
MITPress NewMath.cls LATEX Book Style Size: 7x9 32pc text width November 11, 2020 9:05pm

2 Basic SetTheory

We assume a basic knowledge of mathematics as introduced in [3, chapters I and II]. We briefly
summarize the mathematical prerequisites in set theory [11, ch. 1, Basic set theory] and logic [26–
28].

Contents

2.1 Notations 1
2.2 Mathematical Constructions 4
2.3 Properties 7
2.4 Proofs 8
2.5 Conclusion 9
2.6 Solutions to Selected Exercises 9
2.7 Bibliography 9

2.1 Notations

2.1.1 Term Notations
Let N, N+, Z, and R be the set of all natural, strictly positive naturals1, integer, and real numbers.2

Terms are symbolic expressions built out of constants (such as 0 and −42), mathematical variables
such as 𝑥,𝑦, and so on (denoting immutable but unknown entities such as 𝑥 in the expression 𝑥+1),
and operations such as + (sum), −, (difference), × (product), ∣_∣ (absolute value), and so forth. We
write 𝑝 ≜ 𝑃 to define the mathematical object 𝑝 (the definiendum) to be equal to the mathematical
expression 𝑃 (the definiens), for example, 2 ≜ 1 + 1. We use mathematical variables 𝑥, 𝑝, 𝑄, and so
forth to denote mathematical entities that are fixed over time and possibly unknown (see [28, ch. I]
“On the use of variables”). We use program variables x, p, Q, and so forth to store values and change
them over time by assignments.

2.1.2 Predicate Notations
Let B ≜ {tt, ff} be the set of Boolean truth values tt (true) and ff (false).3 We can state properties
of numbers (also called assertions, conditions, constraints, facts, predicates, propositions, require-
ments, statements, etc.) by logical predicates for which the value is either tt or ff. Relations such as
(𝑥 − 1) + 1 = 𝑥 or 𝑥 < 𝑥 + 1 are basic logical predicates relating terms by relation operations =

1. Other notations for positive naturals are N∗, N1, N>0, Z+, and so forth. We use N+ because a superscript or subscript
∗ is often interpreted as “zero or more” whereas + is often interpreted as “one or more.” Originally, Richard Dedekind
[4] and Giuseppe Peano [22] used N for positive naturals and N0 to include 0 [23].

2. The series of historical footnotes aims at showing that good notations may take decades if not centuries to emerge.
3. This notation is not classic. For example George Boole [1] uses 0 and 1, Giuseppe Peano uses V and Λ, David Hilbert

and Wilhelm Friedrich Ackermann [9] use ⋎ and ⋏, Stephen Cole Kleene [12] uses 𝔱 and 𝔣, Alfred Tarski [28] uses T
and F, and so forth.

MITPress NewMath.cls LATEX Book Style Size: 7x9 32pc text width November 11, 2020 9:05pm

2 Chapter 2

(equal), < (less than), ⩽ (less than or equal), and so on. We can combine predicates using logical
connectives ∨ (disjunction4), ∧ (conjunction5), ¬ (negation6),⇒ (implication7, with inverse⇐),
and⇔ (if and only if)8, as in ((𝑥 − 1) + 1 = 𝑥) ∧ ¬(𝑥 > 𝑥 + 1). This is true for all possible values 𝑥
so ∀𝑥 ∈ Z . (𝑥 − 1) + 1 = 𝑥 where ∀ is the universal quantification.9 This property also holds on
reals, but not on naturals because ∃𝑥 ∈ N . (𝑥−1) ∉ N where ∃ is existential quantification10 and ∉
means “does not belongs to” (by choosing 𝑥 = 0). Of course, ∀𝑥 ∈ N . (𝑥+1)−1 = 𝑥 holds for nat-
urals but not ∀𝑥 ∈ N . (𝑥 − 1) + 1 = 𝑥 (because 0 is an exception). We use ∃! for unique existential
quantification (i.e. ∃!𝑥 . 𝑃(𝑥) if and only if ∃𝑥 . 𝑃(𝑥) ∧ ∀𝑥, 𝑦 . (𝑃(𝑥) ∧ 𝑃(𝑦)) ⇒ (𝑥 = 𝑦)).11
If 𝑃 ⇒ 𝑄 then 𝑃 is called the premise and 𝑄 the conclusion. We say that 𝑃 is a sufficient condition

for 𝑄 to hold (i.e. to be true). If 𝑄 ⇒ 𝑃 then we say that 𝑃 is a necessary condition for 𝑄 to hold. If
𝑃 ⇔ 𝑄 then we say that 𝑃 is a necessary and sufficient condition for 𝑄. We say that 𝑃 ⇒ 𝑄 holds
vacuously when 𝑃 is ff or 𝑄 is tt.

Exercise 2.1 Provide the truth tables of disjunction ∨, negation ¬, and implication⇒ (given all
possible arguments 𝑥, 𝑦 ∈ B, such a truth table specifies the value 𝑥 ∨ 𝑦 ∈ B).

Exercise 2.2 Using the truth tables of exercise 2.1, prove that for all 𝑥, 𝑦 ∈ B, 𝑥 ⇒ 𝑦 if and only
if ¬𝑥 ∨ 𝑦 if and only if ¬(𝑥 ∧ ¬𝑦).

4. George Boole [1] uses + (by analogy with addition).
5. George Boole [1] uses juxtaposition, so 𝑥 ∧ 𝑦 is written 𝑥𝑦 (by analogy with a multiplication); Alfred Whitehead and

Bertrand Russell use ⋅, which confusingly is also used as a delimiter [29, v. I, ch. I, 9–10].
6. George Boole [1, prop. III] writes 1−𝑃 for¬𝑃, EliakimHastingsMoore writes−𝑃 [18], AlfredWhitehead and Bertrand

Russell [29] use∼, JacquesHerbrand [8] refers toAlfredWhitehead andBertrandRussell but uses∞ instead. Following
David Hilbert and Wilhelm Friedrich Ackermann [9], ¬𝑃 is sometimes denoted 𝑃.

7. Charles Sanders Peirce [24] uses –<, Giuseppe Peano [22] uses

C

, Alfred Whitehead and Bertrand Russell [29], and
Stephen Cole Kleene [12] uses ⊃.This is unfortunate because if𝑃 ⇒ 𝑄 then {𝑥 ∣ 𝑃(𝑥)} ⊆ {𝑥 ∣ 𝑄(𝑥)} (see section 2.3.2).
David Hilbert and Wilhelm Friedrich Ackermann [9] and Alfred Tarski [28] use→.

