texlive[71657] Master/texmf-dist: pst-diffraction (29jun24)

commits+karl at tug.org commits+karl at tug.org
Sat Jun 29 22:00:38 CEST 2024


Revision: 71657
          https://tug.org/svn/texlive?view=revision&revision=71657
Author:   karl
Date:     2024-06-29 22:00:37 +0200 (Sat, 29 Jun 2024)
Log Message:
-----------
pst-diffraction (29jun24)

Modified Paths:
--------------
    trunk/Master/texmf-dist/doc/generic/pst-diffraction/Changes
    trunk/Master/texmf-dist/doc/generic/pst-diffraction/README
    trunk/Master/texmf-dist/tex/generic/pst-diffraction/pst-diffraction.tex
    trunk/Master/texmf-dist/tex/latex/pst-diffraction/pst-diffraction.sty

Added Paths:
-----------
    trunk/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-doc.pdf
    trunk/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-doc.tex

Removed Paths:
-------------
    trunk/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docDE.pdf
    trunk/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docDE.tex
    trunk/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docE.pdf
    trunk/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docE.tex
    trunk/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docFR.pdf
    trunk/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docFR.tex
    trunk/Master/texmf-dist/source/generic/pst-diffraction/

Modified: trunk/Master/texmf-dist/doc/generic/pst-diffraction/Changes
===================================================================
--- trunk/Master/texmf-dist/doc/generic/pst-diffraction/Changes	2024-06-29 19:59:54 UTC (rev 71656)
+++ trunk/Master/texmf-dist/doc/generic/pst-diffraction/Changes	2024-06-29 20:00:37 UTC (rev 71657)
@@ -1,4 +1,8 @@
 pst-diffraction.tex --------
+2.04a 2024-06-29  - bugfix for the documentation header
+                  - removed german and french docs
+2.04  2010-01-05  - fix bug with missing \space for keywords
+                    from pst-3dplot 
 2.03  2008-09-03  - fix compatibility bug with pst-3d 
                     (\variablesIIID no more valid)
 2.02  2007-09-25  - add IIID option for all macros

Modified: trunk/Master/texmf-dist/doc/generic/pst-diffraction/README
===================================================================
--- trunk/Master/texmf-dist/doc/generic/pst-diffraction/README	2024-06-29 19:59:54 UTC (rev 71656)
+++ trunk/Master/texmf-dist/doc/generic/pst-diffraction/README	2024-06-29 20:00:37 UTC (rev 71657)
@@ -3,7 +3,7 @@
 %% Manuel Luque (ml _at_ pstricks.de) (France)
 %% Herbert Voss (hv _at_ pstricks.de) (Germany)
 %%
-%% 2007-09-04
+%% 2024-06-29
 %%
 
 PSTricks offers excellent macros to insert more or less complex 
@@ -41,10 +41,10 @@
 
 If you like to get the documentation file in another format run 
 
-latex pst-diffraction-docX.tex
-bibtex pst-diffraction-docX
-latex pst-diffraction-docX.tex
-dvips pst-diffraction-docX.dvi
+latex pst-diffraction-doc.tex
+bibtex pst-diffraction-doc
+latex pst-diffraction-doc.tex
+dvips pst-diffraction-doc.dvi
 
 to get a PostScript file. But pay attention, that the pst-diffraction
 files are saved in the above mentioned way, before you run

Added: trunk/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-doc.pdf
===================================================================
(Binary files differ)

Index: trunk/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-doc.pdf
===================================================================
--- trunk/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-doc.pdf	2024-06-29 19:59:54 UTC (rev 71656)
+++ trunk/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-doc.pdf	2024-06-29 20:00:37 UTC (rev 71657)

