
The PracTEX Journal, 2010, No. 1
Article revision 2010/01/01

Continuous Integration in LATEX
Marco Antonio Gómez-Martín and Pedro Pablo Gómez-Martín

Email marcoa@fdi.ucm.es, pedrop@fdi.ucm.es

Abstract Have you ever co-written a paper using LATEX together with some version
control system such as SVN? Have you ever updated your local copy and
the compilation has become broken due to a previous bad commit? Con-
tinuous integration avoids this problem using an auxiliary server that
constantly checks the sanity of the repository, compiling the LATEX doc-
uments after each commit, and notifying authors of possible problems.
This paper describes how to configure this environment. Although the
configuration effort is detailed, it is done only once and provides many
benefits. In addition to doing compilation tests, all authors can be auto-
matically informed by e-mail when a new version is committed, and the
current .pdf version can be made available to third parties on the Web.

1 Introduction

Many of the documents that we write using LATEX are created not by just one
author but two or more. In fact, our analysis performed over the database of the
DBLP computer science bibliography1 reveals that the average number of authors
of books, journal articles and articles in proceedings written until February, 2004
was 2.26 (see table 1).

This justifies the use of some kind of version control system, such as CVS (2) or
Subversion (4) (also known as SVN) for collaborative writing of LATEX documents.
As the use of SVN has spread over the LATEX community, different packages have
appeared that allow documents to incorporate references to the properties of the
last revision (10). There are also different LATEX editors that ease the task of using
SVN (3).

When creating a document using this software, every author has a local copy
of the source files where they add their contributions. Periodically, they commit

1. http://dblp.uni-trier.de/

mailto:marcoa@fdi.ucm.es,%20pedrop@fdi.ucm.es?subject=Re:%20PracTeX%20Journal%20article%20
http://dblp.uni-trier.de/

of authors # of contribs Percentage
1 150320 31.83%
2 162546 34.42%
3 93148 19.73%
4 39371 8.34%
5 14660 3.1%

More than 5 12160 2.58%
Total 472205 100.0%

Table 1: Numer of authors per contribution in DBLP until Feb, 2004

their changes to the server in order for other users/authors to be able to update
their local copy with those changes. The result is a boost in the productivity
because the coordination is much easier, something especially important when
the deadline is near.

However, the use of this approach has a small issue: when an author commits
changes, the build may be accidentally broken. In our experience, this usually
happens when an author forgets to upload auxiliary files, such as images. An-
other source of problems is the difference between platforms: when the author is
using Windows or Mac, where the file names are case insensitive, he may break
the document generation of another author using Linux.

This issue is well known in the software development, where programmers
have used version control systems for decades. One of the solutions they have
found is called “continuous integration”. As we will see in the next section, it con-
sists of having a dedicated machine that continuously checks if there are changes
in the SVN repository. When it detects a commit, it updates automatically its
local copy and tries to build the application in development. If something is
wrong with the commit, it sends an e-mail to the programmer that performed it,
to kindly ask him to fix it, to avoid inconveniences to other developers.

In this paper, we extrapolate the idea into the LATEX world. We will describe
how to set up a server machine in order to use continuous integration in LATEX
projects. As we will see, this will bring us two other benefits: the machine may
send an e-mail to every author of the document, which helps them to know its
progress, and the generated document for every revision may be placed on a

2

web server for other authors (or reviewers) to download without forcing them to
generate the PDF.

This paper runs as follows. The next section describes in detail the ideas
behind the continuous integration concept. After that, we present our motivation
for having a machine for the continuous integration of LATEX projects. Section 4
describes the piece of software that we have used. Section 5 explains the steps
that authors should take in order to allow the server machine to manage their
projects. This is followed by Section 6 that describes how to set up the server.
After that we present some advanced topics and ideas for users that need more
control over the installation of the server. The paper ends with some conclusions.

Over the entire paper we assume that the reader is already writing their docu-
ments using Subversion. If this is not his/her case, you may find the continuous
integration approach presented here useless. We encourage the use of SVN (or
any other version control system). For more information, please consult (8) or (6).

2 Continuous Integration

When a team uses, for any purpose, a version control system, some discrepancies
can occur between the official content in the repositories and the local copies of
the collaborators. When commits are done after each participant has made many
local changes, problems such as file conflicts or incompatibilities can arise.

Software development teams, generally composed of many members, have
dealt with this issue for decades. The inherent problems of the late integration
caused (and still causes) many problems (and delays) when different software
components had to be put together.

