the
current input record is still accurate.

By combining boxes and glue management, we
have accurate information about positions in the
output and the correspondence with positions in the
input file. In fact, things are slightly more compli-
cated because of TEX internals: kern, glue and math
nodes are more or less equivalent at the engine level,
so SyncTEX must treat them similarly, but this is
better for synchronization due to the supplemental
information provided.

SyncTEX does other sorts of magic concerning
file name management, the magnification and offset,
but these are implementation details.

4.4 The benefits of SyncTEX

Embedding the synchronization technology deeply
inside the TEX engine solves many problems and
improves the feature significantly.

The most visible improvements are connected
with accuracy: with SyncTEX, the synchronization

Direct and reverse synchronization with SyncITEX

process reaches in general a precision of +1 line.
With additional technologies such as implemented in
iTEXMac2, we can even synchronize by words (see
figure 1), essentially always finding an exact word
correspondence between input and output.

The next improvements are a consequence of
the overall design of SyncTEX. Since synchronization
is deeply embedded into the TEX engines, there is
no TEX macro involved in the process. As a straight-
forward consequence, there cannot be any incom-
patibility with macro packages. Moreover, no extra
invisible material is added to the text flow, thus en-
suring that the layout of the documents is exactly the
same whether SyncTEX is activated or not. As a mat-
ter of fact, it is absolutely impossible to determine
if the output was created with SyncITEX activated
by examining its contents. Finally, no assumptions
are made about external macros or output format,
so that synchronization works the same for Plain,
BTEX or ConTEXt as well as DVI, XDV or PDF.

Of course, all this needs extra memory and com-
putational time but this is in no way significant. In
fine, we can say that with SyncTEX, the synchroniza-
tion has become safe and more precise.

5 Limits and improvements

It is indisputable that abandoning the use of macros
and choosing an embedded design is a great advance
for synchronization. But still it is not perfect! Some
aspects of the implementation are not complete due
to a lack of time, but others will prevent us from
reaching the ultimate synchronization comparable to
wystwyg (an acronym for “What You See Is What
You Get”) as discussed in [7].

5.1 The DVI to PDF filters

When producing a PDF document from a DVI or XDV
output, we apply a filter like dvitopdf or xdv2pdfmx.
But those filters can alter the geometry of the output
by changing the magnification or the offset of the
top left corner of the text. In that case, the SyncITEX
information, which is accurate for the DVI file, is not
accurate for the PDF file. This problem is solvable
by post-processing the SyncITEX output file with the
new synctex command line tool available in the
distributions, eg

xdv2pdfmx -m MAG -x XXX -y YYY foo
should be followed by
synctex update -m MAG -x XXX -y YYY foo

But this is not a good design. Instead, the post-
processing should be embedded into the various DVI
to PDF filters so that no further user interaction is
required.

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting 367

Jérome Laurens

5.2 Using TEX’s friends

Some documents are created with a complex typeset-
ting flow where TEX is just one tool amongst others.
In such circumstances, the TEX file is automatically
generated from possibly many original input files by
some processor. Then, synchronization should occur
between the output and the original input files rather
than the TEX file, which is just an intermediate step.
For example, a bibliography in IXTEX is generally
built by BIBTEX based on a bibliography database
with a bib file extension using an intermediate auxil-
iary BTEX file with a bbl file extension. At present,
the synchronization occurs between the PDF output
and the bbl file and not the original bib file, as one
would prefer.

Improving SyncTEX to properly manage this
situation is not extremely complicated: we first have
to define a SyncTEX map file format for the mapping
between the lines of the original input files and the
lines of the produced TgX files, then we have to
provide facilities to merge this mapping information
into the SyncIEX output file. Then the processor
could produce the map file, and a supplemental step
in the typesetting flow would update the SyncTEX
information with that map.

Sometimes it might not be appropriate to simply
bypass the intermediate file. In that case, the viewer
should synchronize with the auxiliary file using a
text editor which in turn should synchronize with
the original input file using the map file.