Property changes on: trunk/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-doc.pdf
___________________________________________________________________
Added: svn:mime-type
## -0,0 +1 ##
+application/pdf
\ No newline at end of property
Added: trunk/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-doc.tex
===================================================================
--- trunk/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-doc.tex	                        (rev 0)
+++ trunk/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-doc.tex	2024-06-29 20:00:37 UTC (rev 71657)
@@ -0,0 +1,451 @@
+%% $Id: pst-diffraction-docE.tex 134 2009-09-27 12:28:50Z herbert $
+\documentclass[11pt,english,BCOR10mm,DIV12,bibliography=totoc,parskip=false,smallheadings,
+    headexclude,footexclude,oneside]{pst-doc}
+\usepackage{pst-grad,pst-diffraction}
+\let\pstDiffractionFV\fileversion
+
+\usepackage{libertinus}
+\usepackage{biblatex}
+\addbibresource{pst-diffraction-doc.bib}
+
+\lstset{pos=t,wide=true,language=PSTricks,
+    morekeywords={psdiffractionRectangle,psdiffractionCircle,psdiffractionCircular},basicstyle=\footnotesize\ttfamily}
+\lstdefinestyle{syntax}{backgroundcolor=\color{blue!20},numbers=none,xleftmargin=0pt,xrightmargin=0pt,
+    frame=single}
+\lstdefinestyle{example}{backgroundcolor=\color{red!20},numbers=none,xleftmargin=0pt,xrightmargin=0pt,
+    frame=single}
+\newcommand*\psp{\texttt{pspicture}\xspace}
+%
+\begin{document}
+
+\title{\texttt{pst-diffraction}}
+\subtitle{Diffraction patterns for diffraction from circular, rectangular and triangular
+apertures; v.\pstDiffractionFV}
+\author{Manuel Luque \\ Herbert Vo\ss}
+\docauthor{Herbert Voß}
+\date{\today}
+\maketitle
+
+\tableofcontents
+
+\clearpage
+
+\begin{abstract}
+\noindent
+
+\vfill\noindent
+Thanks to: Julien Cubizolles,
+Doris Wagner, 
+Timothy Van Zandt, Keno Wehr,
+Michael Zedler.
+\end{abstract}
+
+\section{Optical setup}
+
+\begin{center}
+\begin{pspicture}(0,-3)(12,3)
+\pnode(0,0){S}   \pnode(4,1){L'1}  \pnode(4,-1){L'2}  \pnode(6,1){E'1}   \pnode(6,-1){E'2}
+\pnode(6,0.5){E1}\pnode(6,-0.5){E2}\pnode(8.5,1.5){L1}\pnode(8.5,0.5){L2}\pnode(11.5,1.25){P}
+% lentille L'
+\pscustom[fillstyle=gradient,linecolor=blue,gradend=white]{%
+  \code{0.5 0.83333 scale}
+  \psarc(4,0){4.176}{-16.699}{16.699}
+  \psarc(12,0){4.176}{163.30}{196.699}}
+% lentille L
+\pscustom[fillstyle=gradient,linecolor=blue,gradend=white]{%
+  \code{1 1.5 scale}
+  \psarc(4.5,0){4.176}{-16.699}{16.699}
+  \psarc(12.5,0){4.176}{163.30}{196.699}}
+\pspolygon[linestyle=none,fillstyle=vlines,
+    hatchcolor=yellow](S)(L'1)(E'1)(E1)(L1)(P)(L2)(E2)(E'2)(L'2)
+\uput[90](4,1){$L'$}\uput[90](8.5,2){$L$}
+\psdot(S)\uput[180](S){S}
+\psline(S)(12,0)\psline[linewidth=2\pslinewidth](6,2)(6,0.5)\psline[linewidth=2\pslinewidth](6,-2)(6,-0.5)
+\psline[linestyle=dashed](6,0.5)(6,-0.5)\psline(11.5,-3)(11.5,3)\psline(S)(L'1)(E'1)\psline(S)(L'2)(E'2)
+\uput[0](P){P}
+\psline(E1)(L1)(P)\psline(E2)(L2)(P)\psline[linestyle=dashed](8.5,0)(P)
+%\rput(8.5,0){\psarc{->}(0,0){1.5}{0}{!1.25 3 atan}\uput[0](1.5;15){$\theta$}}
+\uput[-90](10,0){$f$}\uput[0](6,2){E}\uput[135](6,0){T}\uput[45](11.5,0){O}
+\end{pspicture}
+\end{center}
+
+Monochromatic light rays diverging from the focal point S of a positive lens L' emerge parallel to
+the axis and strike the aperture stop E with the aperture T.
+The light bends behind the aperture, this bending is called diffraction:
+Every point in the opening acts as if it was a point source (Huygens's principle) and the
+light waves of all those points overlap and produce an interference pattern (diffraction
+pattern) on a screen. When the screen is very far away, the observed patterns are called
+Fraunhofer diffraction patterns. In this case one can assume that the rays from the aperture
+striking the same point P on the screen are parallel.\\
+In practice one wants to realize a short distance between the aperture stop and the screen.
+Hence one sets up a converging lens L after the opening and installs the screen
+into the focal plane (containing the points P and O) of this lens. Parallel rays incident on
+the lens are then focused at a point P in the focal plane.
+
+With the following PSTricks-commands we can draw the diffraction patterns for different
+geometric forms
+of apertures. It is understood that only monochromatic light is used. The aperture stops can
+have rectangular, circular or triangular openings.
+
+The options available are the dimensions of the aperture under consideration and of the particular optical
+setting, e.g. the radius in case of an circular opening. Moreover one can choose the wavelength
+of the light (the associated color will be given automatically by the package).
+
+There are three commands, for rectangular, circular and triangular openings respectively:
+
+\begin{BDef}
+\Lcs{psdiffractionRectangle}\OptArgs\\
+\Lcs{psdiffractionCircular}\OptArgs\\
+\Lcs{psdiffractionTriangle}\OptArgs
+\end{BDef}
+
+
+\section{The color}
+The desired color is defined by specifying the associated wavelength $\lambda$ (in nanometers).
+Red for instance one gets by the option \Lkeyword{lambda}=632 because 
+red light has the wavelength $\lambda_{\textrm{rot}}=632\,\textrm{nm}$.
+
+The conversion of the wavelength into the associated \texttt{RGB}-value is done by PostScript. 
