
— 1 —

TUG 2005— program and information

Monday
August 22
(tutorials)

8–9 am registration
9 am Hong Feng TEX as a compiler

10:30 am break
10:45 am Ross Moore LATEX to HTML conversion

12 pm lunch
1:30 pm Chris Rowley LATEX for beginners
2:45 pm Hartmut Henkel MetaPost for beginners

4 pm break
4:15 pm Hans Hagen ConTEXt for beginners

5:30–7 pm reception

Tuesday
August 23

9 am Hong Feng, CTUG Welcome
9:15 am Wai Wong, Chinese University

of Hong Kong, China
keynote address: Typesetting Chinese—A personal

perspective

10:15 am break
10:30 am Jonathan Kew, SIL International XeTEX, the multilingual lion: TEX meets Unicode

and smart fonts

11:15 am Philip Taylor, University of London Typesetting the Byzantine Cappelli
11:45 am Candy Yiu, Portland State University Qin’s music notation generator

12:15 pm lunch
1:15 pm Nelson Beebe, University of Utah The design of TEX and METAFONT: A retrospective
2:15 pm Karel Skoupý, ETH Zentrum Free-shape text formatting

3 pm break
3:15 pm Suki Venkatean, TnQ Books and

Journals
Moving from bytes to words to semantics

4 pm Chris Rowley, Open University Beyond TEX: An introduction to new models for
high quality document fomatting

4:45 pm panel: CJKV and TEX moderator: Hong Feng; Jin-Hwan Cho,
Hans Hagen, Jonathan Kew,
Chris Rowley, Wai Wong

Wednesday
August 24

9 am Hong Feng Wavelet transformations and Chinese font design
9:45 am Karel Ṕı̌ska, Czech Academy of

Sciences
Converting METAFONT sources to outline fonts

using MetaPost

10:30 am break
10:45 am Jin-Hwan Cho, University of Suwon Practical use of special commands in DVIPDFMx
11:30 am Eitan Gurari, Ohio State University Spatial math exercises and worksheets

12:15 pm lunch
1:15 pm Klaus Höppner, DANTE e.V. Strategies for including graphics in LATEX

documents

2 pm Philip Taylor Grid typesetting in LATEX
2:45 pm break

3 pm Chris Rowley LATEX maintenance and development
3:45 pm Ross Moore, Macquarie University PlanetMath.org and the Free Encyclopaedia of

Mathematics

4:30 pm Jerzy Ludwichowski, Nicolaus
Copernicus University

World wide TEX user groups review

5 pm q &a
5:30 pm TUG annual meeting

Thursday
August 25

9 am Steve Grathwohl, Duke Univ. Press On ConTEXt
9:45 am Hans Hagen, Pragma ADE & NTG XML, a natural companion to TEX

10:45 am break
11 am Volker R.W. Schaa, DANTE e.V. XML workflows and the EuroTEX 2005 proceedings

11:45 am panel: Digital publishing moderator: Hong Feng; Nelson Beebe,
Steve Grathwohl, Ross Moore,
Volker R.W. Schaa, Philip Taylor

12:30 pm lunch
1:30 pm Panorama of Wuhan sightseeing tour Hong Feng
5:30 pm Bus for Wudang departure

— 2 —

Conference logistics

All conference events (except the banquet) take place at the East Lake Hotel.
(to be written)

TUG annual meeting

After the q& a on Thursday, we will hold the TUG annual meeting. Several TUG board
members will be present at the conference: Steve Grathwohl, Klaus Höppner, Ross Moore,
and Philip Taylor, as well as TUG’s executive director, Robin Laakso. We will report on
TUG’s current status and future outlook.
More importantly, we invite discussion of any TUG-related business at this time: ideas for
outreach to additional communities, ideas for additional initiatives TUG might undertake,
existing projects which TUG might support, or anything else.

— 3 —

Spatial math exercises and worksheets
Nandan Bagchee, Eitan Gurari

LATEX is a highly expressive authoring lan-
guage considered to be the lingua franca of the
mathematics community. Yet, except for a few
contributions concerning long division, it offers
very little support for expressing spatial forms
of elementary mathematic operations.

We will present a highly configurable tool
(written in Java) for producing spatial repre-
sentations of elementary math exercises and
worksheets. Current configurations produce
verbatim and tabular forms of exercises and
worksheets in regular and Nemeth braille for-
mats for inclusion in LATEX, MathML, HTML,
and text files. Our current attention is devoted
to the addition, subtraction, multiplication,
division, and root operations.

We are interested in identifying potential
users from the LATEX community with the
objective of developing widely acceptable LATEX
interfaces for requesting math exercises and
worksheets.

Practical use of special commands
in dvipdfmx

Jin-Hwan Cho

Special commands in TEX provides the only
way to communicate arbitrary information with
DVI drivers. DVIPDFMx, one of such drivers,
translates the standard DVI output of TEX into
the PDF format defined by Adobe for platform
independent transmission of digital documents.

In this presentation, we discuss all the
special commands supported by DVIPDFMx
and show some practical applications for
package designers as well as TEX end users.

Wavelet transformations and
Chinese font design
Hong Feng

Originally, the fonts used for the TEX
system were designed with the METAFONT

program. In the past two decades, the wavelet
transformation has seen wide application,
and it can also be applied in the font design
for TEX. The METAFONT (or MetaPost)
and wavelet transformation can be mutually
complementary in Chinese font design.

XeTEX, the Multilingual Lion: TEX meets
Unicode and smart fonts
Jonathan Kew

This presentation will focus on XeTEX, a new
system that extends TEX with direct support
for modern OpenType and AAT fonts and the
Unicode character set. This makes it possi-
ble to typeset almost any script and language
with the same power and flexibility as TEX has
traditionally offered in the 8-bit, simple-script

world of European languages. Even languages
such as Chinese, Arabic, or Indic scripts can be
handled without the need for complex macro
packages; the text “just works”.

As is well known, Professor Donald Knuth’s
TEX is a typesetting system with a wide user
community, and a range of supporting packages
and enhancements available for many types of
publishing work. However, it dates back to the
1980s and is tightly wedded to 8-bit character
data and custom-encoded fonts, making it diffi-
cult to configure TeX for many complex-script
languages.

One attempt to address this is the Omega
project, with its extended versions of TEX font
technologies, and the Omega Transformation
Processes that can handle complex script be-
haviors. However, many potential users have
found Omega complex and difficult to set up
and use, and it appears to have found rather
limited acceptance.

XeTEX (currently available on Mac OS X,
but there is interest in porting to other plat-
forms as well) integrates the TEX formatting
engine with technologies from both the host
operating system (Apple Type Services, Text
Encoding Converter) and auxiliary libraries
(ICU, TECkit). Thus, it provides a system that
combines the power, flexibility, and typographic
excellence of TEX with modern international
standards for character encoding and font ren-
dering.

Because XeTEX is integrated with the
host operating system’s font support, no
complex configuration is required; any
Unicode-compliant font installed on the
user’s computer is immediately available for
typesetting. A wide range of fonts thus become
available for use in TEX, and can be freely
used within established macro packages such as
LATEX or ConTEXt.

LATEX maintenance and development
Chris Rowley
This talk will give a brief history of the LATEX
Project, giving some insights into what is
involved in the enhancement and maintenance
of a robust and widely used software system
for the automated formatting of complex
documents.

Free-shape text formatting
Karel Skoupý
TEX’s line-breaking algorithm needs to know
the widths of all the resulting lines in advance.
That limits its applicability to free-shape lay-
outs because the line width may depend on the
vertical position of the line which in turn may
depend on a future page break and cannot be
always known in advance.

We will present a generalised version of the

— 4 —

line breaking algorithm which works inside a
general shape and allows vertical stretching of
the formatted text.

However, this generalised algorithm assumes
interdependency of the line and page breaking
and therefore cannot be easily integrated into
TEX formatting model. We will discuss the
necessary generalisations of TEX document and
formatting model which would make reliable
free-shape text formatting possible.

Typesetting the Byzantine Capelli

Philip Taylor
A small group of very gifted scholars, led by
Miss Julian Chrysostomides with enormous
assistance from Dr Charalambos Dendrinos,
have spent much of the last five years
researching and preparing the Lexicon of
Abbreviations &Ligatures in Greek Minuscule
Hands. I have been involved with this project
virtually since its inception, and will discuss
some of the technical challenges which arose,
with particular reference to the challenge of
sorting TEX markup for polytonic Greek using
multiple concurrent sort keys.

Grid-based typesetting in LATEX
Philip Taylor
The first edition of Rosalind Gibson’s
Principles of Nutritional Assessment was jointly
typeset by her husband Ian and myself in the
years preceding its publication in 1990; the
preparation of this edition was the subject of
one of my very first talks at a TUG meeting.
Now, fifteen years later, Ian and I have again
collaborated in the typesetting of the second
edition, which—unlike the first—is typeset
in two columns on a strict grid. LATEX is not
easily coerced into grid-based typesetting,
so the main thread of this talk will be the
various measures we used to achieve the desired
effect.

Moving from bytes to words to semantics
S.K. Venkatean
Starting from several bytes of ASCII or Unicode
strings one can construct a typeset output
readable by the community that understands
that script. Unfortunately, it still remains
unreadable by large community of people who
don’t understand the scipt. Instead, if this had
been coded at the level of a semantic-word,
with each word standing for unique-semantic-
identity, with sufficient markers (the curly
bracket nesting being one such example)
for grammar and flow, then it would be
able display itself in each language without
ambiguity. The eccentricities of ligatures,
capitalization, joining of letters could then
be handled accurately. The hyphenation, for
example, could then be not pattern-based but
semantic-word-based (hyphenation in English,
for example, can be dependent on whether the
word is a noun or a verb). In this work we
discuss on the possible atomic words (atoms of
course have their own protons, electrons, . . .) of
a language and semantic-markups that could
lead us to such a dream.

— 5 — beebe.pdf

The design of TEX and METAFONT: A retrospective

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233

Salt Lake City, UT 84112-0090
USA
WWW URL: http://www.math.utah.edu/~beebe

Telephone: +1 801 581 5254
FAX: +1 801 581 4148
Internet: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org

Abstract

This article looks back at the design of TEX and METAFONT, and analyzes how
they were affected by architectures, operating systems, programming languages,
and resource limits of the computing world at the time of their creation by
a remarkable programmer and human being, Donald E. Knuth. This paper is
dedicated to him, with deep gratitude for the continued inspiration and learning
that I’ve received from his software, his scientific writing, and our occasional
personal encounters over the last 25+ years.

1 Introduction 501

2 Computers and people 502

3 The DEC PDP-10 502

4 Resource limits 505

5 Choosing a programming language 506

6 Switching programming languages 510

7 Switching languages, again 513

8 TEX’s progeny 514

9 METAFONT’s progeny 514

10 Wrapping up 515

11 Bibliography 515

−− ∗ −−

1 Introduction

More than a quarter century has elapsed since Don-
ald Knuth took his sabbatical year of 1977–78 from
Stanford University to tackle the problem of improv-
ing the quality of computer-based typesetting of his
famous book series, The Art of Computer Program-
ming [53–58, 60, 65–67].

When the first volume appeared in 1968, most
typesetting was still done by the hot-lead process,
and expert human typographers with decades of
experience handled line breaking, page breaking,
and page layout. By the mid 1970s, proprietary
computer-based typesetting systems had entered
the market, and in the view of Donald Knuth, had
seriously degraded quality. When the first page
proofs of part of the second edition of Volume 2

arrived, he was so disappointed that he wrote [68,
p. 5]:

I didn’t know what to do. I had spent 15
years writing those books, but if they were
going to look awful I didn’t want to write
any more. How could I be proud of such a
product?

A few months later, he learned of some new de-
vices that used digital techniques to create letter
images, and the close connection to the 0s and 1s
of computer science led him to think about how
he himself might design systems to place characters
on a page, and draw the individual characters as a
matrix of black and white dots. The sabbatical-year
project produced working prototypes of two soft-
ware programs for that purpose that were described
in the book TEX and METAFONT: New Directions in
Typesetting [59].

The rest is of course history [6] . . . the digital
typesetting project lasted about a decade, produced
several more books [64, 68–73], Ph.D. degrees for
Frank Liang [79, 80], John Hobby [36], Michael
Plass [88], Lynn Ruggles [92], and Ignacio Zabala
Salelles [110], and had spinoffs in the commercial
document-formatting industry and in the first laser
printers. TEX, and the LATEX system built on top of it
[20–22, 76, 77, 83], became the standard markup
and typesetting system in the computer science,
mathematics, and physics communities, and have
been widely used in many other fields.

TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference 501

— 6 — beebe.pdf

Nelson H. F. Beebe

The purpose of this article is to look back at
TEX and METAFONT and examine how they were
shaped by the attitudes and computing environment
of the time.

2 Computers and people

Now that computers are widely available through-
out much of the developed world, and when embed-
ded systems are counted, are more numerous than
humans, it is probably difficult for younger people
to imagine a world without computers readily at
hand. Yet not so long ago, this was not the case.

Until the desktop computers of the 1980s, a
‘computer’ usually meant a large expensive box, at
least as long as an automobile, residing in a climate-
controlled machine room with raised flooring, and
fed electricity by power cables as thick as your wrist.
At many universities, these systems had their own
buildings, or at least entire building floors, called
Computer Centers. The hardware usually cost hun-
dreds of thousands to millions of dollars (where
according to the US Consumer Price Index, a million
dollars in 1968 is roughly the same as five million in
2000), and required a full-time professional staff of
managers, systems programmers, and operators.

At most computer installations, the costs were
passed on to users in the form of charges, such as
the US$1500 per hour for CPU time and US$0.50
to open a file that I suffered with as a graduate
student earning US$1.50 per hour. At my site, there
weren’t any disk-storage charges, because it was
forbidden to store files on disk: they had to reside
either on punched cards, or on reels of magnetic
tape. A couple of years ago, I came across a
bill from the early 1980s for a 200MB disk: the
device was the size of a washing machine, and cost
US$15 000. Today, that amount of storage is about
fifty thousand times cheaper, and disk-storage costs
are likely to continue to drop.

I have cited these costs to show that, until desk-
top computers became widespread, it was people
who worked for computers, not the reverse. When
a two-hour run cost as much as your year’s salary,
you had to spend a lot of time thinking about your
programs, instead of just running them to see if they
worked.

When I came to Utah in 1978, the College of
Science that I joined had just purchased a DEC-
SYSTEM 20, a medium-sized timesharing computer
based on the DEC PDP-10 processor, and the De-
partment of Computer Science bought one too
on the same order. Ours ultimately cost about
$750 000, and supplied many of the computing
needs of the College of Science for more than a

dozen years, often supporting 50–100 interactive lo-
gin sessions. Its total physical memory was just over
three megabytes, but we called it three quarters of
a megaword. We started in 1978 with 400MB of
disk storage, and ended in 1990 with 1.8GB for the
entire College. Although computer time was still
a chargeable item, we managed to recover costs
by getting each Department to contribute a yearly
portion of the expenses as a flat fee. The operating
system’s class scheduler guaranteed departmental
users a share of the machine in proportion to their
fraction of the budget. Thus, most individual users
didn’t worry about computer charges.

3 The DEC PDP-10

The PDP-10, first released in 1967, ran at least ten
or eleven different operating systems:

• BBN TENEX,

• Compuserve modified 4S72,

• DEC TOPS-10 (sometimes humorously called
BOTTOMS-10 by TOPS-20 users), and just
called the MONITOR before it was trademarked,

• DEC TOPS-20 (a modified TENEX affection-
ately called TWENEX by some users),

• MIT ITS (Incompatible Timesharing System),

• Carnegie-Mellon University (CMU) modified
TOPS-10,

• On-Line Systems’ OLS-10,

• Stanford WAITS (Westcoast Alternative to
ITS),

• Tymshare AUGUST (a modified TENEX),

• Tymshare TYMCOM-X, and on the smaller
DECSYSTEM 20/20 model, TYMCOM-XX.

Although the operating systems differed, it was usu-
ally possible to move source-code programs among
them with few if any changes, and some binaries
compiled on TOPS-10 in 1975 still run just fine on
TOPS-20 three decades later (see Section 3).

Our machines at Utah both used TOPS-20, but
Donald Knuth’s work on TEX and METAFONT was
done on WAITS. That system was a research op-
erating system, with frequent changes that resulted
in bugs, causing many crashes and much downtime.
Don told me earlier this year that the O/S was aptly
named, since he wrote much of the draft of The
TEXbook while he was waiting in the Computer Cen-
ter for WAITS to come back up. By contrast, apart
from hardware-maintenance sessions in a four-hour
block each week, the Utah TOPS-20 systems were
rarely down.

For about a decade, PDP-10 computers formed
the backbone of the Arpanet, which began with

502 TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference

— 7 — beebe.pdf

The design of TEX and METAFONT: A retrospective

just five nodes, at the University of California cam-
puses at Berkeley, Los Angeles, and Santa Barbara,
plus SRI (Stanford Research Institute) and Utah,
and later evolved into the world-wide Internet [24,
p. 48]. PDP-10 machines were adopted by major
computer-science departments, and hosted or con-
tributed to many important developments, includ-
ing at least these:

• Bob Metcalf’s Ethernet [Xerox PARC, Intel, and
DEC];

• Vinton Cerf’s and Robert Kahn’s invention of
the Transmission Control Protocol and the Inter-
net Protocol (TCP/IP);

• the MACSYMA [MIT], REDUCE [Utah] and
MAPLE [Waterloo] symbolic-algebra languages;

• several dialects of LISP, including MACLISP

[MIT] and PSL (Portable Standard Lisp)
[Utah];

• the systems-programming language BLISS

[DEC and CMU];

• the shell-scripting and systems-programming
language PCL (Programmable Command Lan-
guage) [DEC, CMU, and FUNDP] [94];

• Dan Swinehart’s and Bob Sproull’s SAIL (Stan-
ford Artificial Intelligence Language) Algol-
family programming language in which TEX
and METAFONT were first implemented;

• an excellent compiler for PASCAL [Hamburg/
Rutgers/Sandia], the language in which TEX
and METAFONT were next implemented;

• Larry Tesler’s PUB document formatting system
[101] [PUB was written in SAIL, and had a
macro language based on a SAIL subset];

• Brian Reid’s document-formatting and biblio-
graphic system, SCRIBE [89, 90] [CMU], that
heavily influenced the design of LATEX and
BIBTEX [although SAIL co-architect Bob Sproull
was Brian’s thesis advisor, Brian wrote SCRIBE

in the locally-developed BLISS language];

• Richard Stallman’s extensible and customizable
text editor, emacs [MIT];

• Jay Lepreau’s port, pcc20 [Utah], of Steve John-
son’s Portable C Compiler, pcc [Bell Labs];

• Kok Chen’s and Ken Harrenstien’s kcc20 native
C compiler [SRI];

• Ralph Gorin’s spell, one of the first sophisticated
interactive spelling checkers [Stanford];

• Mark Crispin’s mail client, mm, still one of the
best around [Stanford];

• Will Crowther’s adventure, Don Daglow’s base-

ball and dungeon, Walter Bright’s empire, and

University of Utah student Nolan Bushnell’s
pong, all developed on PDP-10s, were some of
the earliest computer games [Bushnell went on
to found Atari, Inc., and computer games are
now a multi-billion-dollar world-wide business
driving the computer-chip industry to ever-
higher performance];

• part of the 1982 DISNEY science-fiction film
TRON was rendered on a PDP-10 clone [cu-
riously, that architecture has a TRON instruc-
tion (Test Right-halfword Ones and skip if Not
masked) with the numeric operation code 666,
leading some to suggest a connection with the
name of the film, or the significance of that
number in the occult];

• Frank da Cruz’s transport- and platform-inde-
pendent interactive and scriptable communica-
tions software kermit [Columbia];

• Gary Kildall’s [105] CP/M, the first commer-
cial operating system for the Intel 8080, was
developed using Intel’s 8080 simulator on the
PDP-10 at the Naval Postgraduate School in
Monterey, California;

• Harvard University student Paul Allen’s Intel
8080 simulator on the PDP-10 was used by
fellow student Bill Gates to develop a BASIC-
language interpreter before Intel hardware was
available to them. [Both had worked on PDP-
10 systems in Seattle and Portland in the late
1960s and early 1970s while they were still
in school. They later founded Microsoft Cor-
poration, and borrowed ideas from a subset
of Kildall’s CP/M for their MS-DOS. While
IBM initially planned to offer both systems on
its personal computer that was introduced in
August 1981, pricing differences soon led to its
dropping CP/M.]

Notably absent from this list is the Bell Labora-
tories project that led to the creation of the UNIX op-
erating system: they wanted to buy or lease a PDP-
10, but couldn’t get the funding [93, Chapter 5].

The PDP-10 and its operating systems is men-
tioned in about 170 of the now nearly 4000 Request
for Comments (RFC) documents that informally de-
fine the protocols and behavior of the Internet.

The PDP-10 had compilers for ALGOL 60, BA-
SIC, BLISS, C, COBOL 74, FORTH, FORTRAN 66,
FORTRAN 77, LISP, PASCAL, SAIL, SIMULA 67, and
SNOBOL, plus three assemblers called MACRO, MI-
DAS, and FAIL (fast one-pass assembler). A lot of
programming was done in assembly code, including
that for most of the operating systems. Indeed, the
abstract of the FAIL manual [108] notes:

TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference 503

— 8 — beebe.pdf

Nelson H. F. Beebe

Although FAIL uses substantially more main
memory than MACRO-10, it assembles typ-
ical programs about five times faster. FAIL
assembles the entire Stanford time-sharing
operating system (two million characters) in
less than four minutes of CPU time on a KA-
10 processor.

The KA-10 was one of the early PDP-10 models, so
such performance was quite impressive. The high-
level BLISS language [9, 10, 109] might have been
preferred for such work, but it was comparatively
expensive to license, and few sites had it. Anyway,
Ralph Gorin’s book on assembly language and sys-
tems programming [23] provided an outstanding
resource for programmers.