8. Alfred Whitehead and Bertrand Russell [29] use ≡.
9. Introduced by Charles Sanders Peirce [24] as Any or∏. David Hilbert and Wilhelm Friedrich Ackermann [9] as well

as Alfred Whitehead and Bertrand Russell [29] write (𝑥)𝑃 for ∀𝑥 . 𝑃. Kazimierz Kuratowski and Andrzej Mostowski
[14] use⋀𝑥 𝑃. Alfred Tarski in [28] writes for any.

10. Introduced by Charles Sanders Peirce [24] as Some or Σ; for example ∀𝑃 . ∃𝑥 ∈ 𝑃 . … is written∏𝑃 ∑𝑥𝑝…. David
Hilbert andWilhelm Friedrich Ackermann [9] write (𝐸𝑥)𝑃whereas AlfredWhitehead and Bertrand Russell [29] write
(∃𝑥)𝑃 for ∃𝑥 . 𝑃. Kazimierz Kuratowski and Andrzej Mostowski [14] use⋁𝑥 𝑃. Alfred Tarski [28] writes there exists.

11. i.e. stands for latin id est meaning “that is to say”.

MITPress NewMath.cls LATEX Book Style Size: 7x9 32pc text width November 11, 2020 9:05pm

Basic Set Theory 3

2.1.3 Set Notations
Naive set theory understands sets 𝑆 as collections of elements 𝑥 that belong to that set 𝑆, written
𝑥 ∈ 𝑆.12 The empty set ∅13 has no elements so ∀𝑥 . 𝑥 ∉ ∅. A singleton is a set {𝑥} with only one
element 𝑥, so 𝑦 ∈ {𝑥} ⇔ 𝑦 = 𝑥. If 𝑝(𝑥) is a predicate on 𝑥, then the set-builder notation {𝑥 ∣ 𝑝(𝑥)}
denotes the set of all elements 𝑥 satisfying the predicate 𝑝. Therefore, if 𝑆 ≜ {𝑥 ∣ 𝑝(𝑥)} (i.e. 𝑆 is
defined in intension to be the set {𝑥 ∣ 𝑝(𝑥)}), then 𝑥 ∈ 𝑆 if and only if 𝑝(𝑥) holds, that is, 𝑝 is true of
𝑥. 𝑆 = ∅ is empty if and only if ∀𝑥 . ¬𝑝(𝑥).14 For example, 2N ≜ {𝑥 ∈ N ∣ ∃𝑘 . 𝑥 = 2𝑘} is the set of
all even natural numbers, and 2Z+1 ≜ {𝑥 ∈ Z ∣ ∃𝑘 . 𝑥 = 2𝑘+1} is the set of all odd integers. More
generally, 𝑑(𝑎) ≜ {𝑓(𝑎, 𝑏,…) ∣ 𝑝(𝑎, 𝑏,… , 𝑥,…)} is a shorthand for the definition of function 𝑑 as
∀𝑎 . 𝑑(𝑎) ≜ {𝑓(𝑎′, 𝑏,…) ∣ ∃𝑥 . 𝑝(𝑎′, 𝑏,… , 𝑥,…) ∧ 𝑎′ = 𝑎}. The free variables 𝑎′, 𝑏,… , 𝑥,… , 𝑎 of
the term 𝑝(𝑎′, 𝑏,… , 𝑥,…) ∧ 𝑎′ = 𝑎 are existentially quantified unless they are free in 𝑓(𝑎′, 𝑏,…)
or are a global variable 𝑎.15 Contradictions such as the circular definition 𝑆 ≜ {𝑥 ∣ 𝑥 ∉ 𝑆} should be
avoided.The cardinality |𝑆| of a finite set is the number of its elements (so, |∅| = 0 and |{𝑥}| = 1). For
infinite sets, the cardinality is (informally) a measure of their size. For example the set Z of integers
and the set 2Z of even integers have the same cardinality (because there is a bijection 𝑛 ↦ 2𝑛
between the two). We write {𝑥 ∈ 𝑋 ∣ 𝑝(𝑥)} for {𝑥 ∣ 𝑥 ∈ 𝑋 ∧ 𝑝(𝑥)} and {𝑥 ∈ 𝑆} for {𝑥 ∣ 𝑥 ∈ 𝑆},
which is 𝑆. We write 𝑆 ⊆ 𝑆′ to mean that 𝑆 is a subset of 𝑆′, that is, ∀𝑥 ∈ 𝑆 . 𝑥 ∈ 𝑆′16. Therefore
∅ ⊆ 𝑆′ is always true because there is no 𝑥 ∈ ∅ so that all of them (and there is none) belong to
any set. The union or join of sets is ∪ (defined as 𝑥 ∈ 𝑆 ∪ 𝑆′ ⇔ 𝑥 ∈ 𝑆 ∨ 𝑥 ∈ 𝑆′). The intersection or
meet of sets is ∩. The difference of sets is 𝑆 ⧵ 𝑆′ ≜ {𝑥 ∈ 𝑆 ∣ 𝑥 ∉ 𝑆′}. The complement of a set 𝑆 with
respect to a set 𝑈 (generally understood from the context) is ¬𝑆 ≜ 𝑈 ⧵ 𝑆. Augustus De Morgan’s
laws state that ¬(𝑆 ∪ 𝑆′) = (¬𝑆) ∩ (¬𝑆′) and ¬(𝑆 ∩ 𝑆′) = (¬𝑆) ∪ (¬𝑆′). The powerset ℘(𝑆) of a set
𝑆 is the set of all its subsets so ℘(𝑆) ≜ {𝑆′ ∣ 𝑆′ ⊆ 𝑆}17. ℘𝑓(𝑆) is the set of all finite subsets of 𝑆, so
℘𝑓(𝑆) ≜ {𝑆′ ∣ 𝑆′ ⊆ 𝑆 ∧ |𝑆| ∈ N}. For example, ℘({0, 1}) = ℘𝑓({0, 1}) = {∅, {0}, {1}, {0, 1}}.

12. ∈ can be remembered as the “e” in “is an element of ”. The symbol ∈ was introduced by Giuseppe Peano [22]. Ernst
Schröder uses the same notation (= both for ∈ and ⊆, [25] so formulæ must be parsed to sort between elements and
sets! In fact 𝑥 ∈ 𝑋 is {𝑥} ⊆ 𝑋 so ∈ is abstracted away in favor of ⊆ in order theory, see chapter 10.

