
News from
boxes and glue

TUG 2023
July 14 2023
Hotel Collegium Leoninum
Bonn

Patrick Gundlach
gundlach@speedata.de

speedata
Berlin, Germany

mailto:gundlach@speedata.de
http://www.speedata.de/

News from
boxes and glue

TUG 2023
July 14 2023
Hotel Collegium Leoninum
Bonn

Patrick Gundlach
gundlach@speedata.de

speedata
Berlin, Germany

mailto:gundlach@speedata.de
http://www.speedata.de/

2

What is “boxes and glue” (recap)?
boxes and glue ...

2

What is “boxes and glue” (recap)?

... is a collection of software libraries

boxes and glue ...

2

What is “boxes and glue” (recap)?

... is a collection of software libraries

... not a ready-to-run piece of software

boxes and glue ...

2

What is “boxes and glue” (recap)?

... is a collection of software libraries

... not a ready-to-run piece of software

... written in the Go programming language

boxes and glue ...

2

What is “boxes and glue” (recap)?

... is a collection of software libraries

... not a ready-to-run piece of software

... written in the Go programming language

... the attempt to bring TEX's superb typesetting quality to a
modern environment

boxes and glue ...

2

What is “boxes and glue” (recap)?

... is a collection of software libraries

... not a ready-to-run piece of software

... written in the Go programming language

... the attempt to bring TEX's superb typesetting quality to a
modern environment

... and of course OpenSource

boxes and glue ...

3

Why boxes and glue?

(Fully automatic) catalog production with LuaTEX

4

Same data structures and API

4

Same data structures and API

Nodes (glyph, glue, rule, whatsit)

4

Same data structures and API

Nodes (glyph, glue, rule, whatsit)

Node packing (vpack, hpack)

4

Same data structures and API

Nodes (glyph, glue, rule, whatsit)

Node packing (vpack, hpack)

Rectangular items

4

Same data structures and API

Nodes (glyph, glue, rule, whatsit)

Node packing (vpack, hpack)

Rectangular items

Line breaking

4

Same data structures and API

Nodes (glyph, glue, rule, whatsit)

Node packing (vpack, hpack)

Rectangular items

Line breaking

Hyphenation

4

Same data structures and API

Nodes (glyph, glue, rule, whatsit)

Node packing (vpack, hpack)

Rectangular items

Line breaking

Hyphenation

...

5

Architecture of boxes and glue

5

Architecture of boxes and glue

BackendFonts Language
Document/

Pages Images Nodes PDF library

5

Architecture of boxes and glue

FrontendFont
families Colors CSS/HTML Interaction Accessibility Page layout

BackendFonts Language
Document/

Pages Images Nodes PDF library

5

Architecture of boxes and glue

FrontendFont
families Colors CSS/HTML Interaction Accessibility Page layout

BackendFonts Language
Document/

Pages Images Nodes PDF library

Application

5

Architecture of boxes and glue

BackendFonts Language
Document/

Pages Images Nodes PDF library

FrontendFont
families Colors CSS/HTML Interaction Accessibility Page layout

Application

5

Architecture of boxes and glue

BackendFonts Language
Document/

Pages Images Nodes PDF library

FrontendFont
families Colors CSS/HTML Interaction Accessibility Page layout

Application

5

Architecture of boxes and glue

BackendFonts Language
Document/

Pages Images Nodes PDF library

FrontendFont
families Colors CSS/HTML Interaction Accessibility Page layout

Application

5

Architecture of boxes and glue

BackendFonts Language
Document/

Pages Images Nodes PDF library

FrontendFont
families Colors CSS/HTML Interaction Accessibility Page layout

Application

HTML/CSS typesetting

catalog software (XML based)