Given the complexity of most assembly lan-
guages, it is instructive to look at the short example
in Figure 1 that helps to illustrate why the PDP-10
assembly language was so popular among its users.

MOVE 4, B ; load B into register 4

CAML 4, FOO ; IF (b >= foo) THEN

PUSHJ P, [; BEGIN

HRROI A, [ASCIZ/.LT./] ; message = ".LT.";

SETOM LESS ; less = 1;

AOS (P) ; END (skip around ELSE)

POPJ P,] ; ELSE

PUSHJ P, [; BEGIN

HRROI A, [ASCIZ/.GE./] ; message = ".GE.";

SETZM LESS ; less = 0;

POPJ P,] ; END;

PSOUT ; PRINT message;

Figure 1: MACRO-10 assembly language for the PDP-10

and its high-level pseudo-language equivalent, adapted
from [15].

You can understand the assembly code once you know

the instruction mnemonics: CAML (Compare Accumula-
tor with Memory and skip if Low) handles the conditional,
HRROI (Half word Right to Right, Ones, Immediate)

constructs a 7-bit byte pointer in an 18-bit address space,
SETOM (Set to Ones Memory) stores a negative inte-
ger one, SETZM (Set to Zeros Memory) stores a zero,

AOS (Add One to Self) increments the stack pointer (P),
PUSHJ and POPJ handle stack-based call and return, and
PSOUT is a system call to print a string. Brackets delimit
remote code and data blocks.

The prevalence of instructions that manipulate 18-bit
addresses makes it hard to generalize assembly code for
30-bit extended addressing, but tricks with 18-bit memory

segments alleviated this somewhat.

Document formatting was provided by runoff,
which shared a common ancestor roff with UNIX

troff, and by PUB. Later, SCRIBE became commer-
cially available, but required an annual license fee,
and ran only on the PDP-10, so it too had limited
availability, and I refused to use it for that reason.

The PDP-10 had 36-bit words, with five seven-
bit ASCII characters stored in each word. This
left the low-order (rightmost) bit unused. It was
normally zero, but when set to one, indicated that
the preceding five characters were a line number
that some editors used, and compilers could report
in diagnostics.

Although seven-bit ASCII was the usual PDP-
10 text representation, the hardware instruction
set had general byte-pointer instructions that could
reference bytes of any size from 1 to 36 bits, and the
kcc20 compiler provided easy access to them in C.
For interfacing with 32-bit UNIX and VMS systems,
8-bit bytes were used, with four bits wasted at the
low end of each word.

The PDP-10 filesystems recorded the byte
count and byte size for every file, so in principle,
text-processing software at least could have handled
both 7-bit and 8-bit byte sizes. Indeed, Mark Crispin
proposed that Unicode could be nicely handled in 9-
bit UTF-9 and 18-bit UTF-18 encodings [13]. Alas,
most PDP-10 systems were retired before this gen-
erality could be widely implemented.

One convenient feature of the PDP-10 operat-
ing systems was the ability to define directory search
paths as values of logical names. For example, in
TOPS-20, the command

@define TEXINPUTS: TEXINPUTS:,

ps:<jones.tex.inputs>

would add a user’s personal subdirectory to the
end of the system-wide definition of the search
path. The @ character was the normal prompt
from the EXEC command interpreter. A subsequent
reference to texinputs:myfile.tex was all that it
took to locate the file in the search path.

Since the directory search was handled inside
the operating system, it was trivially available to
all programs, no matter what language they were
written in, unlike other operating systems where
such searching has to be implemented by each
program that requires it. In this respect, and many
others, to paraphrase ACM Turing Award laureate
Tony Hoare’s famous remark about ALGOL 60 [31],
TOPS-20 “was so far ahead of its time that it was
not only an improvement on its predecessors, but
also on nearly all its successors.”

In addition, a manager could readily change
the system-wide definition by a single privileged
command:

$^Edefine TEXINPUTS: ps:<tex.inputs>,

ps:<tex.new>

The new definition was immediately available to all
users, including those who had included the name

504 TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference

— 9 — beebe.pdf

The design of TEX and METAFONT: A retrospective

TEXINPUTS: in their own search paths. The $ was
the EXEC prompt when a suitably-privileged user
had enabled management capabilities.

The great convenience of this facility encour-
aged those who ported TEX and METAFONT to pro-
vide something similar. Today, users of the TEX Live
distributions are familiar with the kpathsea library,
which provides an even more powerful, and custom-
izable, mechanism for path searching.

The original PDP-10 instruction set had an 18-
bit address field, giving a memory space of 218

=

262 144 words, or about 1.25MB. Later designs
extended the address space to 30 bits (5GB), but
only 23 were ever implemented in DEC hardware,
giving a practical limit of 40MB. That was still much
more than most customers could afford in 1983
when the PDP-10 product line was terminated, and
VAX VMS became the DEC flagship architecture and
operating system.

The next generation of the PDP-10 was an-
nounced to be about ten to fifteen times faster
than existing models, but early in 1983, rumors
of trouble at DEC had reached the PDP-10 user
community. At the Fall 1983 DECUS (DEC User
Society) Symposium in Las Vegas, Nevada, that I at-
tended, several PDP-10 devotees sported T-shirts
emblazoned with

I don’t care what they say,
36 bits are here to stay!

They were not entirely wrong, as we shall see.
DEC had products based on the KA-10, KI-10,

and KL-10 versions of the PDP-10 processor. Later,
other companies produced competing systems that
ran one or more of the existing operating systems:
Foonly (F1, F2, and F3), Systems Concepts (SC-
40), Xerox PARC (MAXC) [16], and XKL Systems
Corporation (TOAD-1 for Ten On A Desk). Some of
these implemented up to 30 address bits (1GW, or
4.5GB). XKL even made a major porting effort of
GNU and UNIX utilities, and got the X11 WINDOW

SYSTEM running. Ultimately, none enjoyed contin-
ued commercial success.

The PDP-10 lives on among hobbyists, thanks
to Ken Harrenstien’s superb KLH10 simulator [30]
with 23-bit addressing, and the vendor’s generosity
in providing the operating system, compilers, docu-
mentation, and utilities for noncommercial use. On
a fast modern desktop workstation, TOPS-20 runs
several times faster than the original hardware ever
did. It has been fun revisiting this environment that
was such a leap forward from its predecessors, and
I now generally have a TOPS-20 window or two
open on my UNIX workstation. I even carried this
virtual PDP-10 in a laptop to the Practical TEX 2005

conference, and it fits nicely in a memory stick the
size of a pocket knife.

4 Resource limits

The limited memory of the PDP-10 forced many
economizations in the design of TEX and META-
FONT. In order to facilitate possible reimplemen-
tation in other languages, all memory manage-
ment is handled by the programs themselves, and
sizes of internal tables are fixed at compile time.
Table 1 shows the sizes of those tables, then and
now. To further economize, many data structures
were stored compactly with redundant information
elided. For example, while TEX fonts could have
up to 128 characters (later increased to 256), there
are only 16 different widths and heights allowed,
and one of those 16 is required to be zero. Also,
although hundreds of text fonts are allowed, only 16
mathematical families are supported. Ulrik Vieth
has provided a good summary of this topic [103].

Table 1: TEX table sizes on TOPS-20 in 1984 and in

TEX Live on UNIX in 2004, as reported in the trip test.

Table 1984 2004 Growth

strings 1819 98002 53.9
string characters 9287 1221682 131.5
memory words 3001 1500022 499.8

control sequences 2100 60000 28.6
font info words 20000 1000000 50.0
fonts 75 2000 26.7

hyphen. exceptions 307 1000 3.3
stack positions (i) 200 5000 25.0
stack positions (n) 40 500 12.5

stack positions (p) 60 6000 100.0
stack positions (b) 500 200000 400.0
stack positions (s) 600 40000 66.7

Instead of supporting scores of accented char-
acters, TEX expected to compose them dynamically
from an accent positioned on a base letter. That
in turn meant that words with accented letters
could not be hyphenated automatically, an intolera-
ble situation for many European languages. That
restriction was finally removed in late 1989 [63]
with the release of TEX version 3.0 and METAFONT

version 2.0, when those programs were extended
to fully support 8-bit characters, and provide up
to 256 hyphenation tables to handle multilingual
documents. Examination of source-code difference
listings shows that about 7% of TEX was changed in
this essential upgrade.

The TEX DVI and METAFONT GF and TFM
files were designed to be compact binary files that

TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference 505

— 10 — beebe.pdf

Nelson H. F. Beebe

require special software tools to process. Recall
from p. 502 that disk storage cost around US$100
per MB, so file compactness mattered! In contrast,
in UNIX troff, the corresponding files are generally
simple, albeit compact and cryptic, text files to fa-
cilitate use of filters in data-processing pipelines.
Indeed, the UNIX approach of small-is-beautiful en-
couraged the use of separate tools for typesetting
mathematics [43], pictures [41], and tables [39],
each filtering the troff input stream, instead of the
monolithic approach that TEX uses.

In any computer program, when things go
awry, before the problem can be fixed, it is essen-
tial to know where the failure occurred. The same
applies when a change in program behavior is called
for: you first have to find the code that must be
modified.

In either case, to better understand what is
happening, it is very helpful to have a traceback
of the routine calls that led to the failure or point
of change, and a report of the source-code loca-
tion where every step in the call history is de-
fined. Unfortunately, PDP-10 memory limitations
prevented TEX and METAFONT from recording the
provenance of every built-in operator and run-time
macro, yet every programmer who has written code
for these systems has often asked: where is that
macro defined, and why is it behaving that way?
Although both programs offer several levels of exe-
cution tracing, the output trace is often voluminous
and opaque, and no macro-level debugger exists for
either program.

The need for a record of source-code prove-
nance is particularly felt in the LATEX world, where
it is common for documents to depend on dozens
of complex macro packages collectively containing
many tens of thousands of lines of code, and some-
times redefining macros that other loaded packages
expect to redefine differently for their own pur-
poses. During the course of writing this article, I dis-
covered, tracked down, and fixed three errors in the
underlying LATEX style files for the TEX User Group
conference proceedings. Each time, the repairs took
much longer than should have been necessary, be-
cause I could not find the faulty code quickly.

Finally, error diagnostics and error recovery
reflect past technology and resource limits. Robin
Fairbairns remarked in a May 2005 TEXhax list
posting:

Any TEX-based errors are pretty ghastly. This
is characteristic of the age in which it was
developed, and of the fiendishly feeble ma-
chines we had to play with back then. But
they’re a lot better than the first ALGOL 68

compiler I played with, which had a single
syntax diagnostic “not a program!”

5 Choosing a programming language

When Donald Knuth began to think about the prob-
lem of designing and implementing a typesetting
system and a companion font-creation system, he
was faced with the need to select a programming
language for the task. We have already summarized
what was available on the PDP-10.

COBOL was too horrid to contemplate: imag-
ine writing code in a language with hundreds of
reserved words, and such verbose syntax that a sim-
ple arithmetic operation and assignment c = a*b

becomes

MULTIPLY A BY B GIVING C.

More complex expressions require every subexpres-
sion to be given a name and assigned to.

FORTRAN 66 was the only language with any
hope of portability to many other systems. However,
its omission of recursion, absence of data structures
beyond arrays, lack of memory management, defi-
cient control structures, record-oriented I/O, primi-
tive Hollerith strings (12HHELLO, WORLD) that could
be used only in DATA and FORMAT statements and as
routine arguments, and its restriction to six-char-
acter variable names, made it distinctly unsuitable.
Nevertheless, METAFONT was later translated to
FORTRAN elsewhere for a port to Harris computers
[85].

PASCAL only became available on the PDP-10
in late 1978, more than a year after Don began his
sabbatical year. We shall return to it in Section 6.

BLISS was an expensive commercial product
that was available only on DEC PDP-10, PDP-
11, and later, VAX, computers. Although DEC
subsequently defined COMMON BLISS to be used
across those very different 16-bit, 32-bit, and 36-
bit systems, in practice, BLISS exposed too much of
the underlying architecture, and the compilers were
neither portable [9, 10] nor freely available. Brian
Reid commented [90, p. 106]:

BLISS proved to be an extremely difficult
language in which to get started on such
a project [SCRIBE], since it has utterly no
low-level support for any data types besides
scalar words and stack-allocated vectors.

I began an implementation on the PDP-
10 in September 1976, spending the first
six months building a programming environ-
ment in which the rest of the development
could take place. This programming environ-
ment included runtime and diagnostic sup-

506 TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference

— 11 — beebe.pdf

The design of TEX and METAFONT: A retrospective

port for strings, lists, and heap-allocated vec-
tors, as well as an operating-system interface
intended to be portable across machines.

Inside DEC, later absorbed by Compaq and then by
Hewlett-Packard, BLISS was ported to 32-bit and
64-bit ALPHA in the early 1990s, to Intel IA-32 in
1995, and recently, to IA-64 [10], but has remained
largely unknown and unused outside those corpo-
rate environments.

LISP would have been attractive and powerful,
and in retrospect, would have made TEX and META-
FONT far more extensible than they are, because
any part of them could have been rewritten in LISP,
and they would not have needed to have macro
languages at all! Unfortunately, until the advent of
COMMON LISP in 1984 [96, 97], and for some time
after, the LISP world suffered from having about
as many dialects as there were LISP programmers,
making it impossible to select a language flavor that
worked everywhere.

The only viable approach would have been to
write a LISP compiler or interpreter, bringing one
back to the original problem of picking a language
to write that in. The one point in favor of this ap-
proach is that LISP is syntactically the simplest of all
programming languages, so workable interpreters
could be done in a few hundred lines, instead of the
10K to 100K lines that were needed for languages
like PASCAL and FORTRAN. However, we have to
remember that computer use cost a lot of money,
and comparatively few people outside computer-
science departments had the luxury of ignoring the
substantial run-time costs of interpreted languages.
A typesetting system is expected to receive heavy
use, and efficiency and fast turnaround are essen-
tial.

PDP-10 assembly language had been used for
many other programming projects, including the
operating systems and the three assemblers them-
selves. However, Don had worked on several dif-
ferent machines since 1959, and he knew that all
computers eventually get replaced, often by new
ones with radically-different instruction sets, oper-
ating systems, and programming languages. Thus,
this avenue was not attractive either, since he had
to be able to use his typesetting program for all of
his future writing.

There was only one viable choice left, and
that was SAIL. That language was developed at
Stanford, and that is probably one of the reasons
why Don chose it over SIMULA 67, its Norwegian
cousin, despite his own Norwegian heritage; both
languages are descendents of ALGOL 60. SIMULA 67
did however strongly influence Bjarne Stroustrup’s

design of C++ [98, Chapter 1]. Although SAIL
had an offspring, MAINSAIL (Machine Indepen-
dent SAIL), that might have been more attractive,
that language was not born until 1979, two years
after the sabbatical-year project. Figure 2 shows a
small sample of SAIL, taken from the METAFONT

source file mfntrp.sai. A detailed description of
the language can be found in the first good book
on computer graphics [86, Appendix IV], co-written
by one of SAIL’s architects.

internal saf string array fname[0:2]

file name, extension, and directory;

internal simp procedure scanfilename

sets up fname[0:2];

begin integer j,c;

fname[0]_fname[1]_fname[2]_null;

j_0;

while curbuf and chartype[curbuf]=space

do c_lop(curbuf);

loop begin c_chartype[curbuf];

case c of begin

[pnt] j_1;

[lbrack] j_2;

[comma][wxy][rbrack][digit][letter];

else done

end;

fname[j]_fname[j]&lop(curbuf);

end;

end;

Figure 2: Filename scanning in SAIL, formatted as origi-
nally written by Donald Knuth, except for the movement
of comments to separate lines. The square-bracketed

names are symbolic integer constants declared earlier in
the program.

The underscore operator in SAIL source-code
assignments printed as a left arrow in the Stanford
variant of ASCII, but PDP-10 sites elsewhere just
saw it as a plain underscore. However, its use as
the assignment operator meant that it could not
be used as an extended letter to make compound
names more readable, as is now common in many
other programming languages.

The left arrow in the Stanford variant of ASCII
was not the only unusual character. Table 2 shows
graphics assigned to the normally glyphless control
characters. The existence of seven Greek letters in
the control-character region may explain why TEX’s
default text-font layout packs Greek letters into the
first ten slots.

Besides being a high-level language with good
control and data structures, and recursion, SAIL

TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference 507

— 12 — beebe.pdf

Nelson H. F. Beebe

Table 2: The Stanford extended ASCII character set,

with table positions in octal. This table from RFC 698
[84] disagrees in a few slots with a similar table in the
first book about TEX [59, p. 169]. CMU, MIT, and

the University of Southern California also had their own
incompatible modified versions of ASCII.

Although ASCII was first standardized in 1963, got

lowercase letters in 1965, and reached its current form
in 1967, the character set Babel has lasted far too long,
with hundreds of variants of 7-bit and 8-bit sets still in

use around the world. See Mackenzie’s book [81] for
a comprehensive history up to 1980, and the Unicode
Standard [102] for what the future may look like.

000 · 001 ↓ 002 α 003 β

004 ∧ 005 ¬ 006 ǫ 007 π

010 λ 011 γ 012 δ 013
R

014 ± 015 ⊕ 016 ∞ 017 ∇
020 ⊂ 021 ⊃ 022 ∩ 023 ∪
024 ∀ 025 ∃ 026 ⊗ 027 ↔
030 _ 031 → 032 ~ 033 6=
034 ≤ 035 ≥ 036 ≡ 037 ∨

040–135 as in standard ASCII
136 ↑ 137 ←

140–174 as in standard ASCII

175 ♦ 176 } 177 ^

had the advantage of having a good debugger. Sym-
bolic debuggers are common today, sometimes even
with fancy GUI front ends that some users like. In
1977, window systems had mostly not yet made
it out of Xerox PARC, and the few interactive de-
buggers available generally worked at the level of
assembly language. Figure 3 shows a small exam-
ple of a session with the low-level Dynamic Debug-
ging Tool/Technique, ddt, that otherwise would have
been necessary for debugging most programming
languages other than SAIL (ALGOL, COBOL, and
FORTRAN, and later, PASCAL, also had source-level
debuggers).

SAIL had a useful conditional compilation fea-
ture, allowing Don to write the keyword definitions
shown in Figure 4, and inject a bit of humor into the
code.

A scan of the SAIL source code for METAFONT

shows several other instances of how the imple-
mentation language and host computer affected the
METAFONT code:

• 19 buffers for disk files;

• no more than 150 input characters/line;

• initialization handled by a separate program
module to save memory;

• bias of 4 added to case statement index to
avoid illegal negative cases;

@type hello.pas

program hello(output);

begin

writeln(’Hello, world’)

end.

@load hello

PASCAL: HELLO

LINK: Loading

@ddt

DDT

hello$b hello+62$b $g

$1B>>HELLO/ TDZA 0 $x

0/ 0 0/ 0

<SKIP>

HELLO+2/ MOVEM %CCLSW $x

0/ 0 %CCLSW/ 0

HELLO+3/ MOVE %CCLDN $x

0/ 0 %CCLDN/ 0

HELLO+4/ JUMPN HELLO+11 $x

0/ 0 HELLO+11

HELLO+5/ MOVEM 1,%RNNAM $p

OUTPUT : tty:

$2B>>HELLO+62/ JRST .MAIN. $$x

Hello, world

Figure 3: Debugging a PASCAL program with ddt. The at
signs are the default TOPS-20 command prompt. The

dollar signs are the echo of ASCII ESCAPE characters.
Breakpoints ($b) are set at the start of the program, and
just before the call to the runtime-library file initialization.
Execution starts with $g, proceeds after a breakpoint with

$p, steps single instructions with $x, and steps until the
next breakpoint with $$x.

• character raster allocated dynamically to avoid
128K-word limit on core image;

• magic TENEX-dependent code to allocate buf-
fers between the METAFONT code and the
SAIL disk buffers because, as Don wrote in a
comment in the code, there is all this nifty core
sitting up in the high seg . . . that is just begging
to be used.

Another feature of the PDP-10 that strongly
influenced the design of TEX and METAFONT was
the way the loader worked. On most other op-
erating systems, the linker or loader reads object
files, finds the required libraries, patches unresolved
references, and writes an executable image to a disk
file. The PDP-10 loader left the program image in
memory, relegating the job of copying the memory
image to disk to the save command. If the image
was not required again, the user could simply start
the program without saving it. If the program was

508 TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference

— 13 — beebe.pdf

The design of TEX and METAFONT: A retrospective

changed to ^P^Q when debugging METAFONT;

define DEBUGONLY = ^Pcomment^Q

...

used when an array is believed to require

no bounds checks;

define saf = ^Psafe^Q

used when SAIL can save time implementing

this procedure;

define simp = ^Psimple^Q

when debugging, belief turns to disbelief;

DEBUGONLY redefine saf = ^P^Q

and simplicity dies too;

DEBUGONLY redefine simp = ^P^Q

Figure 4: SAIL conditional compilation for generating

additional debugging support. The two control characters
displayed as ⊂ and ⊃ at Stanford (octal values 020 and
021 in Table 2).

started, but then interrupted at a quiescent point,
such as waiting for input, the memory image could
be saved to disk.

Since some of the features of TEX and META-
FONT are implemented in their own programming
languages, they each need to read that code on
every execution. For LATEX, the startup code can
amount to tens of thousands of lines. Thus, for
small user input files, the startup actions may be
significantly more costly than the work needed for
the user files. Don therefore divided both programs
into two parts: the first parts, called initex and inimf,
read the startup code and write their internal tables
to a special compact binary file called a format
file. The second parts, called virtex and virmf, can
then read those format files at high speed. If they
are then interrupted when they are ready for user
input, they can be saved to disk as programs that
can later be run with all of this startup processing
already done [72, §1203], [70, §1331]. While this
sounds complex, in practice, it takes just six lines of
user input, shown in Figure 5. This normally only
needs to be done by a system manager when new
versions of the startup files are installed. It is worth
noting that installers of both PDP-10 emacs and
modern GNU emacs do a very similar preparation
of a dumped-memory image to reduce program-
startup cost.