These difficulties are also present, in a smaller extent, when using a version
control system while co-writing papers or documentation with LATEX. Maybe the
more common problem in this context is when someone forgets to commit a new
file, typically an image, or when a file is incorrectly committed, preventing the
rest of the team from compiling the new version.

A way to deal with all these problems is the known as continuous integration.
Martin Fowler, a software engineering guru, defines it as (5):

[It] is a software development practice where members of a team in-
tegrate their work frequently, usually each person integrates at least

3

(a) Cruise Control main page (b) Cruise Control dash board

Figure 1: Cruise control screenshots

daily - leading to multiple integrations per day. Each integration is
verified by an automated build (including test) to detect integration
errors as quickly as possible.

Therefore, continuous integration consists of encouraging developers to commit
their changes as soon as possible to the mainstream, in order to provide fast
feedback for developers.

An important aspect of this methodology is that an infrastructure is needed to
allow programmers to build and test their changes as early and often as possible.
The infrastructure will automatically do all these checks using the more recent
project version when a new commit is done.

Fortunately, in recent years, continuous integration has had a major boost in
the computer engineering area. This momentum has produced some tools for
providing the previously mentioned infrastructure, some of them Open Source.
We wondered if they could also be used to automatically test the commits into a
papers’ SVN, obviously a more reduced and simple environment than the bigger
development teams. The next sections describe our decisions and experiences.

3 Motivation

One of the more important tasks of a research group is to generate papers that are
usually written by at least two people. Today, many research groups have access

4

to server machines where reside different services, such as web or ftp sites. These
servers can be used for a more “private” task: for hosting a version control system
that helps the collaborative writing. A CVS or SVN server is almost mandatory
for managing all this cooperative work.

Unfortunately, as said previously, version control systems do not prevent prob-
lems due to someone committing an invalid file. Software development teams
use continuous integration to get over these difficulties. Our motivation was to im-
plement in our research group the idea of using a new service for continuously
testing that the different LATEX projects were valid.

Figure 1 shows the result. The chosen continuous integration tool (described
in the next section) provides two different interfaces to access its state. Both of
them show six different papers2, each of them forming a different project that is
stored in an independent place in the SVN repository. At regular intervals, the
continuous integration server checks each paper for modifications, and tests its
validity. As an example, the figure shows that one of the papers has a compilation
problem (the one called AIIDE09). The tool lets the user to browse into the error
and shows him/her the error log generated by LATEX during the failed generation.

As we will describe later in Section 6, our server machine is configured in
such a way that:

– When a new commit is detected, the server notifies all the paper co-authors.
This lets the collaborators remain informed about the evolution of other
parts of the paper without polling the version control server or asking the
other authors.

– The server publishes the generated document (usually .pdf) that will be
accessible via the Web. This becomes quite useful when the paper must be
read by external people, such as reviewers or advisors.

When starting a new paper, one of the authors will make the first commit into
the SVN repository. After that, the continuous integration server administrator
will add the new project so that the paper can be monitored. When new com-
mits are done, the tool will test their validity, and send e-mails and show results
through the web interface.

2. CC-ConfigValidator and CC-ConfigUpdate are not papers but projects related to the configu-
ration of the software, as described in Section 7.

5

We decided to use Cruise Control as our continuous integration tool. The next
section describes it, and then illustrates how the configuration process is done.

4 Cruise Control

Cruise Control3 is one of the more well-known continuous integration tools. It is
distributed under a BSD-style license and is free to use. Its main functions are, in
fact, quite simple:

– It periodically tests if the project repository has had any changes.

– When modifications are detected, Cruise Control updates a local copy of
the project, compiles it, and confirms the results to the authors in some way,
usually by e-mail.

Therefore, Cruise Control acts as a supervisor that controls all the commits
to the repository and informs when something was wrong. From the developers’
point of view, the use of Cruise Control is non-intrusive; they can just wait for an
e-mail from the Cruise Control system after a commit (Section 5). In our context,
when a co-writer commits changes, he waits until the system e-mail confirms that
the commit was correct. This constitutes a sanity check to avoid other teammates
having invalid repository states that prevent them from compiling the paper.

Cruise Control also provides statistical information about the project. Commit
logs can be browsed, and different graphs are generated to show the commit
patterns by type or days of the week (Figure 2).

From the administrator’s point of view, the Cruise Control and version control
servers can reside on two different machines, or can coexist in the same one. The
only dependency is that the Cruise Control server needs a client of the version
control system in use (SVN in our context) in order to update is project local copy.
Deploying a new Cruise Control server is a tedious task (Section 6), although,
fortunately, it must be done just once. As mentioned above, a Cruise Control
server can be used for more than one project/paper. Once the Cruise Control
server has been deployed, configuring it to keep vigilant watch over a new paper
is straightforward and does not requires more than a few minutes.