+The code is similar to the code of a FORTRAN program which can be found here: \\
+\url{http://www.midnightkite.com/color.html}
+
+\section{Diffraction from a rectangular aperture}
+
+\begin{center}
+\begin{pspicture}(-2,-1)(2,1.5)
+\psframe(-0.5,-1)(0.5,1)
+\pcline{<->}(-0.5,1.1)(0.5,1.1)
+\Aput{$a$}
+\pcline{<->}(0.6,1)(0.6,-1)
+\Aput{$h=k\times a$}
+\end{pspicture}
+\end{center}
+
+The width of the rectangle with the area $h=k\times a$ is defined by the letter \Lkeyword{a},
+the height by \Lkeyword{k}.
+The focal length is specified by \Lkeyword{f}, the desired resolution in pixels [pixel].
+With the option \Lkeyword{contrast} one can improve the visibility of the minor secondary
+maxima more.
+We get a black and white picture if we use the option \Lkeyword{colorMode}=0,
+the option \Lkeyword{colorMode}=1 provides the associated negative pattern. The options
+\Lkeyword{colorMode}=2 and \Lkeyword{colorMode}=3 render color pictures in the
+\Index{CMYK} and \Index{RGB} color model respectively.
+
+By default the settings are as follows: 
+
+
+\begin{tabular}{@{}lll@{}}
+\Lkeyword{a}=0.2e-3 in m;    & \Lkeyword{k}=1;       &  \Lkeyword{f}=5 in m;\\
+\Lkeyword{lambda}=650 in nm; & \Lkeyword{pixel}=0.5; &   \Lkeyword{contrast}=38, greates value;\\
+\Lkeyword{colorMode}=3;   &   \Lkeyword{IIID}=\false.
+\end{tabular}
+
+\bigskip
+\noindent
+\begin{pspicture}(-3.5,-3.5)(3.5,3.5)
+\psdiffractionRectangle[f=2.5]
+\end{pspicture}
+\hfill
+\begin{pspicture}(-1.5,-2.5)(3.5,3.5)
+\psdiffractionRectangle[IIID,Alpha=30,f=2.5]
+\end{pspicture}
+
+\begin{lstlisting}[style=example]
+\begin{pspicture}(-3.5,-3.5)(3.5,3.5)
+\psdiffractionRectangle[f=2.5]
+\end{pspicture}
+\hfill
+\begin{pspicture}(-1.5,-2.5)(3.5,3.5)
+\psdiffractionRectangle[IIID,Alpha=30,f=2.5]
+\end{pspicture}
+\end{lstlisting}
+
+
+
+\noindent\begin{pspicture}(-2,-4)(2,4)
+\psdiffractionRectangle[a=0.5e-3,k=0.5,f=4,pixel=0.5,colorMode=0]
+\end{pspicture}
+\hfill
+\begin{pspicture}(0,-3)(4,4)
+\psdiffractionRectangle[IIID,a=0.5e-3,k=0.5,f=4,pixel=0.5,colorMode=0]
+\end{pspicture}
+
+
+\begin{lstlisting}[style=example]
+\begin{pspicture}(-2,-4)(2,4)
+\psdiffractionRectangle[a=0.5e-3,k=0.5,f=4,pixel=0.5,colorMode=0]
+\end{pspicture}
+\hfill
+\begin{pspicture}(0,-3)(4,4)
+\psdiffractionRectangle[IIID,a=0.5e-3,k=0.5,f=4,pixel=0.5,colorMode=0]
+\end{pspicture}
+\end{lstlisting}
+
+
+
+\noindent
+\begin{pspicture}(-2.5,-2.5)(3.5,3)
+\psdiffractionRectangle[a=0.5e-3,k=2,f=10,lambda=515,colorMode=1]
+\end{pspicture}
+\hfill
+\begin{pspicture}(-1.5,-2)(3.5,3)
+\psdiffractionRectangle[IIID,Alpha=20,a=0.5e-3,k=2,f=10,lambda=515,colorMode=1]
+\end{pspicture}
+
+
+\begin{lstlisting}[style=example]
+\begin{pspicture}(-2.5,-2.5)(3.5,3)
+\psdiffractionRectangle[a=0.5e-3,k=2,f=10,lambda=515,colorMode=1]
+\end{pspicture}
+\hfill
+\begin{pspicture}(-1.5,-2)(3.5,3)
+\psdiffractionRectangle[IIID,Alpha=20,a=0.5e-3,k=2,f=10,lambda=515,colorMode=1]
+\end{pspicture}
+\end{lstlisting}
+
+
+\noindent
+\begin{pspicture}(-3.5,-1)(3.5,1)
+\psdiffractionRectangle[a=0.5e-3,k=20,f=10,pixel=0.5,lambda=450]
+\end{pspicture}
+\hfill
+\begin{pspicture}(-3.5,-1)(3.5,4)
+\psdiffractionRectangle[IIID,Alpha=10,a=0.5e-3,k=20,f=10,pixel=0.5,lambda=450]
+\end{pspicture}
+
+\begin{lstlisting}[style=example]
+\begin{pspicture}(-3.5,-1)(3.5,1)
+\psdiffractionRectangle[a=0.5e-3,k=20,f=10,pixel=0.5,lambda=450]
+\end{pspicture}
+\hfill
+\begin{pspicture}(-3.5,-1)(3.5,4)
+\psdiffractionRectangle[IIID,Alpha=10,a=0.5e-3,k=20,f=10,pixel=0.5,lambda=450]
+\end{pspicture}
+\end{lstlisting}
+
+\section[Diffraction from two rectangular apertures]{Diffraction from two rectangular apertures%
+\protect\footnote{This simulation was provided by Julien Cubizolles.}}
+It is also possible to render the diffraction pattern of two congruent rectangles
+(placed parallel such that their base is located on the $x$-axis)
+by using the option \Lkeyword{twoSlit}.
+By default this option is deactivated.
+The distance of the two rectangles is specified by the option $s$.
+The default for $s$ is $12e^{-3}\,\mathrm{m}$.
+
+
+\begin{center}
+\noindent
+\begin{pspicture}(-4,-1)(4,1)
+\psdiffractionRectangle[a=0.5e-3,k=10,f=10,pixel=0.5,lambda=650,twoSlit,s=2e-3]
+\end{pspicture}
+\end{center}
+
+\begin{lstlisting}[style=example]
+\begin{pspicture}(-4,-1)(4,1)
+\psdiffractionRectangle[a=0.5e-3,k=10,f=10,pixel=0.5,lambda=650,twoSlit,s=2e-3]
+\end{pspicture}
+\end{lstlisting}
+
+\begin{center}
+\begin{pspicture}(-2,-1)(4,4)
+\psdiffractionRectangle[IIID,Alpha=20,a=0.5e-3,k=10,f=10,pixel=0.5,lambda=650,twoSlit,s=2e-3]
+\end{pspicture}
+\end{center}
+
+\begin{lstlisting}[pos=t,style=example,wide=false]
+\begin{pspicture}(-2,-1)(4,4)
+\psdiffractionRectangle[IIID,Alpha=20,a=0.5e-3,k=10,f=10,pixel=0.5,lambda=650,twoSlit,s=2e-3]
+\end{pspicture}
+\end{lstlisting}
+
+
+
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+\section{Diffraction from a circular aperture}
+The radius of the circular opening can be chosen via the letter \Lkeyword{r}, e.g.
+\Lkeyword{r}=1e-3. The default is $r=1$ mm. In the first quadrant
+PSTricks displays the graph of the intensity distribution (the maximum in the center will be
+cropped if its height exceeds the margin of the environment \Lenv{pspicture*}).
+
+\hspace*{-1cm}%
+\begin{LTXexample}[pos=t,style=example,wide=false]
+\begin{pspicture}(-3.5,-3.5)(3.5,3.5)