On most other architectures, the two-part split
is preserved, but the virtex and virmf programs
are then wrapped in scripts that act as the tex

and mf programs. On UNIX systems, the script
wrappers are not needed: instead, virtex, tex, and

@initex lplain

*\dump

@virtex &lplain

*^C

@save latex

@rename lplain.fmt texformats:

Figure 5: Creating a preloaded LATEX executable on

TOPS-20.
The initex stage reads lplain.tex and dumps the

precompiled result to lplain.fmt.

The leading ampersand in the virtex stage requests
reading of the binary format file, instead of a normal TEX
text file. The keyboard interrupt suspends the process,
and the next command saves latex.exe.

The final command moves the format file to its stan-
dard location where it can be found should it be needed
again. On TOPS-20, it normally is not read again unless

a user wishes to preload further customizations to create
another executable program.

The procedure for METAFONT is essentially the same;

only the filenames have to be changed.

latex are filesystem links to the same file, and the
name of the program is used internally to determine
what format file needs to be automatically loaded.
Modern systems are fast enough that the extra
economization of preloading the format file into
the executable program is relatively unimportant:
the fastest systems can now typeset the TEXbook at
nearly 1100 pages/sec, compared to several seconds
per page when TEX was first written. In any event,
preloading is difficult to accomplish outside the
PDP-10 world. It can be done portably, but much
less flexibly, if the preloaded tables are written out
as source-code data initializers, and then compiled
into the program, as the GNU bc and dc calculators
do for their library code.

TEX and METAFONT distributions come with
the devious trip and trap torture tests that Don
devised to test whether the programs are behaving
properly. One of the drawbacks of the two-part split
is that these tests are run with initex and inimf re-
spectively, rather than with the separately-compiled
virtex and virmf, which are the programs that users
run as tex and mf. I have encountered at least one
system where the torture tests passed, yet virtex

aborted at run time because of a compiler code-
generation error. Fortunately, the error was elimi-
nated when virtex was recompiled with a different
optimization level.

Although TEX and METAFONT were designed
with great care and attention to detail, and pro-
grammed to give identical line-breaking and page-
breaking decisions on all platforms, it would have

TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference 509

— 14 — beebe.pdf

Nelson H. F. Beebe

been better if their user communities had collab-
orated on development of a much more extensive
test suite, designed with the help of test-coverage
analyzers to ensure that as much of the source code
as possible is exercised. These compiler-based tools
instrument software in such a way that program
execution produces a data file that leads to a report
of the number of times that each line of code is
reached. This identifies the hot spots in the code, but
it also reveals the unused, and therefore, untested
and untrusted, parts of the program.

When I did such an analysis of runs with the
trip and trap tests, I was surprised to find that
just under 49% of all lines of code were executed.
I reported these results to the TEX Live mailing list
on 18 March 2004, in the hope of initiating a
project to use the test-coverage feedback to devise
additional tests that will exercise most of the other
half of the code. It will never be possible to test
all of it: there are more than 50 locations in the
TEX and METAFONT source code where there is a
test for a supposedly-impossible situation, at which
point section 95 of TEX (section 90 in METAFONT)
is invoked to issue a message prefixed with This

can’t happen and terminate execution.

6 Switching programming languages

Donald Knuth initially expected that TEX and META-
FONT would be useful primarily for his own books
and papers, but other people were soon clamor-
ing for access, and many of them did not have a
PDP-10 computer to run those programs on. The
American Mathematical Society was interested in
evaluating TEX and METAFONT for its own exten-
sive mathematical-publishing activities, but it could
make an investment in switching from the pro-
prietary commercial typesetting system that it was
then using only if it could be satisfied with the qual-
ity, the longevity, and the portability of these new
programs.

Researchers at Xerox PARC had translated the
SAIL version of TEX to MESA, but that language ran
only on Xerox workstations, which, while full of
great ideas, were too expensive ever to make any
significant market penetration.

It was clear that keeping TEX and METAFONT

tied to SAIL and the PDP-10 would ultimately
doom them to oblivion. It was also evident that
some of the program-design decisions, and the early
versions of the Computer Modern fonts, did not pro-
duce the high quality that their author demanded of
himself.

A new implementation language, and new pro-
gram designs, were needed, and in 1979–1980,

when Don and Ignacio produced prototype code for
the new design, there was really only one possi-
bility: PASCAL. However, before you rise to this
provocation, why not C instead, since it has become
the lingua franca for writing portable software?

UNIX had reached the 16-bit DEC PDP-11 com-
puters at the University of California at Berkeley in
1974. By 1977, researchers there had it running
on the new 32-bit DEC VAX, but the C language
in which much of UNIX is written was only rarely
available outside that environment. Jay Lepreau’s
pcc20 work was going on in the Computer Science
Department at Utah in 1981–82, but it wasn’t until
about 1983 that TOPS-20 users elsewhere began to
get access to it. Our filesystem archives show my
first major porting attempt of a C-language UNIX

utility to TOPS-20 on 11 February 1983.
PASCAL, a descendant of ALGOL 60 [5], was de-

signed by Niklaus Wirth at ETH in Zürich, Switzer-
land in 1968. His first attempt at writing a com-
piler for it in FORTRAN failed, but he then wrote
a compiler for a subset of PASCAL in that subset,
translated it by hand to assembly language, and was
finally able to bootstrap the compiler by getting it to
compile itself [106].

Urs Ammann later wrote a completely new
compiler [2] in PASCAL for the PASCAL language
on the 60-bit CDC 6600 at ETH, a machine class
that I myself worked extensively and productively
on for nearly four years. That compiler generated
machine code directly, instead of producing assem-
bly code, and ran faster, and produced faster code,
than Wirth’s original bootstrap compiler. Ammann’s
compiler was the parent of several others, including
the one on the PDP-10.

PASCAL is a small language intended for teach-
ing introductory computer-programming skills, and
Wirth’s book with the great title Algorithms + Data
Structures = Programs [107] is a classic that is still
worthy of study. However, PASCAL is not a language
that is suitable for larger projects. A fragment of
the language is shown in Figure 6, and much more
can be seen in the source code for TEX [70] and
METAFONT [72].

PASCAL’s flaws are well chronicled in a famous
article by Brian Kernighan [40, 42]. That paper
was written to record the pain that PASCAL caused
in implementing a moderate-sized, but influential,
programming project [44]. He wrote in his article:

PASCAL, at least in its standard form, is just
plain not suitable for serious programming.
. . . This botch [confusion of size and type]
is the biggest single problem in PASCAL. . . .
I feel that it is a mistake to use PASCAL for

510 TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference

— 15 — beebe.pdf

The design of TEX and METAFONT: A retrospective

PROCEDURE Scanfilename;

LABEL 30;

BEGIN

beginname;

WHILE buffer[curinput.locfield] = 32 DO

curinput.locfield := curinput.locfield+1;

WHILE true DO

BEGIN

IF (buffer[curinput.locfield] = 59) OR

(buffer[curinput.locfield] = 37) THEN

GOTO 30;

IF NOT morename(buffer[curinput.locfield])

THEN GOTO 30;

curinput.locfield := curinput.locfield+1;

END;

30:

endname;

END;

Figure 6: Filename scanning in PASCAL, after manual
prettyprinting. The statements beginname and endname

are calls to procedures without arguments. The magic
constants 32, 37, and 59 would normally have been given
symbolic names, but this code is output by the tangle

preprocessor which already replaced those names by their
numeric values. The lack of statements to exit loops and
return from procedures forces programmers to resort to

the infamous goto statements, which are required to have
predeclared numeric labels in PASCAL.

anything much beyond its original target. In
its pure form, PASCAL is a toy language, suit-
able for teaching but not for real program-
ming.

There is also a good survey by Welsh, Sneeringer,
and Hoare [104] of PASCAL’s ambiguities and inse-
curities.

Donald Knuth had co-written a compiler for a
subset of ALGOL 60 two decades earlier [4], and
had written extensively about that language [47–
49, 51, 52, 75]. Moreover, he had developed the
fundamental theory of parsing that is used in com-
pilers [50]. He was therefore acutely aware of
the limitations of PASCAL, and to enhance porta-
bility of TEX and METAFONT, and presciently (see
Section 7), to facilitate future translation to other
languages, sharply restricted his use of features of
that language [70, Part 1].

PASCAL has new() and dispose() functions for
allocating and freeing memory, but implementa-
tions were allowed to ignore the latter, resulting in
continuously-growing memory use. Therefore, as
with the original versions in SAIL, TEX and META-
FONT in PASCAL handle their own memory manage-
ment from large arrays allocated at compile time.

One interesting PASCAL feature is sets, which
are collections of user-definable objects. The op-
erations of set difference, intersection, membership
tests, and union are expected to be fast, since sets
can be internally represented as bit strings. For
the character processing that TEX carries out, it is
very convenient to be able to classify characters
according to their function. TEX assigns each in-
put character a category code, or catcode for short,
that represents these classifications. Regrettably, the
PASCAL language definition permitted implementors
to choose the maximum allowable set size, and
many compilers therefore limited sets to the number
of bits in a single machine word, which could be as
few as 16. This made sets of characters impossible,
even though Wirth and Ammann had used exactly
that feature in their PASCAL compilers for the 60-bit
CDC 6600. The PDP-10 PASCAL compiler limited
sets to 72 elements, fewer than needed for sets of
ASCII characters.

A peculiarity of PASCAL is that it does not
follow the conventional open-process-close model
of file handling. Instead, for input files it combines
the open and read of the first item in a single
action, called the reset statement. Since most
implementations provide standard input and output
files that are processed before the first statement
of the user’s main program is executed, this means
that the program must read the first item from the
user terminal, or input file, before a prompt can
even be issued for that input. While some compilers
provided workarounds for this dreadful deadlock,
not all did, and Don was forced to declare this part
of TEX and METAFONT to be system dependent,
with each implementor having to find a way to deal
with it.

The botch that Brian Kernighan criticized has
to do with the fact that, because PASCAL is strongly
typed, the size of an object is part of its type. If you
declare a variable to hold ten characters, then it is
illegal to assign a string of any other length to it.
If it appears as a routine parameter, then all calls to
that routine must pass an argument string of exactly
the correct length.

Donald Knuth’s solution to this extremely vex-
ing problem for programs like TEX and METAFONT

that mainly deal with streams of input characters
was to not use PASCAL directly, but rather, to dele-
gate the problem of character-string management,
and other tasks, to a preprocessor, called tangle.
This tool, and its companion weave, are fundamen-
tal for the notion of literate programming that he
developed during this work [64, 74, 95].

The input to these literate-programming tools

TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference 511

— 16 — beebe.pdf

Nelson H. F. Beebe

is called a WEB, and a fragment of TEX’s own WEB

code is illustrated in Figure 7. The output of the two
utilities is shown in Figures 8 and 9, and the typeset
output for the programmer is given in Figure 10.

In order to keep a stable source-code base, the
WEB files are never edited directly when the code is
ported to a new platform. Instead, tangle and weave

accept simple change files with input blocks

@x

old code

@y

new code

@z

where the old-code sections must match their order
in the WEB file. For TEX and METAFONT, these
change files are typically of the order of 5% of the
size of the WEB files, and the changes are almost
exclusively in the system-dependent parts of those
programs, and in the handling of command-line and
startup files.

@ The |scan_optional_equals| routine looks

for an optional ‘\.=’ sign preceded by

optional spaces; ‘\.{\\relax}’ is not

ignored here.

@p procedure scan_optional_equals;

begin

@<Get the next nonblank noncall token@>;

if cur_tok<>other_token+"=" then back_input;

end;

Figure 7: Fragment of tex.web corresponding to sec-
tion 405 of TEX: The Program [70, p. 167]. The vertical
bars are a WEB shorthand that requests indexing of the

enclosed text. The prose description begins with the com-
mand @, and the PASCAL code begins with the command
@p. The text @<...> represents a block of code that is

defined elsewhere.

Because PASCAL permits only one source-code
file per program, WEB files are also monolithic. How-
ever, to reduce the size of the typeset program
listing, change files normally include a statement
\let \maybe = \iffalse near the beginning to dis-
able DVI output of unmodified code sections. Hav-
ing a single source file simplified building the pro-
grams on the PDP-10, which didn’t have a UNIX-like
make utility until I wrote one in 1988. Figure 11
shows how initex was built on TOPS-20.

In the early 1980s, few users had terminals ca-
pable of on-screen display of typeset output, so one
of the system-dependent changes that was made in
the PDP-10 implementations of TEX was the gen-
eration of a candidate command for printing the

PROCEDURE SCANOPTIONAL;BEGIN{406:} REPEAT

GETXTOKEN;UNTIL CURCMD<>10{:406};IF CURTOK<>3133

THEN BACKINPUT;END;{:405}{407:}

Figure 8: PASCAL code produced from the WEB fragment in

Figure 7 by tangle. All superfluous spaces are eliminated
on the assumption that humans never need to read the
code, even though that may occasionally be necessary
during development. Without postprocessing by a PASCAL

prettyprinter, such as pform, it is nearly impossible for a
human to make sense of the dense run-together PASCAL

code from a large WEB file, or to set sensible debugger

breakpoints.
To conform to the original definition of PASCAL, and

adapt to limitations of various compilers, all identifiers

are uppercased, stripped of underscores, and truncated to
12 characters, of which the first 7 must be unambiguous.

Notice that the remote code from the @<...> input

fragment has been inserted, and that symbolic constants
have been expanded to their numeric values. The braced
comments indicate sectional cross references, and no

other comments survive in the output PASCAL code.

\M405. The \\{scan_optional_equals}

routine looks for an optional ‘\.=’ sign

preceded by optional spaces; ‘\.{\\relax}’

is not ignored here.

\Y\P\4\&{procedure}\1\

\37\\{scan_optional_equals};\2\6

\&{begin} \37\X406:Get the next nonblank

noncall token\X;\6 \&{if}

$\\{cur_tok}\I\\{other_token}+\.{"="}$

\1\&{then}\5 \\{back_input};\2\6

\&{end};\par \fi

Figure 9: TEX typesetter input produced from the WEB

fragment in Figure 7 by weave.

405. The scan_optional_equals routine looks for an op-
tional ‘=’ sign preceded by optional spaces; ‘\relax’ is not
ignored here.

procedure scan_optional_equals;
begin <Get the next non-blank non-call token 406>;
if cur_tok 6= other_token + "=" then back_input;

end;

Figure 10: Typeset output from TEX for the weave frag-
ment in Figure 9. Notice that the remote code block is

referenced by name, with a trailing section number that
indicates its location in the output listing. Not shown here
is the mini-index that is typeset in a footnote, showing

the locations elsewhere in the program of variables and
procedures mentioned on this output page.

512 TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference

— 17 — beebe.pdf

The design of TEX and METAFONT: A retrospective

@tangle

WEBFILE : TeX.web

CHANGEFILE : TeX.tops20changes

PASCALFILE : TeX.pas

POOL : TeX.pool

@rename TeX.pool TeX:

@set no default compileswitches pas

@load %"ERRORLEVEL:10

INITEX/SAVE/RUNAME:INITEX" TeX.pas

@rename iniTeX.exe TeX:

@delete TeX.rel, TeX.pas

@expunge

Figure 11: Building and installing initex on TOPS-20.
A similar procedure handled virtex: only the filenames

change, and in both cases, the procedure was encapsu-
lated in a command file that allowed a one-line command
to do the entire job.

The last command shows a wonderful feature of TOPS-
20: deleted files could be undeleted at any time until they
were expunged from the filesystem.

Comments from 1986 in the command file noted that
on the fastest DEC PDP-10 model, tangle took 102 sec-
onds, and PASCAL compilation, 80 seconds.

When this build was repeated using the KLH10 simu-
lator running on a 2.4GHz AMD64 processor, tangle took
only 5 seconds, and PASCAL only 2.6 seconds.

For comparison with a modern TEX build on GNU/
LINUX, I used the same AMD64 system for a fresh build.
PASCAL generation with tangle took 0.09 seconds, the WEB-

to-C conversion (see Section 7) took 0.08 seconds, and
compilation of the 14 C-code files took 2.24 seconds. The
KLH10 simulator times are clearly outstanding.

The change file on the PDP-10 inserted special com-
piler directives in a leading comment to select extended
addressing. The memory footprint of TEX after typesetting

its own source code is 614 pages of 512 words each, or
just 1.4MB.

On GNU/LINUX on AMD64 with the 2004 TEX Live

release, TEX needs 11MB of memory to typeset itself,
although of course its tables are much larger, as shown
in Table 1.

output. A typical run then looked like the sample
in Figure 12.

Because PASCAL had mainly been used for small
programs, few compilers for that language were
prepared to handle programs as large and complex
as TEX and METAFONT. Their PASCAL source code
produced by tangle amounts to about 20 000 lines
each when prettyprinted. A dozen or so supporting
tools amount to another 20 000 lines of code, the
largest of which is weave.

Ports of TEX and METAFONT to new systems
frequently uncovered compiler bugs or resource
limits that had to be fixed before the programs could

@tex hello.tex

This is TeX, Tops20 Version 2.991

(preloaded format=plain 5.1.14)

(PS:<BEEBE>HELLO.TEX.1 [1])

Output written on PS:<BEEBE>HELLO.DVI.1

(1 page, 212 bytes).

Transcript written on PS:<BEEBE>HELLO.LST.1.

@TeXspool: PS:<BEEBE>HELLO.DVI.1

Figure 12: A TEX run on TOPS-20. The user typed only
the first command, and in interactive use, TEX provided

the second command, leaving the cursor at the end of
the line, so the user could then type a carriage return
to accept the command, or a Ctl-U or Ctl-C interrupt
character to erase or cancel it.

This feature was implemented via a TOPS-20 system
call that allowed a program to simulate terminal input.
TEX thereby saved humans some keystrokes, and users

could predefine the logical name TeXspool with a suit-
able value to select their preferred DVI translator. This
shortcut is probably infeasible on most other operating

systems.

operate. The 16-bit computers were particularly
challenging because of their limited address space,
and it was a remarkable achievement when Lance
Carnes announced TEX on the HP3000 in 1981
[11], followed not long after by his port to the
IBM PC with the wretched 64KB memory segments
of the Intel 8086 processor. He later founded
a company, Personal TEX, Inc. About the same
time, David Fuchs completed an independent port
to the IBM PC, and that effort was briefly available
commercially. David Kellerman and Barry Smith left
Oregon Software, where they worked on PASCAL

compilers, to found the company Kellerman & Smith
to support TEX in the VAX VMS environment. Barry
later started Blue Sky Research to support TEX on the
Apple MACINTOSH, and David founded Northlake
Software to continue support of TEX on VMS.

7 Switching languages, again

Because of compiler problems, UNIX users suffered
a delay in getting TEX and METAFONT. Pavel Curtis
and Howard Trickey first announced a port in 1983,
and lamented [14]:

Unhappily, the pc [PASCAL] compiler has
more deficiencies than one might wish.

Their project at the University of California, Berke-
ley, took several months, and ultimately, they had
to make several changes and extensions to the UNIX

PASCAL compiler.
In 1986–1987, Pat Monardo, also at Berkeley,

did the UNIX community a great service when he un-
dertook a translation, partly machine assisted, and

TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference 513

— 18 — beebe.pdf

Nelson H. F. Beebe

partly manual, of TEX from PASCAL to C, the result of
which he called COMMON TEX. That work ultimately
led to the WEB2C project to which many people have
contributed, and today, virtually all UNIX installa-
tions, and indeed, the entire TEX Live distribution
for UNIX, Apple MAC OS, and Microsoft WINDOWS,
is based on the completely-automated translation of
the master source files of all TEXware and META-
FONTware from the WEB sources to PASCAL and then
to C.

8 TEX’s progeny

The limitations that stem from the resources and
technologies that were available when TEX was de-
veloped have since been addressed in various ways.
As we showed in Table 1, some of the internal table
sizes are relatively easy to expand, as long as the
host platform has enough addressable memory.

Growing tables whose indexes are limited to
a small number of bits requires deeper changes,
and combined with the addition of a small number
of new primitives, and several useful extensions,
resulted in e-TEX [100]. Its change file is about a
quarter the size of tex.web.

TEX has been extended beyond the limitations
of eight-bit characters in significant projects for
typesetting with the UNICODE character set: OMEGA

(Ω) [87, 99], ALEPH (ℵ) [7], and XeTEX [45, 46].
Each is implemented with change files for the TEX
or e-TEX WEB sources. For OMEGA, the change
files are about as large as tex.web itself, reflecting
modification of about half of TEX, and suggesting
that a new baseline, or a complete rewrite, may be
desirable.

With few exceptions other than GNU groff (a
reimplementation of UNIX troff), TEX’s DVI file for-
mat is not widely known outside the TEX world.
Indeed, commercial vendors usurped the DVI acro-
nym to mean Digital Video Interactive and Digital
Visual Interface. Today, electronic representation
of typeset documents as page images in PDF for-
mat [1] is common. While this format is readily
reachable from TEX with translation from DVI to
POSTSCRIPT to PDF, or directly to PDF, there are
some advantages to being able to access advanced
features of PDF such as hypertext links and trans-
parency from within TEX itself. Hàn Thế Thành’s
pdfTEX [28] is therefore an important extension of
TEX that provides PDF output directly, and allows
fine control of typography with new features like
dynamic font scaling and margin kerning [27, 29].
The change file for pdfTEX is about a third the size
of tex.web.

It is worth noting that yet another program-

ming language has since been used to reimplement
TEX: Karel Skoupý’s work with JAVA [25]. One of
the goals of this project was to remove most of the
interdependence of the internals of TEX to make it
easier to produce TEX-like variants for experiments
with new ideas in typography.

Another interesting project is Achim Blumen-
sath’s ANT: A Typesetting System [8], where the re-
cursive acronym means ANT is not TEX. The first ver-
sion was done in the modern LISP dialect SCHEME,
and the current version is in OCAML. Input is
very similar to TEX markup, and output can be DVI,
POSTSCRIPT, or PDF.

Hong Feng’s NeoTEX is a recent development
in Wuhan, China, of a typesetting system based on
the algorithms of TEX, but completely rewritten in
SCHEME, and outputting PDF. Perhaps this work
will bring TEX back to its origins, allowing it to be
reborn in a truly extensible language.