13. The denotation of the empty set by the letter∅ from theNorwegian alphabet (similar to theGermanÖ)was introduced
by the French mathematician André Weil.

14. Formally, [27, p. 34] defines {𝑥 ∣ 𝑝(𝑥)} = 𝑦 ⇔ (∀𝑥 . (𝑥 ∈ 𝑦) ⇔ 𝑝(𝑥) ∧ 𝑦 is a set) ∨ (𝑦 = ∅ ∧ ¬(∃𝑆 . ∀𝑥 . 𝑥 ∈ 𝑆 ⇔
𝑝(𝑥))). “The point of the second member of the disjunction of the definiens is to put {𝑥 ∣ 𝑝(𝑥)} equal to the empty
set if there is no non-empty set having as members just those entities with property 𝑝.”

15. A definition of the form 𝑑(𝑦) ≜ {𝑓(𝑥′, 𝑦) ∣ 𝑃(𝑥′, 𝑥, 𝑦)} has the global variables 𝑦 of 𝑓(𝑥′, 𝑦) and 𝑃(𝑥′, 𝑥, 𝑦) bound to
the variables 𝑦 in the definition of 𝑑(𝑦). The variables 𝑥′ in 𝑃(𝑥′, 𝑥, 𝑦) are bound to those of 𝑓(𝑥′, 𝑦)whereas 𝑥 is free
in 𝑃(𝑥′, 𝑥, 𝑦) since it appears neither in 𝑓(𝑥′, 𝑦) nor in 𝑑(𝑦), nor (by assumption) under quantifiers in 𝑃(𝑥′, 𝑥, 𝑦) so is
implicitly existentially quantified.This is mademore explicit by writing 𝑑(𝑦) ≜ {𝑓(𝑥′, 𝑦′) ∣ ∃𝑥 . 𝑃(𝑥′, 𝑥, 𝑦′)∧𝑦 = 𝑦′}.

16. If ∀𝑥 . 𝑝(𝑥) ⇒ 𝑞(𝑥) then {𝑥 ∣ 𝑝(𝑥)} ⊆ {𝑥 ∣ 𝑎(𝑥)} so using ⊃ for implication as [12] is confusing.
17. ℘(𝑆) is sometimes denoted 2𝑆. This is because a subset 𝑋 of 𝑆 can be represented by a boolean characteristic function

𝕔(𝑥) ≜ 𝑥 ∈ 𝑋 characterizing which elements 𝑥 ∈ 𝑆 belong to the subset 𝑋 of 𝑆, the booleans are isomorphic to
2 = {0, 1} (in John Von Neumann theory of ordinals [20]), and the set of functions from 𝐴 to 𝐵 which we denote as
𝐴→ 𝐵 is also denoted 𝐵𝐴.

MITPress NewMath.cls LATEX Book Style Size: 7x9 32pc text width November 11, 2020 9:05pm

4 Chapter 2

Exercise 2.3 Formally define the property that a set 𝑆 is a singleton.

Exercise 2.4 Formally define set intersection ∩.

Exercise 2.5 Prove De Morgan law ¬(𝑆 ∪ 𝑆′) = (¬𝑆) ∩ (¬𝑆′).

More generally, by complement duality, if two predicates 𝑃 and𝑄 involving only variables𝑋, ∨/∃
(disjunction) or ∪ (union), ∧/∀ (conjunction) or ∩ (intersection), and ¬ (negation or complement)
are logically equal 𝑃 ⇔ 𝑄 then their dual complements (replacing variables 𝑋 by their negation
¬𝑋, ∨/∃/∪ by ∧/∀/∩, and ∧/∀/∩ by ∨/∃/∪, and eliminating double negation ¬¬) are also logically
equal [9, ch I, § 6, and ch III, § 8].This follows immediately from the fact that the dual complement
of 𝑃 is ¬𝑃 .

Exercise 2.6 Assume the set R of reals has already been defined (for example, by Tarski’s axiom-
atization of the reals [28, Section 61 or 63]). Provide a definition of N and then Z as subsets of R.

Remark 2.7 (on finiteness) Because programs run on finite machines with a finite lifetime, one
may argue that everything concerning the programs and their executions must be finite [10]. How-
ever, infinite sets can be considered as the limit of finite sets for which cardinality is bounded but the
bound is unknown. It is often easier to reason on infinite sets than on finite sets which cardinality
has an unknown bound. A classical example is fairness or unbounded nondeterminism in paral-
lelism [6, 15, 21], in which verification methods not explicitly considering the unknown bound are
simpler. Another argument is that computations are currently performed on networks, in which
a dying machine is replaced by another one without affecting the well-behaved operation of the
network, hence of program executions that can, in principle, last forever. Distributed memory is
also finite, but in contrast to a machine, its size bound is not known. Considering that the network
has a finite lifetime is impossible, sibecausence it is necessary to give a lower bound to be able to
prove anything. This lower bound is itself completely unknown. Therefore, considering an infinite
lifetime, hence infinite sets, is a reasonable simplification to get rid of these minimal and maximal
unknown resource and lifetime bounds.

2.1.4 Interval Notation
Given a lower and an upper integer bound ℓ, 𝑢 ∈ Z, we let the closed interval be [ℓ, 𝑢] ≜ {𝑧 ∈ Z ∣
ℓ ⩽ 𝑧 ⩽ 𝑢} while the opened intervals are]ℓ, 𝑢] ≜ {𝑧 ∈ Z ∣ ℓ < 𝑧 ⩽ 𝑢}, [ℓ, 𝑢[≜ {𝑧 ∈ Z ∣ ℓ ⩽ 𝑧 < 𝑢},
and]ℓ, 𝑢[≜ {𝑧 ∈ Z ∣ ℓ < 𝑧 < 𝑢}. Hence [ℓ, 𝑢] = ∅ when 𝑢 < ℓ.