3. http://cruisecontrol.sourceforge.net/

6

http://cruisecontrol.sourceforge.net/

(a) Pie chart of build types (b) Build types by date

Figure 2: Cruise control graphs

Curiously, a Cruise Control server can be in charge of more than one tool. For
example, it can be testing if some papers are correctly updated in the SVN repos-
itory and, at the same time, testing if some C++ or Java projects in a CVS4 server
compiled correctly. In order for the administrator to instruct Cruise Control how
to build the projects for generating the resulting artifacts (pdf, executable or .jar
files respectively), a building tool is needed. Different alternatives exist for these
types of tools, such as the UNIX make (9) or the Open Source cmake (1). Cruise
Control, on the other hand, has been developed with Java in mind and uses Ant
(7), the building tool more commonly used for building and deploying complex
Java projects.

LATEX compilation requires invoking different applications in sequence, such
as latex (or pdflatex), bibtex and even glosstex or makeindex. Authors usually
automate these tasks using the make building tool, available across a wide range
of platforms. When using Cruise Control, the make-Ant gap must be bridged. The
next section describes how to do this.

5 Writing while Cruise Control is watching

From the authors’ point of view, Cruise Control is non-intrusive. They can write
their documents as usual and commit them periodically. The only extra step

4. CVS is a different version control system, which preceded the more commonly used SVN.

7

needed is to provide, at the beginning of the process, some files that explain to
Cruise Control how to build the document. In return, they will receive an e-mail
a few minutes after each commit that will indicate whether Cruise Control was
able to build the final document using the new version in the repository. Cruise
Control acts as a friendly overseer that monitors the repository’s sanity.

Usually LATEX users edit their files using an editor that includes some kind of
option/button to automatically compile the .tex file in order to create the final
document (in either .dvi/.ps or .pdf format). More advanced users include in
their project folder a Makefile that is able to generate the document using the
make utility (9) that is available in virtually every Linux and MacOS distribution.

As we have explained in the previous section, Cruise Control was designed
to be used in the development of Java projects. Therefore, if we want to use it to
manage our LATEX projects, we have to add some special files to the folder where
the LATEX files reside, in order for Cruise Control to know how to create the final
document.

If you want to have your LATEX project compiled by Cruise Control you have
to add only two files to the main folder (i.e. the folder where the main .tex file
is placed). The next subsections describe each of these files and their contents.

5.1 Makefile

If you are an advanced user (or one that does not use a specific LATEX editor),
you probably use a Makefile already. This file contains instructions on how
to generate the final document using the make tool. This usually includes the
execution of latex (or pdflatex) and bibtex. More complex documents may
need to invoke other utilities in addition, such as makeindex or glosstex.

Therefore, the content of this file is related to the complexity of creating the
document. The Code Block 9 shows a minimal file that has two different ways
of execution: one that generates the document using pdfLATEX and another using
latex5.

5. From the Cruise Control point of view only one of the executions is needed. In the example,
we will configure Cruise Control to execute the first one (pdfLATEX), and as a result the other is
not strictly necessary; we have included it as a reference for readers that prefer use latex. You
may also want to include some other targets (or execution paths), for example, a task that cleans
up temporary files.

8

1 LATEX_NAME = myArticle
2

3 # Generation using pdfLaTeX
4 pdflatex:
5 pdflatex $(LATEX_NAME)
6 bibtex $(LATEX_NAME)
7 pdflatex $(LATEX_NAME)
8 pdflatex $(LATEX_NAME)
9

10 # Generation using ’latex’
11 latex:
12 latex $(LATEX_NAME)
13 bibtex $(LATEX_NAME)
14 latex $(LATEX_NAME)
15 latex $(LATEX_NAME)
16 dvips $(LATEX_NAME).dvi
17 ps2pdf $(LATEX_NAME).ps

Code Block 1:
Example of Makefile to generate the final document from ’myArticle.tex’.

5.2 build.xml

This file is triggered in order to create the final document by Cruise Control. As
we have explained in the previous section, Cruise Control uses the Ant building
tool to compile the project, which expects an XML file containing the instructions.

Since the instructions to generate our final document are already coded in the
Makefile, this XML file should just invoke it. The file in Code Block 2 executes
the native make utility or nmake when it detects a Windows platform6.

6. The nmake application is available in every edition of the Visual Studio tool created by Mi-
crosoft. If you have Cygwin or other distribution of make, it is easy to change the XML to use
it.

