
The design concept for llmk—Light LaTeX Make

The design concept for llmk—Light LaTeX Make

Takuto ASAKURA (wtsnjp)

TUG 2020

1 / 22

The design concept for llmk—Light LaTeX Make

Introduction: A demonstration

$ ls
duck.tex meeting.bib meeting.tex snowman.tex

É Which is the main source TEX file?
É Which TEX engine to use? pdfTEX? X ETEX? LuaTEX?
É What bib program to use? BIBTEX? Biber?

We use pdfTEX for this document. The main source is
meeting.tex and the others are \input by it. We use
BIBTEX for processing its bibliography.

1. Run pdflatex meeting.tex
2. Run bibtex meeting
3. Run pdflatex meeting.tex (for a few times, if necessary)

2 / 22

The design concept for llmk—Light LaTeX Make

TEX, LATEX, and friends: The rich ecosystem

TEX Engines pdfTEX, X ETEX, LuaTEX, (u)pTEX, . . .
Bibliography BIBTEX, Biber, . . .

Indexing Makeindex, xcindy, mendex, . . .
DVIware dvipdfm(x), dvips, . . .

Workflows by Projects
The best workflow is differ from one project to another

Example
É pdfTEX + BIBTEX + Makeindex: one of the most popular
É X ETEX and LuaTEX instead of pdfTEX: reasonable to use system fonts
É (u)pTEX + dvipdfmx: de facto standard for Japanese documents

3 / 22

The design concept for llmk—Light LaTeX Make

Telling workflows
A person may use different tools depending on purpose

Example (In my case)
É pdfLATEX for English documents as the first choice
É X ETEX if I want to use system fonts
É upTEX + dvipdfmx for Japanese documents
É LuaTEX when I want to use its Lua features

Telling which workflow to use in a project to
É human E.g., co-authors, editors, . . .
É systems E.g., text editors, IDEs, build tools, . . .

It would be ideal if we can do this in an easy and uniformed way
for both human and systems.

4 / 22

The design concept for llmk—Light LaTeX Make

Using generic build tools to tell the workflows?
There are numerous existing tools such as GNU Make.
É They are really useful (I have no doubt!)
É They can handle any complex workflow

Example (simple case)
Just telling “We are using pdfLATEX for this document” is enough.
É Do we always provide Makefile for all documents?
É Workflows for typical small documents are not that complex

Hypothesis

In many cases, just writing %#!pdflatex on top of the TEX file (or
similar) would be just fine.

→ I’d like to provide an interpreter for it!
5 / 22

The design concept for llmk—Light LaTeX Make

llmk: The motivation

Mission

Encourage people to always explicitly show the workflow for each
document by providing convenient ways to do it!

É It should provide easy ways to specify the workflows
É It should work in various environments
É It should behave exactly the same in any environment

6 / 22

The design concept for llmk—Light LaTeX Make

The design concept

1. Convenience
É it supports independent config files (llmk.toml)
É and also magic comments in TEX file

E.g., TOML fields, shebang-like magic comments, etc.
É a default config in do-our-best style, which should work fine in

typical and simple LATEX documents

2. Portability
É llmk is cross-platform; it works solely with texlua
É no user config (such as ~/.llmkrc)
∵) llmk config is a means of communicating workflows

Note llmk is NOT trying to replace existing tools
→ It foucuses on simple cases that people neglect using them

7 / 22

The design concept for llmk—Light LaTeX Make

Basic usage (1) llmk.toml and TOML field
Where to write workflow
É llmk.toml is loaded if llmk is executed without arguments
É TOML field in *.tex files specified as arguments

Example (TOML field)
1 % +++
2 % latex = "xelatex"
3 % +++
4 \documentclass{article}

TOML: a config format
É A small language designed for config file cf. INI, JSON, YAML
É It is used by several projects E.g., Hugo and Cargo
É Full spec: see https://toml.io

8 / 22

https://toml.io

The design concept for llmk—Light LaTeX Make

The basics of TOML
TOML is basically line-oriented key=value list, kind of INI extension:
É Comments begin with # and continues to EOL
É Indentation is allowed; Defining a key multiple times is invalid
É Basic data-types (types in red are not yet supported in llmk)
É Strings (basic and literal / single- and multi-line)
É Integer, Floats, Date-Time
É Boolean

Example
1 # Strings
2 key = "value" # basic string (escape sequences are allowed)
3 my_favorite_primitive = ’\expandafter’ # literal string
4

5 # Integer
6 answer = 42
7

8 # Boolean
9 online_conference = true

9 / 22

The design concept for llmk—Light LaTeX Make

Data structures in TOML
É Array: separated by commas; values of the same data-type
É Table: a.k.a. hash table or dictionary; no guarantee for order
É Inline table and array of tables are not yet supported in llmk

Example
1 # Array
2 tug = ["Bachotek", "Rio de Janeiro", "Palo Alto", "Online"]
3

4 # Table
5 [snowman] # until the next table or EOF are the key/values of this table
6 hat = "green"
7 snow = true
8

9 # Nested table
10 [duck.queen]
11 color = "pink"
12 # equivalent in JSON: { "duck": { "queen": { "color": "pink" } } }

10 / 22

The design concept for llmk—Light LaTeX Make

Basic usage (2) Simple keys
É latex (string): LATEX command to use (default: "lualatex")
→ dvipdf, bibtex, etc. are similar
É max_repeat (integer): to solve cross-reference (default: 5)
É source (string or array of strings): source TEX files
→ only valid and required in llmk.toml

Example
1 # source TeX files
2 source = ["test1.tex", "test2.tex"]
3

4 # software to use
5 latex = "xelatex"
6 bibtex = "biber"
7

8 # misc
9 max_repeat = 7

11 / 22

The design concept for llmk—Light LaTeX Make

Flexible control (1) Array sequence and Table programs
É sequence (string array): program names in the order of execution
É programs (table of tables): detailed config for each program