2.2 Mathematical Constructions

Mathematicians (followed by computer scientists) construct new objects and operations on these
objects frompreviously defined ones (sets formathematicians, and bits for computer scientists). For

MITPress NewMath.cls LATEX Book Style Size: 7x9 32pc text width November 11, 2020 9:05pm

Basic Set Theory 5

example, Kazimierz Kuratowski [13, def. V, p. 171] defines a pair (sometimes called an ordered pair)
as a set ⟨𝑥, 𝑦⟩ ≜ {{𝑥}, {𝑥, 𝑦}}. The first coordinate is ⟨𝑥, 𝑦⟩1 defined by 𝑧 = ⟨𝑥, 𝑦⟩1 ⇔ ∀𝑆 ∈ ⟨𝑥,
𝑦⟩ ∶ 𝑧 ∈ 𝑆 (so that ⟨𝑥, 𝑦⟩1 = 𝑥). The second coordinate is ⟨𝑥, 𝑦⟩2 defined by 𝑧 = ⟨𝑥, 𝑦⟩2 ⇔ (∃𝑆 ∈
⟨𝑥, 𝑦⟩ ∶ 𝑧 ∈ 𝑆) ∧ (∀𝑆1, 𝑆2 ∈ ⟨𝑥, 𝑦⟩ ∶ 𝑆1 ≠ 𝑆2 → (𝑧 ∉ 𝑆1 ∨ 𝑧 ∉ 𝑆2)) (so that ⟨𝑥, 𝑦⟩2 = 𝑦).

Exercise 2.8 Show that ⟨𝑥, 𝑥⟩1 = ⟨𝑥, 𝑥⟩2 = 𝑥.

2.2.1 Cartesian Product
TheCartesian product of two sets 𝑆1 and 𝑆2 is the set 𝑆1 ×𝑆2 ≜ {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ 𝑆1 ∧𝑦 ∈ 𝑆2} of pairs of
elements of 𝑆1 and 𝑆2.The set 𝑆×𝑆 is sometimes written 𝑆2.This generalizes to 𝑛-ary tuples, 𝑛 ∈ N+,
as ⟨𝑥1, 𝑥2, … , 𝑥𝑛⟩ ∈ 𝑆1 × 𝑆2 ×… × 𝑆𝑛 and 𝑆𝑛 when 𝑆1 = 𝑆2… = 𝑆𝑛 = 𝑆. The selection of the 𝑖 th
element of the tuple ⟨𝑥1, 𝑥2, … , 𝑥𝑛⟩ uses the index subscript notation ⟨𝑥1, 𝑥2, … , 𝑥𝑛⟩𝑖 ≜ 𝑥𝑖 or
the function notation ⟨𝑥1, 𝑥2, … , 𝑥𝑛⟩(𝑖) ≜ 𝑥𝑖. When the index is not an integer, we write∏𝑖∈Δ 𝑥𝑖,
which we understand as a function from the set Δ of indexes to 𝑆.

2.2.2 Relations
A binary relation 𝑟 on sets 𝑆1 and 𝑆2 is a set of pairs ⟨𝑥, 𝑦⟩ ∈ 𝑆1 × 𝑆2 of related elements 𝑥 ∈ 𝑆1 and
𝑦 ∈ 𝑆2 so 𝑟 ∈ ℘(𝑆1×𝑆2). 𝑦 is said to be an image of 𝑥 by 𝑟. We write 𝑥 𝑟 𝑦, 𝑥 𝑟−−−→ 𝑦, or 𝑟(𝑥, 𝑦) for ⟨𝑥,
𝑦⟩ ∈ 𝑟. For example, equality on Z is = ≜ {⟨𝑥, 𝑥⟩ ∣ 𝑥 ∈ Z} whereas “less than or equal” is ⩽ ≜ {⟨𝑥,
𝑦⟩ ∈ Z ×Z ∣ ∃𝑧 ∈ N . 𝑥 + 𝑧 = 𝑦}, and the identity relation on a set 𝑆 is 1𝑆 ≜ {⟨𝑥, 𝑥⟩ ∣ 𝑥 ∈ 𝑆}. The
domain of a relation 𝑟 on sets 𝑆1 and 𝑆2 is dom(𝑟) ≜ {𝑥 ∈ 𝑆1 ∣ ∃𝑦 ∈ 𝑆2 . ⟨𝑥, 𝑦⟩ ∈ 𝑟}; the codomain
is cod(𝑟) ≜ {𝑦 ∈ 𝑆2 ∣ ∃𝑥 ∈ 𝑆1 . ⟨𝑥, 𝑦⟩ ∈ 𝑟}; and the field is fld(𝑟) ≜ dom(𝑟) ∪ cod(𝑟). The left
(respectively right) restriction 𝑟 ⌉ 𝑆 (respectively 𝑟 ⌈ 𝑆) of a relation 𝑟 ∈ ℘(𝑆1 × 𝑆2) to a set 𝑆 is {⟨𝑥,
𝑦⟩ ∈ 𝑟 ∣ 𝑥 ∈ 𝑆} (respectively {⟨𝑥, 𝑦⟩ ∈ 𝑟 ∣ 𝑦 ∈ 𝑆}), which is equal to {⟨𝑥, 𝑦⟩ ∈ 𝑟 ∣ 𝑥 ∈ 𝑆1 ∩ 𝑆}
(respectively {⟨𝑥, 𝑦⟩ ∈ 𝑟 ∣ 𝑦 ∈ 𝑆2 ∩ 𝑆}). The composition of relations is 𝑟1 # 𝑟2 ≜ {⟨𝑥, 𝑧⟩ ∣ ∃𝑦 . ⟨𝑥,
𝑦⟩ ∈ 𝑟1 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑟2}. The inverse of a relation 𝑟 ∈ ℘(𝑆1 × 𝑆2) is 𝑟−1 ≜ {⟨𝑦, 𝑥⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝑟}.
⟨℘(𝑆 × 𝑆), #, 1𝑆⟩ is an example of monoide that is a mathematical structure ⟨S, ⊕, 1⟩, where ⊕ is a
binary relation on the set S, which is associative (i.e. (𝑥 ⊕ 𝑦) ⊕ 𝑧 = 𝑥 ⊕ (𝑦 ⊕ 𝑧) with neutral element
1 (i.e. 1 ⊕ 𝑥 = 𝑥 ⊕ 1 = 𝑥).

Exercise 2.9 Show that ⟨℘(𝑆 × 𝑆), #, 1𝑆, −1⟩ is not a group that is a mathematical structure ⟨S,
⊕, 1, −1⟩ where ⊕ is a binary relation on the set S, with neutral element 1, and inverse −1 (i.e.
𝑥 ⊕ 𝑥−1 = 𝑥−1 ⊕ 𝑥 = 1).