5.3 Accuracy and the column number

As described above, we only take into account whole
lines in the input files and jump from or to lines
in the text. This can suffice for textual files, but
does not when mathematical formulas are involved —
we would like to have a more precise position in
the input. Unfortunately, when parsing the input
files, the original TEX engine does not handle column
positions at all. And it seems that adding support
for this supplemental information might need a great
amount of work, probably much greater than the
eventual benefits.

5.4 For non-Latin languages

SyncTEX has been designed with a Latin language
background: it relies on the fact that TEX automat-
ically creates kern and glue nodes at parse time to
manage interword spacing. For languages that do not
have a comparable notion of word, the synchroniza-
tion will not be sufficiently accurate and will most
certainly need further investigations. This question is

open and the author welcomes test files, suggestions
and advice.

5.5 A question of design

The two preceding limitations are consequences of
a conceptual default in the actual synchronization
design. With SyncTEX, the TEX engine has been
modified to export some observed information useful
for synchronizers. The problem is that we are able to
observe only what TEX allows us to, and this is not
always the best information we would like to have.
It would be more comfortable and efficient if TEX
already provided synchronization facilities from the
very beginning. In that case, all the macros packages
would have to be compatible with the synchroniza-
tion code and not the opposite. That would require
more work for the package maintainers but would
also prevent any kind of layout and compatibility
problems due to special nodes.

In a different approach, a supplemental step
could be to store synchronization information for
each individual character, thus increasing the mem-
ory requirements of the engine in a way similar to
how XHTEX handles multi-byte characters. This idea
was originally proposed by Han Thé Thanh, but it
was abandoned because the SyncTEX output file was
unbearably huge. With the new design, this idea can
certainly be revisited with more success.

Anyway, further investigations into the arcana
of the TEX program would certainly lead to a better
synchronization accuracy but if we want to avoid
huge changes in TEX and keep compatibility with
existing macro packages, we must admit that we
have almost reached some insuperable barrier.

6 Implementation in TEX Live

Without entering into great detail, we explain how
the implementation of SyncTEX is carefully designed
to ease code maintenance and enhancements, as far
as possible.

6.1 A segmented implementation

All the SyncTEX related code is gathered in only one
directory named synctexdir, in which the code is
split into different source files. The separation is orga-
nized in order to share the maximum amount of code
between the different engines, and to clearly iden-
tify the different tasks involved in the information
management. All in all, we end up with 14 different
change files. When building the binaries, the partial
make file synctex.mk has the duty to manage which
change file should apply to which engine and when.

368 TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

6.2 An orthogonal implementation

One of the key concepts in modern code design is sep-
aration, whose purpose is to ease code management
and maintenance. WEB Pascal does not offer facilities
for code separation, nevertheless, it is possible to
build all the engines with or without the SyncITEX
feature, as explained in the synctex.mk file. It will
be useful for developers whenever a problem is caused
by the SyncTEX patches.

7 Which software supports SyncTEX

Up to now, we have focused on the technological
aspects of synchronization, and we have described
in detail the foundations. It is time to look at the
concrete implementations of synchronization with
different methods, because this feature is useless if
it is not adopted by applications. Sync¢TEX not only
consists of changes to the TEX engine, but gives
developers tools to easily support the technology.

7.1 The SyncITEX parser library

The main tool is a library written in C, whose pur-
pose is to help developers implement direct and re-
verse synchronization in their application. It con-
sists of one file named synctex_parser.c and its
header counterpart synctex_parser.h, meant to
be included as-is in application sources. Both are
available on the SyncIEX web site [4]. The source
file takes care of all the ancillary work concerning
SyncIEX information management and the header
file contains all the necessary help for an optimal
usage of the programming interface.

At this writing, TEXworks (presented by J. Kew
in [1]), Sumatra PDF on the Windows platform,
and Skim and iTgXMac2 on Mac OS X, all support
SyncTEX by including this parser library. For other
applications, TEX users are encouraged to send a
feature request to the developers of their favorite
PDF or DVI viewer.