Although most users view TEX as a document
compiler, Jonathan Fine has shown how, with small
modifications, TEX can be turned into a daemon
[17]: a permanently-running program that re-
sponds to service requests, providing typesetting-
on-demand for other programs. At Apple [3], IBM
[38], Microsoft [82], SIL [12], and elsewhere, ren-
dering of UNICODE strings is being developed as
a common library layer available to all software.
These designers have recognized that typesetting
is indeed a core service, and many programmers
would prefer it to be standardized and made uni-
versally available on all computers.

9 METAFONT’s progeny

Unlike TEX, METAFONT has so far had only one
significant offspring: METAPOST, written by Don’s
doctoral student John Hobby [36], to whom META-
FONT : The Program is dedicated. METAPOST is
derived from METAFONT, and like that program,
is written as a PASCAL WEB. METAPOST normally
produces pictures, although it can also generate
data for outline font files, and it supports direct
output in POSTSCRIPT. METAPOST is described in
its manuals [32–35] and parts of two books [22,
Chapter 3], [37, Chapter 13].

Although METAFONT, METAPOST, and POST-
SCRIPT offer only a two-dimensional drawing model,
the 3DLDF program developed by Laurence Finston
[18] and the FEATPOST program written by Luis
Nobre Gonçalves [19] provide three-dimensional
drawing front ends that use METAPOST at the back
end. Denis Roegel’s 3d.mp package [91] offers a
similar extension using the METAPOST program-
ming language.

514 TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference

— 19 — beebe.pdf

The design of TEX and METAFONT: A retrospective

The recent ASYMPTOTE program [26] credits
inspiration from METAPOST, but is a completely
independent package for creating high-quality tech-
nical drawings, with an input language similar to
that of METAPOST.

10 Wrapping up

In this article, I have described how architecture,
operating systems, programming languages, and
resource limits influenced the design of TEX and
METAFONT, and then briefly summarized what has
been done in their descendants to expand their
capabilities. This analysis is in no way intended
to be critical, but instead, to offer a historical
retrospective that is, I believe, helpful to think about
for other widely-used software packages as well.

TEX and METAFONT, and the literate program-
ming system in which they are written, are truly
remarkable projects in software engineering. Their
flexibility, power, reliability, and stability, and their
unfettered availability, have allowed them to be
widely used and relied upon in academia, industry,
and government. Donald Knuth expects to use them
for the rest of his career, and so do many others,
including this author. Don’s willingness to expose
his programs to public scrutiny by publishing them
as books [70, 72, 74], to further admit to errors
in them [61, 62] in order to learn how we might
become better programmers, and then to pay mon-
etary rewards (doubled annually for several years)
for the report of each new bug, are traits too seldom
found in others.

11 Bibliography

[1] Adobe Systems Incorporated. PDF reference:

Adobe portable document format, version 1.3.
Addison-Wesley, Reading, MA, USA, second

edition, 2000. ISBN 0-201-61588-6. URL
http://partners.adobe.com/asn/developer/

acrosdk/DOCS/PDFRef.pdf.

[2] Urs Ammann. On code generation in a PASCAL
compiler. Software—Practice and Experience, 7(3):
391–423, May/June 1977. ISSN 0038-0644.

[3] Apple Computer, Inc. Apple Type Services for
Unicode Imaging [ATSUI]. World-Wide Web
document., 2005. URL http://developer.apple.

com/intl/atsui.html;http://developer.apple.

com/fonts/TTRefMan/RM06/Chap6AATIntro.html.
Apple Type Services for Unicode Imaging (ATSUI)
is a set of services for rendering Unicode-encoded

text.
[4] G. A. Bachelor, J. R. H. Dempster, D. E. Knuth,

and J. Speroni. SMALGOL-61. Communications

of the Association for Computing Machinery, 4(11):
499–502, November 1961. ISSN 0001-0782. URL
http://doi.acm.org/10.1145/366813.366843.

[5] J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. Mc-
Carthy, A. J. Perlis, H. Rutishauser, K. Samelson,
B. Vauquois, J. H. Wegstein, A. van Wijngaarden,

and M. Woodger. Revised report on the algo-
rithmic language Algol 60. Communications of

the Association for Computing Machinery, 6(1):1–

17, January 1963. ISSN 0001-0782. URL http:

//doi.acm.org/10.1145/366193.366201. Edited
by Peter Naur. Dedicated to the memory of William

Turanski.

[6] Nelson H. F. Beebe. 25 years of TEX and

METAFONT: Looking back and looking forward:
TUG 2003 keynote address. TUGboat, 25(1):
7–30, 2004. URL http://www.math.utah.edu/

~beebe/talks/tug2003/. Due to a journal pro-
duction error, this article did not appear in the
TUG 2003 proceedings volume, even though it was

ready months in advance.

[7] Giuseppe Bilotta. Aleph extended TEX. World-
Wide Web document and software, December
2004. URL http://ctan.tug.org/texarchive/

help/Catalogue/entries/aleph.html.

[8] Achim Blumensath. ANT: A typesetting system.

World-Wide Web document and software, Octo-
ber 2004. URL http://wwwmgi.informatik.

rwthaachen.de/~blume/Download.html.

[9] Ronald F. Brender. Generation of BLISSes. IEEE

Transactions on Software Engineering, SE-6(6):

553–563, November 1980. ISSN 0098-5589.
Based on Carnegie-Mellon University Computer
Science Report CMU-CS-79-125 May 1979.

[10] Ronald F. Brender. The BLISS programming lan-

guage: a history. Software—Practice and Experi-

ence, 32(10):955–981, August 2002. ISSN 0038-
0644. DOI http://dx.doi.org/10.1002/spe.470.

[11] Lance Carnes. TEX for the HP3000. TUGboat, 2(3):
25–26, November 1981. ISSN 0896-3207.

[12] Sharon Correll. Graphite. World-Wide Web docu-

ment and software, November 2004. URL http://

scripts.sil.org/RenderingGraphite. Graphite
is a project under development within SIL’s Non-

Roman Script Initiative and Language Software
Development groups to provide rendering capabil-
ities for complex non-Roman writing systems.

[13] M. Crispin. RFC 4042: UTF-9 and UTF-18
efficient transformation formats of Unicode,

April 2005. URL ftp://ftp.internic.net/rfc/

rfc4042.txt,ftp://ftp.math.utah.edu/pub/

rfc/rfc4042.txt.

[14] Pavel Curtis and Howard Trickey. Porting TEX

to VAX/UNIX. TUGboat, 4(1):18–20, April 1983.
ISSN 0896-3207.

[15] Frank da Cruz and Christine Gianone. The
DECSYSTEM-20 at Columbia University (1977–
1988). Technical report, The Kermit Project,

TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference 515

— 20 — beebe.pdf

Nelson H. F. Beebe

Columbia University, New York, NY, USA, De-
cember 1988. URL http://www.columbia.edu/

kermit/dec20.html.

[16] Edward R. Fiala. MAXC systems. Com-

puter, 11(5):57–67, May 1978. ISSN 0018-

9162. URL http://research.microsoft.com/

~lampson/Systems.html#maxc.

[17] Jonathan Fine. Instant Preview and the TEX dae-
mon. TUGboat, 22(4):292–298, December 2001.
ISSN 0896-3207.

[18] Laurence D. Finston. 3DLDF user and reference

manual: 3-dimensional drawing with METAPOST

output, 2004. URL http://dante.ctan.org/

CTAN/graphics/3DLDF/3DLDF.pdf. Manual edition
1.1.5.1 for 3DLDF version 1.1.5.1 January 2004.

[19] Luis Nobre Gonçalves. FEATPOST and a re-
view of 3D METAPOST packages. In Aposto-
los Syropoulos, Karl Berry, Yannis Haralambous,

Baden Hughes, Steven Peter, and John Plaice, ed-
itors, TEX, XML, and Digital Typography: Inter-

national Conference on TEX, XML, and Digital Ty-

pography, held jointly with the 25th Annual Meet-

ing of the TeX Users Group, TUG 2004, Xanthi,

Greece, August 30–September 3, 2004: Proceed-

ings, volume 3130 of Lecture Notes in Computer

Science, pages 112–124, Berlin, Germany / Heidel-
berg, Germany / London, UK / etc., 2004. Spring-

er-Verlag. ISBN 3-540-22801-2. DOI 10.1007/

b99374. URL http://link.springerny.com/

link/service/series/0558/tocs/t3130.htm.

[20] Michel Goossens, Frank Mittelbach, and Alexander
Samarin. The LATEX Companion. Tools and Tech-

niques for Computer Typesetting. Addison-Wesley,
Reading, MA, USA, 1994. ISBN 0-201-54199-8.

[21] Michel Goossens and Sebastian Rahtz. The LATEX

Web companion: integrating TEX, HTML, and XML.
Tools and Techniques for Computer Typesetting.
Addison-Wesley Longman, Harlow, Essex CM20

2JE, England, 1999. ISBN 0-201-43311-7. With
Eitan M. Gurari, Ross Moore, and Robert S. Sutor.

[22] Michel Goossens, Sebastian Rahtz, and Frank Mit-
telbach. The LATEX Graphics Companion: Illustrating

Documents with TEX and PostScript. Tools and Tech-

niques for Computer Typesetting. Addison-Wesley,
Reading, MA, USA, 1997. ISBN 0-201-85469-4.

[23] Ralph E. Gorin. Introduction to DECSYSTEM-20

Assembly Language Programming. Digital Press,
12 Crosby Drive, Bedford, MA 01730, USA, 1981.

ISBN 0-932376-12-6.

[24] Katie Hafner and Matthew Lyon. Where wizards

stay up late: the origins of the Internet. Simon and
Schuster, New York, NY, USA, 1996. ISBN 0-684-
81201-0.

[25] Hans Hagen. The status quo of the NTS project.
TUGboat, 22(1/2):58–66, March 2001. ISSN
0896-3207.

[26] Andy Hammerlindl, John Bowman, and Tom
Prince. ASYMPTOTE: a script-based vector graphics

language. Faculty of Science, University of Al-
berta, Edmonton, AB, Canada, 2004. URL http:

//asymptote.sourceforge.net/. ASYMPTOTE is

a powerful script-based vector graphics language
for technical drawing, inspired by METAPOST but
with an improved C++-like syntax. ASYMPTOTE

provides for figures the same high-quality level of
typesetting that LATEX does for scientific text.

[27] Hàn Thế Thành. Margin kerning and font ex-

pansion with pdfTEX. TUGboat, 22(3):146–148,
September 2001. ISSN 0896-3207.

[28] Hàn Thế Thành and Sebastian Rahtz. The pdfTEX

user manual. TUGboat, 18(4):249–254, December
1997. ISSN 0896-3207.

[29] Hàn Thế Thành. Improving TEX’s typeset layout.
TUGboat, 19(3):284–288, September 1998. ISSN

0896-3207.

[30] Ken Harrenstien. KLH10 PDP-10 emulator. World-
Wide Web document and software, 2001. URL

http://klh10.trailingedge.com/. This is a
highly-portable simulator that allows TOPS-20 to
run on most modern Unix workstations.

[31] C. A. R. Hoare. Hints on programming lan-

guage design. In Conference record of ACM

Symposium on Principles of Programming Lan-

guages: papers presented at the symposium, Boston,

Massachusetts, October 1–3, 1973, pages iv +
242, New York, NY 10036, USA, 1973. ACM
Press. URL ftp://db.stanford.edu/pub/cstr/

reports/cs/tr/73/403/CSTR73403.pdf. Key-
note address. Also available as Stanford University
Computer Science Department Report CS-TR-73-

403 1973.

[32] John D. Hobby. Introduction to METAPOST.
In Jǐrí Zlatuška, editor, EuroTEX 92: Proceed-

ings of the 7th European TEX Conference, pages

21–36, Brno, Czechoslovakia, September 1992.
Masarykova Universita. ISBN 80-210-0480-0. In-
vited talk.

[33] John D. Hobby. Drawing Graphs with METAPOST.
AT&T Bell Laboratories, Murray Hill, NJ, USA,
1995. URL http://ctan.tug.org/texarchive/

macros/latex/contrib/pdfslide/mpgraph.pdf.

[34] John D. Hobby. The METAPOST System, De-
cember 1997. URL file:///texlive200411/

texmfdist/doc/metapost/base/mpintro.pdf.

[35] John D. Hobby. A User’s Manual for META-

POST, 2004. URL file:///texlive200411/

texmfdist/doc/metapost/base/mpman.pdf.

[36] John Douglas Hobby. Digitized Brush Trajecto-

ries. Ph.D. dissertation, Department of Com-
puter Science, Stanford University, Stanford, CA,
USA, June 1986. URL http://wwwlib.umi.com/

dissertations/fullcit/8602484. Also published
as report STAN-CS-1070 (1985).

[37] Alan Hoenig. TEX Unbound: LATEX and TEX Strategies

for Fonts, Graphics, & More. Oxford University

516 TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference

— 21 — beebe.pdf

The design of TEX and METAFONT: A retrospective

Press, Walton Street, Oxford OX2 6DP, UK, 1998.
ISBN 0-19-509686-X (paperback), 0-19-509685-
1 (hardcover). URL http://www.oupusa.org/

gcdocs/gc_0195096851.html.

[38] IBM Corporation. International Component for

Unicode (ICU). World-Wide Web document.,
2005. URL http://www306.ibm.com/software/

globalization/icu/index.jsp. ICU is a ma-
ture, widely used set of C/C++ and Java libraries

for Unicode support, software internationalization
and globalization (i18n and g11n).

[39] B. W. Kernighan and M. E. Lesk. UNIX docu-
ment preparation. In J. Nievergelt, G. Coray, J.-
D. Nicoud, and A. C. Shaw, editors, Document

Preparation Systems: A Collection of Survey Arti-

cles, pages 1–20. Elsevier North-Holland, Inc., New
York, NY, USA, 1982. ISBN 0-444-86493-8.

[40] Brian W. Kernighan. Why Pascal is not my favorite
programming language. Computer Science Report

100, AT&T Bell Laboratories, Murray Hill, NJ, USA,
July 1981. URL http://cm.belllabs.com/cm/

cs/cstr/100.ps.gz. Published in [42].

[41] Brian W. Kernighan. PIC: A language for typeset-
ting graphics. Software—Practice and Experience,
12(1):1–21, January 1982. ISSN 0038-0644.

[42] Brian W. Kernighan. Why Pascal is not my fa-
vorite programming language. In Alan R. Feuer

and Narain Gehani, editors, Comparing and as-

sessing programming languages: Ada, C, and Pas-

cal, Prentice-Hall software series, pages 170–186.

Prentice-Hall, Englewood Cliffs, NJ, USA, 1984.
ISBN 0-13-154840-9 (paperback), 0-13-154857-3
(hardcover). See also [40].

[43] Brian W. Kernighan and Lorinda L. Cherry. A sys-
tem for typesetting mathematics. Communications

of the Association for Computing Machinery, 18(3):
151–156, March 1975. ISSN 0001-0782.

[44] Brian W. Kernighan and P. J. Plauger. Software

Tools in Pascal. Addison-Wesley, Reading, MA, USA,
1981. ISBN 0-201-10342-7.

[45] Jonathan Kew. The XeTEX typesetting system.
World-Wide Web document., March 2004. URL
http://scripts.sil.org/xetex.

[46] Jonathan Kew. The multilingual lion: TEX learns to
speak Unicode. In Twenty-seventh Internationaliza-

tion and Unicode Conference (IUC27). Unicode, Cul-

tural Diversity, and Multilingual Computing, April

6–8, 2005, Berlin, Germany, pages n+1–n+17,

San Jose, CA, USA, 2005. The Unicode Consor-
tium.

[47] D. E. Knuth, L. L. Bumgarner, D. E. Hamilton,

P. Z. Ingerman, M. P. Lietzke, J. N. Merner, and
D. T. Ross. A proposal for input-output conven-
tions in ALGOL 60. Communications of the Associa-

tion for Computing Machinery, 7(5):273–283, May
1964. ISSN 0001-0782. URL http://doi.acm.

org/10.1145/364099.364222. Russian translation

by M. I. Ageev in Sovremennoe Programmirovanie
1 (Moscow: Soviet Radio, 1966), 73–107.

[48] Donald E. Knuth. Man or boy? Algol Bulletin (Am-

sterdam: Mathematisch Centrum), 17:7, January
1964. ISSN 0084-6198.

[49] Donald E. Knuth. Man or boy? Algol Bulletin

(Amsterdam: Mathematisch Centrum), 19(7):8–9,
January 1965. ISSN 0084-6198.

[50] Donald E. Knuth. On the translation of languages

from left to right. Information and Control, 8
(6):607–639, December 1965. ISSN 0019-9958.
Reprinted in [78].

[51] Donald E. Knuth. Teaching ALGOL 60. Algol

Bulletin (Amsterdam: Mathematisch Centrum), 19:
4–6, January 1965. ISSN 0084-6198.

[52] Donald E. Knuth. The remaining trouble spots
in ALGOL 60. Communications of the Association

for Computing Machinery, 10(10):611–618, Octo-
ber 1967. ISSN 0001-0782. URL http://doi.

acm.org/10.1145/363717.363743. Reprinted in E.
Horowitz, Programming Languages: A Grand Tour
(Computer Science Press, 1982), 61–68.

[53] Donald E. Knuth. Fundamental Algorithms, vol-

ume 1 of The Art of Computer Programming. Ad-
dison-Wesley, Reading, MA, USA, 1968. ISBN 0-
201-03803-X. Second printing, revised, July 1969.

[54] Donald E. Knuth. Seminumerical Algorithms, vol-
ume 2 of The Art of Computer Programming. Addi-
son-Wesley, Reading, MA, USA, 1969. ISBN 0-201-

03802-1.

[55] Donald E. Knuth. Seminumerical Algorithms, vol-
ume 2 of The Art of Computer Programming. Ad-

dison-Wesley, Reading, MA, USA, 1971. ISBN 0-
201-03802-1. Second printing, revised, November
1971.

[56] Donald E. Knuth. Fundamental Algorithms, vol-
ume 1 of The Art of Computer Programming. Ad-
dison-Wesley, Reading, MA, USA, second edition,

1973. ISBN 0-201-03809-9. Second printing, re-
vised, February 1975.

[57] Donald E. Knuth. Sorting and Searching, volume 3

of The Art of Computer Programming. Addison-
Wesley, Reading, MA, USA, 1973. ISBN 0-201-
03803-X.

[58] Donald E. Knuth. Sorting and Searching, volume 3
of The Art of Computer Programming. Addison-
Wesley, Reading, MA, USA, March 1975. ISBN 0-

201-03803-X. Second printing, revised.

[59] Donald E. Knuth. TEX and METAFONT —New

Directions in Typesetting. Digital Press, 12 Crosby

Drive, Bedford, MA 01730, USA, 1979. ISBN 0-
932376-02-9.

[60] Donald E. Knuth. Seminumerical Algorithms, vol-

ume 2 of The Art of Computer Programming. Ad-
dison-Wesley, Reading, MA, USA, second edition,
1981. ISBN 0-201-03822-6.

TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference 517

— 22 — beebe.pdf

Nelson H. F. Beebe

[61] Donald E. Knuth. The errors of TEX. Technical
Report STAN-CS-88-1223, Stanford University, De-
partment of Computer Science, September 1988.

See [62].

[62] Donald E. Knuth. The errors of TEX. Soft-

ware—Practice and Experience, 19(7):607–685,
July 1989. ISSN 0038-0644. This is an updated
version of [61]. Reprinted with additions and cor-

rections in [64, pp. 243–339].

[63] Donald E. Knuth. The new versions of TEX and
METAFONT. TUGboat, 10(3):325–328, November
1989. ISSN 0896-3207.

[64] Donald E. Knuth. Literate Programming. CSLI Lec-

ture Notes Number 27. Stanford University Center
for the Study of Language and Information, Stan-
ford, CA, USA, 1992. ISBN 0-937073-80-6 (paper),

0-937073-81-4 (cloth).

[65] Donald E. Knuth. Fundamental Algorithms, vol-

ume 1 of The Art of Computer Programming. Ad-
dison-Wesley, Reading, MA, USA, third edition,
1997. ISBN 0-201-89683-4.

[66] Donald E. Knuth. Seminumerical Algorithms, vol-

ume 2 of The Art of Computer Programming. Ad-
dison-Wesley, Reading, MA, USA, third edition,
1997. ISBN 0-201-89684-2.

[67] Donald E. Knuth. Sorting and Searching, volume 3
of The Art of Computer Programming. Addison-

Wesley, Reading, MA, USA, second edition, 1998.
ISBN 0-201-89685-0.

[68] Donald E. Knuth. Digital Typography. CSLI Publi-
cations, Stanford, CA, USA, 1999. ISBN 1-57586-

011-2 (cloth), 1-57586-010-4 (paperback).

[69] Donald E. Knuth. The TEXbook, volume A of Com-

puters and Typesetting. Addison-Wesley, Reading,
MA, USA, 1986. ISBN 0-201-13447-0.

[70] Donald E. Knuth. TEX: The Program, volume B
of Computers and Typesetting. Addison-Wesley,

Reading, MA, USA, 1986. ISBN 0-201-13437-3.

[71] Donald E. Knuth. The METAFONT book, volume C
of Computers and Typesetting. Addison-Wesley,
Reading, MA, USA, 1986. ISBN 0-201-13445-4.

[72] Donald E. Knuth. METAFONT : The Program,

volume D of Computers and Typesetting. Addison-
Wesley, Reading, MA, USA, 1986. ISBN 0-201-
13438-1.

[73] Donald E. Knuth. Computer Modern Typefaces,
volume E of Computers and Typesetting. Addison-

Wesley, Reading, MA, USA, 1986. ISBN 0-201-
13446-2.

[74] Donald E. Knuth and Silvio Levy. The CWEB System

of Structured Documentation, Version 3.0. Addison-

Wesley, Reading, MA, USA, 1993. ISBN 0-201-
57569-8.