2.2.3 Equivalence and Partial Order Relations
An equivalence relation ≡ on a set 𝑆 is reflexive (∀𝑥 ∈ 𝑆 . 𝑥 ≡ 𝑥), symmetric (∀𝑥, 𝑦 ∈ 𝑆 . (𝑥 ≡ 𝑦) ⇔
(𝑦 ≡ 𝑥)), and transitive (∀𝑥, 𝑦, 𝑧 ∈ 𝑆 . (𝑥 ≡ 𝑦 ∧ 𝑦 ≡ 𝑧) ⇒ (𝑥 ≡ 𝑧)). The equivalence class of an
element 𝑥 ∈ 𝑆 is the set [𝑥]≡ ≜ {𝑦 ∈ 𝑆 ∣ 𝑦 ≡ 𝑥} of all elements of 𝑆 that are equivalent to 𝑥. The
quotient 𝑆∣≡ ≜ {[𝑥]≡ ∣ 𝑥 ∈ 𝑆} is the set of all equivalence classes.
A partial order ⩽ on a set 𝑆 is reflexive, antisymmetric (∀𝑥, 𝑦 ∈ 𝑆 . (𝑥 ⩽ 𝑦 ∧ 𝑦 ⩽ 𝑥) ⇒ (𝑥 = 𝑦))

and transitive. The strict partial order is 𝑥 < 𝑦 ≜ (𝑥 ⩽ 𝑦) ∧ (𝑥 ≠ 𝑦). An order is total if and only

MITPress NewMath.cls LATEX Book Style Size: 7x9 32pc text width November 11, 2020 9:05pm

6 Chapter 2

if any two elements of 𝑆 are comparable (∀𝑎, 𝑏 ∈ 𝑆 . (𝑎 ⩽ 𝑏) ∨ (𝑏 ⩽ 𝑎)). A set 𝑆 equipped with a
partial order ⩽ is called a poset ⟨𝑆, ⩽⟩.
A pointwise definition of a relation is ̇𝑟 ≜ 𝑓, 𝑔 ↦ ∀𝑥 . 𝑟(𝑓(𝑥), 𝑔(𝑥)). The functional pointwise

definition is ̈𝑟 ≜ 𝑓, 𝑔 ↦ ∀𝑋 . ̇𝑟(𝑓(𝑋), 𝑔(𝑋)) = 𝑓, 𝑔 ↦ ∀𝑋 . ∀𝑥 . 𝑟(𝑓(𝑋)𝑥, 𝑔(𝑋)𝑥), and so forth.
For example, 𝑓 ⊑̇ 𝑔 is ∀𝑥 . 𝑓(𝑥) ⊑ 𝑔(𝑥). If ⟨⟨𝐿𝑖, ⊑𝑖⟩, 𝑖 ∈ Δ⟩ is a family of posets (see section 2.2.5),
then the componentwise order ⊑̇ on the Cartesian product∏𝑖∈Δ 𝐿𝑖 is∏𝑖∈Δ 𝑥𝑖 ⊑̇ ∏𝑖∈Δ 𝑦𝑖 ≜ ∀𝑖 ∈ Δ .
𝑥𝑖 ⊑𝑖 𝑦𝑖. The componentwise order ⊑̇ is sometimes denoted∏𝑖∈Δ ⊑𝑖 or ⊑1 × ⊑2 when Δ = {1, 2}.

Exercise 2.10 Prove that equality (=) on a non-empty set 𝑆 is the only relation on that set 𝑆 that
is both an equivalence and a partial order.

Exercise 2.11 (LexicographicOrder) Let ⟨𝐴, ⩽⟩ and ⟨𝐵, ⊑⟩ be two posets. Define ⟨𝑎, 𝑏⟩ ⩽ × ⊑ ⟨𝑎′,
𝑏′⟩ ≜ (𝑎 < 𝑎′) ∨ (𝑎 = 𝑎′ ∧ 𝑏 ⊑ 𝑏′). Show that the Cartesian product ⟨𝐴×𝐵, ⩽ ×⊑⟩ is a poset. Show
that if ⩽ and ⊑ are total orders then ⩽ × ⊑ is a total order.

More details on equivalence and partial order relations appear in chapter 10.

2.2.4 Partial and Total Functions
A relation 𝑟 ∈ ℘(𝑆1×𝑆2) is functional when any element of 𝑆1 is in relation with atmost one element
of 𝑆2 by 𝑟 that is ∀𝑥 ∈ 𝑆1 . ∀𝑦, 𝑦′ ∈ 𝑆2 . (⟨𝑥, 𝑦⟩ ∈ 𝑟 ∧ ⟨𝑥, 𝑦′⟩ ∈ 𝑟) ⇒ (𝑦 = 𝑦′). In that case, we
write 𝑟 ∈ ℘

ϝ
(𝑆1 ×𝑆2). A relation 𝑟 ∈ ℘(𝑆1 ×𝑆2) is total when any element of 𝑆1 has at least one image

by 𝑟 that is ∀𝑥 ∈ 𝑆1 . ∃𝑦 ∈ 𝑆2 . ⟨𝑥, 𝑦⟩ ∈ 𝑟.
A partial function 𝑓 ∈ 𝑆1 ↛ 𝑆2 of 𝑆1 into 𝑆2 is a functional relation 𝑟 on sets 𝑆1 and 𝑆2 such that

any element 𝑥 ∈ 𝑆1 has at most an image, written 𝑓(𝑥) when it exists (so 𝑓(𝑥) is the unique 𝑦 such
that ⟨𝑥, 𝑦⟩ ∈ 𝑟). We write 𝑓 ≜ 𝑥 ↛↦ 𝑒(𝑥) when ∀𝑥 ∈ dom(𝑓) . 𝑓(𝑥) ≜ 𝑒(𝑥) and 𝑓 ≜ 𝑥∈ 𝑆 ↛↦ 𝑒(𝑥)
when 𝑆 = dom(𝑓).We sometimes use the subscript notation𝑓𝑥 for𝑓(𝑥).The composition of partial
functions is 𝑓 ∘ 𝑔 = 𝑥 ↛↦ 𝑓(𝑔(𝑥)). Considered as relations, this is 𝑔 # 𝑓.○
A total function 𝑓 ∈ 𝑆1 → 𝑆2 has dom(𝑓) = 𝑆1, that is, is everywhere defined on 𝑆1, which