7.2 Remark about the document viewer

It should be noticed that the tricky part of direct and
reverse synchronization should be handled by the
viewer only. The SyncTEX parser library is meant
not for text editors but for viewers. In a normal
direct synchronization flow, the user asks the text
editor to synchronize the viewer with a given line
in a given input file, the text editor forwards the
file name and the line number to the viewer, the
viewer asks the SyncIEX parser for the page number
and location corresponding to the information it has
received, then it scrolls its view to the expected page
and highlights the location. In a normal reverse

Direct and reverse synchronization with SyncITEX

synchronization flow, the user asks the viewer to
synchronize the text editor with a given location
in a given page of an output file, the viewer asks
the SyncTEX parser for the input file name and line
number corresponding to the location; it then asks
the text editor to display the named input file and
highlight the numbered line.

7.3 The new synctex command line tool

There are cases when the inclusion of the parser li-
brary is not possible or even improbable (consider
for example Adobe’s Acrobat reader). For such situ-
ations, the synctex command line tool is the alter-
native designed to allow synchronization. It is just a
wrapper over the SyncTEX parser library that acts as
an intermediate controller between a text editor and
a viewer. The description of its usage is obtained via
the command line interface running synctex help
view for direct synchronization and synctex help
edit for reverse synchronization.

Provided that the text editor and the viewer
have some scripting facilities, here is how this tool
should be used. For direct synchronization, the user
asks the text editor to synchronize the viewer with
a given line in a given input file, the text editor for-
wards this file name and line number to the synctex
tool together with some scripting command to acti-
vate the viewer, the synctex tool transparently asks
the SyncTEX parser for the page number and loca-
tion corresponding to the information it has received,
then it asks the viewer to proceed with the help of
the scripting command.

For reverse synchronization, the user asks the
viewer to synchronize the text editor with a given
location in a given page of an output file, the viewer
forwards this information to the synctex tool to-
gether with some scripting command to activate the
text editor, the synctex tool transparently asks the
SyncTEX parser for the input file name and line num-
ber corresponding to the information it has received,
then it asks the text editor to proceed according to
the received scripting command.

Before this tool was available, developers had no
solution other than directly parsing the contents of
the SyncTEX output file. This was generally made in
continuation of the implementation of pfdsync sup-
port. Comparatively, it is more comfortable to work
with a . synctex file than a . pdfsync file because the
new syntax is extremely clear and straightforward,
consequently reverse engineering was unexpectedly
encouraged. But this practice should be abandoned
for two reasons: it is certainly not compatible with
forthcoming enhancements of SyncIEX, and it gener-
ally does not work when changing the magnification

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting 369

Jérome Laurens

and the offset in the DVI to PDF conversion, as dis-
cussed above. In order to convince developers to
prefer the synctex tool, the specifications of the
SyncTEX output file are considered private and will
not be widely published.

More details concerning usage and implementa-
tion are available on the SyncTEX web site [4].

8 Applications

There are a variety of ways to use the newly avail-
able information in the SyncTEX output file. Some
were considered while designing this feature, others
suggested by people at the conference. No doubt this
list is not exhaustive.

8.1 Better typesetting mechanisms

TEX is well known for its high quality page breaking
mechanism, but the hardware constraints that were
crucial 30 years ago imposed some choices and delib-
erate barriers. The limitation in memory usage led
to a page by page design, where memory is freed each
time a page is shipped out. In that situation, a page
breaking algorithm cannot perform optimization in
a document as a whole, but only on a small number
of consecutive pages.

In order to have global optimization algorithms,
one can keep everything in memory until the end of
the TEX run, but that would require a big change in
the engine. From another standpoint, SyncTEX has
demonstrated that it is possible to trace geometrical
information throughout the typesetting process. It is
clear that the information actually contained in the
SyncTEX output file is not suitable for typesetting
purpose because it was designed for synchronization
only. But with some additional adaptations, there is
no doubt that SyncITEX can help in designing global
optimization algorithms for even better typesetting.

