
For submission to The PracTEX Journal
Draft of February 1, 2007

Hacking DVI files: Birth of DVIasm
Jin-Hwan Cho

Email chofchof@ktug.or.kr
Address Department of Mathematics, The University of Suwon, Republic of Korea

Abstract This paper is devoted to the first step of developing a new DVI editing util-
ity, called DVIasm. Editing DVI files consists of three parts: disassembling,
editing, and assembling. DVIasm disassembles a DVI file into a human-
readable text format which is more flexible than DTL, and assembles the
output back to a DVI file.

DVIasm is quite useful for people who have a DVI file without TEX
source, but needs to modify the document. It enables us to put a preprint
number, a watermark, or an emblem on the document without touching the
TEX source. DVIasm is quite attractive to even a TEX expert who wants to
modify a few words in his document more than hundred pages long.

We discuss in the paper how DVIasm plays a role as supplementary
to TEX. The current version supports only the standard DVI file format
as DVItype and DTL. The next versions will support 16-bit TEX extensions
including Omega, pTEX, and X ETEX.

1 Introduction

Have you ever heard of DVI, not the Digital Visual Interface1 but the DeVice-
Independent file format? At least ten years ago every TEX user knew what DVI is
and used DVI utilities to view and print out the TEX results. However, recent TEX
users drew attention to DVI less and less because pdfTEX outputs directly to the
PDF2 file format. It is true without doubt that PDF is more powerful than DVI in

1. A video interface standard designed to maximize the visual quality of digital display de-
vices such as flat panel LCD computer displays and digital projectors [Wikipedia, http://en.
wikipedia.org/wiki/DVI].
2. PDF (Portable Document Format) is an open file format created and controlled by Adobe
Systems, for representing two-dimensional documents in a device independent and resolution
independent fixed-layout document format [Wikipedia, http://en.wikipedia.org/wiki/PDF].

mailto:chofchof@ktug.or.kr?subject=Re:%20PracTeX%20Journal%20article%20
http://en.wikipedia.org/wiki/DVI
http://en.wikipedia.org/wiki/DVI
http://en.wikipedia.org/wiki/PDF


almost all aspects. Then, do we have to obsolete DVI as PostScript is gradually
replaced by PDF?

The DVI file format was designed by David R. Fuchs in 1979, in contrast to the
release of PDF version 1.0 in 1993. It is intended to be both compact and easily
interpreted by a machine [4, §14]. The most powerful aspect of DVI compared
to PDF is nothing but simplicity. Imagine the speed of three previewers of DVI,
PostScript, and PDF, and compare also the file size of the three different file
formats. Furthermore, simplicity enables us to control DVI files in various ways.
One of them is to edit DVI files directly, that is the main object of this paper.

There are many applications of editing DVI files. The most critical situation
is when we have a DVI file without TEX source, but we want to modify or to
add something to the document. A technical editor may want to put a preprint
number on each paper without touching the TEX source. He may also want to
put a watermark or an emblem on every paper.

Editing a DVI file is much quicker for a TEX novice than learning TEX, when
all he wants is to give some decorations in his document, but has some trouble in
writing TEX codes. It is even quite attractive to a TEX expert who wants to modify
a few words in his document more than hundred pages long.

Since a DVI file consists of binary data, it must be converted to a human
readable text format to inspect and edit its contents. One of the DVI utilities for
these purposes is DVItype [4] written by Donald E. Knuth since 1982. It has two
chief purposes, one is to validate DVI files and the other is to give an example for
developers of DVI utilities [4, §1]. DVItype is a nice utility to inspect the contents
of a DVI file because of its human readable text output. However, it lacks the
procedure converting the output back to a DVI file.

A real DVI editing utility is the DTL (Device-independent Text Language)
package [5] developed by Geoffrey Tobin. It includes two utilities dv2dt and
dt2dv for converting from DVI to DTL and vice versa. It is notable that there
is a one-to-one correspondence between DTL and DVI, and that DTL does not
require TFM font metric files in contrast to DVItype. However, DTL is not flexible
for ordinary TEX users. For example, users must choose a correct command from
‘r1’ to ‘r4’ according to the amount of the right move. Moreover, the latest version
of DTL was released in 1995, and so it did not support extended DVI formats

2



generated by Omega3 or Japanese pTEX.4

The roadmap to develop a new DVI editing utility, called DVIasm, consists of
three steps. This paper is devoted to the first step in which DVIasm is introduced
with several examples. The current version of DVIasm supports only the standard
DVI file format as DVItype and DTL, but is more flexible than DTL.