[75] Donald E. Knuth and Jack N. Merner. ALGOL 60
confidential. Communications of the Association for

Computing Machinery, 4(6):268–272, June 1961.

ISSN 0001-0782. URL http://doi.acm.org/10.

1145/366573.366599.
[76] Leslie Lamport. LATEX—A Document Preparation

System—User’s Guide and Reference Manual. Ad-
dison-Wesley, Reading, MA, USA, 1985. ISBN 0-
201-15790-X.

[77] Leslie Lamport. LATEX: A Document Preparation

System: User’s Guide and Reference Manual. Ad-
dison-Wesley, Reading, MA, USA, second edition,

1994. ISBN 0-201-52983-1.
[78] Phillip Laplante, editor. Great papers in computer

science. IEEE Computer Society Press, 1109 Spring

Street, Suite 300, Silver Spring, MD 20910, USA,
1996. ISBN 0-314-06365-X (paperback), 0-7803-
1112-4 (hardcover). URL http://bit.csc.lsu.

edu/~chen/GreatPapers.html.

[79] Franklin Mark Liang. Word hy-phen-a-tion by
com-pu-ter. Technical Report STAN-CS-83-977,
Stanford University, Stanford, CA, USA, August

1983. URL http://www.tug.org/docs/liang/.
[80] Franklin Mark Liang. Word Hy-phen-a-tion by

Com-pu-ter. Ph.D. dissertation, Computer Science

Department, Stanford University, Stanford, CA,
USA, March 1984. URL http://wwwlib.umi.

com/dissertations/fullcit/8329742;http:

//www.tug.org/docs/liang/.
[81] Charles E. Mackenzie. Coded Character Sets: His-

tory and Development. The Systems Programming

Series. Addison-Wesley, Reading, MA, USA, 1980.
ISBN 0-201-14460-3.

[82] Microsoft Corporation. Unicode and character

sets. World-Wide Web document., 2005. URL
http://msdn.microsoft.com/library/enus/

intl/unicode_6bqr.asp.

[83] Frank Mittelbach, Michel Goossens, Johannes
Braams, David Carlisle, Chris Rowley, Christine
Detig, and Joachim Schrod. The LATEX Companion.

Tools and Techniques for Computer Typesetting.
Addison-Wesley, Reading, MA, USA, second edi-
tion, 2004. ISBN 0-201-36299-6.

[84] T. Mock. RFC 698: Telnet extended ASCII option,
July 1975. URL ftp://ftp.internic.net/rfc/

rfc698.txt,ftp://ftp.math.utah.edu/pub/

rfc/rfc698.txt. Status: PROPOSED STANDARD.
Not online.

[85] Sao Khai Mong. A Fortran version of METAFONT.

TUGboat, 3(2):25–25, October 1982. ISSN 0896-
3207.

[86] William M. Newman and Robert F. Sproull. Prin-

ciples of Interactive Computer Graphics. McGraw-
Hill Computer Science Series, Editors: Richard W.
Hamming and Edward A. Feigenbaum. McGraw-
Hill, New York, NY, USA, 1973. ISBN 0-07-046337-

9.
[87] John Plaice and Yannis Haralambous. The latest

developments in Ω. TUGboat, 17(2):181–183,

June 1996. ISSN 0896-3207.
[88] Michael F. Plass. Optimal pagination techniques

for automatic typesetting systems. Ph.D.

518 TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference

— 23 — beebe.pdf

The design of TEX and METAFONT: A retrospective

dissertation, Computer Science Department,
Stanford University, Stanford, CA, USA, 1981.
URL http://wwwlib.umi.com/dissertations/

fullcit/8124134.

[89] Brian K. Reid. A high-level approach to computer
document formatting. In Conference record of the

seventh annual ACM Symposium on Principles of

Programming Languages. Las Vegas, Nevada, Jan-

uary 28–30, 1980, pages 24–31, New York, NY

10036, USA, 1980. ACM Press. ISBN 0-89791-011-
7. ACM order no. 549800.

[90] Brian Keith Reid. Scribe: a document specifica-

tion language and its compiler. Ph.D. disserta-
tion, Department of Computer Science, Carnegie

Mellon University, Pittsburgh, PA, USA, De-
cember 1980. URL http://wwwlib.umi.com/

dissertations/fullcit/8114634. Also issued as

Report CMU-CS-81-100.

[91] Denis Roegel. Creating 3D animations with
METAPOST. TUGboat, 18(4):274–283, December

1997. ISSN 0896-3207. URL http://ctan.tug.

org/texarchive/graphics/metapost/contrib/

macros/3d/doc/paper1997corrected.pdf.

[92] Lynn Elizabeth Ruggles. Paragon, an interactive,

extensible, environment for typeface design. Ph.D.

dissertation, University of Massachusetts Amherst,
Amherst, MA, USA, 1987. URL http://wwwlib.

umi.com/dissertations/fullcit/8805968.

[93] Peter H. Salus. A quarter century of UNIX. Addison-
Wesley, Reading, MA, USA, 1994. ISBN 0-201-
54777-5.

[94] Ray Scott and Michel E. Debar. TOPS-20 extended
Programmable Command Language user’s guide

and reference manual. Technical report, Carnegie
Mellon University Computation Center and FNDP
Computing Centre, Pittsburgh, PA, USA and Na-

mur, Belgium, January 1983. URL http://www.

math.utah.edu/~bowman/pcl.txt.

[95] E. Wayne Sewell. Weaving a Program: Literate

Programming in WEB. Van Nostrand Reinhold, New
York, NY, USA, 1989. ISBN 0-442-31946-0.

[96] Guy L. Steele Jr. Common Lisp—The Language. Dig-
ital Press, 12 Crosby Drive, Bedford, MA 01730,
USA, 1984. ISBN 0-932376-41-X.

[97] Guy L. Steele Jr. Common Lisp—The Language. Dig-
ital Press, 12 Crosby Drive, Bedford, MA 01730,
USA, second edition, 1990. ISBN 1-55558-041-

6 (paperback), 1-55558-042-4 (hardcover), 0-13-
152414-3 (Prentice-Hall). See also [96].

[98] Bjarne Stroustrup. The Design and Evolution of

C++. Addison-Wesley, Reading, MA, USA, 1994.
ISBN 0-201-54330-3.

[99] Apostolos Syropoulos, Antonis Tsolomitis, and
Nick Sofroniou. Digital typography using LATEX.
Springer-Verlag, Berlin, Germany / Heidelberg,

Germany / London, UK / etc., 2003. ISBN 0-387-
95217-9.

[100] Phil Taylor. ε-TEX V2: a peek into the future.
TUGboat, 18(4):239–242, December 1997. ISSN

0896-3207.

[101] Larry Tesler. PUB: The document compiler. Stan-

ford AI Project Operating Note 70, Department
of Computer Science, Stanford University, Stan-
ford, CA, USA, September 1972. URL http://www.

nomodes.com/pub_manual.html.

[102] The Unicode Consortium. The Unicode Standard,

Version 4.0. Addison-Wesley, Reading, MA, USA,
2003. ISBN 0-321-18578-1. URL http://www.

unicode.org/versions/Unicode4.0.0/. Includes
CD-ROM.

[103] Ulrik Vieth. Math typesetting in TEX: The good, the
bad, the ugly. World-Wide Web document, Septem-

ber 2001. URL http://www.ntg.nl/eurotex/

vieth.pdf. Lecture slides for EuroTEX 2001 Con-
ference, Kerkrade, The Netherlands.

[104] J. Welsh, W. J. Sneeringer, and C. A. R. Hoare.
Ambiguities and insecurities in Pascal. Software—

Practice and Experience, 7(6):685–696, November/
December 1977. ISSN 0038-0644.

[105] John Wharton. Gary Kildall, industry pioneer,
dead at 52. created first microcomputer languages,

disk operating systems. Microprocessor Report, 8
(10):1–2, August 1994. ISSN 0899-9341. URL
http://www.ece.umd.edu/courses/enee759m.

S2002/papers/wharton1994kildall.pdf;http:

//en.wikipedia.org/wiki/Gary_Kildall.
This obituary nicely describes the very many

accomplishments of this industry pioneer.

[106] Niklaus Wirth. The design of a PASCAL compiler.
Software—Practice and Experience, 1(4):309–333,
October/December 1971. ISSN 0038-0644.

[107] Niklaus Wirth. Algorithms + Data Structures = Pro-

grams. Prentice-Hall Series in Automatic Compu-

tation. Prentice-Hall, Englewood Cliffs, NJ, USA,
1976. ISBN 0-13-022418-9.

[108] F. H. G. Wright II and R. E. Gorin. FAIL. Computer
Science Department, Stanford University, Stan-

ford, CA, USA, May 1974. Stanford Artificial Intel-
ligence Laboratory Memo AIM-226 and Computer
Science Department Report STAN-CS-74-407.

[109] W. A. (William A.) Wulf, D. B. Russell, and A. N.

Habermann. BLISS: A language for systems pro-
gramming. Communications of the Association for

Computing Machinery, 14(12):780–790, December

1971. ISSN 0001-0782. URL http://doi.acm.

org/10.1145/362919.362936.

[110] Ignacio Andres Zabala Salelles. Interfacing with

graphics objects. PhD thesis, Department of Com-
puter Science, Stanford University, Stanford, CA,

USA, December 1982. URL http://wwwlib.umi.

com/dissertations/fullcit/8314505.

TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference 519

— 24 — hoeppner.pdf

Strategies for including graphics in LATEX documents

Klaus Höppner
Nieder-Ramstädter Str. 47
64283 Darmstadt
Germany
klaus.hoeppner@gmx.de

Abstract

This talk presents strategies for including graphics into LATEX documents. It
shows the usage of the standard graphics packages of LATEX as well as an intro-
duction to different graphics formats. Some external tools for converting graphics
formats are discussed.

Overview of graphics formats

In general, there exist two kinds of graphics for-
mats: vector and bitmap graphics. For bitmaps,
there exist different flavors: no compression (which
can make your files truly huge, dependent on reso-
lution and color depth, so I won’t cover them from
here on), compression methods which completely
preserve the image quality while reducing the data
size, and “lossy” compression methods which cause
a consequent reduction in image quality.

So let’s go more into detail:

Vector graphics are set up by drawing or filling
geometrical objects such as lines, Bézier curves,
polygons, circles and so on. The properties of
these objects are stored mathematically. Vector
graphics are in general device independent. It
is easy to scale or rotate them without loss of
quality, since the job of rasterizing them into
actual pixels is done by the printer or printer
driver.

Bitmaps without lossy compression store the
image information as pixels, each pixel of a
given color. In principle, the quality of a bit-
map becomes better with increased resolution

Figure 1: Zoomed view into a sample image as
vector graphics (left) and bitmap (right).

Figure 2: A low
quality JPEG image
showing some artifacts
at the transition
between black and
white.

and color depth (e. g. GIF files use a color depth
of 8 bits, leading to 256 different indexed col-
ors while a bitmap with 24 bit color depth can
have about 16 million colors). Scaling and ro-
tating bitmap images will yield a loss of quality,
and printing bitmaps to a device with a differ-
ent resolution can produce bad results. Fig. 1
shows the difference between a scaled image as
vector and bitmap graphics.

Bitmaps with lossy compression use the fact
that the human eye is fairly good at seeing
small differences in brightness over a relatively
large area, but not so good at distinguishing
the exact strength of a high frequency bright-
ness variation. For this reason, components
in the high frequency region can be reduced,
leading to smaller file sizes. This works well
for photographs that usually contain smooth
transitions in color, but for graphics with a
sharp border, artifacts can occur, as shown in
fig. 2. The most prominent graphics format us-
ing lossy compression is JPEG.

Graphics formats in practice

There exist very many graphics formats, so I will
concentrate on a few of those most often used:
EPS is the encapsulated PostScript format. It is

mostly used for vector graphics but can also
contain bitmaps.

TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference 505

— 25 — hoeppner.pdf

Klaus Höppner

PNG is the portable network graphics format. It
was introduced due to the problem that Unisys
claimed a patent for the compression algorithm
used in GIF format. For this reason, it is of-
ten used nowadays on web pages. PNG is a
bitmap format that supports compression both
with and without loss of image quality.

JPEG is a bitmap format with lossy compression
and is often used for photographs (e. g. most
digital cameras produce JPEG files).

TIFF is a bitmap format sometimes used for high
quality pictures — in part because it supports
the CMYK color space important especially for
commercial printing.
Now the question is: What format shall I use for

what purpose? Though there is no one true answer
to this question, my advice is as follows:

1. For drawings (e. g. technical drawings or data
plots) use vector graphics. It gives you maxi-
mum freedom to manipulate the image when in-
cluding it into a document where you often need
to scale the image to fit into your layout. Addi-
tionally, it is independent of the output device,
and thus you can zoom into the image in your
document viewer without seeing single pixels.

Drawing tools offered by TEX distributions —
notably PSTricks and METAPOST — can usu-
ally produce EPS output natively. Most vec-
tor drawing programs like xfig and Corel Draw
also offer export functionality for producing EPS

output (though sometimes buggy).
2. If you are stuck with bitmaps, use PNG for im-

ages with sharp color transitions, such as black
and white boundaries.

3. For photographs, you can use JPEG in most
cases, since the quality loss by compression is
normally imperceptible when printed. On most
devices, a resolution of 100 to 200 dpi will be
sufficient (remember that screen resolution is
normally about 75 to 100 dpi, and color printers
claim to have high resolutions but dither color
prints, so you will hardly notice the difference
compared to JPEGs with higher resolution).

The LATEX graphics package

Since the introduction of LATEX 2ε, the graphics
bundle is part of the standard package set accom-
panying the LATEX base distribution [1]. It consists
of two style files, graphics.sty and graphicx.sty.
While graphics.sty requires the use of \scalebox
and \rotatebox for scaling or rotating graphics,
the extended style graphicx.sty supports scaling
and rotating using the keyval package, which pro-

vides a convenient interface for specifying parame-
ters. In general, there is no reason not to always use
graphicx.sty.

So the first step is to load the graphicx style
file after the \documentclass statement:
\usepackage{graphicx}

In fact, the TEX compiler doesn’t know any-
thing about graphics, and including them is done
by the DVI driver. So the graphicx package has to
do two things:

1. find the bounding box of the image (this can
be troublesome when you have e. g. an EPS file
created by an application that wrote a wrong
BoundingBox comment — in this case, it can be
helpful to put the \includegraphics command
into an \fbox to find out what graphicx thinks
about the bounding box);

2. produce the appropriate \special for the out-
put driver; thus, the usage of the graphics bun-
dle is driver dependent.
Nowadays, there are two main workflows for

producing documents: using latex to produce a
DVI file and then dvips for converting it to Post-
Script, and using pdflatex to produce a PDF file.
Most modern TEX systems are configured to au-
tomatically check whether you are using latex or
pdflatex and producing dvips \specials in the
first case and the appropriate \pdfimage commands
in the second case. So if you are using one of the
above workflows, you shouldn’t need to specify your
output backend explicitly. If you are using another
backend you have to specify it as an option, e. g.
\usepackage[dvipsone]{graphicx}

(for the Y&Y dvipsone driver), but be aware that
other backends often don’t support scaling or ro-
tating. For example, DVI previewers like xdvi or
windvi try to interpret the dvips specials, but rota-
tions may not be displayed properly in DVI preview.

After the package is loaded, to include an image
simply use
\includegraphics{sample}

Please notice that no extension for the file was
given. The explanation why will follow later. In
the case of using \includegraphics without op-
tions the image is included at its natural size, as
shown above. When using the graphicx style, you
can scale your image by a factor:
\includegraphics[scale=0.5]{sample}

506 TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference

— 26 — hoeppner.pdf

Strategies for including graphics in LATEX documents

\includegraphics[scale=1.2]{sample}

Another option supports rotating an image:

\includegraphics[angle=30]{sample}
\includegraphics[angle=-10]{sample}

Positive numbers lead to counterclockwise ro-
tation, negative numbers to clockwise rotation. The
origin for the rotation is the lower left corner of the
image, so in the clockwise rotation above the result
has not only a height but also a depth below the
baseline (as shown by the rules).

Images can not only be scaled by a given fac-
tor, you can specify a height and/or width for the
resulting image instead:

\includegraphics[width=2cm]{sample}
\includegraphics[height=1.5cm]{sample}

height gives the height above the baseline. If
your image has a depth, you can use totalheight
instead, i. e. the sum of height and depth will be
scaled to the given length.

\includegraphics[angle=-30,height=1cm]
{sample}

\includegraphics[angle=-30,
totalheight=1cm]{sample}

You can specify both width and height. In
this case your image may be scaled differently in
horizontal and vertical direction, unless you use the
keepaspectratio option:

\includegraphics[width=1.5cm,height=1.5cm]
{sample}

\includegraphics[width=1.5cm,height=1.5cm,
keepaspectratio]{sample}

Source Target Tool

latex+dvips

EPS directly supported
PNG EPS ImageMagick/netpbm
JPEG EPS ImageMagick/netpbm
TIFF EPS ImageMagick/netpbm/tif2eps

pdflatex

PDF directly supported
EPS PDF epstopdf
PNG directly supported
JPEG directly supported
TIFF PNG ImageMagick/netpbm
TIFF PDF tif2eps+epstopdf

Table 1: Conversion of graphics formats supported
by latex+dvips and pdflatex.

Please notice that usage of angle and width or
height is sensitive to the order in which the options
are given. Specifying the angle first means that your
image is rotated first and then the rotated image is
scaled to the desired width or height, while specify-
ing a width or height first will first scale the natural
image and rotate it afterwards.

Supported graphics formats

To make things a bit more complicated, latex with
dvips and pdflatex support different graphics for-
mats:

latex+dvips: EPS

pdflatex: PDF, PNG, JPEG, MPS

Table 1 shows ways to convert the standard
graphics formats to supported formats. In particu-
lar, converting EPS graphics used with latex+dvips
to PDF for pdflatex workflow is quite easy; just run
the epstopdf Perl script, which uses Ghostscript to
convert EPS to PDF.

This also explains why it is generally best to
give the file names in \includegraphics commands
without extensions. In this case the graphics pack-
age looks for a supported graphics format automat-
ically. So if you have an image both as EPS and
(e. g.) PDF, you can use both the latex+dvips and
pdflatex workflows without changing your source.

One other useful special case: including the out-
put of METAPOST is also easy; although it is tech-
nically an EPS file, it uses only a small set of com-

TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference 507

— 27 — hoeppner.pdf

Klaus Höppner

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80
Windmühle

Mainzer Str.

7
Haus für

Industriekultur

A Fr
D

�
�

�
��

Figure 3: A map with additional marks produced
with overpic

mands. So pdflatex can support the inclusion of
METAPOST output directly. The only thing you
have to do is to change the file extension of the out-
put file to .mps.

Tools for image conversion

There exist several tools for conversion of graph-
ics formats, both free and commercial. Besides free
GUI-based tools like Gimp on Unix systems there
are two command line tools available for Unix and
Windows: ImageMagick [2] and netpbm [3].

ImageMagick can convert images directly, e. g.
by typing

convert sample.gif sample.png

while netpbm uses the pnm format as intermediate
format:

giftopnm sample.gif | pnmtopng - > sample.png

Another nice tool is tif2eps by Bogus law Jac-
kowski et al. [4] which uses Ghostscript to convert a
TIFF file to EPS, e. g.

gs -- tif2eps.ps sample.tif sample.esp -rh

which produces a RLE compressed and hex encoded
EPSfile. In my experience EPS files produced with
tif2eps are smaller than those produced by Im-
ageMagick. Additionally it supports CMYK TIFF

files smoothly.

Figure 4: Zoomed view: bitmap (left) converted
to vector graphics (right)

Additional tools

There are many other helpful tools. I will mention
two I use quite often.

overpic is a LATEX package written by Rolf Nie-
praschk [5]. It includes an image into a LATEX pic-
ture environment, giving you the opportunity to add
new elements into the image with normal LATEX pic-
ture commands. Fig. 3 shows a map overlaid with
symbols and text at some points. The source code
for this picture looks like
\usepackage[abs]{overpic}

...

\begin{document}

\begin{overpic}[grid,tics=5]{map}

\put(32,74){\includegraphics[scale=.3]

{busstop.mps}}

\put(32,77){\llap{\scriptsize

\colorbox{back}{Windm\"uhle}}}

\put(28,63){\small\textcolor{red}{%

\ding{55}}}

...

\put(17.5,11){\scriptsize\colorbox{back}%

{{\Pisymbol{ftsy}{65} Fr}}}

\put(6.3,13){\colorbox{back}%

{{\Pisymbol{ftsy}{68}}}}

\put(29.8,61.4){\color{blue}\vector(-1,-3){2}}

\put(38.6,63){\color{blue}\vector(1,3){2}}

\end{overpic}

\end{document}

potrace is a tool to convert a pure black and white
bitmap to vector graphics [6]. Fig. 4 shows a sample
bitmap converted to a vector image.

References

[1] CTAN:macros/latex/required/graphics
[2] http://www.imagemagick.org
[3] http://netpbm.sourceforge.net
[4] CTAN:support/pstools/tif2eps
[5] CTAN:macros/latex/contrib/overpic
[6] http://potrace.sourceforge.net

508 TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference

— 28 — piska.pdf

Converting METAFONT Sources to Outline Fonts Using METAPOST

Karel Ṕı̌ska
Institute of Physics, Academy of Sciences
182 21 Prague
Czech Republic
piska@fzu.cz

http://www-hep.fzu.cz/~piska/

Abstract

The paper describes a multistep conversion process from METAFONT sources to
outline fonts (Adobe Type 1 format). An important step, finding contours, is
based on an accurate algorithm fitting the envelope curve of a stroke drawn by
a pen along a cubic Bézier curve by the least square method, specially extended
(adapted) for a rotated elliptical pen applied, for instance, in the Devanagari font
design. After converting the EPS files produced by METAPOST to the correspond-
ing outline representation the FontForge font editor is used for removing overlap,
simplification, autohinting, generating outline fonts, and necessary manual mod-
ifications. The result of conversion, the faithful Indic Type 1 fonts (significantly
close, precise and optimal than earlier attempts made by autotracing bitmaps)
will be released.
Keywords: font conversion, bitmap fonts, METAFONT, METAPOST, outline
fonts, PostScript, Type 1 fonts, approximation, Bézier curves.