6

Time line

6

Time line

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

6

Time line

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

web → go
experiments

6

Time line

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

web → go
experiments first TEX

algorithm

6

Time line

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

web → go
experiments first TEX

algorithm

CSS/HTML
typesetting
experiments

6

Time line

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

web → go
experiments first TEX

algorithm
first commit

boxes and glue

CSS/HTML
typesetting
experiments

6

Time line

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

web → go
experiments first TEX

algorithm
first commit

boxes and glue

CSS/HTML
typesetting
experiments

Lua
frontend

6

Time line

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

web → go
experiments first TEX

algorithm
first commit

boxes and glue

CSS/HTML
typesetting
experiments

Lua
frontend

XML
XPath 2
library

6

Time line

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

web → go
experiments first TEX

algorithm
first commit

boxes and glue

CSS/HTML
typesetting
experiments

Lua
frontend

XML
XPath 2
library

XTS

CSS/HTML
typesetting

6

Time line

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

web → go
experiments first TEX

algorithm
first commit

boxes and glue

CSS/HTML
typesetting
experiments

Lua
frontend

XML
XPath 2
library

XTS

CSS/HTML
typesetting

first
productive

use

6

Time line

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

web → go
experiments first TEX

algorithm
first commit

boxes and glue

CSS/HTML
typesetting
experiments

Lua
frontend

XML
XPath 2
library

XTS

7

Next steps / wishes

7

Next steps / wishes

Right to left (and mixed) typesetting

7

Next steps / wishes

Right to left (and mixed) typesetting

Graphics library like MetaPOST

7

Next steps / wishes

Right to left (and mixed) typesetting

Graphics library like MetaPOST

Paragraph shape

7

Next steps / wishes

Right to left (and mixed) typesetting

Graphics library like MetaPOST

Paragraph shape

8

boxes and glue: design goals

8

boxes and glue: design goals

TEX alike typography and output quality

8

boxes and glue: design goals

TEX alike typography and output quality

Performance

8

boxes and glue: design goals

TEX alike typography and output quality

Performance

TEX's data structures

8

boxes and glue: design goals

TEX alike typography and output quality

Performance

TEX's data structures

Arabic et. al. (Unicode, LTR/RTL, Bidi)

8

boxes and glue: design goals

TEX alike typography and output quality

Performance

TEX's data structures

Arabic et. al. (Unicode, LTR/RTL, Bidi)

PDF standards

8

boxes and glue: design goals

TEX alike typography and output quality

Performance

TEX's data structures

Arabic et. al. (Unicode, LTR/RTL, Bidi)

PDF standards

9

Lessons learned (so far)

9

Lessons learned (so far)

It works!

9

Lessons learned (so far)

It works!

Writing PDF can be difficult

9

Lessons learned (so far)

It works!

Writing PDF can be difficult

Err and err and err again

10

It works!

11

Lessons learned (so far)

It works!

Writing PDF can be difficult

Err and err and err again

12

Writing PDF can be difficult

12

Writing PDF can be difficult

Looks like an innocent file format
(plain text + some binary data)

12

Writing PDF can be difficult

Looks like an innocent file format
(plain text + some binary data)

Spec has more than 1000 pages

13

“Innocent file format”
5 0 obj
<<
 /Type /XObject
 /Subtype /Image
 /DecodeParms << /Columns 1072 /Predictor 15 >>
 /BitsPerComponent 8
 /ColorSpace [/Indexed /DeviceRGB 128 6 0 R]
 /Filter /FlateDecode
 /Height 804
 /Length 22877
 /Width 1072
>>
stream
...
 <compressed data>
...
endstream
endobj

14

“Innocent file format”

14

“Innocent file format”

15

“Innocent file format”

15

“Innocent file format”

15

“Innocent file format”

15

“Innocent file format”

16

“Innocent file format”

16

“Innocent file format”

17

Lessons learned (so far)

It works!

Writing PDF can be difficult

Err and err and err again

17

Lessons learned (so far)

It works!