In the second step we will focus on 16-bit characters, for instance, Chinese,
Japanese, Korean, and Unicode, to support Omega, pTEX, and the subfont scheme5

which enables us to use 16-bit characters in TEX and pdfTEX. DVIasm will com-
municate with the kpathsea library in the final step so that it will read font metric
information from TFM, OFM, JFM, TrueType, and OpenType font files. It means
that DVIasm will also support X ETEX6 which reads font metric information di-
rectly from the font file itself.

2 Prerequisite

2.1 Download and installation

The current version of DVIasm is written in the Python programming language.7

Why Python not C? The main reason is that Python does not require compiling
and linking to get an executable file. Thus, DVIasm consists of a single Python
program dviasm.py with human-readable text format and it can run on any plat-
form in which Python is installed. If speed-up is required later, some parts of
DVIasm will be translated into the C programming language.

The development of DVIasm is controlled by Subversion, a popular version
control system, and all revisions of DVIasm can be downloaded at [2]. From now
on we assume that dviasm.py is in the working directory. The basic usage of
DVIasm will be out if the option --help is attached as follows.

3. An extension of TEX by John Plaice and Yannis Haralambous, http://omega.enstb.org.
4. ASCII Nihongo TEX by ASCII Corporation, http://www.ascii.co.jp/pb/ptex/index.html.
5. The subfont scheme is a way of splitting the set of 16-bit characters into 256 characters or less,
the number of characters that TFM can accommodate [3].
6. A typesetting system based on a merger of TEX with Unicode and Mac OS X font technologies,
by Jonathan Kew, http://scripts.sil.org/xetex.
7. Python is a dynamic object-oriented programming language that runs on almost all operating
systems. Just type ‘python’ and hit the return key in the terminal to check whether Python is
already installed or not. If not installed, visit the official website http://www.python.org.

3

http://omega.enstb.org
http://www.ascii.co.jp/pb/ptex/index.html
http://scripts.sil.org/xetex
http://www.python.org


(a) hello.dump.dvi (b) hello.dvi

Figure 1: DVI result generated by DVIasm (a) and by TEX (b)

python dviasm.py --help

2.2 Creating a DVI file without TEX

We first try to save the following three lines as hello.dump. Note that the number
in the beginning of each line is just the line number for reference.

1 [page 1 0 0 0 0 0 0 0 0 0]
2 fnt: cmr10 at 50pt
3 set: ’Hello, World!’

Then run the following command in the terminal

python dviasm.py hello.dump -o hello.dump.dvi

to get a new DVI file, hello.dump.dvi. Its contents are shown in Figure 1(a).
Notice that all DVI results in this paper are converted to PDF with DVIPDFMx8

version 20061211. The DVI result can also be converted to PostScript with DVIPS,9

and viewed in the screen with DVI previewers, xdvi,10 dviout,11 or yap.12

Each page begins with the opening square bracket followed by the string ‘page’
(without colon), ten numbers, and the closing square bracket. Among the num-
bers the first one usually stands for the page number. In the second line the DVI

8. A DVI to PDF converting utility by Shunsaku Hirata and Jin-Hwan Cho, http://project.
ktug.or.kr/dvipdfmx/. It is an extension of DVIPDFM written by Mark A. Wicks, http://
gaspra.kettering.edu/dvipdfm/.
9. A DVI to PostScript converter by Tom Rokicki, http://www.radicaleye.com/dvips.html.
10. A DVI previewer in X Window system by Paul Vojta, http://math.berkeley.edu/~vojta/
xdvi.html.
11. The most popular DVI previewer in Japan that supports pTEX, http://akagi.ms.u-tokyo.ac.
jp/dviout-ftp.html.
12. The DVI previewer in the MiKTEX system by Christian Schenk, http://www.miktex.org.