we write 𝑥 ∈ 𝑆1 ↦ 𝑓(𝑥). If 𝑆1 = 𝑆2 = 𝑆 then 𝑓 ∈ 𝑆 → 𝑆 is often called an operator on 𝑆 or an
𝑆-transformer. A function 𝐹 ∈ (𝑆1 → 𝑆2) → (𝑆′1 → 𝑆′2) taking functions as parameters is called a
functional.
The right image of a relation 𝑟 ∈ ℘(𝑆1 × 𝑆2) is the function 𝑥 ∈ 𝑆1 ↦ {𝑦 ∈ 𝑆2 ∣ ⟨𝑥, 𝑦⟩ ∈ 𝑟} ∈
𝑆1 → ℘(𝑆2).
A total function 𝑓 ∈ 𝑆1 → 𝑆2 is injective/one-to-one when ∀𝑥1 ∈ 𝑆1 . ∀𝑥2 ∈ 𝑆2 . 𝑥1 ≠ 𝑥2 ⇒
𝑓(𝑥1) ≠ 𝑓(𝑥2) (written 𝑓 ∈ 𝑆1 ↣ 𝑆2). It is surjective/onto if and only if ∀𝑦 ∈ 𝑆2 . ∃𝑥 ∈ 𝑆1 .
𝑓(𝑥) = 𝑦 (written 𝑓 ∈ 𝑆1 ↠ 𝑆2). It is bijective if and only if both injective and surjective (written
𝑓 ∈ 𝑆1 ⤖ 𝑆2). Sets 𝑆1 and 𝑆2 are isomorphic when there exists a bijection of 𝑆1 onto 𝑆2.
It may be that the returned value of a function always belong to a set that depends upon one of

its parameters (this is called a dependent type in computer science [2]). For example 𝑓 ∈ 𝑛 ∈ N→
{𝑘 ∈ N ∣ 𝑘 ⩾ 𝑛} specifies a function 𝑓 ∈ N → N such that ∀𝑛 ∈ N . 𝑓(𝑛) ⩾ 𝑛. More generally,

MITPress NewMath.cls LATEX Book Style Size: 7x9 32pc text width November 11, 2020 9:05pm

Basic Set Theory 7

𝑓 ∈ 𝑥 ∈ 𝑆1 → 𝑆2(𝑥) is the function 𝑓 ∈ 𝑥 ∈ 𝑆1 → ⋃𝑥∈𝑆1 𝑆2(𝑥) such that ∀𝑥 ∈ 𝑆1 . 𝑓(𝑥) ∈ 𝑆2(𝑥)
where 𝑆2 maps each 𝑥 ∈ 𝑆1 to a set 𝑆2(𝑥). Up to an isomorphism 𝑓 ∈ ∏𝑥∈𝑆1 𝑆2(𝑥).

Exercise 2.12 Show that N, 2N, and 2N + 1 are isomorphic.

A set 𝑆 is enumerable if and only if there exists a bijection 𝜄 ∈ 𝑆 ⤖ N between 𝑆 and the naturals.
A function may return a function, and 𝑓 ∈ 𝐴 → 𝐵 → 𝐶 stands for 𝑓 ∈ 𝐴 → (𝐵 → 𝐶), the same

for partial functions↛.
A pointwise definition of a function is ̇𝑓 ≜ 𝑥 ↦ 𝑓(𝑥), ̈𝑓 ≜ 𝑋 ↦ ̇𝑓(𝑋) = 𝑋 ↦ 𝑥 ↦ 𝑓(𝑋)𝑥 for

functionals, and so forth.

2.2.5 Families
A family𝐹 ∈ Δ → 𝑆 of elements of 𝑆 indexed byΔ is a map from a setΔ (called the domain or index
set, which may be infinite) into a set 𝑆. Such a family defines a set {𝐹(𝑖) ∣ 𝑖 ∈ Δ} (where 𝐹(𝑖) is often
denoted 𝐹𝑖 with an index 𝑖 ∈ Δ). It also defines a Cartesian product∏𝑖∈Δ 𝐹𝑖 as well as a sequence
⟨𝐹𝑖, 𝑖 ∈ Δ⟩ when Δ is totally ordered.

2.2.6 Recursive Definitions
An example of recursive definition of a function 𝑓 ∈ N→ 𝑆 where 𝑆 is a set has the form 𝑓(0) ≜ 𝑐
where 𝑐 ∈ 𝑆 and 𝑓(𝑛) ≜ 𝐹(𝑛, 𝑓(𝑛 − 1)) where 𝐹 ∈ N × 𝑆 → 𝑆. For example the factorial is !0 ≜ 1
and !𝑛 ≜ 𝑛×!(𝑛 − 1). Recursive programming was promoted, among others, by [5, 16].
Recursive definitions may be ill defined, such as 𝑓(0) ≜ 0 and 𝑓(𝑛) ≜ 𝑓(𝑛 + 1) when 𝑛 ≠ 0.

We have 𝑓(𝑛) = 0 for 𝑛 ⩽ 0, whereas 𝑓(𝑛) is undefined when 𝑛 > 0. For programs, undefined
means “does not terminate” or “terminates with a runtime error” (such as Stack overflow or
Segmentation fault, etc.). So recursive definitions must be proved to be well-defined. (e.g. ! ∈
N→ N).18 Recursive definitions are generalized to inductive definitions in section 16.4.

2.3 Properties

2.3.1 Properties Are Sets
Properties (e.g. “to be an even integer” and “to be an odd natural”) can be understood as the set
of mathematical objects that have this property (e.g. 2Z ≜ {𝑥 ∈ Z ∣ ∃𝑘 ∈ Z . 𝑥 = 2𝑘} and
2N + 1 = {𝑥 ∈ N ∣ ∃𝑘 ∈ N . 𝑥 = 2𝑘 + 1}). Hence if 𝑃 is a property then 𝑥 ∈ 𝑃 means “𝑥 has
property 𝑃”, and 𝑥 ∉ 𝑃 means “𝑥 does not have property 𝑃.” For example, 42 ∈ 2Z19 but 43 ∉ 2Z
and ! ∈ N→ N and ! ∉ Z→ Z. The concept of property is fully developed in chapter 8, “Program
Properties”.

18. e.g. stands for Latin exempli gratia or example given.

19. 42, in the Hitchhiker’s Guide to the Galaxy by Douglas Adams, is the “Answer to the Ultimate Question of Life, the
Universe, and Everything”, calculated by a supercomputer named DeepThought over a period of 7.5M years.

https://en.wikipedia.org/wiki/The_Hitchhiker's_Guide_to_the_Galaxy
https://en.wikipedia.org/wiki/Douglas_Adams

MITPress NewMath.cls LATEX Book Style Size: 7x9 32pc text width November 11, 2020 9:05pm

8 Chapter 2

2.3.2 Implication, Weaker and Stronger Properties
In considering properties as sets, the logical implication is subset inclusion ⊆. For example, “to be
greater than 42 implies to be positive” is {𝑥 ∈ Z ∣ 𝑥 > 42} ⊆ {𝑥 ∈ Z ∣ 𝑥 ⩾ 0}. If 𝑃 ⊆ 𝑄 then 𝑃 is said
to be stronger/more precise than 𝑄, and 𝑄 is said to be weaker/less precise than 𝑃. Stronger/more
precise properties are satisfied by fewer elements, and weaker/less precise properties are satisfied by
more elements. ff, that is,∅, is the strongest property, and tt, that is, Z, is the weakest property of
integers.