+\psdiffractionCircular[r=0.5e-3,f=10,pixel=0.5,lambda=520]
+\end{pspicture}
+%
+\begin{pspicture}(-3.5,-1.5)(3.5,3.5)
+\psdiffractionCircular[IIID,r=0.5e-3,f=10,pixel=0.5,lambda=520]
+\end{pspicture}
+\end{LTXexample}
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+\section{Diffraction from two circular apertures}
+Only the case of equal radii is provided, this common radius can be defined like in the
+previous section via \Lkeyword{r}=\dots.
+Furthermore one has to give the half distance of the circles measured from their centers by 
+\Lkeyword{d}=\dots, e.g. \Lkeyword{d}=3e-3. Also the option
+\Lkeyword{twoHole} has to be used.\\
+The rendering process could take some time in this case\dots
+
+
+\begin{pspicture}(-3,-3.5)(3.5,3.5)
+\psdiffractionCircular[r=0.5e-3,f=10,d=3e-3,lambda=515,twoHole]
+\end{pspicture}
+%
+\begin{pspicture}(-3.5,-1.5)(3.5,3.5)
+\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=3e-3,lambda=515,twoHole]
+\end{pspicture}
+
+
+\begin{lstlisting}[style=example]
+\begin{pspicture}(-3,-3.5)(3.5,3.5)
+\psdiffractionCircular[r=0.5e-3,f=10,d=3e-3,lambda=515,twoHole]
+\end{pspicture}
+%
+\begin{pspicture}(-3.5,-1.5)(3.5,3.5)
+\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=3e-3,lambda=515,twoHole]
+\end{pspicture}
+\end{lstlisting}
+
+
+\hspace*{-1cm}%
+\begin{pspicture}(-3,-3)(3.5,4)
+\psdiffractionCircular[r=0.5e-3,f=10,d=2e-3,lambda=700,twoHole,colorMode=0]
+\end{pspicture}
+%
+\begin{pspicture}(-3.5,-2)(3.5,3.5)
+\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=2e-3,lambda=700,twoHole,colorMode=0]
+\end{pspicture}
+
+\begin{lstlisting}[style=example]
+\begin{pspicture}(-3.5,-3)(3.5,4)
+\psdiffractionCircular[r=0.5e-3,f=10,d=2e-3,lambda=700,twoHole,colorMode=0]
+\end{pspicture}
+%
+\begin{pspicture}(-3.5,-2)(3.5,3.5)
+\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=2e-3,lambda=700,twoHole,colorMode=0]
+\end{pspicture}
+\end{lstlisting}
+
+Not in every case bands occur in the central circle. The number $N$ of those inner
+bands is given by $N=2.44\frac{d}{r}$. Thus this effect is not observable until $N\geq2$
+or $d=\frac{2r}{1.22}$ (see 
+\url{http://www.unice.fr/DeptPhys/optique/diff/trouscirc/diffrac.html}).
+
+\hspace*{-1cm}%
+\begin{pspicture}(-3,-3.5)(3,3.5)
+\psdiffractionCircular[r=0.5e-3,f=10,d=4.1e-4,lambda=632,twoHole]
+\end{pspicture}
+%
+\begin{pspicture}(-3.5,-1.5)(3.5,3)
+\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=4.1e-4,lambda=632,twoHole]
+\end{pspicture}
+
+
+\begin{lstlisting}[style=example]
+\begin{pspicture}(-3,-3.5)(3,3.5)
+\psdiffractionCircular[r=0.5e-3,f=10,d=4.1e-4,lambda=632,twoHole]
+\end{pspicture}
+%
+\begin{pspicture}(-3.5,-1.5)(3.5,3)
+\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=4.1e-4,lambda=632,twoHole]
+\end{pspicture}
+\end{lstlisting}
+
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+\section{Diffraction from a triangular aperture}
+
+Only the case of an equilateral triangle is provided, whose height \Lkeyword{h} has to be
+defined as an option. As is generally known, $h$ can be computed from the length $s$ of 
+its side by $h=\frac{\sqrt{3}}{2}s$. A black and white picture can be obtained by using the
+option \Lkeyword{colorMode}=0.
+
+
+
+\begin{center}
+\begin{pspicture}(-1,-1)(1,1)
+\pspolygon*(0,0)(1;150)(1;210)
+\pcline{|-|}(-0.732,-1)(0,-1)
+\Aput{$h$}
+\end{pspicture}
+\end{center}
+
+\makebox[\linewidth]{%
+\begin{pspicture}(-3,-3)(3,2.5)
+\psdiffractionTriangle[f=10,h=1e-3,lambda=515,contrast=38]
+\end{pspicture}
+\quad
+\begin{pspicture}(-3,-3)(3,2.5)
+\psdiffractionTriangle[f=10,h=1e-3,colorMode=1,contrast=38,lambda=515]
+\end{pspicture}
+\quad
+\begin{pspicture}(-3,-3)(3,2.5)
+\psdiffractionTriangle[f=10,h=1e-3,colorMode=0,contrast=38,lambda=515]
+\end{pspicture}}
+
+
+\begin{lstlisting}[style=example]
+\begin{pspicture}(-3,-3)(3,2.5)
+\psdiffractionTriangle[f=10,h=1e-3,lambda=515,contrast=38]
+\end{pspicture}
+\quad
+\begin{pspicture}(-3,-3)(3,2.5)
+\psdiffractionTriangle[f=10,h=1e-3,colorMode=1,contrast=38,lambda=515]
+\end{pspicture}
+\quad
+\begin{pspicture}(-3,-3)(3,2.5)
+\psdiffractionTriangle[f=10,h=1e-3,colorMode=0,contrast=38,lambda=515]
+\end{pspicture}
+\end{lstlisting}
+
+
+\makebox[\linewidth]{%
+\begin{pspicture}(-3,-2)(3,3.5)
+\psdiffractionTriangle[IIID,f=10,h=1e-3,lambda=515,contrast=38]
+\end{pspicture}
+\quad
+\begin{pspicture}(-3,-2)(3,3.5)
+\psdiffractionTriangle[IIID,f=10,h=1e-3,colorMode=1,contrast=38,lambda=515]
+\end{pspicture}
+\quad
+\begin{pspicture}(-3,-2)(3,3.5)
+\psdiffractionTriangle[IIID,f=10,h=1e-3,colorMode=0,contrast=38,lambda=515]
+\end{pspicture}}
+
+\begin{lstlisting}[style=example]
+\begin{pspicture}(-3,-2)(3,3.5)
+\psdiffractionTriangle[IIID,f=10,h=1e-3,lambda=515,contrast=38]
+\end{pspicture}
+\quad
+\begin{pspicture}(-3,-2)(3,3.5)
+\psdiffractionTriangle[IIID,f=10,h=1e-3,colorMode=1,contrast=38,lambda=515]
+\end{pspicture}
+\quad
+\begin{pspicture}(-3,-2)(3,3.5)
+\psdiffractionTriangle[IIID,f=10,h=1e-3,colorMode=0,contrast=38,lambda=515]
+\end{pspicture}
+\end{lstlisting}
+
+
+
+\clearpage
+\section{List of all optional arguments for \texttt{pst-diff}}
+\Loption{pst-diff} is the short form for the keywords in the package \LPack{pst-diffraction}.
+
+\xkvview{family=pst-diff,columns={key,type,default}}
+
+
+
+\raggedright
+\nocite{*}
+\printbibliography
+%\bibliography{pst-diffraction-doc}
+
+\printindex
+
+\end{document}