4

http://project.ktug.or.kr/dvipdfmx/
http://project.ktug.or.kr/dvipdfmx/
http://gaspra.kettering.edu/dvipdfm/
http://gaspra.kettering.edu/dvipdfm/
http://www.radicaleye.com/dvips.html
http://math.berkeley.edu/~vojta/xdvi.html
http://math.berkeley.edu/~vojta/xdvi.html
http://akagi.ms.u-tokyo.ac.jp/dviout-ftp.html
http://akagi.ms.u-tokyo.ac.jp/dviout-ftp.html
http://www.miktex.org


command ‘fnt:’ selects the Computer Modern font, cmr10 scaled at 50 pt. In the
last line the text ‘Hello, World!’ is typeset by the command ‘set:’.

2.3 Disassembling a DVI file

We now try to disassemble a DVI file. At first, make a TEX file hello.tex with
the following line,

\nopagenumbers \font\fnt=cmr10 at 50pt \noindent\fnt Hello, World! \bye

and run TEX (not LATEX) to get hello.dvi. The result is shown in Figure 1(b).
One may find easily two different points between (a) and (b) in Figure 1. The

first one is the location of the text,13 and the other one is the ‘cross for ł and Ł’14

in (a) instead of the blank space in (b). Looking the figures closely, one more
different point can be found. There is no kerning between the two characters ‘W’
and ‘o’ in (a). The kerning information is stored in TFM font metric files so that
DVIasm needs to communicate with the kpathsea library to fetch the information.
Then, DVIasm no longer works if whole TEX system is not installed. This is the
reason why DTL and the current version of DVIasm do not require TFM font
metric files.

To see the differences exactly, let us disassemble hello.dvi with DVIasm by

python dviasm.py hello.dvi

to get the output15 in Code 1. One can see four new commands, ‘push:’, ‘pop:’,
‘right:’, and ‘down:’. An amount of move follows ‘right:’ and ‘down:’ as an
argument. The meaning of the two commands looks clear.

However, there are two things to keep in mind. The coordinate system of DVI
is different from the Cartesian coordinate system16 used in PostScript and PDF.
In DVI the x-coordinate increases from left to right as the Cartesian coordinate

13. The upper left corner of the paper has the coordinate (−1 in,−1 in), since the default x- and
y-offsets are both one inch as usual. So the reference point of ‘H’ is the origin (0,0) in Figure 1(a).
However, it is common to place the upper left corner of ‘H’ at the origin as Figure 1(b).
14. The ASCII code of the blank space is 32 and the 32th glyph in cmr10 is the cross for ł and Ł.
15. DVIasm always outputs to the standard output (stdout) if the -o option is not specified.
16. The Cartesian coordinate system is used to determine each point uniquely in a plane
through a pair of numbers (x, y), usually called the x-coordinate and the y-coordinate of the
point [Wikipedia, http://en.wikipedia.org/wiki/Cartesian_coordinate_system].

5

http://en.wikipedia.org/wiki/Cartesian_coordinate_system


1 [preamble]
2 id: 2
3 numerator: 25400000
4 denominator: 473628672
5 magnification: 1000
6 comment: ’ TeX output 2007.01.24:1740’
7

8 [postamble]
9 maxv: 667.202545pt

10 maxh: 469.754990pt
11 maxs: 2
12 pages: 1
13

14 [font definitions]
15 fntdef: cmr10 (10.0pt) at 50.0pt
16

17 [page 1 0 0 0 0 0 0 0 0 0]

18 push:
19 down: -14.0pt
20 pop:
21 down: 643.202545pt
22 push:
23 down: -608.480316pt
24 push:
25 fnt: cmr10 (10.0pt) at 50.0pt
26 set: ’Hello,’
27 right: 16.666687pt
28 set: ’W’
29 right: -4.166702pt
30 set: ’orld!’
31 pop:
32 pop:
33 down: 24.0pt

Code 1: Disassembled output of hello.dvi by DVIasm

system, but the y-coordinate increases from top to bottom, the opposite of the
Cartesian coordinate system. The next one is that all positions in DVI are specified
not absolutely but relatively. It is nonsense in DVI to give a command like “go to
the coordinate (100 pt, 100 pt).” Only ‘right:’ and ‘down:’ are allowed in DVI.