Example sequence

" latex " → " bibtex "

Example programs

latex

command: "xelatex"
auxiliary: "foo.aux"
opts: "-recorder"

bibtex

command: "bibtex"
target: "foo.bib"
postprocess: " latex "

12 / 22

The design concept for llmk—Light LaTeX Make

Flexible control (2) Table programs
Available keys in program (summary)
É command (string): command to execute
É target (string): the command is run, only if the target file exists
É opts (string or array of strings): command-line options
É args (string or array of strings): command-line arguments
É auxiliary (string): the file to monitor (for cross-referencing)
É postprocess (string): the program will be run after, only if it runs

Special specifiers
The following specifiers are available in values for some keys:
É %S: source file which is processed
É %T: target file for each program
É %B: basename of %S

13 / 22

The design concept for llmk—Light LaTeX Make

Default config (1)

Design concept
É Writing all config from scratch every time is meaningless
→ Providing do-our-best style default config, which

should work for typical simple LATEX documents
É Users only need to write diff from the default
É No user config (such as ~/.llmkrc)
→ A TEX file should be processed exactly as the same anywhere

Default sequence

" latex "→" bibtex "→" makeindex "→" dvipdf "

14 / 22

The design concept for llmk—Light LaTeX Make

Default config (2)

Default programs (summary)

latex

command: "lualatex"
auxiliary: "%B.aux"

dvipdf

command: "dvipdfmx"
target: "%B.dvi"

bibtex

command: "bibtex"
target: "%B.bib"
postprocess: " latex "

makeindex

command: "makeindex"
target: "%B.idx"
postprocess: " latex "

É There are default config also for dvips, ps2pdf, etc. cf. README
É The default programs table will be extended on demand

15 / 22

The design concept for llmk—Light LaTeX Make

Sample use cases
Case 1: I want to use dvips instead of dvipdfmx
There is already config for dvips and ps2pdf in default programs
→ just modifying sequence is enough:

1 # pLaTeX produces DVI (not PDF)
2 latex = "platex" # this is shorthand for "command" in [programs.latex]
3

4 # using dvips + ps2pdf instead of dvipdf
5 sequence = ["latex", "dvips", "ps2pdf"]

Case 2: I want to use my own awesome program
You can use arbitraly command:

1 sequence = ["awesome"]
2

3 [programs.awesome]
4 command = "awesome"

16 / 22

The design concept for llmk—Light LaTeX Make

Cleaning actions
Cleaning actions are available (thanks @hidaruma):
É --clean (-c) removes temporary files

such as *.aux, *.log, and *.toc
É --clobber (-C) removes all generated files

including *.pdf and *.synctex.gz

Usually, the default config should work, but you can customize:
1 # specifier %B represents the basename of source TeX file
2 clean_files = ["%B.log", "%B.aux", "%B.duck"]

Example
Executing the --clean action by using config in foo.tex:

$ llmk --clean foo.tex

17 / 22

The design concept for llmk—Light LaTeX Make

Supports for other formats

Shebang-like format used by Emacs/YaTeX

%#!uplatex latex = "uplatex"

Magic comment used by TeXShop, TeXworks, and TeXstudio

ll
m
k TODO

%!TEX program = pdflatex
%!BIB program = biber

latex = "pdflatex"
bibtex = "bibtex"

Why you want to write config in *.tex files?
É sometimes it is annoying to open another file

(especially for small and casual use cases)
É compatible with TEX-specific IDEs and Web-based editors

18 / 22

The design concept for llmk—Light LaTeX Make

Frequent Q&A (1)
How does llmk differ from latexmk?
Our goals are similar but not exactly the same

Mission for llmk

Encourage people to always explicitly show the workflow for each
document by providing convenient ways to do it!

Thus, there are some differences in design concept:
É llmk allows users to write config in *.tex files
É No user config
É Less implicit decision for workflows

Does it give clear error messages?
I tried my best: llmk has typechecker and own TOML perser for this.

19 / 22

The design concept for llmk—Light LaTeX Make

Frequent Q&A (2)
What make llmk LATEX-specific?
Using it for general-purpose is possible in theory, but meaningless:
É Magic comment features are TEX-specific E.g., % is fixed
É The default config is for typical LATEX documents
É LATEX-oriented rerun feature until all cross-references are solved

How about security concerns?
Same as other build tools. But llmk requires explicit config.

Warning

Do not process unreliable TEX documents with llmk, especially those
you get from Internet, without checking their contents!

20 / 22

The design concept for llmk—Light LaTeX Make

Current status and future plan
Current version: pre-0.1.0
É No public release, even v0.1.0, yet
É You have to install it manually; Don’t worry, it’s a single file
→ Please visit https://github.com/wtsnjp/llmk
É In consideration of backword-compatibility: llmk_version
→ If the compatibility is broken in the future, you’ll get warning

llmk_version = "0.1.0"

Future plan
É It needs reference manual; at this moment we have only README
→ I will make it ASAP and upload to CTAN
É Supporting other magic comment formats

21 / 22

https://github.com/wtsnjp/llmk

The design concept for llmk—Light LaTeX Make

Conclusion

Mission for llmk

Encourage people to always explicitly show the workflow for each
document by providing convenient ways to do it!

For the above mission, llmk is designed to:
É provide several easy ways to describe the workflows
É work in various environments; it only requires LuaTEX in principle
É behave exactly the same in any environment

No more documents that no one but authors knows how to process!
Please visit https://github.com/wtsnjp/llmk

Thank you! Questions and comments?
22 / 22

https://github.com/wtsnjp/llmk

	The design concept for llmk—Light LaTeX Make