8.2 Debugging facilities

During his presentation at the conference (see [3]),
the author used a lightweight PDF viewer to demon-
strate SyncITEX. This viewer was primarily designed
as a proof of concept and as such, was meant to
remain private. But one of its features might be of
great interest to the TEX community, as suggested
by different people at the conference, namely the
ability to display over the text all the boxes, either
horizontal or vertical, created during the typesetting
process. As it happens, this feature was already im-
plemented in an unknown modest PDF viewer for
Mac OS X (whose name I have unfortunately lost) by
parsing the result of the \tracingall macro in the
log file.

Superscript may indicate not only exponential, but modi
cos?(x) cos™ ! () may indicate cos(z:)* cos(s
cos’ () almost never means COS(COS(I))

Figure 2: TEX output embedded in HTML, detail of
http://en.wikipedia.org/wiki/Special_functions
(2008/08/11)

The interest is at least twofold. It can serve
debugging purposes for publishers who want to elab-
orate complicated page layouts, and it can also serve
pedagogical purposes during TEX training sessions.
For these reasons, this viewer will be available on
the SyncTEX web site [4] once it has been properly
factored for distribution. Unfortunately, this bene-
fits Mac OS X users only, but adding this feature to
the new cross-platform TgXworks will eventually be
considered.

8.3 Embedding TEX output into HTML or
running text

In web pages, it is rather common to include mathe-
matical formulas as embedded images built with TEX,
to compensate for the limitations of web browsers.
The example given in figure 2 is particularly ugly,
not only because the size of the mathematical text
does not conform to the size of the running text, but
also because the base lines of the formulas and the
running text are not properly aligned. In fact, the
included images contain no information concerning
the base line, and this is where SyncTEX can come
into play. The synchronization information contains
the dimensions of each box containing a mathemati-
cal formula, in particular its height and depth, hence
the exact position of the base line. We just have to
raise the image by the proper amount to obtain a
correct vertical alignment.

9 Concluding remarks
9.1 Synchronizing by word

In iTEXMac2, synchronization is enhanced to at-
tain the precision of a word or even a character, by
combining SyncTEX with some text analysis. This
was rather easy to accomplish because iTEXMac2
manages both the text input and the PDF output,
and also because the PDF library on Mac OSX has
text facilities. But this does not mean that only an
integrated TEX environment is able to reach such
a level of accuracy. It is in fact more a matter of
communication between different applications.

370 TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting

http://en.wikipedia.org/wiki/Special_functions

In fact, the text editors and the viewers allow
some inter-process communication through the com-
mand line, for example mate -1 LINE foo.tex asks
the TextMate text editor to edit foo.tex at line LINE.
Only the line number is used and this is perfectly
suitable for programmers because in general, com-
pilers and debuggers only need line numbers. But
TEX users are not programmers. In ¢TgXMac2 this
kind of practice has been reconsidered for reverse
synchronization and the information passed to the
text editor contains not only the file name and the
line number, but also an extract of text surrounding
the character under the mouse. This supplemental
information is the hint used by the text editor to
have a better focus on the synchronization target.
For direct synchronization, the same idea applies and
the PDF viewer is asked to highlight a location in a
given page, with the help of a similar textual hint.

In order to achieve synchronization by word
or character, text editors and viewers should use a
textual hint, both as senders and receivers. Of course
this requires some coding effort because input text
and output text are not exactly the same (due to line
breaking for example), but the expense is affordable
as soon as efforts are combined. Once again, users
are encouraged to submit feature requests to the
developers of their favorite tools.

By the way, the new synctex command line
tool anticipates the use of a textual hint by editors
or viewers through its -h command line option.

9.2 An historical standpoint

Synchronization with SyncTEX appears for the 30"
anniversary of TEX; we can legitimately wonder why
and whether such a long period of gestation was
necessary. In order to explain this delay, let us
review the ingredients that made SyncIEX possible.