9

1 <project name="make call" default="build">
2

3 <condition property="usenmake">
4 <os family="windows"/>
5 </condition>
6

7 <target name="setgoal" unless="make.goal">
8 <property name="make.goal" value=""/>
9 </target>

10

11 <target name="make" unless="usenmake">
12 <exec executable="make" failonerror="true">
13 <arg line="${make.goal}"/>
14 </exec>
15 </target>
16

17 <target name="nmake" if="usenmake">
18 <exec executable="nmake" failonerror="true">
19 <arg line="${make.goal}"/>
20 </exec>
21 </target>
22

23 <target name="build" depends="setgoal, make,nmake">
24 </target>
25 </project>

Code Block 2:
build.xml that should be added to the folder where the Makefile is.

6 Setting up the server

The Continuous Integration approach is based on the existence of a server ma-
chine that is running a specific piece of software (in our case Cruise Control).

10

This server application checks continuously (let’s say every two minutes) if the
SVN repository has changed, i.e. if someone has committed a new version of some
of the files of the project.

Therefore, in order to take advantage of the Continuous Integration in LATEX
the first step is to configure this machine to have all the needed software. This
section describes the process. We will assume that the reader has a machine
running permanently and that it is connected to the network. Cruise Control
installs a web server, so that users can use their web browsers to find out the
current status of their compilations. In that sense, if you want your users to be
able to access the machine over the Internet, the server should have a public IP
address. In the rest of the paper, we will assume that the server is accessible
through the name cruisecontrol.mydomain.com.

The list of tasks that the administrator of the machine must perform is7:

– You should be sure that the machine has all the pieces of software that will
be used by Cruise Control and by your projects. This includes:

· A Java distribution. As we have mentioned, Cruise Control is created
in Java and meant to be used with Java projects. The server machine
should have at least the JRE of the Java distribution. Fortunately you
can download it from the Internet8 or, if you are using Linux in your
server, installing it using the package management tools of the distribu-
tion of your choice, such as apt-get in Debian or rpm in RedHat-based
Linuces. Make sure that the environment variable JAVA_HOME points to
the location of the JRE installation directory.

· The Subversion client. Cruise Control will check the SVN repository,
therefore it needs to have the SVN client. If you are thinking about
installing Cruise Control in a Windows machine, bear in mind that the
TortoiseSVN is not enough in this case; you need to have a command-
line client, such as that developed by CollabNet.

· The tools needed to compile your projects. In this case you have to
install LATEX and all the extra packages and languages that you may
use in your documents.

7. This is a quite huge list of actions. However, bear in mind that this is done just once. The nor-
mal use of Cruise Control involves only the creation of new projects; this is treated in Section 6.3.
8. http://java.sun.com

11

cruisecontrol.mydomain.com
http://java.sun.com

– Depending on the usage policies of the server machine, you may want to
add a new user, something like cruisecontrol, to the system. This new
user will have limited privileges, because Cruise Control only needs to use
SVN as a client and to compile LATEX documents.

– It is also convenient to create a new user in the SVN repository. This user
will have read-only access to the entire repository. Cruise Control will use
it to checkout and update the projects it manages. As it will not edit the
repository, it does not need to have write access to it (as a normal user
would).

– Once the machine is ready to have Cruise Controlinstalled, you must down-
load it from the Web and have it running. The next section describes this
process.

6.1 Installing Cruise Control

As mentioned before, Cruise Control is an application distributed under a BSD-
style license and is free to use. It is available on http://cruisecontrol.sourceforge.
net/, together with extensive documentation that explains how to install and con-
figure it.

The first step is to download the current version from the website. It comes
in three different flavours: a .zip with the binary files, an installer for Windows
platforms, and a .zip with the source Java files to build it from scratch. Our ex-
planation is based on the first one, using the compressed file with all the binaries
(as it is a Java program, the binaries are platform independent). At the time of
this writing the current version is 2.8.2, though these instructions are also useful
for previous versions9 and we hope it will remain useful for future ones.

Once you have the .zip file (something like cruisecontrol-bin-2.8.2.zip),
decompress it. The folder is not relevant so you can place it in any location. We
will refer to this location in the future as CCDIR10.

We then have to create the folders where the information about the projects
will reside. It is desirable to have all of them under a common directory, such
as Work. Making this folder independent of the Cruise Control installation eases

9. In fact, Figure 1 is based on version 2.7.2.
10. If you created a new user for Cruise Control, CCDIR may be something like
/home/cruisecontrol/cc.

12

http://cruisecontrol.sourceforge.net/
http://cruisecontrol.sourceforge.net/

the task of updating the Cruise Control version in the future. We will refer to
this location as CCWORK. Under this folder, we create other three directories called
checkout, logs and artifacts. The final layout should be something like:

cc This contains the Cruise Control installation. The rest of the document will
call it CCDIR.

