
The PracTEX Journal, 2010, No. 1
Article revision 2010/02/12

Enhancing Command Completion
for TEXShop
Herbert Schulz
herbs2@mac.com

Abstract LATEX environments and commands are rather wordy markup. These
make the intentions of the author easy to determine but more difficult to
write. Using Command Completion, authors can write a few letters and
trigger an expansion into complete environments and commands along
with ways of going between arguments of those commands. In this pa-
per I present an enhancement to Command Completion in TEXShop that
allows more consistent completions and inclusion of short comments to
help authors remember the order and contents of the arguments to those
environments and commands.

1 Introduction & History

TEXShop is a popular Editor, Viewer and TEX Front End on the Macintosh. As of
v1.34 TEXShop has offered a Command Completion facility that is reasonably pow-
erful, if under-utilized. Command Completion in TEXShop allows continuations
(Completions) and substitutions (Abbreviations) for a set of characters bounded
on the left by a Word Boundary Character1 and triggered by the Escape (Esc) key.

With the help of the good folks on the Mac OS X TeX e-mail list2, I put together
a CommandCompletion.txt file along with associated Applescript macros to take
advantage of that facility. The completions and abbreviations supplied often con-
tain bullet characters, ‘•’, called Marks3, as placeholders for command arguments
or to easily get to the end of an environment. Skipping forward/backward and

1. The Word Boundary Characters are space, tab, linefeed(newline), period, comma, semicolon,
colon, {, }, (,) or \ (actually the TeX Command Character which can vary in different implementa-
tions). The { and \ also become part of the expansion.
2. Subscribe by sending an e-mail to <mailto:MacOSX-TeX-on@email.esm.psu.edu>.
3. Previously called Tabs.

mailto:herbs2@mac.com
mailto:MacOSX-TeX-on@email.esm.psu.edu

\rule[#INS#]{•}{•}

\rule[]{•}{•}

Figure 1: Original CommandCompletion.txt contents and result in the document
source. Here is the insertion point.

selecting/deleting these Marks were accomplished using macros4. Most of the ab-
breviations were inspired by those used in the FasTEX5 set used with TypeIt4Me6.
The completion/abbreviation list created for TEXShop is the basis for the similar
feature used in TEXworks7.

Early in 2006, Hugh Neary sent me some Objective C code to implement the
macros as an integral part of TEXShop. I modified that code and used it for quite
a while in a personal build of TEXShop.

In April of 2006, Will Robertson added an extension to the Applescript macros
that allowed the addition of an explanatory Comment within the arguments; the
macros selected the Mark and Comment so typing replaced both with the entered
information. This was reported in the mactextoolbox-talk list and some discus-
sion followed it about the best delimiters for Comments but there was no final
conclusion; the original suggestion of “•‹” and “›8” has been retained. Unfortu-
nately, the original completion code could only position the insertion point (i.e.,
the cursor) so the initial selection could only have zero length (see Figure (1));
inconsistent with the behaviour with other arguments since you could not move
back to the first argument using the macros.

At that point I decided to do a complete re-write of the code to implement a
reasonably general version of Will Robertson’s ideas and, at the same time, extend

4. The original CommandCompletion.txt files, macros and documentation are still available as
CommandCompletion.zip from <http://homepage.mac.com/herbs2/>.
5. FasTEX was developed by Filip G. Machi, Jerrold E. Marsden and Wendy G. McKay. For more
information see the FasTEX web page, <http://www.cds.caltech.edu/~fastex/>.
6. TypeIt4Me, by Riccardo Ettore, version 3 and later is a preference pane that allows abbreviation
replacement in most OS X programs. See the TypeIt4Me web page, <http://www.typeit4me.
com/>, for more information.
7. TEXworks is a multi-platform Editor, Viewer and TEX Front End using the same design
philosophy as TEXShop. It was written by Jonathan Kew. More information is available at
<http://www.tug.org/texworks/>.
8. Note that ‘‹’ and ‘›’ are single “guillemot” glyphs, not ‘<’ and ‘>’.

2

http://homepage.mac.com/herbs2/
http://www.cds.caltech.edu/~fastex/
http://www.typeit4me.com/
http://www.typeit4me.com/
http://www.tug.org/texworks/

the Command Completion code so that the implementation was consistent start-
ing with the first argument of the completion. The result is backward compatible
with the original behaviour of that code but with additional capabilities.

2 Changes to TEXShop.

Four interconnected changes were made in TEXShop: an addition to the way
TEXShop handles completions from CommandCompletion.txt; a new menu with
commands for searching and selecting Marks within completions; the ability to
have comments attached to Marks; a new CommandCompletion.txt file that takes
some advantages of the previous three changes. The rest of this section discusses
each of these changes in more detail.

2.1 Changes to Completion Handling

Completions (in the CommandCompletion.txt file) in previous versions of TEXShop
could contain a single #INS# command for the positioning of the insertion point
within the completion.