2.4 Proofs

2.4.1 Proof by Contraposition
A proof of 𝑃 ⇒ 𝑄 by contraposition consists in proving the contrapositive ¬𝑄 ⇒ ¬𝑃. If 𝑃 is true
then ¬𝑃 is false, so ¬𝑄 cannot be true because then ¬𝑃 would be true and therefore 𝑄 is true.

2.4.2 Proof by Reductio Ad Absurdum or by Contradiction
A proof of 𝑃 by reductio ad absurdum consists in finding a property𝑄 that is known to be true and
proving ¬𝑃 ⇒ ¬𝑄. By contraposition 𝑄 ⇒ 𝑃 that is tt ⇒ 𝑃 and so 𝑃 is true.

2.4.3 Proof by Recurrence

Theorem 2.13 (proof by recurrence) To prove that a property 𝑃 holds for all natural numbers
i.e. N ⊆ 𝑃 equivalently ∀𝑛 ∈ N . 𝑛 ∈ 𝑃, the proof by recurrence consists in proving 0 ∈ 𝑃 and
∀𝑛 ∈ N . (𝑛 ∈ 𝑃) ⇒ (𝑛 + 1 ∈ 𝑃).

–

–

𝑛 ∈ 𝑃 is called the induction hypothesis (abbreviated ind. hyp., and also called recurrence hypoth-
esis) so 𝑛 + 1 ∈ 𝑃must be proved assuming this induction hypothesis.

Proof (soundness of the proof by recurrence) Assume thatwehavemade the proof by recurrence
and N ⊈ 𝑃. Then ∃𝑛 ∈ N . 𝑛 ∉ 𝑃. The case 𝑛 = 0 is impossible because we proved 0 ∈ 𝑃. There-
fore 𝑛 > 0 hence 𝑛 = (𝑛 − 1) + 1. We proved that ∀𝑚 ∈ N . (𝑚 ∈ 𝑃) ⇒ (𝑚 + 1 ∈ 𝑃) so
¬(𝑚+1 ∈ 𝑃) ⇒ ¬(𝑚 ∈ 𝑃). For𝑚 = 𝑛−1we have 𝑛−1 ∉ 𝑃. Going on this way, 𝑛−2 ∉ 𝑃, 𝑛−3 ∉ 𝑃,
…, 0 ∉ 𝑃 in contradiction with the proof that 0 ∈ 𝑃. By reductio ad absurdum ¬(∃𝑛 ∈ N . 𝑛 ∉ 𝑃),
that is, ∀𝑛 ∈ N . 𝑛 ∈ 𝑃.

Proof (completeness of the proof by recurrence) If 𝑃 holds (that is N ⊆ 𝑃) then this can always
be proved by recurrence. Let 𝑄 ≜ 𝑃 ∩ N, so that N ⊆ 𝑃 implies 𝑄 = N. So trivially, 0 ∈ 𝑄 and
∀𝑛 ∈ 𝑄 . 𝑛 + 1 ∈ 𝑄. Therefore we have N ⊆ 𝑄 = 𝑃 ∩N ⊆ 𝑃.
So N ⊆ 𝑃 can be proved by recurrence (maybe with a stronger recurrence hypothesis 𝑄 and an

additional implication 𝑄 ⊆ 𝑃).

MITPress NewMath.cls LATEX Book Style Size: 7x9 32pc text width November 11, 2020 9:05pm

Basic Set Theory 9

Proof by recurrence dates back to Pierre de Fermat infinite descent method [7] (originally formu-
lated contrapositively as ∀𝑛 ∈ N . (𝑛 ∉ 𝑃) ⇒ (∃𝑚 < 𝑛 . 𝑚 ∉ 𝑃) then ∀𝑛 ∈ N . 𝑛 ∈ 𝑃). The term
mathematical induction is credited to Augustus De Morgan [19].

Exercise 2.14 Prove that factorial ! ∈ N→ N by recurrence.

2.5 Conclusion

Set theory is the logical basis for all mathematics and computer science. Additional topics in set
theory will be covered subsequently, as needed. The reader may enjoy studying more advanced
introductions to abstract set theory, such as [17].

2.6 Solutions to Selected Exercises

Solution to Exercise 2.3 𝑆 is a singleton if and only if ∃𝑥 . 𝑥 ∈ 𝑆 ∧ ∀𝑥, 𝑦 ∈ 𝑆 . 𝑥 = 𝑦.

Solution to Exercise 2.6 N is the smallest subset of R containing 0 and the successor of every
natural that is N =⋂{𝑆 ∈ ℘(R) ∣ 0 ∈ 𝑆 ∧ ∀𝑛 ∈ 𝑆 . 𝑛 + 1 ∈ 𝑆}. N+ = N ⧵ {0}, Z = N ∪ {−𝑛 ∣ 𝑛 ∈ N+}.

Solution to Exercise 2.9 Take 𝑆 = {𝑎, 𝑏, 𝑐}, 𝑟 = {⟨𝑎, 𝑐⟩, ⟨𝑏, 𝑐⟩} so 𝑟−1 = {⟨𝑐, 𝑎⟩, ⟨𝑐, 𝑏⟩} and
𝑟 # 𝑟−1 = {⟨𝑎, 𝑎⟩, ⟨𝑎, 𝑏⟩, ⟨𝑏, 𝑏⟩, ⟨𝑏, 𝑎⟩} ≠ 1𝑆 = {⟨𝑎, 𝑎⟩, ⟨𝑏, 𝑏⟩}.
Solution to Exercise 2.14 We have !0 = 1 by definition, so !0 ∈ N. Assume, by induction hy-
pothesis, that !𝑚 ∈ N for all 𝑚 < 𝑛 + 1. Then 𝑛 < 𝑛 + 1 so !𝑛 ∈ N by induction hypothesis and
therefore !(𝑛 + 1) = (𝑛 + 1)×!𝑛 ∈ N by definition of the factorial and × ∈ N2 → N. By recurrence,
∀𝑛 ∈ N .!𝑛 ∈ N so ! ∈ N→ N.