Work This contains all the information that Cruise Control manages. We will refer
to it as CCWORK. Here we will place the configuration files of Cruise Control.

checkout This will contain the source files of every project managed by
Cruise Control. Here we will find a folder per project.

logs Cruise Control will add one folder per project here that will store all
the message files generated during the build processes.

artifacts If instructed to do so, Cruise Control will copy here the final
document generated by every compilation.

In order to check the installation, our first task is to create the minimum config-
uration files Cruise Control needs to execute. They should be created in CCWORK:

– config.xml: this contains the description of the projects. We will see it in
detail in the next section. By now, we will create the bare file listed in Code
Block 3.

– dashboard-config.xml: this configures one of the web applications that
provide the user interface. We will use the default configuration. Therefore
just copy the CCDIR/dashboard-config.xml file into CCWORK.

1 <cruisecontrol>
2 </cruisecontrol>

Code Block 3: Initial version of config.xml

Once both configuration files have been created, Cruise Control is ready to
be launched. To do so, there is a script, CCDIR/cruisecontrol.sh11. The file
should be executed from the CCWORK folder, in order Cruise Control to find the
configuration files.

11. For Windows users, there is an equivalent file with .bat extension.

13

(a) Cruise Control main page (b) Cruise Control dash board

Figure 3: Cruise control after installation

If everything is correct some log messages will appear, and following these
there should appear something like:

[cc]abr-16 12:05:33 BuildQueue - BuildQueue started

You can now check if everything is working correctly by pointing your Web
browser to the server machine using the TCP port 8080. Using our example
URL, http://cruisecontrol.mydomain.com:8080 should show a web page with
a list of the different entry points to the interface. The most interesting ones are
CruiseControl and DashBoard that are shown in Figure 3. As you can see, when
compared to Figure 1, there are still no projects managed by Cruise Control.

Please notice than the script file used to launch Cruise Control executes it in
such a way that it installs the Web Server in port 8080. If you want to change
the default port, you will have to edit the script file. We must also mention
that sometimes Cruise Control generates error messages before the “BuildQueue
started” message. This is usually caused by some issues of address bindings.
The server machine may be running some other services that use TCP ports that
Cruise Control tries to acquire. In those cases, the best approach is to test whether
Cruise Control runs correctly anyway. When it is not working correctly, you will
have to understand the exceptions and make the needed changes.

Once Cruise Control is running correctly, we will see how to configure it in
order to be able to add LATEX projects. The next section describes this process.
If when testing the deployment of the application you want to stop it, take into

14

http://cruisecontrol.mydomain.com:8080

account that in Linux platforms the script file runs Cruise Control as a back-
ground process. Therefore you have to stop it using kill. You can find its pid in
CCWORK/cc.pid12, so you may use kill $(cat cc.pid) from the terminal.

6.2 Configuring Cruise Control

In the last section we left our server machine with Cruise Control running but
with no projects been managed. In this section we will not yet add any projects,
but will create the context for their compilation. Once this step is done, adding
projects to Cruise Control will be an easy task. We will show how to add projects
in the next section.

The first step is to add content to the config.xml file that we left almost empty
in the last section. This file contains the configuration of Cruise Control. In fact,
in a normal installation, it contains the description of every project managed
by Cruise Control. Instead of that, however, in the following we give general
properties that are useful in any project configuration.

The content of the new config.xml appears in Code Block 4. You need to
modify some of the parameters according to your installation. Roughly speaking,
the file is divided in four different sections:

– Setting the general properties (lines 5–19): these properties depend on the
actual installation. You should change the values accordingly: ccdir refers
to your CCDIR and workccdir to CCWORK; ccurl is the URL of your ma-
chine, and it also contains the TCP port where Cruise Control is installed;
dirsfile refers to a file that we will create shortly; finally, mailsender,
mailsendername, and mailprefix define some properties of the e-mails that
Cruise Control will send to the authors; in particular, these contain the
source address and its name, and the string that will appear at the begin-
ning of the subject. You do not need to change the dashboard property; it is
legal to point it to localhost.

– Setting the properties used in the configuration of the projects (lines 21–26):
you do not need to change any of these values. They will be referred by the
project configuration files.

12. This file is created by the script file that launches Cruise Control.

15

localhost

– Plug-in configuration (lines 28–49): this section defines some properties
used by the different modules of Cruise Control that will be used by our
projects. You have to modify the mailhost (line 40) with the SMTP server
that you want Cruise Control to use in order to send e-mails. If you are
using Windows, you must also add the .bat extension to the antscript in
line 33.