This version of TEXShop allows completions to have two copies of #INS# and
the text between them is selected. A single #INS# behaves the same as before;
there is complete backward compatibility with previous versions of TEXShop.

2.2 A New Source→Completion→Marks Menu

The new Source→Completion→Marks menu contains commands to search for,
move to and select Marks and Comments. The commands are shown in Table (1)
and the default command menu appears in Figure (2). The (Del) versions of the
search commands only show in the menu when the Option (Opt) key is pressed
and the Insert Comment command only appears when you hold down the Con-
trol (Ctl) key. The Insert Mark command is added since TEXShop’s autocomple-
tion (keybinding) facility will insert \bullet in the document when the keystroke
that normally inserts a ‘•’ (Opt-8 with a US keyboard mapping) is pressed.

3

Menu Item Shortcut Internal Connection

Next Mark Ctl-Cmd-F Jump to and select the next Mark
and/or Comment.

Next Mark (Del) Ctl-Opt-Cmd-F Jump to and select the next Mark
and/or Comment and delete the
Mark. This is most useful when you
have nested environments to auto-
matically delete a Mark at the end
of an inner environment.

Previous Mark Ctl-Cmd-G Like Next Mark but search back-
wards.

Previous Mark (Del) Ctl-Opt-Cmd-G Like Next Mark (Del) but search
backwards.

Insert Mark Cmd-8 Places a Mark at the insertion point.
Handy for creating completions in
CommandCompletion.txt.

Insert Comment Ctl-Cmd-8 Places a Comment Skeleton, “•‹›”
with the insertion point before
the “›”, at the insertion point.
Handy for creating comments in
CommandCompletion.txt.

Table 1: Commands in the Source→Completion→Marks Menu.

2.3 Comments

The change mentioned in the previous sub-sections allow completions to contain
Comments—short “memory joggers” that have some information about the con-
tents of a given argument. The comments are contained within arguments and are
surrounded by “•‹” and “›” within the arguments; if the first argument contains
a comment it should be surrounded by two #INS# so it is the initial selection.

2.4 The New CommandCompletion.txt File

The CommandCompletion.txt file that comes with this version of TEXShop replaces
all single #INS# commands by #INS#•#INS# so that the initial selection is a se-

4

Figure 2: The Default Source→ Completion→ Marks Menu.

\rule[#INS#•#INS#]{•}{•}

\rule[•]{•}{•}

Figure 3: New CommandCompletion.txt contents and result in document.

lected Mark, •, for consistency in appearance and behavior when using the com-
mands in the Source→Completion→Marks Menu. Figure (3) shows what this
looks like.

The file, in addition, contains a few (too few?) examples of using comments.

3 Usage

3.1 Command Completion

A Command Completion is typically used to set up environments. To do this
type \b and Esc; this should return \begin{. Then start to type the environment
name; e.g., eq and Esc will give

5

\begin{equation}
•
\end{equation}•

while the next Esc gives eqnarray followed by it’s *-variant. After entering your
equation text at the cursor run the Source→Completion→Marks→Next Mark com-
mand and the cursor will select (and delete if Next Mark (Del) is used) the next
‘•’ so you can start to type following text.

The macros are also handy for commands with multiple arguments. For ex-
ample, to create a new command with an optional argument type \new or \newc
and then Esc three times to get

\newcommand{•}[•][•]{•}

with the first mark selected. After entering the new command’s name, please use
the Next Mark command to jump to the next argument, etc.

3.2 Abbreviations

In addition to command completion, there are many abbreviations for commands.
The principal difference is that the abbreviations are not just the start of a com-
mand name. For example typing benu and then pressing Esc at the beginning of a
line9 will produce the complete enumerated list environment:

\begin{enumerate}
\item
•
\end{enumerate}•

as you might expect. Abbreviations like this exist for many environments as well
as sectioning commands. Alternate command versions with one or more options
or *-variants have names that end with ‘o’ (one or more) or ‘s’ respectively: e.g.,
sec and two presses of Esc or secs and a single Esc at the start of a new line
give \section*{•}. By the way, After typing the text for the first item, typing
it and Esc on a new line will generate another \item with a selected Mark on
the line below it; continued presses of Esc will give \item[•] with a Mark on the

9. Or after any other Word Boundary Character.

6

following line, \textit{•} and finally \itshape before returning to the original
it.

Remember that you must have one of the Word Boundary Characters before
use; otherwise the substitution won’t operate properly. This a not a problem
with environments and sectioning commands, since you usually start them on a
new line, but it can be for other abbreviations. Therefore many abbreviation also
have a ‘\’ version; e.g., `tt and Esc will not expand properly since the ‘`’ isn’t a
Word Boundary Character while `\tt and Esc will expand to `\texttt{•} and a
second Esc will give the declaration `\ttfamily10.