Property changes on: trunk/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-doc.tex
___________________________________________________________________
Added: svn:eol-style
## -0,0 +1 ##
+native
\ No newline at end of property
Deleted: trunk/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docDE.pdf
===================================================================
(Binary files differ)

Deleted: trunk/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docDE.tex
===================================================================
--- trunk/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docDE.tex	2024-06-29 19:59:54 UTC (rev 71656)
+++ trunk/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docDE.tex	2024-06-29 20:00:37 UTC (rev 71657)
@@ -1,495 +0,0 @@
-\documentclass[ngerman,a4paper]{article}
-\usepackage[T1]{fontenc}
-\usepackage[utf8]{inputenc}
-\usepackage[bmargin=2cm,tmargin=2cm]{geometry}
-%
-\usepackage{pstricks,pst-node,pst-grad,url}
-\usepackage{pst-diffraction}
-\let\PSTfileversion\fileversion
-\let\PSTfiledate\filedate
-%
-\usepackage{ccfonts}
-\usepackage[euler-digits]{eulervm}
-\usepackage[scaled=0.85]{luximono}
-\usepackage{xspace}
-\def\UrlFont{\small\ttfamily}
-\newcommand*\psp{\texttt{pspicture}\xspace}
-\makeatletter
-\def\verbatim at font{\small\normalfont\ttfamily}
-\makeatother
-\usepackage{showexpl}
-\lstdefinestyle{syntax}{backgroundcolor=\color{blue!20},numbers=none,xleftmargin=0pt,xrightmargin=0pt,
-    frame=single}
-\lstdefinestyle{example}{backgroundcolor=\color{red!20},numbers=none,xleftmargin=0pt,xrightmargin=0pt,
-    frame=single}
-\lstset{wide=true,language=PSTricks,
-    morekeywords={psdiffractionCircular,psdiffractionRectangle,psdiffractionTriangle}}
-
-
-\usepackage{prettyref}
-\usepackage{fancyhdr}
-\usepackage{multicol}
-
-\usepackage{babel}
-\usepackage[colorlinks,linktocpage]{hyperref}
-
-\pagestyle{fancy}
-\def\Lcs#1{{\ttfamily\textbackslash #1}}
-\lfoot{\small\ttfamily\jobname.tex}
-\cfoot{Documentation}
-\rfoot{\thepage}
-\lhead{PSTricks}
-\renewcommand{\headrulewidth}{0pt}
-\renewcommand{\footrulewidth}{0pt}
-\newcommand{\PS}{PostScript}
-\newcommand\CMD[1]{\texttt{\textbackslash#1}}
-\makeatother
-\usepackage{framed}
-\definecolor{shadecolor}{cmyk}{0.2,0,0,0}
-\SpecialCoor
-
-\title{\texttt{pst-diffraction}\\[6pt]
-\mbox{}\\[1cm]
-Beugungsmuster für Beugung an kreisförmigen, rechteckigen und dreieckigen
-Öffnungen\\[10pt]
----\\[10pt]
-{\normalsize v. \PSTfileversion (\PSTfiledate)}}
-\author{%
-    \tabular[t]{c}Manuel Luque\\[3pt]
-    \url{ml at PSTricks.de}
-    \endtabular   \and 
-    \tabular[t]{c}Herbert Vo\ss\\[3pt]
-    \url{hv at PSTricks.de}\endtabular%
-} 
-\date{\today}
-\begin{document}
-\maketitle
-\vfill
-Dank an Doris Wagner für die Übersetzung der Dokumentation.\\
-Beiträge und Anmerkungen lieferten: Julien Cubizolles.
-
-\clearpage
-\tableofcontents
-\clearpage
-
-
-\section{Versuchsaufbau}
-
-\begin{center}
-\begin{pspicture}(0,-3)(12,3)
-\pnode(0,0){S}   \pnode(4,1){L'1}  \pnode(4,-1){L'2}  \pnode(6,1){E'1}   \pnode(6,-1){E'2}
-\pnode(6,0.5){E1}\pnode(6,-0.5){E2}\pnode(8.5,1.5){L1}\pnode(8.5,0.5){L2}\pnode(11.5,1.25){P}
-\pspolygon[linestyle=none,fillstyle=vlines,
-    hatchcolor=yellow](S)(L'1)(E'1)(E1)(L1)(P)(L2)(E2)(E'2)(L'2)
-% lentille L'
-\pscustom[fillstyle=gradient,linecolor=blue,gradend=white]{%
-  \code{0.5 0.83333 scale}
-  \psarc(4,0){4.176}{-16.699}{16.699}
-  \psarc(12,0){4.176}{163.30}{196.699}}
-% lentille L
-\pscustom[fillstyle=gradient,linecolor=blue,gradend=white]{%
-  \code{1 1.5 scale}
-  \psarc(4.5,0){4.176}{-16.699}{16.699}
-  \psarc(12.5,0){4.176}{163.30}{196.699}}
-\uput[90](4,1){$L'$}\uput[90](8.5,2){$L$}
-\psdot(S)\uput[180](S){S}
-\psline(S)(12,0)\psline[linewidth=2\pslinewidth](6,2)(6,0.5)\psline[linewidth=2\pslinewidth](6,-2)(6,-0.5)
-\psline[linestyle=dashed](6,0.5)(6,-0.5)\psline(11.5,-3)(11.5,3)\psline(S)(L'1)(E'1)\psline(S)(L'2)(E'2)
-\uput[0](P){P}
-\psline(E1)(L1)(P)\psline(E2)(L2)(P)\psline[linestyle=dashed](8.5,0)(P)
-%\rput(8.5,0){\psarc{->}(0,0){1.5}{0}{!1.25 3 atan}\uput[0](1.5;15){$\theta$}}
-\uput[-90](10,0){$f$}\uput[0](6,2){E}\uput[135](6,0){T}\uput[45](11.5,0){O}
-\end{pspicture}
-\end{center}
-
-Das von der punktförmigen Lichtquelle S ausgehende monochromatische Licht verlässt die
