The PracIgX Journal, 2008, No. 2
Article revision 2008/8/25

Go Game Positions with METAPOST

Wentao Zheng

Email zhengwt@cn.ibm.com
Address IBM China Research Laboratory

Abstract This article introduces a method of drawing Go game positions with
METAPOST. It begins with how the Go game is modeled in the META-
POST language, then explains the detailed implementation, and ends
with some examples of Go game positions.

1 Introduction

Go is a board game that originated in ancient China in the 4th century BC. In
Chinese, it is known as weiqi, which means “board game of surrounding”. It is
commonly known in the West by its Japanese name igo (the Japanese reading of
its Chinese name), because early western players learned the game from Japanese
sources.

Go is considered the most complex game of all, and has a long history of
academic study. Often the Go game graphics in research papers are drawn with
low quality. This article introduces a method of drawing Go game positions with
METAPOST that can produce flexible and high quality Go game graphics.

This article is organized as follows: section 2 introduces modelling the Go
game in METAPOST,; section 3 describes the detailed implementation; and sec-
tion 4 shows some examples of using this method to draw Go game graphics.

2 Modeling Go in METAPOST

Go is played by two players alternately placing black and white stones on the
vacant intersections of a 19 x 19 grid board (see Figure 1). The object of the game
is to control a larger part of the board than the opponent. In a game position, if
there are no adjacent intersections for a stone or a group of stones, it is considered


mailto:zhengwt@cn.ibm.com?subject=Re:%20PracTeX%20Journal%20article%20

as captured and the stones are removed from the board. For more information
about Go game rules, please see ‘Go (board game)’ from Wikipedia [2].

ABCDTETFG GHTIJEKTLMNOTPQTR S
19 19
18 18
17 o () 17
16 . <> 16
15 15
14 14
13 13
12 12
1 1
10 10
9 9
8 8
7 7
6 6
5 5
4 ) 4
3 @ 3
2 2
1 1
ABCDTETFGHTIJEKTLMDNOTFPI QTR RS

Figure 1: A standard Go game board with stones

In the initial Go game position, there are no stones. To begin a game, the first
player puts a black stone, and then the opponent puts a white stone. These two
steps are repeated until no more stones can be placed. On any turn a player may
choose to skip his or her play. From a programming perspective, this process can
be described as follows:

1. Initialize the Go board

2. Black player puts a stone (optional)

3. White player puts a stone (optional)

4. Repeat steps 2 and 3 until no stones can be put on board

2



In each stone-putting action, we check whether the stone will capture the oppo-
nent’s stones or be captured (suicide). We model a Go game position in META-
POST as four major routines (components)

- Board initialization

— Stone put

— Capture check

— Board display

We will describe each component in detail in the next section.

3 Implementation

3.1 Board initialization

To provide a flexible way to initialize the board, we use several internal parame-
ters (Figure 2). These parameters control how a Go board will be rendered.
A B
board_gap
—3

stone_d

stone_line_width

— 1

cell_line_width

e

cell_width

Figure 2: Go board parameters.

board_color the background color of the Go board
cell_width the width of the board grid
cell_line_width the width of line used in drawing the board

stone_d the diameter of the stone (default as 0.9 x cell width)



stone_line_width the width of line used in drawing the stone outline
board_gap the gap between board edges and board labels
board_size the size of the board (default as 19)

The board status is recorded in METAPOST as a two-dimensional array
numeric mem[] []

Each element in the array represents a Go board intersection, and the value can
be

-1 white stone
1 black stone
0 empty

There is a routine called
init board

that is used to initialize a Go board with all intersections being empty.

3.2 The Stone-put

Stones are put on the board by specifying their coordinates. Each coordinate
has two values, horizontal and vertical, as shown in Figure 1. The horizontal
coordinate is a character starting from the letter “A’, and the vertical coordinate
is an integer number starting from 1. If the value is less than 1 or ‘A’ or greater
than board_size, it is considered as invalid.

