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What is “boxes and glue” (recap)?

... is a collection of software libraries

... not a ready-to-run piece of software

... written in the Go programming language

... the attempt to bring TEX's superb typesetting quality to a 
modern environment

... and of course OpenSource

boxes and glue ... 
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Why boxes and glue?

(Fully automatic) catalog production with LuaTEX
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Same data structures and API

Nodes (glyph, glue, rule, whatsit)

Node packing (vpack, hpack)

Rectangular items

Line breaking

Hyphenation
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Architecture of boxes and glue

BackendFonts Language
Document/ 

Pages Images Nodes PDF library

FrontendFont 
families Colors CSS/HTML Interaction Accessibility Page layout

Application

HTML/CSS typesetting

catalog software (XML based)
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Writing PDF can be difficult

Looks like an innocent file format  
(plain text + some binary data)

Spec has more than 1000 pages



13

“Innocent file format”
5 0 obj
<<
  /Type /XObject
  /Subtype /Image
  /DecodeParms << /Columns 1072 /Predictor 15 >>
  /BitsPerComponent 8
  /ColorSpace [/Indexed /DeviceRGB 128 6 0 R]
  /Filter /FlateDecode
  /Height 804
  /Length 22877
  /Width 1072
>>
stream
...
  <compressed data>
...
endstream
endobj
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Lessons learned (so far)

It works!  

Writing PDF can be difficult 

Err and err and err again

but not less and less and less
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Tools for PDF debugging

Adobe Acrobat

less 
(use qpdf to decompress): 
qpdf --qdf --object-streams=disable in.pdf out.pdf

veraPDF (OpenSource)

PAC (PDF Accessibility Checker) from PDF/UA foundation

Development cycle

implement feature  
and write PDF open in Adobe Acrobat check for errors
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“Printf” debugging

a := readInput()
printf("input is:", a)
doSomething(a)
...
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Printf debugging...

Works only for simple cases

Too much output for data structures used in typesetting

How do I understand the nested node lists?

 
    Structured output is important!
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Node debugging

viz nodelist

https://gist.github.com/pgundlach/556247
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Node debugging
└─VLIST dir: TLT 
  ╚═head: 
    ├─WHATSIT subtype: pdf_literal, mode: 1, data: data 
    ├─VLIST  
    └─VLIST dir: TLT 
      ╚═head: 
        ├─GLUE width: 28.35pt 
        └─HLIST width: 566.94pt, depth: 3pt, height: 9pt, dir: TLT 
          ╚═head: 
            ├─GLUE width: 28.35pt 
            └─VLIST width: 538.59pt, depth: 3pt, height: 9pt, dir: TLT 
              ╚═head: 
                └─VLIST width: 538.59pt, depth: 3pt, height: 9pt, dir: TLT 
                    properties: {['origin'] = par:format} 
                  ╚═head: 
                    └─HLIST subtype: line, width: 538.59pt, depth: 3pt, height: 9pt, dir: TLT, attr: 405=0  
                      ╚═head: 
                        ├─RULE depth: 3pt, height: 9pt, attr: fontfamily=2  
                        │   properties: {['kernafter'] = -1973.451} 
                        ├─GLYPH char: fi, width: 5.35pt, height: 7.12pt, attr: fontfamily=2  
                        │   properties: {['kernafter'] = -1973.451} 
                        ├─KERN kern: -0.03pt 
                        │   properties: {['kernafter'] = -2631.268} 
                        ├─GLYPH char: s, width: 3.67pt, height: 4.48pt, depth: 0.12pt, attr: fontfamily=2  
                        │   properties: {['kernafter'] = -2631.268} 
                        ├─KERN kern: -0.04pt 
                        ├─GLYPH char: h, width: 5.34pt, height: 7.12pt, attr: fontfamily=2  
                        ├─PENALTY penalty: 10000 
                        │   properties: {['origin'] = finishpar} 
                        ├─GLUE subtype: parfillskip, stretch: +1fil 
                        └─GLUE subtype: rightskip

nodetree  
(by Josef Friedrich)

https://ctan.org/pkg/nodetree
https://ctan.org/pkg/nodetree
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Structured debugging output 
<vlist id="567" wd="538.58" ht="48" dp="0" origin="textblock">  
  <vlist id="566" wd="538.58" ht="48" dp="0">  
    <hlist id="564" wd="538.58" ht="48" dp="0" r="1" origin="line">  
      <glue id="563" wd="0" stretch="0" stretchorder="0" shrink="0" shrinkorder="0" subtype="0"/>  
      <vlist id="556" wd="538.58" ht="48" dp="0">  
        <vlist id="555" wd="538.58" ht="48" dp="0" origin="prepend in HTML mode" x="0" y="0">  
          <hlist id="553" wd="538.58" ht="8.02" dp="1.98" r="15.671976806286716" origin="line">  
            <glue id="552" wd="0" stretch="0" stretchorder="0" shrink="0" shrinkorder="0" subtype="0"/>  
            <glyph id="4" components="L" wd="5.56" ht="8.02" dp="1.98" codepoint="72" face="0"/>  
            <glyph id="5" components="o" wd="5.56" ht="8.02" dp="1.98" codepoint="82" face="0"/>  
            <glyph id="6" components="r" wd="3.33" ht="8.02" dp="1.98" codepoint="97" face="0"/>  
            <kern id="7" kern="-0.1"/>  
            ...  
            <glyph id="482" components="." wd="2.78" ht="8.02" dp="1.98" codepoint="89" face="0"/>  
            <penalty id="533" penalty="10000" width="0"/>  
            <glue id="534" wd="0" stretch="1" stretchorder="1" shrink="0" shrinkorder="0" subtype="0"/>  
            <glue id="539" wd="165.58" stretch="1" stretchorder="3" shrink="0" shrinkorder="0" subtype="0"/>  
          </hlist>  
          <glue id="554" wd="2" stretch="0" stretchorder="0" shrink="0" shrinkorder="0" subtype="0" origin="last lineskip"/>  
        </vlist>  
      </vlist>  
      <penalty id="557" penalty="10000" width="0"/>  
      <glue id="558" wd="1" stretch="1" stretchorder="1" shrink="0" shrinkorder="0" subtype="0"/>  
      <glue id="562" wd="0" stretch="0" stretchorder="0" shrink="0" shrinkorder="0" subtype="0"/>  
    </hlist>  
    <glue id="565" wd="0" stretch="0" stretchorder="0" shrink="0" shrinkorder="0" subtype="0" origin="last lineskip"/>  
  </vlist>  
</vlist>
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Experiment with the algorithms

Optimizations for page break and paragraph break

Parallel tasks

Next steps (from last year)
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Conclusion (1)

Porting TEX algorithms and data structures is possible

Development takes much more time than estimated

Seeing the results keeps my motivation high



Conclusion (2)
Roses are red 
Violets are blue 
I create my PDF 
With boxes and glue

https://github.com/speedata/boxesandglue

https://boxesandglue.devHomepage

GitHub

@boxesandglue@typo.socialMastodon
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“

https://github.com/speedata/boxesandglue
https://boxesandglue.dev
https://typo.social/@boxesandglue