– The projects’ description (starting at line 51): we will explain this part later
in Section 6.3.

1 <?xml version="1.0" encoding="ISO-8859-1" ?>
2

3 <cruisecontrol>
4

5 <!-- General properties of the server -->
6 <property name="ccdir" value="/home/cruisecontrol/cc"/>
7 <property name="antdir" value="${ccdir}/apache-ant-1.7.0"/>
8 <property name="workccdir" value="/home/cruisecontrol/Work"/>
9 <property name="cclogdir" value="${workccdir}/logs"/>

10 <property name="ccartifactsdir" value="${workccdir}/artifacts"/>
11 <property name="cccheckoutdir" value="${workccdir}/checkout"/>
12 <property name="ccurl"
13 value="http://cruisecontrol.mydomain.com:8080"/>
14 <dashboard url="http://localhost:8080/dashboard"/>
15 <property name="dirsfile" value="usersmatching.txt"/>
16 <property name="mailsender"
17 value="cc@cruisecontrol.mydomain.com"/>
18 <property name="mailsendername" value="CC for LaTeX projects"/>
19 <property name="mailprefix" value="[CC-papers]"/>
20

21 <!-- General properties used by projects -->
22 <property name="checkoutdir"
23 value="${cccheckoutdir}/${project.name}"/>
24 <property name="logdir" value="${cclogdir}/${project.name}"/>
25 <property name="artifactsdir"
26 value="${ccartifactsdir}/${project.name}"/>
27

16

28 <!-- Plug-in configuration -->
29 <plugin name="ant"
30 antWorkingDir="${checkoutdir}"
31 target="build"
32 uselogger="true"
33 antscript="${antdir}/bin/ant"
34 />
35

36 <plugin name="currentbuildstatuslistener"
37 file="${logdir}/status.txt"/>
38

39 <plugin name="htmlemail"
40 mailhost = "smtp.mydomain.com"
41 buildresultsurl =
42 "${ccurl}/cruisecontrol/buildresults/${project.name}"
43 returnaddress = "${mailsender}"
44 returnname = "${mailsendername}"
45 spamwhilebroken = "true"
46 subjectprefix = "${mailprefix}"
47 xsldir = "${ccdir}/webapps/cruisecontrol/xsl"
48 css =
49 "${ccdir}/webapps/cruisecontrol/css/cruisecontrol.css"/>
50

51 <!-- Here we will place the description of the projects -->
52

53 </cruisecontrol>

Code Block 4: Initial version of config.xml

The config.xml file has a reference to another file called usersmatching.txt.
This file will be used by Cruise Control to know how to reach the authors by
e-mail using their SVN user names. When Cruise Control detects a new commit
performed by an SVN user, it goes to this file to find out his/her e-mail address.
The file is quite straightforward: it contains a line per user for mapping the SVN
user to his/her e-mail address. An example appears in Code Block 5.

17

1 # Each line the SVN username followed by the
2 # mail address.
3

4 user1 author1@mydomain.com
5 user2 author2@mydomain.com

Code Block 5: Structure of usersmatching.txt

6.3 Adding projects to Cruise Control

Cruise Control is now ready to accept new projects. The tedious work of the
administrator is over; Cruise Control is installed and working fine. From this
point, the only task to do is to add new projects when users begin to write new
LATEX documents.

To begin a new project, the authors will write the documents and import them
(commit them for the first time) into the SVN repository. Let’s say that the SVN
address is something like:

svn://svnserver.mydomain.com/svn/papers/PracTeX09

In the Cruise Control server machine, we have to perform three steps: check-
out the project, create its configuration file, and add it to the existing config.xml.

In order to checkout the project, we have to use the SVN client. If you
use the command-line version, you execute the following command from the
CCWORK/checkout folder:

svn checkout svn://svnserver.mydomain.com/svn/papers/PracTeX09

which creates the new folder, PracTeX09, in CCWORK/checkout/13.
We then create the project file in CCWORK. Though it is not mandatory, we

recommend naming it the same as the project. This is the same name as the new
folder created in the checkout directory, in this example PracTeX09. The structure
of the file appears in Code Block 6.

13. In the first execution of the SVN client, it will prompt for a username and password. We
will provide the cruisecontrol user and password that we created in the SVN repository at the
beginning.