There are two routines for putting stones

put_b put a black stone at specified coordinate

put_w put a white stone at specified coordinate

The coordinates used to identify the positions of stones are useful for human
players. But METAPOST does not know where to put the stones directly based
on player-oriented coordinates, such as ‘A5’. The secret behind this action is a
transformation that converts them into METAPOST-understandable coordinates,
such as (20pt,80pt). The latter coordinate form is used in the board graphics
generation routine.



3.3 Capture check

After putting a stone on the board, it is necessary to check whether the stone
captures the opponent’s stones or can be captured (suicide). Generally, there are
three rules:

— If the stone-put is not a suicide and captures some of the opponent’s stones,
then the captured stones are removed from board. (Figure 3(a))

- If the stone-put is a suicide and captures none of the opponent’s stones,
then the stone is removed from board. (Figure 3(b))

— If the stone-put is a suicide and captures some of the opponent’s stones,
then the stone is reserved and the captured stones are removed from board.
(Figure 3(c))

After each move, there are two steps to check for captured stones. In the first step,
the routine
_capture <coord>

is used to check whether the stone at the specified coordinate will capture the
opponent’s stones. If so, the captured stones are removed immediately. In the
second step, the routine

_suicide <coord>

is used to check whether the stone at a specified coordinate is a suicide. If so,
the stone is removed. By checking a move in this order, we can ensure that a
stone which is both a suicide and captures other stones is reserved and that those
captured stones are removed.

A B C D E A B C D E A B C D E
5 5 5 5 5 5
4 4 4 4 4 4
3 { 3 3 3 3 3
2 — 2 2 2 2 2
1 1 1 1 1 1
A B C D E A B C D E A B C D E
(a) Capture (put (b) Suicide (put a (c) Capture and suicide
a black stone) white stone) (put a white stone)

Figure 3: Three rules for capture check (red circles to put stones)



3.4 Board display

To graphically display a Go game (including board and stones over a sequence
of moves), there are two different approaches. The first one is programmatic. Go
game graphics are generated by calling the routine

display_board

in METAPOST code. The second approach is script-driven. You write a script
tile which contains information about where to place the stones step by step. By
calling the routine

script <file_name>

Go game graphics will be generated automatically for each step. In the script file,
stone-put operations are separated into lines. The action is formatted as three
parts: color, horizontal coordinate, and vertical coordinate. For example, “B A 2”
means put a black stone at position (A,2).

4 Examples

In this section, two examples of using our method to generate high quality Go
game graphics are presented.
The first one uses the programmatic approach.

beginfig(1);
set_board_size 6;
init_board; A B C D EF
put_b(C4); ¢ ¢
put_w(D4); ’ ’
put_b(D3); v = !
put_w(C3); z N z
put_b(E4); ; )
put_w(B4); A B CDTEF
put_b(D5) ;

display_board;
endfig;



This second example uses the script-driven approach.

%k’ content in script file "test.go"

B A6
WBS A B C D E F
BB 4 0 6
WA4 > N >
B E 2 ! Y !
WB 3 ’ / ’
2 2
BEI1 1 tl
WC4
A B C D E F

%%l content in MP file "test.mp
set_board_size 6; script "test.go";

5 Summary

This article introduced Go game positions with METAPOST. Motivation, general
design and implementation of the method were described in separate sections.
Additionally, some examples of how to use the method to generate high quality
Go game graphics were shown. There are still some points to improve, such as
supporting ko rule [2].

Acknowledgments

I'd like to thank all those who helped me on writing this article. They are Lance
Carnes, Yuri Robbers and two anonymous reviewers.

References

[1] John Hobby, “METAPOST: A User’s Manual”.

[2] Go (board game), http://en.wikipedia.org/wiki/Go_(board_game)


http://en.wikipedia.org/wiki/Go_(board_game)

	Introduction
	Modeling Go in MetaPost
	Implementation
	Board initialization
	The Stone-put
	Capture check
	Board display

	Examples
	Summary

