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A body immersed in a uniformly stratified fluid of buoyancy frequency 𝑁 is displaced a vertical

distance 𝜁0 from its neutral buoyancy level 𝜁 = 0, then released at time 𝑡 = 0. The body returns

back to equilibrium through damped oscillations 𝜁(𝑡). Their spectrum

𝜁(𝜔) = �
∞

−∞

𝜁(𝑡)ei𝜔𝑡 d𝑡

is related to the vertical added mass coefficient 𝐶𝑧(𝜔) of the body (Voisin 2009) by
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.

We calculate the oscillations for an elliptic cylinder and a spheroid, based on expressions of their

added mass deduced from Voisin (2021).

For the cylinder, of horizontal semi-axis 𝑎, vertical semi-axis 𝑏 and aspect ratio 𝜖 = 𝑏/𝑎, we have
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The oscillation spectrum follows as

𝜁(𝜔)
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(𝜔2 − 𝑁2)1/2
𝑏𝜔 + 𝑎(𝜔2 − 𝑁2)1/2

𝑎𝜔 + 𝑏(𝜔2 − 𝑁2)1/2
.

Hereinafter, the determination of the multivalued functions of 𝜔 is set by causality, namely by the

requirement that the functions be analytic in the upper half of the complex 𝜔-plane. In particular,

on the real axis, (𝜔2 − 𝑁2)1/2 = |𝜔2 − 𝑁2|1/2 sign𝜔 for |𝜔| > 𝑁 and i|𝑁2 − 𝜔2|1/2 for |𝜔| < 𝑁.

The inverse transform
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is evaluated by the method of Larsen (1969, Appendix D). We change variable to
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,

such that 𝜔 = 𝑁(𝑠 + 1/𝑠)/2 and (𝜔2 − 𝑁2)1/2 = 𝑁(𝑠 − 1/𝑠)/2. The inverse transform becomes
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,

with 𝛤 the contour in figure 1(a). The integrand has singularities 𝑠 = 0 and 𝑠2 = (𝜖 − 1)/(𝜖 + 1),

all inside the unit circle |𝑠| = 1. The contour may thence be deformed to that in figure 1(b). The

contributions of the two parts along the negative imaginary axis cancel out, and we are left with
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Figure 1: Contour of integration 𝛤 in the 𝑠-plane, (a) before and (b) after deformation.

an integral along the unit circle. Changing variable again to 𝑠 = ei𝜃, so that 𝜔 = 𝑁cos 𝜃 and

(𝜔2 − 𝑁2)1/2 = i𝑁 sin 𝜃, we obtain

𝜁(𝑡)

𝜁0
=

1

2π
�
2π

0

e−i𝑁𝑡 cos𝜃
𝑏 cos 𝜃 + i𝑎 sin 𝜃

𝑎 cos 𝜃 + i𝑏 sin 𝜃
d𝜃.

This integral is further simplified by considering each quarter-circle 0 < 𝜃 < π/2, π/2 < 𝜃 < π,

π < 𝜃 < 3π/2 and 3π/2 < 𝜃 < 2π separately, changing variables so as to turn each integral into

one over 0 < 𝜃 < π/2. Adding up the four contributions, we obtain
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For a circular cylinder (𝑎 = 𝑏) the integral is a Bessel function
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and is otherwise evaluated numerically.

The spheroid has the added mass coefficient
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The oscillation spectrum becomes
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Its inverse transform is evaluated as before, yielding
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which simplifies to
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For a sphere this reduces to a Struve function
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and is otherwise evaluated numerically.

The oscillations are plotted in figure 2. They decay faster for the two-dimensional cylinder than

for the three-dimensional spheroid. When the body is streamlined, namely the spheroid is oblate

or the cylinder elongated along the vertical, the oscillations are similar to those for a sphere or

a circular cylinder, respectively, but their decay gets slower as the body gets more streamlined.

When the spheroid is prolate or the cylinder elongated along the horizontal, the oscillations lose

their near-symmetry with respect to the neutral buoyancy level. Instead, the oscillations may take

several periods to reach this level and then, for spheroids of aspect ratios 𝜖 = 0.2 and below, they

overshoot it for several more periods before eventually coming back to it.

These conclusions, however, are unrealistic in two respects: first, by their neglect of viscosity,

which plays a significant role in the damping of the oscillations; and second, by their neglect of

the rotational motions of the oscillating body, especially significant for an oblate spheroid and a

cylinder elongated along the horizontal, both of whose vertical oscillations are prone to rotational

instabilities. This second neglect is inherent in the calculations of Voisin (2009, 2021), which only

consider translational motion. Rotational motion was considered for an elliptic cylinder by Hurley

& Hood (2001).
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Figure 2: Buoyancy oscillations for (a,b) elliptic cylinders and (c,d) spheroids of varying aspect ratio 𝜖 versus non-dimensional time 𝑡/𝑇, with

𝑇 = 2π/𝑁 the buoyancy period. Both (a,c) short- and (b,d) long-term evolutions of the oscillations are shown.
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