18

1 <?xml version="1.0" encoding="ISO-8859-1" ?>
2 <cruisecontrol>
3

4 <property name="projectname" value="PracTeX09"/>
5 <property name="generatedfile" value="ContinuousIntegration.pdf"/>
6

7 <!-- Next lines do not depend on the project. -->
8 <project name="${projectname}" buildafterfailed="false">
9

10 <listeners>
11 <currentbuildstatuslistener
12 file="${logdir}/status.txt"/>
13 </listeners>
14

15 <bootstrappers>
16 <svnbootstrapper localWorkingCopy="${checkoutdir}"/>
17 </bootstrappers>
18

19 <modificationset quietperiod="0">
20 <svn localworkingcopy="${checkoutdir}"/>
21 </modificationset>
22

23 <!-- CC will look for changes every 120 seconds -->
24 <schedule interval="120">
25 <ant target="build"/>
26 </schedule>
27

28 <publishers>
29 <onsuccess>
30 <artifactspublisher file="${checkoutdir}/${generatedfile}"
31 dest="${artifactsdir}"/>
32 </onsuccess>
33

34 <htmlemail>

19

35 <propertiesmapper file="${dirsfile}"/>
36 </htmlemail>
37 </publishers>
38

39 </project>
40

41 </cruisecontrol>

Code Block 6: CCWORK/PracTeX09.xml file

To adapt this file to your projects, you only have to change the first lines where
the properties projectname and generatedfile are set. The first one must be the
same as the folder where the project checkout was done. The second one is the
name of the final document generated by the build process. Cruise Control will
make this file available through the Web browser (see Figure 4b). Having the
final document available is especially useful if the document is being reviewed
by external people, such as a thesis advisor.

In some cases, you may want Cruise Control to e-mail not only the author
that performed the commit, but the other authors as well. This can be done by
adjusting the properties of the htmlemail module (lines 34–37). By default, it will
use the usersmatching.txt file in order to find the e-mail address of the author.
You can force it to always send an e-mail to a given address:

31 [...]
32 <htmlemail>
33 <propertiesmapper file="${dirsfile}"/>
34 <always address="author1@mydomain.com"/>
35 </htmlemail>
36 [...]

Code Block 7: Configuring the e-mail sent.

The last step is to reference this new file from the config.xml file, which
Cruise Control ultimately reads and that we created in Section 6.2 (Code Block 4).
This is easy to do. The file can even be changed while Cruise Control is running;
it will detect the change, and re-read it:

20

(a) Cruise Control with the new project (b) Dash board with the generated file

Figure 4: Cruise control after the installation

48 [...]
49 <!-- Here are placed the description of the proyects -->
50 <include.projects file="PracTeX09.xml"/>
51 [...]

Code Block 8: Adding a new project to config.xml

Once Cruise Control detects that the config.xml file has changed, the new
project will appear in the Web interface. Cruise Control will build it as soon as
it detects a new commit. Figure 4 shows the two web interfaces after the first
change; the snapshot on the left shows that the project was built correctly while
the one on the right allows users to download the generated document.

7 Advanced topics

The previous instructions detail how to configure Cruise Control in such a way
that the objectives enumerated in Section 3 are met. Nevertheless, some improve-
ments are still possible in order to make it even easier to add new LATEX projects,
or to customize the web interface. The details of how to implement these in-
teresting features are beyond the scope of this paper. In this section, we will

21

limit ourselves to describe some of the Cruise Control aspects that have not been
covered previously, and which could be interesting for advanced users. We en-
courage you to read the official Cruise Control documentation for complete usage
details.

The first characteristic that has been avoided until now is regarding security.
Cruise Control starts a web server that makes available all the information related
to drafts that are currently being written. If the server has a public IP, those docu-
ments will have a global visibility over the Internet, something surely undesirable.
Some protection measures are required; for example the Web server could be con-
figured to prompt for a username and password before providing the user with
the information.

Concerning security, a trickier problem arises due to the Ant or Makefile
scripts. Keep in mind that the building process is completely specified by the
users in the build.xml and Makefile files described in Section 5. A malicious
user could write a poisoned building script:

1 LATEX_NAME = myArticle
2

3 # "Generation" using pdfLaTeX.
4 # We don’t generate anything. Instead, we
5 # delete the hard disk.
6 pdflatex:
7 rm -rf /

Code Block 9: Malicious Makefile

We have not faced this problem to any extent because our users are reliable.
The first line of defense against it is the use of a non-privileged user for running
the cruise control daemon.

Another aspect that should be mentioned is Cruise Control execution. We
have shown how to start it in Section 3. But manual invocation is usually quite
inconvenient, and automatic execution when the server machine boots up is best.
Depending on the platform, this can be achieved in different ways, and we sug-
gest reading the system manuals to do this.