-Sammellinse L' achsenparallel und trifft auf die Blende E mit der Öffnung T.
-Das Licht wird an der Öffnung gebeugt:
-Jeder Punkt in der Öffnung wirkt als punktförmige Lichtquelle (Huygens'sches Prinzip) und es entsteht ein
-Interferenzmuster (Beugungsmuster), welches auf einem Schirm beobachtet werden kann. Ist der Schirm von der
-Blende hinreichend weit entfernt, so spricht man von Fraunhofer'scher Beugung. 
-In diesem Fall kann man annehmen, da"s alle Lichtstrahlen, die von der Öffnung her kommen und
-denselben Punkt P auf dem Schirm treffen, parallel verlaufen.\\
-In der Praxis will man den Abstand zwischen Schirm und Blende klein halten. Deshalb
-wird zwischen die Blende und den Schirm eine Sammellinse L montiert und der
-Schirm (in der Zeichnung enthält er die Punkte P und O) in die Brennebene dieser Linse gestellt. 
-Links von der Linse parallel verlaufende Lichtstrahlen werden dann im Punkt P in der Brennebene
-fokussiert.
-
-Die folgenden PSTricks-Befehle ermöglichen es, Beugungsmuster für
-verschiedene Formen von Blendenöffnungen zu erstellen. Dabei wird die Verwendung von monochromatischem
-Licht vorausgesetzt. Die Blenden können eine rechteckige, kreisförmige oder
-dreieckige Öffnung haben.
-
-Als mögliche Optionen für die Befehle hat man die Abmessungen, die sich aus dem jeweiligen
-Versuchsaufbau ergeben, etwa
-den Radius bei Verwendung einer Lochblende. Au"serdem kann man die Wellenlänge des verwendeten Lichts
-angeben (die zugehörige Farbe wird vom Paket dann automatisch zugeordnet).
-
-Es gibt drei Befehle, jeweils einen für rechteckige, kreisförmige und
-dreieckige Öffnungen:
-
-
-\begin{lstlisting}[style=syntax]
-\psdiffractionRectangle[<Optionen>]
-\psdiffractionCircular[<Optionen>]
-\psdiffractionTriangle[<Optionen>]
-\end{lstlisting}
-
-
-\section{Die Farbe}
-Die gewünschte Lichtfarbe wird über die Angabe der zugehörigen Wellenlänge
-$\lambda$ (in Nanometern) definiert. Für die Farbe rot beispielsweise gibt man als
-Option \texttt{[lambda=632]} an wegen $\lambda_{\textrm{rot}}=632\,\textrm{nm}$.
-
-Die Umrechnung der Wellenlänge in den entsprechenden Wert des
-\texttt{RGB}-Farbschemas wird von PostScript durchgeführt. Der zugrunde liegende
-Code lehnt sich an an ein Fortran-Programm, welches man auf folgender Seite
-findet:
-\url{http://www.midnightkite.com/color.html}.
-
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\section{Beugung an einer rechteckigen Blendenöffnung}
-
-\begin{center}
-\begin{pspicture}(-2,-1)(2,1.5)
-\psframe(-0.5,-1)(0.5,1)
-\pcline{<->}(-0.5,1.1)(0.5,1.1)
-\Aput{$a$}
-\pcline{<->}(0.6,1)(0.6,-1)
-\Aput{$h=k\times a$}
-\end{pspicture}
-\end{center}
-
-Die Breite des Rechtecks mit der Fläche $h=k\times a$ wird
-über den Buchstaben \texttt{[a]} definiert, die Höhe
-über den Buchstaben \texttt{[k]}.
-Die Brennweite der Linse gibt man durch \texttt{[f]} an, die Auflösung kann man mit der
-Option [pixel] verändern.
-Mit der Option \texttt{[contrast]} kann man erreichen, da"s die Nebenmaxima des
-Beugungsmusters deutlicher werden.\\
-Ein Schwarzweissbild erhält man, wenn man die Option \texttt{[colorMode=0]}
-verwendet, \texttt{[colorMode=1]} liefert das zugehörige Negativ. Die Optionen
-\texttt{[colorMode=2]} bzw. \texttt{[colorMode=3]} liefern Farbbilder im
-CMYK-Farbmodell bzw. RGB-Farbmodell.
-
-Defaultmä"sig sind folgende Werte voreingestellt:
-
-\begin{tabular}{@{}lll@{}}
-\texttt{[a=0.2e-3]} in m;    & \texttt{[k=1]};       &  \texttt{[f=5]} in m;\\
-\texttt{[lambda=650]} in nm; & \texttt{[pixel=0.5]}; &   \texttt{[contrast=38]}, Maximalwert;\\
-\texttt{[colorMode=3]};   &   \texttt{[IIID=false]}.
-\end{tabular}
-
-\bigskip
-\noindent
-\begin{pspicture}(-3.5,-3.5)(3.5,3.5)
-\psdiffractionRectangle[f=2.5]
-\end{pspicture}
-\hfill
-\begin{pspicture}(-1.5,-2.5)(3.5,3.5)
-\psdiffractionRectangle[IIID,Alpha=30,f=2.5]
-\end{pspicture}
-
-\begin{lstlisting}[style=example]
-\begin{pspicture}(-3.5,-3.5)(3.5,3.5)
-\psdiffractionRectangle[f=2.5]
-\end{pspicture}
-\hfill
-\begin{pspicture}(-1.5,-2.5)(3.5,3.5)
-\psdiffractionRectangle[IIID,Alpha=30,f=2.5]
-\end{pspicture}
-\end{lstlisting}
-
-
-
-\noindent\begin{pspicture}(-2,-4)(2,4)
-\psdiffractionRectangle[a=0.5e-3,k=0.5,f=4,pixel=0.5,colorMode=0]
-\end{pspicture}
-\hfill
-\begin{pspicture}(0,-3)(4,4)