2.7 Bibliography
[1] George Boole.An Investigation of the Laws of Thought on Which are Founded the Mathematical Theories

of Logic and Probabilities. Walton and Maberly, 1884 (1, 2).
[2] Simon Castellan, Pierre Clairambault, and Peter Dybjer. “Categories with Families: Unityped, Simply

Typed, and Dependently Typed.” CoRR. abs/1904.00827 (2019) (6).
[3] Richard Courant and Herbert Robbins (revised by Ian Stewart). What is Mathematics? An Elementary

Approach to Ideas and Methods. 2nd ed. Oxford University Press, 1941, 1969, 1996 (1).
[4] Richard Dedekind. Was sind und was sollen die Zahlen?. 2nd ed. Friedrich Bieweg und Sohn, 1893 (1,

8).
[5] Edsger W. Dijkstra. “Recursive Programming.” Numerische Mathematik. 2.1 (1960), pp. 312–318 (7,

12).
[6] Edsger W. Dijkstra and Carel S. Scholten. The Strongest Postcondition. Texts and Monographs in Com-

puter Science. Springer, 1990, pp. 209–215 (4, 10).
[7] Pierre de Fermat. “Relation des nouvelles découvertes en la science des nombres.” Lettre à Pierre de

Carcavi. Aug. 1659 (9).

MITPress NewMath.cls LATEX Book Style Size: 7x9 32pc text width November 11, 2020 9:05pm

10 Chapter 2

[8] Jacques Herbrand. “Recherches sur la théorie de la démonstration.” Ch. V of “Écrits logiques”, Jean
Van Heijenoort (Ed.), Presses Universitaires de France, 1968, pp. 35–143. Thèse. Université de Paris,
June 11, 1930 (2, 1, 18, 45).

[9] David Hilbert andWilhelmAckermann.Grundzüge der Theoretischen Logik. 6th ed. Engl. trans. “Prin-
ciples ofmathematical logic”, LewisM.Hammond,GeorgeG. Leckie, F. Steinhardt, AMSChelsea, 1958,
reprinted 2008. Springer, 1928, 1949, reprinted 1959 (1, 2, 4).

[10] Gerard J. Holzmann. “Does Not Compute.” IEEE Software. 36.3 (2019), pp. 14–16 (4).
[11] Irving Kaplansky. Set Theory and Metric Spaces. 2nd ed. American Mathematical Society, 1977 (1).
[12] Stephen Cole Kleene. Introduction to Meta-Mathematics. Elsevier North-Holland, 1952 (1–3, 8).
[13] Kazimierz Kuratowski. “Sur la notion de l’ordre dans la Théorie des Ensembles.” Fundamenta Mathe-

maticæ. 2.1 (1921), pp. 161–171 (5).
[14] Kazimierz Kuratowski and Andrzej Mostowski. Set Theory. North-Holland, Jan. 1968 (2).
[15] Daniel J. Lehmann, Amir Pnueli, and Jonathan Stavi. “Impartiality, Justice and Fairness: The Ethics

of Concurrent Termination.” In. ICALP. Vol. 115. Lecture Notes in Computer Science. Springer, 1981,
pp. 264–277 (4).

[16] John McCarthy. “Recursive Functions of Symbolic Expressions and Their Computation by Machine,
Part I.” Commun. ACM. 3.4 (1960), pp. 184–195 (7, 1, 24).

[17] James Donald Monk. Introduction to Set Theory. McGraw-Hill, 1969. http://euclid.colorado.
edu/~monkd/monk11.pdf (9).

[18] Eliakim Hastings Moore. Introduction to a Form of General Analysis. Yale University Press, 1910 (2, 21,
1).

[19] Augustus De Morgan. “Mathematical Induction.” The Penny Cyclopedia of the Society for the Diffusion
of Useful Knowledge. 12 (1838). http://education.lms.ac.uk/wp-content/uploads/2011/
10/De_Morgan_Mathematical_Induction.pdf (9).

[20] John Von Neumann. “Zur Einführung der transfiniten Zahlen.” Acta Scientiarum Mathematicarum
(Szeged). 1.4 (1923), pp. 199–208 (3).

[21] DavidMichael Ritchie Park. “On the Semantics of Fair Parallelism.” In.Abstract Software Specifications.
Vol. 86. Lecture Notes in Computer Science. Springer, 1979, pp. 504–526 (4, 7).

[22] Giuseppe Peano. Arithmetices Principia, Nova Methodo Exposita. Fratres Bocca, 1889. https://
archive.org/details/arithmeticespri00peangoog/ (1–3, 11).

[23] GiuseppePeano.Formulaire deMathématiques.Bocca frères, 1895.https://archive.org/details/
formulairedemat03peangoog/page/n9 (1).

[24] Charles Sanders Peirce. “On the Algebra of Logic: A Contribution to the Philosophy of Notation.”
American Journal of Mathematics. 7.2 (Jan. 1885), pp. 180–202 (2).

[25] Ernst Schröder. Vorlesungen über die Algebra der Logik (Exakte Logik). Vol. 1. B.G. Teubner, 1890 (3).
[26] Raymond Smullyan. A Beginner’s Guide to Mathematical Logic. Dover Books on Mathematics, 2014 (

1).
[27] Patrick Suppes. Axiomatic Set Theory. Dover, 1952 (1, 3).
[28] Alfred Tarski. Introduction to Logic and to the Methodology of Deductive Sciences. 4th ed. Oxford Uni-

versity Press, Mar. 1994 (1, 2, 4).
[29] Alfred North Whitehead and Bertrand Russell. Principia Mathematica, Volume I, II, III. 2nd ed. Cam-

bridge University Press, 1927 (2).

http://euclid.colorado.edu/~monkd/monk11.pdf
http://euclid.colorado.edu/~monkd/monk11.pdf
http://education.lms.ac.uk/wp-content/uploads/2011/10/De_Morgan_Mathematical_Induction.pdf
http://education.lms.ac.uk/wp-content/uploads/2011/10/De_Morgan_Mathematical_Induction.pdf
https://archive.org/details/arithmeticespri00peangoog/
https://archive.org/details/arithmeticespri00peangoog/
https://archive.org/details/formulairedemat03peangoog/page/n9
https://archive.org/details/formulairedemat03peangoog/page/n9

	Basic Set Theory
	Notations
	Mathematical Constructions
	Properties
	Proofs
	Conclusion
	Solutions to Selected Exercises
	Bibliography