Introduction

In 2001 I experimented with approximate conver-
sion METAFONT Indic fonts to the Type 1 format
by autotracing bitmaps with the TEXtrace program
[11]. I was not satisfied with results and decided to
apply another, analytic approach, to achieve results
more precise and also more optimized.

Conversion Process

A procedure consists of study of font definitions in
METAFONTand preparing encoding files; then the
glyph strokes produced by METAPOST are converted
to outlines, the font is assembled, optimized, auto-
hinted, and finally, generated as a Type 1 binary file
with FontForge. After verification of visual proof-
sheet pages some steps are often repeated to correct
or improve the final results.

Analysis of METAFONT sources We analyze the
METAFONT source texts [7] of a font to select an ap-
propriate strategy of conversion, to find the crucial
parameters, like the font size, the italic angle, defini-
tions of pens and strokes. Some parameters may be
also hidden inside macros. Sometimes, a possibility
of an efficient conversion is not apparent. There-
fore it is also important to know about presence and
quantity of METAFONT commands not available in

METAPOST([5]), for example, using operations with
bitmap picture variables.

Creating encoding files Encoding files and en-
coding vectors define a mapping between the glyph
names and their number codes. METAFONT defi-
nitions usually do not contain unique glyph names
in an explicit form but only comments. The glyph
names have been taken from these comments to pro-
duce unambiguous list of PostScript names, i.e. we
must to find the same names and to change them
to be different. Our preliminary solution inherits
METAFONT comments closely to make finding glyph
identification easier.

Running METAPOST Invoking METAPOST pro-
cesses the METAFONT sources and produces the EPS
files. METAPOST together with a macro package
mfplain ([5], p. 79) allows to process the original
or modified (to eliminate METAFONT-specific com-
mands) font sources written in METAFONT and to
generate for each glyph a single file in the Encap-
sulated PostScript format, consisting only of Post-
Script commands like curves, strokes, affine trans-
formations representing pens, etc., but no bitmap
images contradictory to the METAFONT standard
output. Some metric data, e.g. the glyph widths

Preprint: Proceedings of the 2005 Annual Meeting August 1, 2005 18:34 1001

— 29 — piska.pdf

Karel Ṕı̌ska

Figure 1: Result of METAPOST.

and also the italic angles, may be lost, we shall re-
store them later. We need also define a magnifica-
tion factor. Because we have to transform the glyph
images to a 1000-unit glyph coordinate system (we
use this usual space) with the units in PostScripts
big points (the transformation factor is 1.00375) and
the font designsize in pt units. Then the magnifi-
cation factor will be 1000 ∗ 1.00375/designsize. For
the designsize = 10 pt it equals 1000∗1.00375/10 =
100.375, for 8 pt 125.46875, for 17.28 pt 58.087384,
etc. Then a typical command to call METAPOST is:
mpost ’&mfplain \mode=localfont;’ \
mag=100.375’; input’ dvng10.mf

These files may contain various stroked paths (see
figures 1, 9). It is necessary to find contour curves
for single strokes and then also common envelope
curves for overlapping strokes.

The following lines from the PostScript pro-
duced by METAPOST correspond to fig. 1:

0 79.06227 dtransform truncate idtransform

setlinewidth pop [] 0 setdash

1 setlinecap 1 setlinejoin 10 setmiterlimit

gsave newpath 119.50958 284.54501 moveto

398.36119 284.54501 lineto

[-0.98387 0.98387 -0.17888 -0.17888 0 0] concat

stroke grestore

The lineto operator describes the line segment,
the concat operator applies the affine transforma-
tion represented by the preceding normalized matrix
(in brackets) denoting the rotated elliptical pen, and
79.06227 . . . setlinewidth is the scale factor defin-
ing the stroke width.

Converting METAPOST products to outlines The
results of METAPOST (strokes) are converted to “pri-
mary” outlines. To fit curves with the least square
method is a typical approach to calculate a curve
approximation. This method is nothing new and
probably it has been used in conversion programs
developed by Richard Kinch (MetaFog, [6]), Basil
Malyshev [9], George Williams (FontForge, [13]) and
other. We only apply a few additional conditions.
We try to be more precise, but our attempts are
still more fragile and unstable than programs listed
above.

Figure 2: Primary conversion to outlines.

All the calculations are in the non-integer value
space. We check each segment for accuracy and sub-
divide it if a chosen limit exceed; insert all hori-
zontal and vertical extrema nodes; keep all horizon-
tal/vertical straight lines and control vectors to be
exactly horizontal/vertical. The inner part of a con-
tour curve of drawing a rotated elliptical pen even
along a simple Bézier path without any intersection
may have selfintersections. Therefore we try to find
a selfintersection points if it is possible and as precise
as possible. Unfortunately, sometimes this iteration
does not converge. A simplest conversion to outlines
shows figure 2.

For a given time of the path segment using the
affine transformation matrix and its inverse matrix
(for a usual pen they are always regular) we can cal-
culate the displacement corresponding to the point
lying on the right parallel outline curve (the left one
is located symmetrically). Knowing the coordinates
of points on the outline curves and also on the pen
boundary we can fit them by a cubic Bézier approx-
imation. But a problem is we do not know whether
the points are an the envelope curve or not because
parts of the outline curves may create loops of arbi-
trary size being inside a closed area. It depends on
complex correlations between the path and the pen.

We also recognize quarter-circles usually rep-
resented in METAFONT by two segments because
METAFONT tends to divide curves to octants. To
avoid further simplification problems we do not pre-
serve the 45 degree middle nodes and change the
quarter-circles to the accurate single-segment Post-
Script representation with relative lengths of control
vectors 4/3(

√
2− 1) ' 0.552285, compare also with

R. Kinch [6] (p. 236) or Luc Devroye [2]. For an ex-
ample of our approximation circles see figure 3.

In summary, in the primary approximation the
straight lines and the circles are represented by the
minimal number of segments (because other nodes
are unnecessary), and, on the other hand, other out-
line curves have redundant node points (to preserve
a maximal starting accuracy). The intermediate re-
sults of the primary conversion to outline demon-
strate figures 2 and 10.

1002 August 1, 2005 18:34 Preprint: Proceedings of the 2005 Annual Meeting

— 30 — piska.pdf

Converting METAFONT Sources to Outline Fonts Using METAPOST

Figure 3: Representation of circles.

Creating a font with FontForge FontForge is a
powerful open source font editor. Among its wide
range of useful abilities we can find a background
layer. It may contain bitmap images and line draw-
ings. Therefore, we generate by METAFONT a high
resolution bitmap 7254 dpi or 2400 dpi (supre) for a
given font. The “7254 dpi” device corresponds to
a relation 1 pixel in PK ∼ 1 unit in the PS glyph
space for the 10 pt

% (72.27*1000.375/10dpi)=7254.1
mode_param (pixels_per_inch,4000+3254.1);
mode_param (blacker, 0);
mode_param (fillin, 0);
mode_param (o_correction, 1);

Sometimes, METAFONT with the very high resolu-
tion may fail (if the author did not design a font
for an arbitrary resolution). The the PK or GF files
can be imported to the background as a set of gray
pixels to cover glyph images.

Font composition We also run mftrace [10]
with an appropriate encoding to make a PFB font
file. From this file we build a frame for the created
font, copy the glyph widths and the glyph names and
move the outlines to the background layer (visible
as green lines). During a subsequent processing of
the font with FontForge we use its internal Spline
Font Database format (SFD). The high resolution
bitmap is always huge, we import it only before a
comparison. But the outline contours of the font
produced by mftrace are not large and we can store
them in the working SFD files permanently. To the
foreground layer we import the outlines from the
EPS files calculated in the previous step from the
original EPS files generated by METAPOST.

The high resolution pixel image gives a close
visual bitmap representation of the original META-
FONT source. Of course, an information about con-

tour curves, intersection points, corners, etc., vir-
tually calculated by METAFONT has been lost. The
font outlines autotraced by mftrace from similar bit-
maps, despite of the artifacts (bumps, holes, un-
recognized corners, . . .) give a correct information
about glyphs. And our aim is to obtain another
outline representation: more accurate and more op-
timal, to minimize the number of defects and a space
amount.

Having a font in the SFD format built from
the mftrace output our next step with FontForge is
removing overlap and optimization (simplifi-
cation). We continue processing in the non-integer
value space to keep accuracy, especially do not change
the slopes of the neighbor control vectors to preserve
smooth transition between segments.

Rounding to integer, hinting and Type 1
font generation FontForge allows generating Post-
Script fonts with non-integer point coordinates and,
maybe, many PostScript RIP devices render these
fonts properly. But we have three significant reasons
to round coordinates to integer and to generate the
Type 1 fonts in integer representation:

• Non-integer values in the PostScript charstring
occupy 3 items. Therefore the integer repre-
sentation saves storage and the PFB files are
smaller.

• The final Type 1 fonts do not need such accu-
racy after removing overlap and simplification.

• For hinting it would be inconvenient and im-
practicle to use a different discrete grid than
integer.

In the following example the non-integer Type 1
command occupies 19 items:

18153 100 div 212 100 div
14437 100 div -407 100 div
7208 100 div -243 100 div
rrcurveto

and after rounding only 7 items:

182 2 144 -4 72 -2 rrcurveto

It is reasonable to minimize the number of items
because the PostScript interpreters have internal mem-
ory limits per glyph. Exceeding limits causes a limicheck
error and a crash of rendering.

The coordinates of the segments are rounded
to integer by more complex algorithm than a triv-
ial rounding of all the values. First we round the
node points. Then we transform the control vec-
tors according the changes of then nodes and try to
find the control points in the integer grid near the
transformed control vectors. Even this sophisticated

Preprint: Proceedings of the 2005 Annual Meeting August 1, 2005 18:34 1003

— 31 — piska.pdf

Karel Ṕı̌ska

Figure 4: Final font in an outline form and a
hinted proofsheet (clip).

rounding to integer is not without problems. Some-
times, if the change in x or y in the segment is very
small (e.g. about 1 unit) or a segment is too short (in
both directions) no good selection may exist and a
manual adjustment is then necessary, probably with
the lose of closeness, accuracy or symmetry of ap-
proximation.

No special additional program for hinting have
been developed or applied. An automatic autohint-
ing tool of FontForge is used and any unsatisfactory
events should be corrected manually.

Finally, FontForge generates the Type 1 binary
font, usually rounded to integer and (auto)hinted.

Results

To make font audit and verification more quick and
efficient we developed tools for generation of visual
proofsheets in PDF: to allow fast overlook all glyph
images, outlines curves with node and control points
and vectors, hinting zones, and also to detect some
situations like missing nodes at extremes, presence
of inflection inside a segment, connection between
segments is not smooth, etc., and to append spe-
cial warning signs. Our aim is to fulfill the Type 1
conventions [1]. Therefore we include the extrema
nodes (they may be omitted if they are really re-
dundant), exclude other unnecessary node points,
preserve smooth connections between the adjacent
segments. and also keep the straight lines, corners
and arcs after conversion, do not append any false
bumps, holes or steps absent in the original META-
FONT sources. In some selected figures the node
points (squares), the control points (bullets) and the
control vectors have been enlarged to be visible in
the printed version of the paper. In a real working
process they are colored and small as in other proof-
sheets when we zoom interesting details only if we
need to check them.

The crucial and auxiliary algorithms have been
under development and adaptations for new fonts

Figure 5: dvng10: tta of Frans Velthuis.

and the programs are still written in awk or gawk
[3]. For Type 1 font handling t1utils [8] are used.

Several pictures illustrate intermediate and fi-
nal results of conversion METAFONT fonts to the
Type 1 format: figures 2, 4, 10, 11, 15, and 16.

Indic Fonts A basic goal of the work are more
precise outline versions of the free METAFONT In-
dic fonts available from CTAN: Devanagari, San-
skrit, Gurmukhi, Punjabi, Bangla, Sinhala, Malay-
alam, Telugu, Kannada, Tamil, and Tibetan is also
included. During preparing this text not all the
present fonts have been converted and also the Oriya
fonts are still missing because of they widely use
METAFONT bitmap picture commands. Next re-
sults are shown in figures 12, 13 (Devanagari), 14
(Malayalam).

Chinese Fonts We have also tried to convert two
small single fonts with Chinese signs created in META-
FONT: the Hóng-Z̀ı font (128 glyphs) designed by
Javier Rodŕıguez Laguna [12] (version 0.5 of 050323):
fig. 7; and china10, one font from the the china2e
package [4] containing Chinese calendar symbols pro-
duced by Udo Heyl (1997): fig. 8.

Conclusion

In the article we describe a conversion process and
shortly discuss some selected problems. Creating
precise fonts is always difficult, time consuming and
never ending work independently of the approach
we choose. We plan to verify again all the glyphs to
improve hinting and polish the outlines to remove
tiny artifacts. It is useful to make the glyph names
of the Indic glyphs common for all languages, it is
not trivial because the fonts contain many various

1004 August 1, 2005 18:34 Preprint: Proceedings of the 2005 Annual Meeting

— 32 — piska.pdf

Converting METAFONT Sources to Outline Fonts Using METAPOST

Figure 6: dvngbi10: lla of Frans Velthuis.

Figure 7: Hóng-Z̀ı: xing1 of Javier Rodŕıguez.

Figure 8: china10: yeu of Udo Heyl.

ligatures, special signs or variants not covered in the
Unicode standards.

Acknowledgements

I would like to thank all the authors of the free con-
version programs, the authors of the public META-
FONT fonts for Indic languages, other sources and
program packages used in the contribution,

References

[1] Adobe Systems Inc. Adobe Type 1 Font Format.
Addison-Wesley, 1990.

[2] Luc Devroye. “Formatting Font Formats”,
TUGboat, 24(3), pp. 588–596, 2003.

[3] Free Software Foundation. GNU awk, http://
www.gnu.org/software/gawk.

[4] Udo Heyl. CTAN:macros/latex/contrib/
china2e, 1997.

[5] John D. Hobby. A User’s Manual for META-
POST. AT&T Bell Laboratories, Computing
Science Technical Report 162, 1994.

[6] Richard J. Kinch. “MetaFog: Converting
METAFONT Shapes to Contours”, TUGboat,
16(3), pp. 233–243, 1995.

[7] Donald E. Knuth. The METAFONTbook.
Addison-Wesley, 1986. Volume C of Computers
and Typesetting.

[8] Eddie Kohler. t1utils (Type 1 tools), http://
freshmeat.net/projects/t1utils.

[9] Basil K. Malyshev, “Problems of the conver-
sion of METAFONT fonts to PostScript Type 1”,
TUGboat, 16(1), pp. 60–68, 1995.

[10] Han-Wen Nienhuys. mftrace, http://www.cs.
uu.nl/~hanwen/mftrace.

[11] Karel Ṕı̌ska. “A conversion of public Indic fonts
from METAFONT into Type 1 format with TEX-
trace.” TUGboat, 23(1), pp. 70–73, 2002.

[12] Javier Rodŕıguez Laguna. Hong-Zi – A Chinese
METAFONT. http://hongzi.sourceforge.
net, 2005.

[13] George Williams. FontForge: A PostScript Font
Editor, http://fontforge.sourceforge.net.

Preprint: Proceedings of the 2005 Annual Meeting August 1, 2005 18:34 1005

— 33 — piska.pdf

Karel Ṕı̌ska

Figure 9: dvng10 l h: METAPOST output.

Figure 10: dvng10 l h: primary outlines.

Figure 11: dvng10 l h: Type 1 font proofsheet.

Figure 12: dvng10: om of Frans Velthuis..

Figure 13: dvngbi10: om of Frans Velthuis.

Figure 14: mm10: a of Jeroen Hellingman.

1006 August 1, 2005 18:34 Preprint: Proceedings of the 2005 Annual Meeting

— 34 — piska.pdf

Converting METAFONT Sources to Outline Fonts Using METAPOST

Figure 15: mm10 j juu: METAPOST output converted to primary outlines.

Figure 16: mm10 j juu: Type 1 font proofsheet with hints.

Preprint: Proceedings of the 2005 Annual Meeting August 1, 2005 18:34 1007

— 35 — schaa.pdf

History
<html>/pdfTEX

Summary

XML Workflows and the
EuroTEX 2005
Proceedings

Volker RW Schaa

DANTE e.V.
Heidelberg, Germany

TUG 2005
Wuhan

China P.R.
August, 2005

Volker RW Schaa XML Workflows and the EuroTEX 2005 Proceedings

History
<html>/pdfTEX

Summary

Motivation
Starting point : TEX/P/XML
Differences/Similarities

Motivation

In 2002 I was appointed as Proceedings Editor for two
conferences
Responsibility for preparation of abstract and paper submissions,
web presentations, the conference volume (Proceedings), and
CD-ROM
When I found that the scale of work for these conferences was
too large for manual production:

DIPAC2003 85 papers, 300 pages, 290 authors
LINAC2004 280 papers, 1000 pages, ∼1000 authors

and that even bigger conferences like
EPAC 1200 papers, 4000 pages, 3500 authors
PAC 1400 papers, 4800 pages, 4300 authors

were using inadequate tools,
I decided to write scripts which could do the job

Volker RW Schaa XML Workflows and the EuroTEX 2005 Proceedings

History
<html>/pdfTEX

Summary

Motivation
Starting point : TEX/P/XML
Differences/Similarities

Starting point

the idea
typesetting: TEX
scripting: P
data: XML

the method
database export in XML
interpretation of XML by P scripts
transformation to <html> and \pdfTEX

≈3 years later:
the scripts have been used on 5 conferences,
they have been extended,
they are now integral part of the conference software under GPL,
I given several talks about the software (i.e. PracticalTEX 2004)
but, I never thought of using it for a TEX conference. . .

Volker RW Schaa XML Workflows and the EuroTEX 2005 Proceedings

History
<html>/pdfTEX

Summary

Motivation
Starting point : TEX/P/XML
Differences/Similarities

New directions, differences

GUTenberg and DANTE organized EuroTEX 2005 in
Pont-à-Mousson/France (March, 7–11)
2 weeks before the conference the organizers (we) hadn’t make
up their mind about preprints
I volunteered to do it (having my scripts in mind),
then I realized I had to simplify them (sigh).
So what are the differences between particle physics and TEX
conferences in input and output?

Volker RW Schaa XML Workflows and the EuroTEX 2005 Proceedings

History
<html>/pdfTEX

Summary

Motivation
Starting point : TEX/P/XML
Differences/Similarities

XML Definition for Particle Physics Conferences

<conference>
<session>
<session data, times, location,, .../>
<chair/>
<chair person’s data, .../>
<paper>
<paper data, grants, funding, .../>
<title/>
<abstract/>
<institute>
<institute data, country, name, ..., ..., .../>
<author>

<author data, notes, leave of absence, .../>
</author>
(more »authors«)

</institute>
(more »institutes«)
<keywords/>

</paper>
(more »papers«)

</session>
(more »sessions«)

</conference>

Volker RW Schaa XML Workflows and the EuroTEX 2005 Proceedings

History
<html>/pdfTEX

Summary

Motivation
Starting point : TEX/P/XML
Differences/Similarities

New XML Definition for TEX Conferences

<conference>
<session>
<paper>
<title/>
<abstract/>
<author/>
(more »authors«)

</paper>
(more »papers«)

</session>
(more »sessions«)

</conference>

Volker RW Schaa XML Workflows and the EuroTEX 2005 Proceedings

— 36 — schaa.pdf

History
<html>/pdfTEX

Summary

Motivation
Starting point : TEX/P/XML
Differences/Similarities

XML Definition for a single paper Particle Physics Conferences

Volker RW Schaa XML Workflows and the EuroTEX 2005 Proceedings

History
<html>/pdfTEX

Summary

Motivation
Starting point : TEX/P/XML
Differences/Similarities

XML Definition for a single paper in TEX Conferences

Volker RW Schaa XML Workflows and the EuroTEX 2005 Proceedings

History
<html>/pdfTEX

Summary

Motivation
Starting point : TEX/P/XML
Differences/Similarities

more differences

Particle Physics Conferences
Abstracts only – Abstract booklet before conference
Proceedings after conference

1–3 years using old methods (Word, Quark, VB scripts, . . .)
now: 1 week on the web
<9 months on paper (mostly due to waiting for special authors)

CD-ROM (due to the size of proceedings the trend is CD only)

TEX Conferences
Abstract (always)
Papers (>60%) before conference (⇒ Preprints)
Proceedings volume with all paper up to now only by TUGboat
no CD-ROM

Volker RW Schaa XML Workflows and the EuroTEX 2005 Proceedings

History
<html>/pdfTEX

Summary

Motivation
Starting point : TEX/P/XML
Differences/Similarities

What’s similar or the same?

Contents setup in LATEX terms

\frontmatter

Conference details
Committees
Time table
Table of contents

\mainmatter

Papers (generated automatically)

\backmatter

Authors
Participants
Sponsors, vendors, exhibitors, . . .
Production notes

Volker RW Schaa XML Workflows and the EuroTEX 2005 Proceedings

History
<html>/pdfTEX

Summary

Scripts
Generated script for pdf-file
«html>features</html>
\pdfTEX{features}

What is the script doing?

1 It reads a configuration files with specifications,
what to do and where to put files,

2 reads XML and generates <html> for
Session list,
Authors list,

3 generates \pdfTEX wrappers
for each single (raw) pdf-file,
for proceedings file,

4 writes command files for
generating pdf-files with author and title information,
building of proceedings file(s).