Many of the Greek characters and in-line math versions of the Greek charac-
ters have abbreviations with the following rules:

1. The abbreviations for Greek characters all start with an ‘x’ and a notation
for the character: e.g., xa or \xa11 and Esc give \alpha.

2. The var version of several Greek characters start with ‘xv’ and the notation
for the character: e.g., xth gives \theta while xvth and Esc gives \vartheta.

3. To get capitals for some letters use an ‘xc’: e.g., xg gives \gamma while xcg
gives \Gamma.

4. Finally, preceding by a ‘d’ gives the following Greek character as an in-line
math equation: e.g., dxcd gives \(\Delta\).

Abbreviations will be completed and cycle through matches just like the com-
mand completions: e.g., both the abbreviation newcoo (note the ‘oo’ at the end of
the abbreviation) and Esc or newc followed by three Esc key presses on a new line
give \newcommand{•}[•][•]{•}, the \newcommand with two optional arguments.
There are alternate abbreviations for some commands: e.g., ncm gives the same
result as newc.

Read the CommandCompletion.txt file to see what abbreviations are available;
all lines with ‘:=’ are abbreviations. Naturally, you can change them to suit your
needs, adding or deleting others.

10. Similar abbreviations exist for bf, sf, sc, etc. Math versions have a preceding m; e.g., mbf and
Esc will give \mathbf{•}.
11. All of the Greek character abbreviations have \ versions.

7

\rule[#INS#•‹lift›#INS#]{•‹width›}{•‹height›}

\rule[•‹lift›]{•‹width›}{•‹height›}

Figure 4: New CommandCompletion.txt contents with comments and result in
document.

3.3 Comments

I tend to remember the arguments for commands that I use fairly often but forget
those I rarely use; these are the perfect candidates for comments. I can never
remember the order of the arguments for the \rule command so I type \rul
and Esc twice to get the result show in in Figure (4). Another example is the
wrapfigure environment, from the wrapfig package, which has multiple versions
with differing numbers and positions of optional arguments. To see the variations
with the comments type bwr on an empty line and press Esc to get:

\begin{wrapfigure}{•‹placement: r,R,l,L,i,I,o,O›}{•‹width›}
•
\end{wrapfigure}•

and versions with optional arguments on succeeding presses of Esc.

Other Environments

Environments that aren’t built into the CommandCompletion.txt file can always
be added if you use them a lot but there is an alternative for occasional use. Built
into the completion algorithm is a way to complete environments. First press \b
and Esc to get \begin{, enter the environment name and the closing } and then
Esc again; the closing \end{...} with the corresponding environment name will
be generated on a separate line.

4 Making Additions to CommandCompletion.txt
If you are adding items to the CommandCompletion.txt there are a few things you
should know about its structure:

8

– Each environment has three entries: a completion that removes the leading
\begin, i.e., it starts with a leading ‘{’ and the environment name; two
abbreviations that have an abbreviation name without a backslash (\) and
the same abbreviation with the backslash. Commands usually have three or
more forms, with and without a leading \, as well as possible abbreviations,
also with and without \.

– You should add all the variations with slightly different endings for the
abbreviations. I use an ‘o’ at the end of an abbreviation if that variation has
an optional argument, ‘oo’ for two optional arguments, ‘s’ for starred forms
of commands, etc.

– The order of similar items in the file does make a dramatic difference in
the order in which items are found; items placed later will be found earlier
(the file is searched backwards). E.g., the order of items obtained when
you press \b and then Esc depends purely on the order of matches in the
CommandCompletion.txt file.

– For maximum convenience place a Mark12 within each argument of com-
mands. Surround the very first argument with two #INS# commands so it
comes out selected. If you want to have a comment in any arguments insert
a Comment Skeleton13 and fill it in.

I’d suggest taking a look in the CommandCompletion.txt file for examples.

5 What’s Missing

I’d love to be able to have the completions preserve indentation but that is not in
the books for now.

Any other suggestions are welcome and will be considered for inclusion in
later iterations of the Command Completion code.

12. Using Insert Mark (Cmd-8) from the Source→Completion→Marks menu.
13. Using Insert Comment (Ctl-Cmd-8) from the Source→Completion→Marks menu.

9

6 Obtaining the version of TEXShop.

The enhanced version of Command Completion is incorporated into TEXShop
2.30 and later. It is available at the TEXShop web site, <http://www.uoregon.
edu/~koch/texshop/texshop.html>. Make sure you read the Help→About This
Release document to enable the updated CommandCompletion.txt, etc.

10

http://www.uoregon.edu/~koch/texshop/texshop.html
http://www.uoregon.edu/~koch/texshop/texshop.html

	Introduction & History
	Changes to TeXShop.
	Changes to Completion Handling
	A New SourceCompletionMarks Menu
	Comments
	The New CommandCompletion.txt File

	Usage
	Command Completion
	Abbreviations
	Comments

	Making Additions to CommandCompletion.txt
	What's Missing
	Obtaining the version of TeXShop.