-\psdiffractionRectangle[IIID,a=0.5e-3,k=0.5,f=4,pixel=0.5,colorMode=0]
-\end{pspicture}
-
-
-\begin{lstlisting}[style=example]
-\begin{pspicture}(-2,-4)(2,4)
-\psdiffractionRectangle[a=0.5e-3,k=0.5,f=4,pixel=0.5,colorMode=0]
-\end{pspicture}
-\hfill
-\begin{pspicture}(0,-3)(4,4)
-\psdiffractionRectangle[IIID,a=0.5e-3,k=0.5,f=4,pixel=0.5,colorMode=0]
-\end{pspicture}
-\end{lstlisting}
-
-
-
-\noindent
-\begin{pspicture}(-2.5,-2.5)(3.5,3)
-\psdiffractionRectangle[a=0.5e-3,k=2,f=10,lambda=515,colorMode=1]
-\end{pspicture}
-\hfill
-\begin{pspicture}(-1.5,-2)(3.5,3)
-\psdiffractionRectangle[IIID,Alpha=20,a=0.5e-3,k=2,f=10,lambda=515,colorMode=1]
-\end{pspicture}
-
-
-\begin{lstlisting}[style=example]
-\begin{pspicture}(-2.5,-2.5)(3.5,3)
-\psdiffractionRectangle[a=0.5e-3,k=2,f=10,lambda=515,colorMode=1]
-\end{pspicture}
-\hfill
-\begin{pspicture}(-1.5,-2)(3.5,3)
-\psdiffractionRectangle[IIID,Alpha=20,a=0.5e-3,k=2,f=10,lambda=515,colorMode=1]
-\end{pspicture}
-\end{lstlisting}
-
-
-\noindent
-\begin{pspicture}(-3.5,-1)(3.5,1)
-\psdiffractionRectangle[a=0.5e-3,k=20,f=10,pixel=0.5,lambda=450]
-\end{pspicture}
-\hfill
-\begin{pspicture}(-3.5,-1)(3.5,4)
-\psdiffractionRectangle[IIID,Alpha=10,a=0.5e-3,k=20,f=10,pixel=0.5,lambda=450]
-\end{pspicture}
-
-\begin{lstlisting}[style=example]
-\begin{pspicture}(-3.5,-1)(3.5,1)
-\psdiffractionRectangle[a=0.5e-3,k=20,f=10,pixel=0.5,lambda=450]
-\end{pspicture}
-\hfill
-\begin{pspicture}(-3.5,-1)(3.5,4)
-\psdiffractionRectangle[IIID,Alpha=10,a=0.5e-3,k=20,f=10,pixel=0.5,lambda=450]
-\end{pspicture}
-\end{lstlisting}
-
-\section{Beugung an zwei rechteckigen Blendenöffnungen}
-
-\begin{shaded}
-Der Code für diese Simulation wurde von Julien \textsc{Cubizolles} erstellt.
-\end{shaded}
-Man kann auch das Beugungsmuster zweier kongruenter Rechtecke (so nebeneinander
-angeordnet, da"s ihre Grundlinie auf der $x$-Achse liegt) erstellen,
-indem man zusätzlich
-zu den Angaben für den Fall nur eines Rechtecks die Option \texttt{[twoSlit]} angibt.
-Defaultmä"sig ist \texttt{[twoSlit]} deaktiviert. Den Abstand zwischen den beiden
-Rechtecken kann man über die Option $s$ einstellen. Sie wird, wenn nichts anderes angegeben
-wird, mit dem Wert $12e^{-3}\,\mathrm{m}$ belegt.
-
-\begin{center}
-\noindent
-\begin{pspicture}(-4,-1)(4,1)
-\psdiffractionRectangle[a=0.5e-3,k=10,f=10,pixel=0.5,lambda=650,twoSlit,s=2e-3]
-\end{pspicture}
-\end{center}
-
-\begin{lstlisting}[style=example]
-\begin{pspicture}(-4,-1)(4,1)
-\psdiffractionRectangle[a=0.5e-3,k=10,f=10,pixel=0.5,lambda=650,twoSlit,s=2e-3]
-\end{pspicture}
-\end{lstlisting}
-
-\begin{center}
-\begin{pspicture}(-2,-1)(4,4)
-\psdiffractionRectangle[IIID,Alpha=20,a=0.5e-3,k=10,f=10,pixel=0.5,lambda=650,twoSlit,s=2e-3]
-\end{pspicture}
-\end{center}
-
-\begin{lstlisting}[pos=t,style=example,wide=false]
-\begin{pspicture}(-2,-1)(4,4)
-\psdiffractionRectangle[IIID,Alpha=20,a=0.5e-3,k=10,f=10,pixel=0.5,lambda=650,twoSlit,s=2e-3]
-\end{pspicture}
-\end{lstlisting}
-
-
-\section{Beugung an einer kreisförmigen Blendenöffnung}
-Der Lochradius wird über den Buchstaben \texttt{r} angesprochen, beispielsweise
-\texttt{[r=1e-3]}. Der Default ist $r=1$ mm. Im ersten Quadranten wird der Graph der
-Intensitätsverteilung abgebildet (das Maximum in der Mitte wird abgeschnitten,
-falls es über den oberen Rand der \psp-Umgebung hinausgeht).
-
-\begin{center}
-\begin{pspicture}(-3.5,-3.5)(3.5,3.5)
-\psdiffractionCircular[r=0.5e-3,f=10,pixel=0.5,lambda=520]
-\end{pspicture}
-%
-\begin{pspicture}(-3.5,-1.5)(3.5,3.5)
-\psdiffractionCircular[IIID,r=0.5e-3,f=10,pixel=0.5,lambda=520]
-\end{pspicture}
-\end{center}
-
-
-
-\begin{lstlisting}[style=example]
-\begin{pspicture}(-3.5,-3.5)(3.5,3.5)
-\psdiffractionCircular[r=0.5e-3,f=10,pixel=0.5,lambda=520]
-\end{pspicture}
-%
-\begin{pspicture}(-3.5,-1.5)(3.5,3.5)
-\psdiffractionCircular[IIID,r=0.5e-3,f=10,pixel=0.5,lambda=520]
-\end{pspicture}
-\end{lstlisting}
-
-
-
-
-
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\section{Beugung an zwei kreisförmigen Blendenöffnungen}
-Es ist nur der Fall gleich gro"ser Radien vorgesehen, diesen gemeinsamen Radius
-spezifiziert man wie vorher über \texttt{[r=\dots]}. Au"serdem muss man den
-halben Abstand der beiden Kreismitten festlegen vermöge \texttt{[d=\dots]},