Volker RW Schaa XML Workflows and the EuroTEX 2005 Proceedings

History
<html>/pdfTEX

Summary

Scripts
Generated script for pdf-file
«html>features</html>
\pdfTEX{features}

pdfTEX: complete code for one paper

\documentclass[twoside]{book}
\usepackage[papersize={595pt,792pt}, body={483pt, 680pt},

top=54pt, left=56pt, head=18pt, headsep=15pt, footskip=32pt]{geometry}
\usepackage{fancyhdr}\pagestyle{fancy}
\usepackage{pdfpages}

\begin{document}
\pdfinfo{%
/Title (Omega Becomes a Sign Processor)
/Author (Yannis Haralambous, Gábor Bella)
/Subject (Preprints EuroTEX2005 -- Pont-à-Mousson, France)

}
\setcounter{page}{8}
\fancyhead[LE,RO]{\large\sffamily Preprints EuroTEX2005 -- Pont-à-Mousson, France}%
\fancyhead[RE,LO]{\large\sffamily MOT02}%
\fancyfoot[RO,LE]{\large\sffamily\thepage}%
\fancyfoot[RE,LO]{\large\sffamily Omega Becomes a Sign Processor\\Yannis Haralambous, Gábor Bella}

\IfFileExists{../papers-final/MOT02.pdf}{%
\includepdf[pages=-, scale=1.0,

pagecommand={}]{../papers-final/MOT02.pdf}}%
{\Huge\mbox{}\vfill
\centering\textsf{\textbf{PAPER NOT YET RECEIVED}}
\vfill}

\end{document}

Volker RW Schaa XML Workflows and the EuroTEX 2005 Proceedings

— 37 — schaa.pdf

History
<html>/pdfTEX

Summary

Scripts
Generated script for pdf-file
«html>features</html>
\pdfTEX{features}

»geometry« helps to keep the tight frame

\documentclass[twoside]{book}
\usepackage[papersize={595pt,792pt}, body={483pt, 680pt},

top=54pt, left=56pt, head=18pt, headsep=15pt, footskip=32pt]{geometry}
\usepackage{fancyhdr}\pagestyle{fancy}
\usepackage{pdfpages}

\begin{document}
\pdfinfo{%
/Title (Omega Becomes a Sign Processor)
/Author (Yannis Haralambous, Gábor Bella)
/Subject (Preprints EuroTEX2005 -- Pont-à-Mousson, France)

}
\setcounter{page}{8}
\fancyhead[LE,RO]{\large\sffamily Preprints EuroTEX2005 -- Pont-à-Mousson, France}%
\fancyhead[RE,LO]{\large\sffamily MOT02}%
\fancyfoot[RO,LE]{\large\sffamily\thepage}%
\fancyfoot[RE,LO]{\large\sffamily Omega Becomes a Sign Processor\\Yannis Haralambous, Gábor Bella}

\IfFileExists{../papers-final/MOT02.pdf}{%
\includepdf[pages=-, scale=1.0,

pagecommand={}]{../papers-final/MOT02.pdf}}%
{\Huge\mbox{}\vfill
\centering\textsf{\textbf{PAPER NOT YET RECEIVED}}
\vfill}

\end{document}

Volker RW Schaa XML Workflows and the EuroTEX 2005 Proceedings

History
<html>/pdfTEX

Summary

Scripts
Generated script for pdf-file
«html>features</html>
\pdfTEX{features}

»fancyhdr« prints header and footer information

\documentclass[twoside]{book}
\usepackage[papersize={595pt,792pt}, body={483pt, 680pt},

top=54pt, left=56pt, head=18pt, headsep=15pt, footskip=32pt]{geometry}
\usepackage{fancyhdr}\pagestyle{fancy}
\usepackage{pdfpages}

\begin{document}
\pdfinfo{%
/Title (Omega Becomes a Sign Processor)
/Author (Yannis Haralambous, Gábor Bella)
/Subject (Preprints EuroTEX2005 -- Pont-à-Mousson, France)

}
\setcounter{page}{8}
\fancyhead[LE,RO]{\large\sffamily Preprints EuroTEX2005 -- Pont-à-Mousson, France}%
\fancyhead[RE,LO]{\large\sffamily MOT02}%
\fancyfoot[RO,LE]{\large\sffamily\thepage}%
\fancyfoot[RE,LO]{\large\sffamily Omega Becomes a Sign Processor\\Yannis Haralambous, Gábor Bella}

\IfFileExists{../papers-final/MOT02.pdf}{%
\includepdf[pages=-, scale=1.0,

pagecommand={}]{../papers-final/MOT02.pdf}}%
{\Huge\mbox{}\vfill
\centering\textsf{\textbf{PAPER NOT YET RECEIVED}}
\vfill}

\end{document}

Volker RW Schaa XML Workflows and the EuroTEX 2005 Proceedings

History
<html>/pdfTEX

Summary

Scripts
Generated script for pdf-file
«html>features</html>
\pdfTEX{features}

»pdfinfo« transfers all meta info into the pdf file

\documentclass[twoside]{book}
\usepackage[papersize={595pt,792pt}, body={483pt, 680pt},

top=54pt, left=56pt, head=18pt, headsep=15pt, footskip=32pt]{geometry}
\usepackage{fancyhdr}\pagestyle{fancy}
\usepackage{pdfpages}

\begin{document}
\pdfinfo{%
/Title (Omega Becomes a Sign Processor)
/Author (Yannis Haralambous, Gábor Bella)
/Subject (Preprints EuroTEX2005 -- Pont-à-Mousson, France)

}
\setcounter{page}{8}
\fancyhead[LE,RO]{\large\sffamily Preprints EuroTEX2005 -- Pont-à-Mousson, France}%
\fancyhead[RE,LO]{\large\sffamily MOT02}%
\fancyfoot[RO,LE]{\large\sffamily\thepage}%
\fancyfoot[RE,LO]{\large\sffamily Omega Becomes a Sign Processor\\Yannis Haralambous, Gábor Bella}

\IfFileExists{../papers-final/MOT02.pdf}{%
\includepdf[pages=-, scale=1.0,

pagecommand={}]{../papers-final/MOT02.pdf}}%
{\Huge\mbox{}\vfill
\centering\textsf{\textbf{PAPER NOT YET RECEIVED}}
\vfill}

\end{document}

Volker RW Schaa XML Workflows and the EuroTEX 2005 Proceedings

History
<html>/pdfTEX

Summary

Scripts
Generated script for pdf-file
«html>features</html>
\pdfTEX{features}

»pdfpages« imbeds the (raw) paper

\documentclass[twoside]{book}
\usepackage[papersize={595pt,792pt}, body={483pt, 680pt},

top=54pt, left=56pt, head=18pt, headsep=15pt, footskip=32pt]{geometry}
\usepackage{fancyhdr}\pagestyle{fancy}
\usepackage{pdfpages}

\begin{document}
\pdfinfo{%
/Title (Omega Becomes a Sign Processor)
/Author (Yannis Haralambous, Gábor Bella)
/Subject (Preprints EuroTEX2005 -- Pont-à-Mousson, France)

}
\setcounter{page}{8}
\fancyhead[LE,RO]{\large\sffamily Preprints EuroTEX2005 -- Pont-à-Mousson, France}%
\fancyhead[RE,LO]{\large\sffamily MOT02}%
\fancyfoot[RO,LE]{\large\sffamily\thepage}%
\fancyfoot[RE,LO]{\large\sffamily Omega Becomes a Sign Processor\\Yannis Haralambous, Gábor Bella}

\IfFileExists{../papers-final/MOT02.pdf}{%
\includepdf[pages=-, scale=1.0,

pagecommand={}]{../papers-final/MOT02.pdf}}%
{\Huge\mbox{}\vfill
\centering\textsf{\textbf{PAPER NOT YET RECEIVED}}
\vfill}

\end{document}

Volker RW Schaa XML Workflows and the EuroTEX 2005 Proceedings

History
<html>/pdfTEX

Summary

Scripts
Generated script for pdf-file
«html>features</html>
\pdfTEX{features}

»\IfFileExists« ensures that there is at least a paper with a note

\documentclass[twoside]{book}
\usepackage[papersize={595pt,792pt}, body={483pt, 680pt},

top=54pt, left=56pt, head=18pt, headsep=15pt, footskip=32pt]{geometry}
\usepackage{fancyhdr}\pagestyle{fancy}
\usepackage{pdfpages}

\begin{document}
\pdfinfo{%
/Title (Omega Becomes a Sign Processor)
/Author (Yannis Haralambous, Gábor Bella)
/Subject (Preprints EuroTEX2005 -- Pont-à-Mousson, France)

}
\setcounter{page}{8}
\fancyhead[LE,RO]{\large\sffamily Preprints EuroTEX2005 -- Pont-à-Mousson, France}%
\fancyhead[RE,LO]{\large\sffamily MOT02}%
\fancyfoot[RO,LE]{\large\sffamily\thepage}%
\fancyfoot[RE,LO]{\large\sffamily Omega Becomes a Sign Processor\\Yannis Haralambous, Gábor Bella}

\IfFileExists{../papers-final/MOT02.pdf}{%
\includepdf[pages=-, scale=1.0,

pagecommand={}]{../papers-final/MOT02.pdf}}%
{\Huge\mbox{}\vfill
\centering\textsf{\textbf{PAPER NOT YET RECEIVED}}
\vfill}

\end{document}

Volker RW Schaa XML Workflows and the EuroTEX 2005 Proceedings

History
<html>/pdfTEX

Summary

Scripts
Generated script for pdf-file
«html>features</html>
\pdfTEX{features}

»pagenumber« is set after checking/counting all pages

\documentclass[twoside]{book}
\usepackage[papersize={595pt,792pt}, body={483pt, 680pt},

top=54pt, left=56pt, head=18pt, headsep=15pt, footskip=32pt]{geometry}
\usepackage{fancyhdr}\pagestyle{fancy}
\usepackage{pdfpages}

\begin{document}
\pdfinfo{%
/Title (Omega Becomes a Sign Processor)
/Author (Yannis Haralambous, Gábor Bella)
/Subject (Preprints EuroTEX2005 -- Pont-à-Mousson, France)

}
\setcounter{page}{8}
\fancyhead[LE,RO]{\large\sffamily Preprints EuroTEX2005 -- Pont-à-Mousson, France}%
\fancyhead[RE,LO]{\large\sffamily MOT02}%
\fancyfoot[RO,LE]{\large\sffamily\thepage}%
\fancyfoot[RE,LO]{\large\sffamily Omega Becomes a Sign Processor\\Yannis Haralambous, Gábor Bella}

\IfFileExists{../papers-final/MOT02.pdf}{%
\includepdf[pages=-, scale=1.0,

pagecommand={}]{../papers-final/MOT02.pdf}}%
{\Huge\mbox{}\vfill
\centering\textsf{\textbf{PAPER NOT YET RECEIVED}}
\vfill}

\end{document}

Volker RW Schaa XML Workflows and the EuroTEX 2005 Proceedings

— 38 — schaa.pdf

History
<html>/pdfTEX

Summary

Scripts
Generated script for pdf-file
«html>features</html>
\pdfTEX{features}

»path« information are set in the config file

\documentclass[twoside]{book}
\usepackage[papersize={595pt,792pt}, body={483pt, 680pt},

top=54pt, left=56pt, head=18pt, headsep=15pt, footskip=32pt]{geometry}
\usepackage{fancyhdr}\pagestyle{fancy}
\usepackage{pdfpages}

\begin{document}
\pdfinfo{%
/Title (Omega Becomes a Sign Processor)
/Author (Yannis Haralambous, Gábor Bella)
/Subject (Preprints EuroTEX2005 -- Pont-à-Mousson, France)

}
\setcounter{page}{8}
\fancyhead[LE,RO]{\large\sffamily Preprints EuroTEX2005 -- Pont-à-Mousson, France}%
\fancyhead[RE,LO]{\large\sffamily MOT02}%
\fancyfoot[RO,LE]{\large\sffamily\thepage}%
\fancyfoot[RE,LO]{\large\sffamily Omega Becomes a Sign Processor\\Yannis Haralambous, Gábor Bella}

\IfFileExists{../papers-final/MOT02.pdf}{%
\includepdf[pages=-, scale=1.0,

pagecommand={}]{../papers-final/MOT02.pdf}}%
{\Huge\mbox{}\vfill
\centering\textsf{\textbf{PAPER NOT YET RECEIVED}}
\vfill}

\end{document}

Volker RW Schaa XML Workflows and the EuroTEX 2005 Proceedings

History
<html>/pdfTEX

Summary

Scripts
Generated script for pdf-file
«html>features</html>
\pdfTEX{features}

»scaling« is determined by maximum of crop/media-box sizes

\documentclass[twoside]{book}
\usepackage[papersize={595pt,792pt}, body={483pt, 680pt},

top=54pt, left=56pt, head=18pt, headsep=15pt, footskip=32pt]{geometry}
\usepackage{fancyhdr}\pagestyle{fancy}
\usepackage{pdfpages}

\begin{document}
\pdfinfo{%
/Title (Omega Becomes a Sign Processor)
/Author (Yannis Haralambous, Gábor Bella)
/Subject (Preprints EuroTEX2005 -- Pont-à-Mousson, France)

}
\setcounter{page}{8}
\fancyhead[LE,RO]{\large\sffamily Preprints EuroTEX2005 -- Pont-à-Mousson, France}%
\fancyhead[RE,LO]{\large\sffamily MOT02}%
\fancyfoot[RO,LE]{\large\sffamily\thepage}%
\fancyfoot[RE,LO]{\large\sffamily Omega Becomes a Sign Processor\\Yannis Haralambous, Gábor Bella}

\IfFileExists{../papers-final/MOT02.pdf}{%
\includepdf[pages=-, scale=1.0,

pagecommand={}]{../papers-final/MOT02.pdf}}%
{\Huge\mbox{}\vfill
\centering\textsf{\textbf{PAPER NOT YET RECEIVED}}
\vfill}

\end{document}

Volker RW Schaa XML Workflows and the EuroTEX 2005 Proceedings

History
<html>/pdfTEX

Summary

Scripts
Generated script for pdf-file
«html>features</html>
\pdfTEX{features}

<html>features</html>

Built-in features:
1 Web pages and proceedings honor special characters,
2 Web pages are in Unicode (UTF8),
3 All names get proper accented characters and umlauts,
4 Proper math characters (in abstracts) on web pages,
5 Rule based sorting of names (accented letters, umlauts, . . .)

Volker RW Schaa XML Workflows and the EuroTEX 2005 Proceedings

History
<html>/pdfTEX

Summary

Scripts
Generated script for pdf-file
«html>features</html>
\pdfTEX{features}

<html>feature="Accented Characters"</html>

Volker RW Schaa XML Workflows and the EuroTEX 2005 Proceedings

History
<html>/pdfTEX

Summary

Scripts
Generated script for pdf-file
«html>features</html>
\pdfTEX{features}

<html>feature="Math"</html>

DIPAC 2003 - List of Sessions file:///D:/d/Dante/jubilaeum/PM-list.html

1 of 6 29.02.2004 17:26

PM -- Posters Monday

Paper Title Page

PM01 Use of Optical Transition Radiation Interferometry for Energy Spread And
Divergence Measurements

89

 R.B. Fiorito, A.G. Shkvarunets

IREAP, Institute for Research in Electronics and Applied Physics, University

of Maryland, College Park, MD, USA

 OTR interferometry (OTRI) has been shown to be an excellent diagnostic for

measuring the rms divergence and emittance of relativistic electron beams when

the energy spread ∆˼/˼ is less than the normalized rms divergence ̌ = ˼ rlms.

This is the case for most beams previously diagnosed with OTRI. To extend this

diagnostic capability to beams with larger energy spreads, we have calculated the

effects of all the parameters effecting the visibility of OTR interferences, V; i.e.

energy spread, angular divergence, the ratio of foil separation to wavelength ratio,

d/̄ and filter bandpass. We have shown that:

for a given ∆˼/˼, the sensitivity of V to ̌ is proportional to the observation

angle ˡ0, the fringe order n and the ratio d/̄;

1.

the sensitivity of V to ∆˼/˼ is independent of 0l and n but is proportional to

d/̄.

2.

Thus, by adjusting d/̄, and choosing the appropriate fringe order, one can

separate out and measure both the energy spread and divergence. However, the

filter bandpass must decrease with 0l and n. Results of our calculations will be

given for various beams of interest.

PM03 Studies of OTR Angular Distribution on CTF2 92

 E. Bravin, T. LefÈvre
CERN, Geneva, Switzerland

 Today, Optical Transition radiation (OTR) is widely used in beam diagnostics. The

most common application is the imaging of the transverse and longitudinal beam

profiles. Other beam parameters like divergence and energy can also be deduced

by observing the angular distribution of the OTR emission (“Donuts”). In order to

investigate the possibilities and the limits offered by this technique we have

performed a test on the 48 MeV, 1 nC electron beam of the CLIC Test Facility 2

(CTF2). Beam divergences between 2 and 6 mrad were measured with an

accuracy of few percent. A good agreement was also found between the energy

measurements obtained with a classical spectrometer and the OTR based

technique. We conclude describing some possible future applications of OTR based

diagnostics for CLIC.

PM04 OTR from Non-Relativistic Electrons 95

 C. Bal, E. Bravin, E. Chevallay, T. LefÈvre, G. Suberlucq

CERN, Geneva, Switzerland

 The CLIC Test Facility 3 (CTF3) injector will provide pulsed beams of high average

current; 5 A over 1.56 ̅s at 140 keV. For transverse beam sizes of the order of

1mm, as foreseen, this implies serious damages to the commonly used scintillating

screens. Optical Transition Radiation from thermal resistant radiators represents a

possible alternative. At low energy the OTR emission is feeble and distributed over

a large solid angle. In order to investigate the feasibility of such a diagnostic

studies have been carried out on a test 80 keV photo injector. The experimental

set-up is described and the results are compared to the calculations based on the

OTR emission theory. Our conclusions for the design of the CTF3 injector profile

monitor are also given.

PM05 Optical Transmission Line For Streak Camera Measurements at Pitz 98

 J. BÄhr, D. Lipka, H. LÜdecke

DESY-Zeuthen, Deutsches Elektronen-Synchrotron, Zeuthen, Germany

 The photoinjector injector test facility at DESY Zeuthen (PITZ) [1] produces

electrons with a momentum of about 4 MeV/c. It is the aim to measure the

temporal characteristics of the electron bunch train and single bunches with high

accuracy of the order of 1 ps and less. Several types of streak cameras will be

used in combination with different radiators which transform particle energy in

light. The problem to be solved is the light transport over a distance of about 27

m. Basic demands to the optical system and design principles will be explained.

The optical and technical solutions will be presented. The strategy of adjustment

and commissioning of the optical system will be described. The system contains

switchable optics to use different radiators (OTR, Cherenkov radiators). Diagnostic

tools are foreseen at different positions along the optical axis. The results of

different measurements in the lab and using the original system will be presented.
The problems on the minimalization of the time dipersion in the system will be

discussed.

[1] F.Stephan, et al., Photo injector test facility under construction at DESY

Zeuthen, FEL 2000, Durham

PM06 An Improved PLL for Tune Measurements 101

Volker RW Schaa XML Workflows and the EuroTEX 2005 Proceedings

History
<html>/pdfTEX

Summary

Scripts
Generated script for pdf-file
«html>features</html>
\pdfTEX{features}

<html>feature="Sorting Order" (i.e. ö⇐⇒ oe)</html>

Volker RW Schaa XML Workflows and the EuroTEX 2005 Proceedings

— 39 — schaa.pdf

History
<html>/pdfTEX

Summary

Scripts
Generated script for pdf-file
«html>features</html>
\pdfTEX{features}

<html>feature="Web Session page"</html>

Volker RW Schaa XML Workflows and the EuroTEX 2005 Proceedings

History
<html>/pdfTEX

Summary

Scripts
Generated script for pdf-file
«html>features</html>
\pdfTEX{features}

<html>feature="Web Authors page"</html>

Volker RW Schaa XML Workflows and the EuroTEX 2005 Proceedings

History
<html>/pdfTEX

Summary

Scripts
Generated script for pdf-file
«html>features</html>
\pdfTEX{features}

\pdfTEX{features}

Built-in features:
1 printing of header and footer information,
2 transfer of all meta-information into pdf-file,
3 (down)scaling depending on size of crop/media-box,
4 setting of page numbers after counting of all pages,
5 the author index has links to articles,
6 inclusion of paper or "missing" note,
7 config file with settings for directories, sort-rules, dependencies

etc.

Volker RW Schaa XML Workflows and the EuroTEX 2005 Proceedings

History
<html>/pdfTEX

Summary

Scripts
Generated script for pdf-file
«html>features</html>
\pdfTEX{features}

\pdfTEX{feature="Time Table"}

11:00 TUT03 Hans Hagen
The 16 Faces of a Dutch Math Journal

11:45 TUT04 Adam Twardoch
Typographic Perfection with OpenType?