How do we move to a specific position in DVI? Instead, we can use the two
commands ‘push:’ and ‘pop:’. The command ‘push:’ stores the current position
in the stack, and ‘pop:’ restores the position saved in the stack to the current
position.

3 DVI commands

We now assume that the lines in Code 1 from the 17th line to the end are saved
as hello.dump. The first example is to put some mark at the origin (0,0) to know
the exact location in the paper. It is achieved by inserting two lines after the first
line as Code 2.

DVI has only two drawing commands, ‘putrule:’ and ‘setrule:’. Both com-
mands draw a box filled with black. The first and the second arguments indicate
the size of the height and the width of the box, respectively. Do not confuse the

6



1 [page 1 0 0 0 0 0 0 0 0 0]
2 putrule: 1cm 0.5pt
3 putrule: 0.5pt 1cm
4 push:
5 down: -14.0pt
6 pop:
7 ... (skip) ...

Code 2: Put some mark at the origin (0,0).

order of height and width. The command ‘setrule:’ is the same as ‘putrule:’
except for moving to the right by the amount of the width after drawing the box.

The next example is to put a box filled with red under the text. Since DVI has
no color command, we used in Code 3 the special command ‘xxx:’ that will be
explained in the next section.

8 ... (skip) ...
9 down: -608.480316pt

10 xxx: ’color push rgb 1 0 0’
11 putrule: 10pt 4in
12 xxx: ’color pop’
13 push:
14 ... (skip) ...

Code 3: Put a box filled with red under the text.

Exercise. Put the red box over the string to hide the overlapped part of the text.

We list below the commands used in DVIasm. There are two types of argu-
ments, string and length. The string type consists of text string surrounded by
either apostrophes (’) or double quotation marks ("). It has the same format as
the Python string type.17 The length type is either an integer or a floating point
number followed by unit (e.g., sp, pt, bp, mm, cm, in.)18 If no unit is specified, the
number is in unit of sp by default. The argument of ‘fnt:’ is exceptional. The
name of the font is given without apostrophes.

17. We can input any 8-bit character with hexadecimal value hh by ’\xhh’. Thus, ‘\\’ must be
used to type the escape character ‘\(backslash)’.
18. 1 in = 2.54 cm = 25.4 mm = 72 bp = 72.27 pt, and 1 pt = 216 sp = 65, 536 sp

7



command argument description
set: string draw [string] and move to the right by the total

width of the string
put: string draw [string] without moving to the right
setrule: length1 length2 draw a box with width [length2] and height

[length1] and then move to the right by [length2]
putrule: length1 length2 draw a box with width [length2] and height

[length1] without moving to the right
push: save the current position to the stack
pop: restore the position in the stack to the current

position
right: length move to the right by [length]

move to the left if [length] is negative
down: length move down by [length]

move up if [length] is negative
fnt: name at length select the font [name] scaled at [length]

[name] does not allow spaces
xxx: string DVI special command to be processed by DVI

utilities; see the next section

There are more move commands as follows. We refer to [4, §15] for details.

command argument description
w: length the same as right:, but [length] is stored in the

’w’ variable
x: length the same as right:, but [length] is stored in the

’x’ variable
y: length the same as down:, but [length] is stored in the ’y’

variable
z: length the same as down:, but [length] is stored in the ’z’

variable
w0: move to the right by the length in the ’w’ variable
x0: move to the right by the length in the ’x’ variable
y0: move down by the length in the ’y’ variable
z0: move down by the length in the ’z’ variable

8



4 DVI specials

We have seen all DVI commands in the previous section. There is no command
for color, graphics, and transformation in DVI. But we already know that they are
possible in TEX. How do they work?

The answer is the DVI special command ‘xxx:’. It is the only way for TEX to
communicate with DVI utilities. However, each DVI utility supports its own DVI
specials. For example, neither DVIPDFM nor DVIPDFMx support a PostScript
literal special containing PostScript codes. On the other hand, almost none of the
PDF specials work with DVIPS.

In this section we introduce common DVI specials and show some examples
using DVIasm. All materials in this section are based on the talk of the author at
TUG 2005 conference [1].