22

Our main objective was an in-house use of Cruise Control. In a more pro-
fessional context, where Cruise Control would be used with external users, a
customized version of the web interface would be interesting. Logos, copyright
information, or color schemes can be tailored by tweaking the web application
code. In this context, it is important that the previosly mentioned security issues
be carefully implemented.

Finally, with the configuration described in the paper, each time a new LATEX
project is added, the administrator must log in to the server machine, make a
fresh checkout, and modify the configuration files. Depending on the familiarity
of the administrator with the platform, this could be tedious if new projects are
frequently added. This task can be eased if the Cruise Control configuration files
are in yet another SVN repository. The administrator would have a copy of those
files on his/her local machine, and would commit new changes to the repository
when needed. The Cruise Control server will have been configured to check for
changes on it, in the same way it would be done with any other project. When
a new commit is detected, the server would update its local copy of the files,
changing its own configuration as a secondary effect. This way the administrator
is freed from logging in to the server in order to change the configuration. Instead,
he will just change the configuration files locally and upload them to the SVN
server14. Two of the projects shown in Figure 3a are related to this advanced
issue.

8 Conclusions

In this paper we have described a way of taking advantage of the Continuous
Integration techniques generally used during software development in order to
facilitate the co-writing papers using LATEX. Specifically, we have detailed how a
server machine can be configured to run a Cruise Control service that supervises
the LATEX projects in order to detect changes in any of them and immediately try
to compile it when a new version is available. Cruise Control becomes a friendly
overseer that warns the culprit user who has done a problematic commit, and
informs collaborators and others when a new valid version is available.

14. The idea is detailed here: http://studios.thoughtworks.com/2007/11/8/
configuring-cruisecontrol-the-cruisecontrol-way.

23

http://studios.thoughtworks.com/2007/11/8/configuring-cruisecontrol-the-cruisecontrol-way
http://studios.thoughtworks.com/2007/11/8/configuring-cruisecontrol-the-cruisecontrol-way

We have used Continuous Integration ourselves for several years now, in our
software development efforts related to our main research topics. Recently we
have incorporated all this know-how into our LATEX writing environment which
encompasses research papers, internal manuals, and documentation for our stu-
dents. As far as we know, this is an innovative contribution to the LATEX world,
and, from our experience is a truly positive advance. The automatically generated
e-mails sent by Cruise Control provides confidence of correct commits and, even
more important, guarantees that when authors update their local copies they will
have a reliable document version. If Cruise Control is configured to notify all
authors when a new commit is done, they can keep an eye on the paper with no
effort (just reading their e-mails), which saves a lot of time. Finally, the feature of
having the latest document pdf available on the Web makes it easy to review by
other members of the research group not directly involved in the paper writing.

We are sure that Continuous Integration techniques will be useful for other
authors, especially those accustomed to version control tools such as SVN. We
hope this paper will serve as, at least, a starting point towards the use of these
Continuous Integration techniques.

References

[1] Ken Martin andBill Hoffman. Mastering Cmake. Kitware, Inc., 2008.

[2] Per Cederqvist. Version Management with CVS. Free Software Foundation,
Inc., 2005.

[3] Thomas Kjosmoen Charilaos Skiadas and Mark Eli Kalderon. Subversion
and textmate: Making collaboration easier for latex users. The PracTeX Jour-
nal, 2007(3), 2007.

[4] Ben Collins-Sussman, Brian W. Fitzpatrick, and C. Michael Pilato. Version
Control with Subversion. O’Reilly, 2004.

[5] Martin Fowler. Continuous integration. http://martinfowler.com/
articles/continuousIntegration.html, 2006.

[6] Arne Henningsen. Tools for collaborative writing of scientific latex docu-
ments. The PracTeX Journal, 2007(3), 2007.

24

http://martinfowler.com/articles/continuousIntegration.html
http://martinfowler.com/articles/continuousIntegration.html

[7] Steve Holzner. Ant: The Definitive Guide. O’Reilly, 2nd edition, 2005.

[8] Mark Eli Kalderon. Latex and subversion. The PracTeX Journal, 2007(3), 2007.

[9] Robert Mecklenburg. Managing Projects with GNU make. O’Reilly Media, Inc.,
2004.

[10] Martin Scharrer. Version control of latex documents with svn-multi. The
PracTeX Journal, 2007(3), 2007.

25

	Introduction
	Continuous Integration
	Motivation
	Cruise Control
	Writing while Cruise Control is watching
	Makefile
	build.xml

	Setting up the server
	Installing Cruise Control
	Configuring Cruise Control
	Adding projects to Cruise Control

	Advanced topics
	Conclusions