As in many situations of software design, a fa-
vorable context comes concurrently from available
technologies and available workers. Regarding tech-
nological aspects, we can say in a reduction not very
far from reality that SyncIEX is nothing but a clever
usage of the Web2C implementation of TEX. Of
course, developing on Mac OSX was rather easy and
very efficient, but any other environment would cer-
tainly provide the same result at the price of more
programming work.

Concerning people, the author has claimed since
the beginning of pdfsync that some synchronization
should definitely be embedded in the TEX engine, in
the hope that someday, someone else would do it.
Han Thé Thanh was aware of the problem three years

Direct and reverse synchronization with SyncITEX

ago (not one year ago as claimed by the author dur-
ing his presentation [3]), but he could only take some
time for coding this in summer 2007, probably under
the friendly pressure of some users dissatisfied with
the limits of pdfsync. Although his first attempt was
hardly usable and finally abandoned, it introduced
the author to the minutiae of the Web2¢ implemen-
tation of TEX. Initially, SyncTEX was targeted at
pdfTEX but Jonathan Kew helped in adapting it to
XHATEX and also with the integration into TEX Live.

This short review seems to indicate that tech-
nologies like SyncTEX could easily have become avail-
able many years ago. One can attribute the delay
to a lack of effort devoted to the human interface
of TEX, which is highly regrettable. With SyncdTEX
and tools like TEXworks, first steps are made in the
right direction, because TEX really deserves a good
human interface, not just a user interface.

10 Acknowledgements

The author gratefully thanks Han Thé Thanh with-
out whom this work would never have started and
Jonathan Kew without whom this work would not
have reached the present stage. He received impor-
tant remarks and valuable help from members of the

pdfTEX, XHATEX, iTEXMac2 and TEX Live develop-

ment teams; thanks to all of them.

References

[1] Jonathan Kew. TgXworks: Lowering the
barrier to entry. In this volume, pages 362-364.

[2] D. Knuth. The TgXbook. Addison Wesley, 1983.

[3] Jérome Laurens. SyncTEX presentation at
TUG 2008. nhttp://www.river-valley.
tv/conferences/tug2008/#0302-Jerome_
Laurens.

[4] Jérome Laurens. SyncTpX web site. http:
//itexmac.sourceforge.net/SyncTeX.html.

[5] Jérome Laurens. iTEXMac, an integrated TEX
environment for Mac OSX. In TgX, XML,
and Digital Typography, volume 3130,/2004
of Lecture Notes in Computer Science, pages
192-202. Springer Berlin / Heidelberg, 2004.

[6] Jérome Laurens. The TEX wrapper structure:
A basic TEX document model implemented
in iTpXMac. In EuroTgX 2005, 15" Annual
Meeting of European TEX Users, 2005.

[7] Jérome Laurens. Will TEX ever be wysiwyg or
the PDF synchronization story. The PracTgX
Journal 2007(3), 2007.

TUGboat, Volume 29 (2008), No. 3— Proceedings of the 2008 Annual Meeting 371

http://www.river-valley.tv/conferences/tug2008/#0302-Jerome_Laurens
http://www.river-valley.tv/conferences/tug2008/#0302-Jerome_Laurens
http://www.river-valley.tv/conferences/tug2008/#0302-Jerome_Laurens
http://itexmac.sourceforge.net/SyncTeX.html
http://itexmac.sourceforge.net/SyncTeX.html

	What is synchronization?
	What is SyncTeX?
	Other synchronization technologies
	Solving the synchronization problem
	Stating the problem
	Partial solutions using macros
	How SyncTeX works
	The benefits of SyncTeX

	Limits and improvements
	The DVI to PDF filters
	Using TeX's friends
	Accuracy and the column number
	For non-Latin languages
	A question of design

	Implementation in TeX Live
	A segmented implementation
	An orthogonal implementation

	Which software supports SyncTeX
	The SyncTeX parser library
	Remark about the document viewer
	The new synctex command line tool

	Applications
	Better typesetting mechanisms
	Debugging facilities
	Embedding TeX output into HTML or running text

	Concluding remarks
	Synchronizing by word
	An historical standpoint

	Acknowledgements