Writing PDF can be difficult

Err and err and err again

but not less and less and less

18

Different kind of errors

18

Different kind of errors

19

Different kind of errors

(empty PDF)

19

Different kind of errors

(empty PDF)

20

Writing PDF (error checking)

20

Writing PDF (error checking)

20

Writing PDF (error checking)

20

Writing PDF (error checking)

21

Tools for PDF debugging

21

Tools for PDF debugging

Adobe Acrobat

21

Tools for PDF debugging

Adobe Acrobat

less
(use qpdf to decompress):
qpdf --qdf --object-streams=disable in.pdf out.pdf

21

Tools for PDF debugging

Adobe Acrobat

less
(use qpdf to decompress):
qpdf --qdf --object-streams=disable in.pdf out.pdf

veraPDF (OpenSource)

21

Tools for PDF debugging

Adobe Acrobat

less
(use qpdf to decompress):
qpdf --qdf --object-streams=disable in.pdf out.pdf

veraPDF (OpenSource)

PAC (PDF Accessibility Checker) from PDF/UA foundation

21

Tools for PDF debugging

Adobe Acrobat

less
(use qpdf to decompress):
qpdf --qdf --object-streams=disable in.pdf out.pdf

veraPDF (OpenSource)

PAC (PDF Accessibility Checker) from PDF/UA foundation

Development cycle

implement feature
and write PDF open in Adobe Acrobat check for errors

22

Debugging...

22

Debugging...

22

Debugging...

Use a step by step debugger

22

Debugging...

Use a step by step debugger

Visual debugging

22

Debugging...

Use a step by step debugger

Visual debugging

“Printf” debugging

a := readInput()
printf("input is:", a)
doSomething(a)
...

22

Debugging...

Use a step by step debugger

Visual debugging

“Printf” debugging

Rubber duck debugging

22

Debugging...

Use a step by step debugger

Visual debugging

“Printf” debugging

Rubber duck debugging

22

Debugging...

Use a step by step debugger

Visual debugging

“Printf” debugging

Rubber duck debugging

23

Printf debugging...

23

Printf debugging...

Works only for simple cases

23

Printf debugging...

Works only for simple cases

Too much output for data structures used in typesetting

23

Printf debugging...

Works only for simple cases

Too much output for data structures used in typesetting

How do I understand the nested node lists?

23

Printf debugging...

Works only for simple cases

Too much output for data structures used in typesetting

How do I understand the nested node lists?

 Structured output is important!

24

Node debugging

viz nodelist

https://gist.github.com/pgundlach/556247

25

Node debugging
└─VLIST dir: TLT
 ╚═head:
 ├─WHATSIT subtype: pdf_literal, mode: 1, data: data
 ├─VLIST
 └─VLIST dir: TLT
 ╚═head:
 ├─GLUE width: 28.35pt
 └─HLIST width: 566.94pt, depth: 3pt, height: 9pt, dir: TLT
 ╚═head:
 ├─GLUE width: 28.35pt
 └─VLIST width: 538.59pt, depth: 3pt, height: 9pt, dir: TLT
 ╚═head:
 └─VLIST width: 538.59pt, depth: 3pt, height: 9pt, dir: TLT
 properties: {['origin'] = par:format}
 ╚═head:
 └─HLIST subtype: line, width: 538.59pt, depth: 3pt, height: 9pt, dir: TLT, attr: 405=0
 ╚═head:
 ├─RULE depth: 3pt, height: 9pt, attr: fontfamily=2
 │ properties: {['kernafter'] = -1973.451}
 ├─GLYPH char: fi, width: 5.35pt, height: 7.12pt, attr: fontfamily=2
 │ properties: {['kernafter'] = -1973.451}
 ├─KERN kern: -0.03pt
 │ properties: {['kernafter'] = -2631.268}
 ├─GLYPH char: s, width: 3.67pt, height: 4.48pt, depth: 0.12pt, attr: fontfamily=2
 │ properties: {['kernafter'] = -2631.268}
 ├─KERN kern: -0.04pt
 ├─GLYPH char: h, width: 5.34pt, height: 7.12pt, attr: fontfamily=2
 ├─PENALTY penalty: 10000
 │ properties: {['origin'] = finishpar}
 ├─GLUE subtype: parfillskip, stretch: +1fil
 └─GLUE subtype: rightskip