4.1 Page specials

There are two kinds of page specials. The first example shows how to resize the
page of the previous example in Code 3.

papersize=[width],[height] changes the size of whole pages. But it has no
effect on the paper size that can be changed by the command line option or by
the configuration file (supported by DVIPS∗,19 DVIPDFM, and DVIPDFMx).

pdf:pagesize width [length] height [length] changes the size of the page
containing this special (supported by DVIPDFM∗(?) and DVIPDFMx).

1 [page 1 0 0 0 0 0 0 0 0 0]
2 xxx: ’papersize=6in,3in’
3 putrule: 1cm 0.5pt
4 putrule: 0.5pt 1cm
5 push:
6 down: -14.0pt
7 pop:
8 ... (skip) ...

The second example is to make the paper landscape from portrait.

19. ∗ denotes originality and (?) means that the behavior looks mysterious or buggy.

9



landscape swaps the width and the height of the paper size (supported by
DVIPS∗, DVIPDFM, and DVIPDFMx).

1 [page 1 0 0 0 0 0 0 0 0 0]
2 xxx: ’landscape’
3 putrule: 1cm 0.5pt
4 putrule: 0.5pt 1cm
5 push:
6 down: -14.0pt
7 pop:
8 ... (skip) ...

4.2 Color specials

All common color specials are originated by DVIPS. Various types of colors can
be specified in color specials: [PScolor] must be one of ‘cmyk [c] [m] [y] [k]’,
‘rgb [r] [g] [b]’, ‘hsb [h] [s] [b]’, ‘gray [g]’, and predefined color names,
where the value of each color component is a number between 0.0 and 1.0. We
refer to [6, pp. 12–13] and [1, p. 11] for PDF color specials which are easier to
understand than PS color specials.

1 [page 1 0 0 0 0 0 0 0 0 0]
2 xxx: ’background cmyk .183 .054 0 0’
3 down: 643.202545pt
4 push:
5 down: -608.480316pt
6 xxx: ’color push LimeGreen’
7 push:
8 fnt: cmr10 (10.0pt) at 50.0pt
9 set: ’Hello,’

10 right: 16.666687pt
11 xxx: ’color push rgb 0 0 .625’
12 set: ’W’
13 xxx: ’color pop’
14 right: -4.166702pt
15 set: ’orld!’
16 pop:
17 xxx: ’color pop’
18 pop:

10



background [PScolor] sets a fill color for the background (supported by DVIPS∗,
DVIPDFM, and DVIPDFMx).

color push [PScolor] saves the current color on the color stack and sets the
current color to the given one (supported by DVIPS∗, DVIPDFM, and DVIPDFMx).

color pop pops a color from the color stack and sets the current color to be that
color (supported by DVIPS∗, DVIPDFM, and DVIPDFMx).

color [PScolor] clears the color stack, and saves and sets the given color (sup-
ported by DVIPS∗, DVIPDFM(?), DVIPDFMx).

4.3 Image specials

PostScript provides one image special ‘psfile’ for including EPS graphics file.
Every EPS file has a bounding box information. For example, the bounding box
of the EPS file20 in the following example is

%%BoundingBox: 17 171 567 739

Four options llx, lly, urx, and ury are used to specify the clipping area of the
EPS file, and two options rwi and rhi (0.1 bp unit) are used to resize the clipped
area.
psfile=[name] hsize=[num] vsize=[num]
hoffset=[num] voffset=[num]
hscale=[num] vscale=[num] angle=[num]
llx=[num] lly=[num] urx=[num]
ury=[num] rwi=[num] rhi=[num] [clip]

(supported by DVIPS∗,
DVIPDFM, and DVIPDFMx).

1 [page 1 0 0 0 0 0 0 0 0 0]
2 down: 150bp
3 xxx: ’psfile=tiger.eps rhi=1500 llx=17 lly=171 urx=617 ury=771 clip’
4 right: 150bp
5 xxx: ’psfile=tiger.eps rhi=750 llx=17 lly=171 urx=617 ury=771 angle=45 clip’
6 right: 75bp
7 xxx: ’psfile=tiger.eps rwi=1500 rhi=750 llx=17 lly=171 urx=617 ury=771 clip’
8 right: 150bp
9 xxx: ’psfile=tiger.eps rwi=750 rhi=1500 llx=17 lly=171 urx=617 ury=771 clip’

20. It is tiger.eps that can be found in the examples directory of Ghostscript, the most popu-
lar interpreter for the PostScript language and for PDF under GPL license. Visit http://www.
ghostscript.com/awki for more information.