12:30 – 14:00 Lunch

14:00 TUT05 Gerd Neugebauer
Namespaces for εXTEX

14:30 TUT06 Patrick Gundlach
contextgarden.net: The ConTEXt Wiki

15:00 TUT07 Thành Hàn Thế
Experiences with Micro-Typographic Extensions of pdfTEX in Practice

15:30 – 16:00 Coffee Break

16:00 TUT08 Johannes Küster
NewMath and Unicode

16:30 TUT09 Bogusław Jackowski, Janusz M. Nowacki
Latin Modern fonts: how less means more

17:00 – 19:00 TUT10 Panel discussion with Hermann Zapf and Donald Knuth
‘With a little help from the wizards’

20:00 Gala Diner

Wednesday, March 9
8:30 WET01 Thomas Feuerstack

ProTEXt, a new TEX-Collection for Beginners

9:00 WET02 Jean-Michel Hufflen
Bibliography Styles Easier with MlBibTEX

9:30 WET03 Antoine Lejay
La machine à formulaires (The Forms’ Machine)

10:00 WET04 Frank-René Schäfer
ŞäferTEX: Source Code Esthetics for Automated Typesetters

10:30 – 11:00 Coffee Break

11:00 WET05 Jérôme Laurens
The TEX Wrapper Structure: A Basic TEX Document Model Imple-
mented in iTEXMac

11:30 WET06 Stephan Lehmke
Case Study of TEX in Commercial Data Based Publishing: Completely
Automatic Typesetting of a Large Product Catalogue

Preprints EuroTEX2005 – Pont-à-Mousson, France

Preface iii

Volker RW Schaa XML Workflows and the EuroTEX 2005 Proceedings

History
<html>/pdfTEX

Summary

Scripts
Generated script for pdf-file
«html>features</html>
\pdfTEX{features}

\pdfTEX{feature="Table of Contents"}

Preprints EuroTEX2005 – Pont-à-Mousson, France

Contents
Preface i

Schedule . ii
Contents . v

Monday - Talks 1
MOT01 – Mem. A Multilingual Environment for LATEX with Aleph . 1
MOT02 – Omega Becomes a Sign Processor . 8
MOT03 – A Taxonomy of Automated Typesetting Systems . 20
MOT04 – Designing an Implementation Language for a TEX Successor 21
MOT05 – CTAN Plans . 27
MOT06 – MP2GL: prototyping 3D objects with Metapost . 28
MOT07 – Metapost Developments . 29
MOT08 – Verbatim Phrases and Listings in LATEX . 30
MOT09 – From RTF to XML to LATEX . 51
MOT10 – TEX Forever! . 57

Tuesday - Talks 67
TUT01 – The TEI/TEX Interface . 67
TUT02 – LATEX3 News . 68
TUT03 – The 16 Faces of a Dutch Math Journal . 69
TUT04 – Typographic Perfection with OpenType? . 70
TUT05 – Namespaces for εXTEX . 71
TUT06 – contextgarden.net: The ConTEXt Wiki . 76
TUT07 – Experiences with Micro-Typographic Extensions of pdfTEX in Practice 81
TUT08 – NewMath and Unicode . 89
TUT09 – Latin Modern fonts: how less means more . 97
TUT10 – Panel discussion with Hermann Zapf and Donald Knuth: ’With a little help from the wizards’ 104

Wednesday - Talks 105
WET01 – ProTEXt, a new TEX-Collection for Beginners . 105
WET02 – Bibliography Styles Easier with MlBibTEX . 106
WET03 – La machine à formulaires (The Forms’ Machine) . 120
WET04 – ŞäferTEX: Source Code Esthetics for Automated Typesetters 128
WET05 – The TEX Wrapper Structure: A Basic TEX Document Model Implemented in iTEXMac . . . 129
WET06 – Case Study of TEX in Commercial Data Based Publishing: Completely Automatic Typeset-

ting of a Large Product Catalogue . 137
WET07 – The Bigfoot Bundle for Critical Editions . 138

Thursday - Tutorials 144
THT01 – XML to PDF, where does TEX fit in . 144
THT02 – TEXPower – Dynamic Presentations with LATEX . 145
THT03 – εXTEX - Under the Hood . 146
THT04 – Metapost . 147
THT05 – TEXLive 2004 Windows Installer . 148
THT06 – Installing and using Emacs, AUCTEX, RefTEX, preview-latex 149

Friday - Tutorials 150
FRT01 – ConTEXt . 150
FRT02 – Advanced LATEX . 151

Appendices 152
List of Authors . 152
Participants List . 153

Preface v

Volker RW Schaa XML Workflows and the EuroTEX 2005 Proceedings

History
<html>/pdfTEX

Summary

Scripts
Generated script for pdf-file
«html>features</html>
\pdfTEX{features}

\pdfTEX{feature="Preprints"}

Volker RW Schaa XML Workflows and the EuroTEX 2005 Proceedings

— 40 — schaa.pdf

History
<html>/pdfTEX

Summary

Scripts
Generated script for pdf-file
«html>features</html>
\pdfTEX{features}

\pdfTEX{feature="List of Authors"}

Volker RW Schaa XML Workflows and the EuroTEX 2005 Proceedings

History
<html>/pdfTEX

Summary

Scripts
Generated script for pdf-file
«html>features</html>
\pdfTEX{features}

\pdfTEX{feature="List of Participants"}

Karin Dornacher
DANTE e.V.
office@dante.de
Postfach 101840
D-69008 Heidelberg
Germany

— E —

Martin Etter
martin.etter@gmx.de
Bergstraße 5
D-70806 Kornwestheim
Germany

Christoph Eyrich
eyrich@math.tu-berlin.de
Skalitzer Straße 74a
D-10997 Berlin
Germany

— F —

Robin Fairbairns
rf@cl.cam.ac.uk
30 Mill End Road
Cambridge, CB1 9JP
United Kingdom

Hong Feng
RON’s Datacom Co., Ltd.
fred@mail.rons.net.cn
Suite 3-3, WuZhong Str. 200, Don
District
430040 Wuhan
China

Thomas Feuerstack
FernUniversität in Hagen
Universitätsrechenzentrum
Thomas.Feuerstack@fernuni-hagen.
de
Universitätstr. 21
D-58084 Hagen
Germany

Jonathan Fine
The Open University
j.fine@open.ac.uk
Walton Hall
Milton Keynes, MK7 6AA
United Kingdom

Robert Fischer
derfischer@gmx.net
Am Krümmelweg 8
D-54311 Trierweiler
Germany

Daniel Flipo
U.S.T.L.
daniel.flipo@univ-lille1.fr
Cité scientifique
F-59655 Villeneuve d’Ascq Cedex
France

David Fuchs
drfuchs@yahoo.com
1775 Newell Rd.
Palo Alto, California, 94303
USA

— G —

Ralf Gärtner
ralf.gaertner@t-systems.com
Ötztalerstr. 5b
D-81373 München
Germany

Falk Gerwig
flak2k@gmx.de
Im Schlehbusch 9
D-75397 Simmozheim
Germany

Michel Goossens
CERN
michel.goossens@cern.ch
Departement IT
CH-1211 Geneve 23
Switzerland

Steve Grathwohl
Duke University Press
grath@duke.edu
905 W Main Street Suite 18B
Durham, NC, 27701
USA

Holger Grothe
TU Darmstadt,
Fachbereich Mathematik
grothe@dalug.de
Kittlerstraße 38
D-64289 Darmstadt
Germany

Patrick Gundlach
patrick@gundla.ch
Universitätsstraße 71
D-44789 Bochum
Germany

Michael Guravage
Literate Solutions
guravage@literatesolutions.com
Mijndensedijk 11a
NL-3632NT Loenen aan de Vecht
The Netherlands

— H —

Hans Hagen
PRAGMA
Advanced Document Engineering
pragma@wxs.nl
Ridderstraat 27
NL-8061GH Hasselt
The Netherlands

Thê Thành Hàn
University of Education
in Ho Chi Minh City
hanthethanh@gmx.net
280 An Duong Vuong
Ho Chi Minh
Vietnam

Yannis Haralambous
ENST Bretagne
yannis.haralambous@
enst-bretagne.fr
CS 83818
F-29238 Brest
France

Jim Hefferon
St Michael’s College
ftpmaint@tug.ctan.org
Box 285
Colchester, VT, 05439
USA

Laure Heïgéas
France

Oliver Heins
olli@sopos.org
Auf dem Brinke 1
D-30453 Hannover
Germany

Participants List Preprints EuroTEX2005 – Pont-à-Mousson, France

154 Participants List

Volker RW Schaa XML Workflows and the EuroTEX 2005 Proceedings

History
<html>/pdfTEX

Summary

Summary

The whole exercise was to show that with pdfTEX and the help of
Perl we have all means to put proceedings and preprints together
in an easy way with a convincing quality in print.
What’s left to do:

translation of special characters to Unicode has to be extended
actually there are 65 accented characters,
117 special characters,
113 math symbols, and
39 Greek letters.

at least one Vietnamese :-)

Volker RW Schaa XML Workflows and the EuroTEX 2005 Proceedings

History
<html>/pdfTEX

Summary

Thank you!

Volker RW Schaa XML Workflows and the EuroTEX 2005 Proceedings

— 41 — taylor-cappelli.pdf

The Porphyrogenitus Project :
— Typesetting the Byzantine Cappelli

1

Background :

• Latin palæographers have for over a century been able to refer to
Adriano Cappelli’s Lexicon abbreviaturarum. Dizionario di
abbreviature latine ed italiane (Milan: Ulrich Hoepli)

• No similar work exists for Byzantine (early Greek) texts

• This lacuna is being filled by the work of Miss Julian
Chrysostomides and Dr Charalambos Dendrinos

2

Purpose of the project :

• To collate, transcribe and document several thousand examples of
Greek palæography ...

• To present the results of this research in printed form ...

• And, ultimately, to make it available on multi-indexed, searchable,
zoomable CD

3

The problem :

• Thousands of pages of handwritten Byzantine text dating back over
1000 years

• Text full of abbreviations, ligatures, and other scribal devices which
make them virtually inaccessible to all but the most dedicated
scholars

4

The solution :

• A “Lexicon of Abbreviations & Ligatures in Greek Minuscule Hands
(ca. 8th century to ca. 1600)”

• Each entry to contain a scanned image with transcription,
transliteration and provenance

5

Macrostructure of the Dictionary :

• The alphabet (variant forms of each letter)

• Abbreviations

• Ligatures

• Incunabulæ (early printed books)

• Tachygraphy (speed-writing, “shorthand”)

• Monocondyliæ (a word or words [frequently signatures] written
with one stroke [i.e., the words are not separated])

• Cryptography (secret writing)

• Symbols

• Punctuation

• Numbers

6

Microstructure of the Dictionary :

• Scanned image (normalised for size)

• Transliteration (the exact glyphs used)

• Explanation (the full form, with omitted glyphs interpolated)

• Provenance (usually date, occasionally more)

7

Preparation of entries

• Manuscript read by Charalambos or Julian

• Interesting regions marked and scanned

• Saved as a file, transcribed, and entered into an index system

• The computer does the rest !

8

— 42 — taylor-cappelli.pdf

The original methodology

• Scanned using an HP Scanjet IIc

• Edited using PaintShop PRO and a FastPoint light pen

• Traced using Corel Trace

• Further edited using Corel Draw

• Exported as EPS

• Transcribed onto a CardFile file

• Each entry appended to Byz-Data.dat

• Processed using Eberhard Mattes “emTEX” with Silvio Levy’s Greek
fonts (PK)

• Converted to PostScript using ArborText’s DVILASER/PS

• Viewed using Russell Lang’s GS-View

• Proofs produced on a PostScript printer if necessary
9

How we do things in the 21st Century

• Scanned using an HP Scanjet 6430

• Edited using PaintShop PRO and a FastPoint light pen

• Saved as PDF

• Transcribed into an Excel spreadsheet

• Processed using WinEDT, TeX-Live 2003 & Hàn Th´̂e Thành’s/Fabrice
Popineau’s PdfLATEX and Claudio Beccari’s Greek fonts (Type-1)

• Viewed using Adobe Acrobat

• Proofs produced on any Windows printer when needed

10

Markup needed for Greek palæography

• The Greek alphabet, transliterated into English characters (52 in all)

• Breathings (rough, smooth)

• Accents (acute, grave, circumflex)

• Iota subscript

• Ornamentations (raised, overbar)

• Diaresis

11

Sorting the data

• Dictionary divided into ten main sections

– The alphabet (variant forms of each letter)
– Abbreviations
– Ligatures
– Incunabulæ (early printed books)
– Tachygraphy (speed-writing, “shorthand”)
– Monocondyliæ (words written with one stroke, frequently

signatures)
– Cryptography (secret writing)
– Symbols
– Punctuation
– Numbers

12

Intra-section sorting

• Sort by multiple keys

– letters
– breathings
– accents
– iotas
– ornaments
– diareses
– cases

13

The problem :

• Files to be sorted are large, with embedded TEX markup

• TEX is good at parsing its own markup, but weak at sorting

• PERL is good at sorting,but weak at parsing TEX markup

14

The solution (with thanks to Prof. Klaus LAGALLY)

• Use TEX to parse the source file

• Use PERL to sort the source file based on the information generated
by TEX

15

The implementation

• The TEX parser writes multiple output files

• Each output file represents one key for the PERL sorter

• Each record in each output file contains one fixed-width integer for
each lexeme in the input record

• PERL is then asked to perform a detached-key sort using multiple
keys of this format

16

— 43 — taylor-cappelli.pdf

A peek inside the files

• A fragment of the raw (unsorted) TEX input

• A fragment of an intermediate key file, written by TEX

• A fragment of sorted TEX output

17

Additional refinements

• Sort first by transliteration, then by explanation if transliteration
identical or omitted

• Two additional keys added during refinement :

– Date (provenance)

– Original sequence number

18

The programs

• Sort.TeX

• Sort.Perl

19

Optimising the layout

• Scanned images vary in size (width) even after normalising for
height

• TEX would require a multi-pass approach to optimise image
placement

• Excel has a very powerful add-in function (Tools/Data
analysis/Histogram/Cumulative percentage)

• Given the set of all possible widths for images, this will
immediately allow the book designer to see what fraction would fit
in a given width

20

The implementation

• TEX is asked to output an auxiliary file containing the width of each
image encountered

• Excel can easily import such a file into a spreadsheet (use ”p” as
column separator : 32.10547pt − > 32.10547 t)

• Using Excel’s data analysis tools, these widths are sorted and
frequency & cumulative % age ascertained

• The book designer and researchers then jointly look at these to
decide how much space to allow for the images

21

Further statistical input to the book design

• Not only image width but transcription width, explanation width
and provenance width can be analysed

• For wrappable fields, minimum width can be computed using TEX’s
box constructor/box destructor methods

• Statistical information such as this can do much to ensure that the
author(s) and book designer are able to make informed design
decisions

22

Conclusions

• Modern tools such as PdfLaTEX make life much simpler

• TEX is an ideal tool for typesetting polytonic Greek

• Splitting the sorting task into two distinct phases offers enormous
benefits

– TEX is ideal for parsing its own markup but poor for sorting

– PERL is sub-optimal for parsing TEX markup but perfect for
sorting using multiple detached keys

• Excel is a very powerful tool for providing statistical input into the
task of book design

• The synthesis of TEX & PERL is a splendid example of synergy, as is
the synthesis of TEX & Excel.

23

— 44 — taylor-grid.pdf

Principles of Nutritional Assessment: 2nd edition
— 2-column typesetting on a grid using (Pdf)LaTEX2e

1

Background

• Professor Rosalind Gibson’s Principles of Nutritional Assessment
first published by OUP (NY) in 1990

• Publication followed five years of collaboration between author,
her husband (Professor Ian Gibson) and self

• Original design was typeset in a single column to a fairly wide
measure (6 1/8” x 9 1/4”)

• OUP insisted on Times Roman which we were forced to scale
anamorphically (by a factor of 24/25) to suit the wide measure

• OUP (unaware of the scaling) pronounced our version “one of the
nicest instances of Times Roman we have seen” !

2

Preparations for the second edition

• Ros started work on the 2nd edition about five years ago

• An early design decision was to typeset in two columns

• Having looked at standard LaTEX 2-column output, a secondary
design decision was taken to try to enforce typesetting on a grid

• Since we were now working in narrow measure, unscaled Times
Roman was suitable for the main text font

• Optima was selected as the font of choice for headings

3

The team members

• Professor Rosalind Gibson is the author, driving force, and ultimate
authority on all decisions

• Her husband, Professor Ian Gibson, a geologist by profession,
undertook the task of typesetting

• Philip Taylor was technical advisor, as with the previous edition

• OUP (NY) undertook to publish the work from CRC prepared by
the team

4

Moving into the 21st Century

• Ian was unaware of TEX-Live and took some persuading before he
would willingly migrate to it

• He was similarly reticent about migrating to Pdf(La)TEX

• He is now totally convinced that these migrations were justified!

5

The challenges of typesetting on the grid

• Chapter headings

• Section and subsection headings

• Quotations

• Lists

• Displayed maths

• Figures

• Tables

• \textheight, \baselineskip, \topskip, ...

6

To automate or to kludge ?

• With author & typesetter in New Zealand and technical advisor
12000 miles away, necessary to evolve a working methodology that
allowed each to work effectively without requiring immediate
feedback from the other

• The task of ensuring grid-based compliance split between typesetter
and advisor

• Typesetter would adopt ad hoc solutions, whilst advisor would
work towards automation of the task

• Figures and tables were left to the typesetter, other challenges were
resolved by the advisor

7

Chapter headings

• Chapter headings were set in a zero-depth \vtop

• Space was then left using a \kern of 11 or 13 \normalbaselineskip

8

— 45 — taylor-grid.pdf

Section and subsection headings

• All parameters to \@startsection were expressed as integral
multiples of \normalbaselineskip

• \@startsection was itself hacked to perform a \vskip of
-1 \normalbaselineskip

• \@sect was hacked to ascertain the natural height/depth of the
heading and then to replace this with the most appropriate of a
small finite set of pre-determined dimensions

• \@sect has some of the worst kludges ever seen, with hard-wired,
empirically-determined, real constants !

9

Quotations

• Treated as lists, with \topsep set to 0,5\normalbaselineskip

10

Lists

• Use normal LaTEX lists with \topsep set to 0,5 \normalbaselineskip
or 1,0 \normalbaselineskip as appropriate

11

Displayed maths

• Uses \vadjusted nested 0 pt \vtops with a 0 \baselineskip \vskip
before and a 1 \baselineskip \vskip after, all within a real displayed
maths environment

• Within the display, each line set using \maths {}, which puts its
parameter into an \hbox in maths mode

12

\baselineskip

• Fill elements removed using \baselineskip = 1 \baselineskip

• \baselinestretch set to 0,88235

• Base font size is 11 pt, so we end up with something very close to
11/12 (actually 11/12.00002)

13

\textheight

• Set to 50 \baselineskip

• OUP would have preferred 50 pc

14

\topskip

• Set to 1 \baselineskip

15

The final product

• We leave judgement to the reader ...

16

— 46 — taylor-grid.pdf

Unforeseen problems (1)

• Section headings were typeset with more space above than below
(correct practice), and we were retaining the space above when a
heading occurred at the top of a column (so as to have consistent
space below)

– OUP insisted that these headings be set “aligned” with running
text in the opposite column

– They were unable to tell us whether they mean “baseline
aligned”, “x-height aligned”, or “ascender-aligned”, so we had
to guess . . .

17

Unforeseen problems (2)

• Figures falling at the bottom of a column caused problems, in that
the legend (below the figure) was never quite flush with the bottom
of the adjacent column — it was always too high

– We never did get to the bottom of this one, so Ian had to kludge
it by hand wherever it occurred . . .

18

Why so many kludges ?

• Two main reasons :

– Neither TEX nor LaTEX offer intrinsic support for grid-based
typesetting

– The ”technical advisor” is a complete beginner when it comes
to LaTEX and knows only how to hack “real” TEX, so some things
that might have been easy to an experienced LaTEX programmer
were pretty d@mned difficult !

19

Conclusions

• For 2-column work, grid-based typesetting should be the norm

• TEX & LaTEX offer little in the way of intrinsic support for grid-based
typesetting

• Apart from a few fundamental constants, there are about half a
dozen different classes of material that require special treatment in
order to ensure that a grid-based layout is not violated

• Zero-depth \vtops augmented by \vskips of an integral number of
\normalbaselineskips provide a useful tool for some cases

• In other cases, more pragmatic and empirical approaches are
appropriate

• Since the benefits of grid-based typesetting are clear and
indisputable, it would be worth expending some effort to produce a
robust LaTEX-based solution

20

Epilogue

• Hàn Th´̂e Thành has been looking into the possibilities of
augmenting PdfTEX to allow grid-based typesetting

• His ideas include new node types and new primitives

21

Possible new node types (1)

• pdf snap ref point node

– a whatsit node representing a reference point for snapping

– no associated data

22

Possible new node types (2)

• pdf snap x node:

– a whatsit node representing a node that can be snapped in
x-direction;

– has a glue specifying:
∗ the basic unit of the “grid”
∗ how much it can be moved left/right

– Example: 5pt plus 4pt minus 3pt – grid of 5pt for each cell, snap
nodes can be moved as much as 4pt forward (right) and 3pt
backward (left). Any ’fil’ or higher order means that the
movement amount is unlimited

23

Possible new node types (3)

• pdf snap y node:

– As pdf snap x node, but for y-direction

24

— 47 — taylor-grid.pdf

Possible new primitives
• \pdfsnaprefpoint

– insert a reference point

• \pdfsnapx

– insert a whatsit node that can be snapped in x-direction

• \pdfsnapy

– as \pdfsnapx, but for y-direction

• \pdflinesnapx

– specify a snap x node that will be automatically prepended to
each line after line-breaking

• \pdflinesnapy

– as \pdflinesnapx, but for y-direction
25

Example usage

• Let there be \pdfsnaprefpoint in each page (e.g., in the header)

• assume \baselineskip = 10 pt

• then an early declaration such as

– \pdflinesnapy = 10pt plus 5pt minus 4pt

would have the effect of snapping every line to a grid with the
reference the location of \pdfsnaprefpoint to the nearest multiple of
10pt, given that the movement amount is in range (-4pt, 5pt)

• to snap the reference point of a box, insert a \pdfsnapy somewhere
inside the box so that it ends up at the baseline of the box

26

As-yet unresolved problems

• At the moment, \pdflinesnapy causes all lines produced by
line-breaking to be snapped

– This is undesirable for some cases such as listing environments,
verbatim, headings and so on. We therefore need a means to
turn snapping on and off, or to find another way to snap rather
than to apply it to every line

• Snapping can mess up the layout in some case

– For example, after displayed maths, snapping can cause the next
line to move up or down depending on the current setting,
which can in turn lead to the case when the space after the
displayed maths is not in proportion to the space before the
display

27

Interactions with LaTEX

• To apply snapping with success, many LaTEX definitions may have
to be rewritten to take it into account. A typical case in point is that
before and after every element (an environment, a listing or a
heading), there is some glue with both stretchability and
shrinkability, and therefore around each element is some elastic
space. Snapping allows us to snap lines after such an element to
align with the grid again, but it does so by changing the space after
the element only (by moving the next line up/down).

28

An alternative paradigm

• An alternative possibility now being considered by Thành is the
idea of “discrete glue” :

• “Discrete glue” would stretch or shrink like conventional glue, but
only by discrete amounts

• Not be be confused with “discreet glue”, which is so small that it
cannot be seen but which adds enormously to the æsthetics of
the page :-)

29