nodetree
(by Josef Friedrich)

https://ctan.org/pkg/nodetree
https://ctan.org/pkg/nodetree

26

Structured debugging output
<vlist id="567" wd="538.58" ht="48" dp="0" origin="textblock">  
 <vlist id="566" wd="538.58" ht="48" dp="0">  
 <hlist id="564" wd="538.58" ht="48" dp="0" r="1" origin="line">  
 <glue id="563" wd="0" stretch="0" stretchorder="0" shrink="0" shrinkorder="0" subtype="0"/>  
 <vlist id="556" wd="538.58" ht="48" dp="0">  
 <vlist id="555" wd="538.58" ht="48" dp="0" origin="prepend in HTML mode" x="0" y="0">  
 <hlist id="553" wd="538.58" ht="8.02" dp="1.98" r="15.671976806286716" origin="line">  
 <glue id="552" wd="0" stretch="0" stretchorder="0" shrink="0" shrinkorder="0" subtype="0"/>  
 <glyph id="4" components="L" wd="5.56" ht="8.02" dp="1.98" codepoint="72" face="0"/>  
 <glyph id="5" components="o" wd="5.56" ht="8.02" dp="1.98" codepoint="82" face="0"/>  
 <glyph id="6" components="r" wd="3.33" ht="8.02" dp="1.98" codepoint="97" face="0"/>  
 <kern id="7" kern="-0.1"/>  
 ...  
 <glyph id="482" components="." wd="2.78" ht="8.02" dp="1.98" codepoint="89" face="0"/>  
 <penalty id="533" penalty="10000" width="0"/>  
 <glue id="534" wd="0" stretch="1" stretchorder="1" shrink="0" shrinkorder="0" subtype="0"/>  
 <glue id="539" wd="165.58" stretch="1" stretchorder="3" shrink="0" shrinkorder="0" subtype="0"/>  
 </hlist>  
 <glue id="554" wd="2" stretch="0" stretchorder="0" shrink="0" shrinkorder="0" subtype="0" origin="last lineskip"/>  
 </vlist>  
 </vlist>  
 <penalty id="557" penalty="10000" width="0"/>  
 <glue id="558" wd="1" stretch="1" stretchorder="1" shrink="0" shrinkorder="0" subtype="0"/>  
 <glue id="562" wd="0" stretch="0" stretchorder="0" shrink="0" shrinkorder="0" subtype="0"/>  
 </hlist>  
 <glue id="565" wd="0" stretch="0" stretchorder="0" shrink="0" shrinkorder="0" subtype="0" origin="last lineskip"/>  
 </vlist>  
</vlist>

27

Next steps (from last year)

27

Experiment with the algorithms

Next steps (from last year)

27

Experiment with the algorithms

Optimizations for page break and paragraph break

Next steps (from last year)

27

Experiment with the algorithms

Optimizations for page break and paragraph break

Parallel tasks

Next steps (from last year)

28

Conclusion (1)

28

Conclusion (1)

Porting TEX algorithms and data structures is possible

28

Conclusion (1)

Porting TEX algorithms and data structures is possible

Development takes much more time than estimated

28

Conclusion (1)

Porting TEX algorithms and data structures is possible

Development takes much more time than estimated

Seeing the results keeps my motivation high

Conclusion (2)
Roses are red
Violets are blue
I create my PDF
With boxes and glue

https://github.com/speedata/boxesandglue

https://boxesandglue.devHomepage

GitHub

@boxesandglue@typo.socialMastodon

29

“

https://github.com/speedata/boxesandglue
https://boxesandglue.dev
https://typo.social/@boxesandglue