11

http://www.ghostscript.com/awki
http://www.ghostscript.com/awki


Neither DVIPDFM nor DVIPDFMx has internal PostScript interpreting rou-
tine so that they cannot process EPS files without Ghostscript or other PostScript
distill utilities. Instead, both DVI utilities support JPEG and PDF image files that
are not processed in DVIPS. The PDF image special for JPEG and PDF images
has reader-friendly syntax. We refer to [6, p. 13] and [1, pp. 12–14] for examples.

pdf:image width [length] height [length]
depth [length] rotate [num]
scale [num] xscale [num] yscale [num]
bbox [ulx] [uly] [lrx] [lry]
matrix [a] [b] [c] [d] [x] [y] ([name])

(supported by DVIPDFM∗(?)
and DVIPDFMx).

4.4 Transformation specials

AAAA
It is possible in LATEX to rotate and scale text and figure.
But DVIPS has no transformation special for this pur-
pose. Instead, it enables us to insert literal PostScript
code.

" [PScode] inserts literal PostScript code surrounded
by a pair of gsave and grestore to have no effect on
the rest of the document (supported by DVIPS∗ only).

ps:[PScode] inserts literal PostScript code without a pair of gsave and grestore
(supported by DVIPS∗ only).

12



1 [page 1 0 0 0 0 0 0 0 0 0]
2 xxx: ’papersize 2in,2in’
3 xxx: ’" Goldenrod newpath 0 0 moveto 50 0 lineto 0 0 50 0 90 arc closepath fill’
4 xxx: ’" Dandelion newpath 0 0 moveto 0 50 lineto 0 0 50 90 180 arc closepath fill’
5 xxx: ’" Apricot newpath 0 0 moveto -50 0 lineto 0 0 50 180 270 arc closepath fill’
6 xxx: ’" Peach newpath 0 0 moveto 0 -50 lineto 0 0 50 270 0 arc closepath fill’
7 xxx: ’color gray 1’
8 fnt: ptmr8r at 50pt
9 xxx: ’ps:gsave’

10 put: ’A’
11 xxx: ’ps:currentpoint currentpoint translate 90 rotate neg exch neg exch translate’
12 put: ’A’
13 xxx: ’ps:currentpoint currentpoint translate 90 rotate neg exch neg exch translate’
14 put: ’A’
15 xxx: ’ps:currentpoint currentpoint translate 90 rotate neg exch neg exch translate’
16 put: ’A’
17 xxx: ’ps:grestore’

On the other hand, DVIPDFM and DVIPDFMx have a PDF transformation
special for rotation and scaling, etc. Note that literal PDF codes are used in the
following example.

AAAApdf:btrans [the same option as pdf:image] applies
the specified transformation to all subsequent text (sup-
ported by DVIPDFM∗ and DVIPDFMx).

pdf:etrans concludes the action of the immediately
preceding pdf:btrans special (supported by DVIPDFM∗

and DVIPDFMx).

pdf:content [PDFcode] inserts literal PDF code sur-
rounded by a pair of q and Q to have no effect on the rest of the document
(supported by DVIPDFM∗ and DVIPDFMx).

pdf:literal [PDFcode] inserts literal PDF code without a pair of q and Q (sup-
ported by DVIPDFMx∗ only).

