
IEEE ANNALS OF THE HISTORY OF COMPUTING

APPENDIX: HOW TEX IS EXTENDED

Plain TEX consists of hundreds of primitive commands, implemented in the TEX program itself, and
hundreds more macro definitions. The primitive commands alone provide the fundamental input,
output, and typesetting functionality but at too low a level to be convenient for a user to specify the
typesetting of a document. The macros turn that base engine into a system that knows the
conventions of typesetting. An important group of primitive TEX commands is for defining macros
and the mechanisms for calling the new macros. These allow users to augment TEX.

There are many ways augmentation can be done. For instance, one can define new macros to
augment plain TEX or redefine existing macros to change the operation of plain TEX. (Eplain is an
example of a collection of macros that augment plain TEX, for instance, to add cross-referencing by
labels.) In addition, Knut put hooks into TEX to allow the system to work with other programs that
TEX doesn’t know about (and, largely, that came into existence many years after TEX was finished);
for instance, images in various formats can pass through TEX, and TEX can read and write external
files (other than the normal input and output).

LATEX, created originally by Leslie Lamport, is a set of macro definitions that reside on top of TEX’s
primitive commands, while reproducing many of the macro definitions available in plain TEX. LATEX
is probably the most common form in which people use TEX, and thousands of macro packages
have been written to reside on top of it or to modify its operation, for example, the url package
that handles the unusual characters in URLs and tries to do sensible line breaking of them, and the
fancyhdr package that supports nearly arbitrary page header and footer conventions. The
AMS-TEX version of TEX is also implemented with macros (on top of plain TEX), as was the
later-created AMS-LATEX (on top of LATEX, later merged into LATEX). A user can also add his or her
own macros on top of everything mentioned — including making changes to the existing macros.

The TEX ecosystem includes various other levels: tug.org/levels.html identifies large
collections of TEX-related software; front-ends or editors that provide a development environment,
provide sophisticated editing of TEX markup, or provide a graphical user interface; and extended
TEX engines that provide new basic functionality at the primitive level. Various packages and
engines also allow TEX to be connected to various high level languages instead of the user being
forced to program with macro definitions and calls — although some interaction with macros is all
but inescapable.

The sustained effort of Hàn Thế Thành to directly produce PDF files from TEX (rather than by
conversions from DVI to PostScript to PDF) is an example of how one project dealt with the various
levels of TEX. It is also a notable example of how one person became motivated to undertake a
significant project and how other people collaborated on it over time, rather analogous to the
original TEX project, albeit on a much smaller scale.

- - -

The TEX macro processor used in extending TEX is enormously powerful and flexible (and is a
comprehensively documented piece of software).7,8,9 There are explicit commands in TEX for
creating local or global definitions, as well as various other definition variations, such as delayed
definition and delayed execution of macro calls. TEX has a rich rather than minimal set of
conditional and arithmetic capabilities (some related only to position in typesetting a page). There
are also ways to pass information between macros and, more generally, to hold things to be used
later during long, complicated sequences of evaluation and computation. These capabilities allow
unlimited amounts of new code (programs) for extending or changing TEX to be written in the
macro language.

- - -



Feature Article

Historically, there has been an interesting set of pressures around TEX’s macro capability. Originally
Donald Knuth included only enough macro capability to implement his typesetting interface.

Knuth has made the point that he was designing a typesetting system that he didn’t want to make too
fancy, i.e., by including a high level language. He has also noted that when he was designing TEX he
created some primitive typesetting operations and then created a set of macros for the more
complete typesetting environment he wanted. He expanded the original macro capability (“kicking
and screaming”) when early users, particularly fellow Stanford professor Terry Winograd, wanted to
do some fancier things with macros. Knuth’s idea was that TEX and its macro capability provided a
facility with which different people could develop their own typesetting user interfaces, and this has
happened to a large extent, e.g., LATEX, ConTEXt, etc.

That expanded capability allowed users to construct nearly any logic they wanted on top of TEX
(although often such add-on logic was awkward to code using macro-type string manipulations). On
the one hand, TEX and its macro-implemented derivatives have always been very popular and there
have been nonstop macro-based additions for over 30 years. On the other hand, users then and now
despair at how annoying coding using macros is, moan about “why Knuth couldn’t have included a
real programming language within TEX”, and otherwise cast aspersions on TEX’s macro capability.

It is natural that Knuth used (unfancy) macros to extend TEX rather than high level language
constructions. Macros have been and still are traditionally used for user extension of editors and
other text processing systems Anyone can understand abbreviations substituting for common
phrases of text or sequences of commands. We suggest that TEX’s “problem” of not having a
programming language to allow user extensions is a primary reason that TEX became so popular and
has lasted so long and been built on top of by so many people (and developers, not just users) in so
many major ways that in retrospect the decision to have macros and not a programming language
can seem unfortunate. RUNOFF, Pub, and Script are gone so people don’t complain about
extensions to them using macros instead of a programming language.