1 [page 1 0 0 0 0 0 0 0 0 0]
2 xxx: ’papersize 2in,2in’
3 xxx: ’color Goldenrod’
4 xxx: ’pdf:content 0 0 m 50 0 l 50 25 25 50 0 50 c f’
5 xxx: ’color Dandelion’

13



6 xxx: ’pdf:content 0 0 m 0 50 l -25 50 -50 25 -50 0 c f’
7 xxx: ’color Apricot’
8 xxx: ’pdf:content 0 0 m -50 0 l -50 -25 -25 -50 0 -50 c f’
9 xxx: ’color Peach’

10 xxx: ’pdf:content 0 0 m 0 -50 l 25 -50 50 -25 50 0 c f’
11 xxx: ’color gray 1’
12 fnt: ptmr8r at 50pt
13 put: ’A’
14 xxx: ’pdf:btrans rotate 90 scale .5’
15 put: ’A’
16 xxx: ’pdf:btrans rotate 90 scale 2’
17 put: ’A’
18 xxx: ’pdf:btrans rotate 90 scale 2’
19 put: ’A’
20 xxx: ’pdf:etrans’
21 xxx: ’pdf:etrans’
22 xxx: ’pdf:etrans’

Up to now we discussed common DVI specials originated by DVIPS in usual.
However, there are many PDF specials not mentioned in this section. DVIPDFM
originates almost all PDF specials, and its manual [6] is a good source. Moreover,
the author discussed in his talk at TUG 2005 [1] how differently the three DVI util-
ities, DVIPS, DVIPDFM, and DVIPDFMx behave on the same special command.

5 Conclusion

Imagine that one has a DVI file without TEX source, but he or she wants to modify
or to add something to the document. For example, a technical editor may want
to put a preprint number on each paper, which was not fixed at the time of
writing. He may also want to put a watermark or an emblem on every paper.

We also imagine a TEX novice who wants to give some decorations in his
document, but has some trouble in writing TEX codes. Is it the best advice for him
to learn TEX? It might be if he has enough time. If not, DVIasm is an alternative.
In fact, he may learn DVI commands more quickly than TEX commands. Even
DVIasm may be quite attractive to a TEX expert who wants to modify a few words
in his document more than hundred pages long.

DVIasm is written for these purposes as supplementary to TEX and its exten-
sions. It must keep in mind that DVIasm is not an alternative program for TEX.

14



Neither line breaking nor page breaking is, and will be supported. As mentioned
in the beginning of the paper, DVIasm is in the first stage. We will discuss in the
next paper how to support 16-bit characters in DVIasm. Any comment will be
helpful to make a better program.

References

[1] Jin-Hwan Cho, Practical Use of Special Commands in DVIPDFMx, TUG 2005
International Typesetting Conference at Wuhan China, http://project.ktug.
or.kr/dvipdfmx/doc/tug2005.pdf

[2] Jin-Hwan Cho, The DVIasm Python Script, http://svn.ktug.or.kr/viewvc/
dviasm/?root=ChoF

[3] Jin-Hwan Cho and Haruhiko Okumura, Typesetting CJK languages with Omega,
TeX, XML, and Digital Typography, Lecture Notes in Computer Science 3130
(2004), 139–148.

[4] Donald E. Knuth, The DVItype processor (Version 3.6, December 1995), CTAN:
systems/knuth/texware/dvitype.web.

[5] Geoffrey Tobin, The DTL Package (Version 0.6.1, March 1995), CTAN:dviware/
dtl/.

[6] Mark A. Wicks, Dvipdfm User’s Manual (Version 0.12.4, September 1999), http:
//gaspra.kettering.edu/dvipdfm/dvipdfm-0.12.4.pdf.

15

http://project.ktug.or.kr/dvipdfmx/doc/tug2005.pdf
http://project.ktug.or.kr/dvipdfmx/doc/tug2005.pdf
http://svn.ktug.or.kr/viewvc/dviasm/?root=ChoF
http://svn.ktug.or.kr/viewvc/dviasm/?root=ChoF
http://www.ctan.org/tex-archive/systems/knuth/texware/dvitype.web
http://www.ctan.org/tex-archive/systems/knuth/texware/dvitype.web
http://www.ctan.org/tex-archive/dviware/dtl/
http://www.ctan.org/tex-archive/dviware/dtl/
http://gaspra.kettering.edu/dvipdfm/dvipdfm-0.12.4.pdf
http://gaspra.kettering.edu/dvipdfm/dvipdfm-0.12.4.pdf

	Introduction
	Prerequisite
	Download and installation
	Creating a DVI file without TeX
	Disassembling a DVI file

	DVI commands
	DVI specials
	Page specials
	Color specials
	Image specials
	Transformation specials

	Conclusion