-beispielsweise \texttt{[d=3e-3]}. Zusätzlich muss man die Option
-\texttt{[twoHole]} verwenden. Der Bildaufbau kann in diesem Fall etwas länger dauern\dots
-
-\begin{pspicture}(-3,-3.5)(3.5,3.5)
-\psdiffractionCircular[r=0.5e-3,f=10,d=3e-3,lambda=515,twoHole]
-\end{pspicture}
-%
-\begin{pspicture}(-3.5,-1.5)(3.5,3.5)
-\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=3e-3,lambda=515,twoHole]
-\end{pspicture}
-
-
-\begin{lstlisting}[style=example]
-\begin{pspicture}(-3,-3.5)(3.5,3.5)
-\psdiffractionCircular[r=0.5e-3,f=10,d=3e-3,lambda=515,twoHole]
-\end{pspicture}
-%
-\begin{pspicture}(-3.5,-1.5)(3.5,3.5)
-\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=3e-3,lambda=515,twoHole]
-\end{pspicture}
-\end{lstlisting}
-
-
-\hspace*{-1cm}%
-\begin{pspicture}(-3,-3)(3.5,4)
-\psdiffractionCircular[r=0.5e-3,f=10,d=2e-3,lambda=700,twoHole,colorMode=0]
-\end{pspicture}
-%
-\begin{pspicture}(-3.5,-2)(3.5,3.5)
-\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=2e-3,lambda=700,twoHole,colorMode=0]
-\end{pspicture}
-
-\begin{lstlisting}[style=example]
-\begin{pspicture}(-3.5,-3)(3.5,4)
-\psdiffractionCircular[r=0.5e-3,f=10,d=2e-3,lambda=700,twoHole,colorMode=0]
-\end{pspicture}
-%
-\begin{pspicture}(-3.5,-2)(3.5,3.5)
-\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=2e-3,lambda=700,twoHole,colorMode=0]
-\end{pspicture}
-\end{lstlisting}
-
-Nicht in jedem Fall ergibt sich im mittleren Kreis ein Streifenmuster. Die Anzahl $N$ der Streifen
-im Inneren ist gegeben durch $N=2,44\frac{d}{r}$. Man kann diesen Effekt also erst für
-$N\geq2$ bzw. ab $d=\frac{2r}{1,22}$ beobachten (siehe
-\url{http://www.unice.fr/DeptPhys/optique/diff/trouscirc/diffrac.html}).
-
-
-\hspace*{-1cm}%
-\begin{pspicture}(-3,-3.5)(3,3.5)
-\psdiffractionCircular[r=0.5e-3,f=10,d=4.1e-4,lambda=632,twoHole]
-\end{pspicture}
-%
-\begin{pspicture}(-3.5,-1.5)(3.5,3)
-\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=4.1e-4,lambda=632,twoHole]
-\end{pspicture}
-
-
-\begin{lstlisting}[style=example]
-\begin{pspicture}(-3,-3.5)(3,3.5)
-\psdiffractionCircular[r=0.5e-3,f=10,d=4.1e-4,lambda=632,twoHole]
-\end{pspicture}
-%
-\begin{pspicture}(-3.5,-1.5)(3.5,3)
-\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=4.1e-4,lambda=632,twoHole]
-\end{pspicture}
-\end{lstlisting}
-
-
-
-\section{Brechung an einer dreieckigen Blendenöffnung}
-Es ist nur der Fall eines gleichseitigen Dreiecks vorgesehen. Als Option gibt man dessen Höhe
-\texttt{[h]} an, welche sich bekanntlich über $h=\frac{\sqrt{3}}{2}s$ aus der Seitenlänge $s$
-des Dreiecks berechnet. Ein Schwarzweissbild erhält man mit \texttt{[colorMode=0]}.
-
-\begin{center}
-\begin{pspicture}(-1,-1)(1,1)
-\pspolygon*(0,0)(1;150)(1;210)
-\pcline{|-|}(-0.732,-1)(0,-1)
-\Aput{$h$}
-\end{pspicture}
-\end{center}
-
-\makebox[\linewidth]{%
-\begin{pspicture}(-3,-3)(3,2.5)
-\psdiffractionTriangle[f=10,h=1e-3,lambda=515,contrast=38]
-\end{pspicture}
-\quad
-\begin{pspicture}(-3,-3)(3,2.5)
-\psdiffractionTriangle[f=10,h=1e-3,colorMode=1,contrast=38,lambda=515]
-\end{pspicture}
-\quad
-\begin{pspicture}(-3,-3)(3,2.5)
-\psdiffractionTriangle[f=10,h=1e-3,colorMode=0,contrast=38,lambda=515]
-\end{pspicture}}
-
-
-\begin{lstlisting}[style=example]
-\begin{pspicture}(-3,-3)(3,2.5)
-\psdiffractionTriangle[f=10,h=1e-3,lambda=515,contrast=38]
-\end{pspicture}
-\quad
-\begin{pspicture}(-3,-3)(3,2.5)
-\psdiffractionTriangle[f=10,h=1e-3,colorMode=1,contrast=38,lambda=515]
-\end{pspicture}
-\quad
-\begin{pspicture}(-3,-3)(3,2.5)
-\psdiffractionTriangle[f=10,h=1e-3,colorMode=0,contrast=38,lambda=515]
-\end{pspicture}
-\end{lstlisting}
-
-
-\makebox[\linewidth]{%
-\begin{pspicture}(-3,-2)(3,3.5)
-\psdiffractionTriangle[IIID,f=10,h=1e-3,lambda=515,contrast=38]
-\end{pspicture}
-\quad
-\begin{pspicture}(-3,-2)(3,3.5)
-\psdiffractionTriangle[IIID,f=10,h=1e-3,colorMode=1,contrast=38,lambda=515]
-\end{pspicture}
-\quad
-\begin{pspicture}(-3,-2)(3,3.5)
-\psdiffractionTriangle[IIID,f=10,h=1e-3,colorMode=0,contrast=38,lambda=515]
-\end{pspicture}}
-
-\begin{lstlisting}[style=example]
-\begin{pspicture}(-3,-2)(3,3.5)
-\psdiffractionTriangle[IIID,f=10,h=1e-3,lambda=515,contrast=38]
-\end{pspicture}
-\quad
-\begin{pspicture}(-3,-2)(3,3.5)
-\psdiffractionTriangle[IIID,f=10,h=1e-3,colorMode=1,contrast=38,lambda=515]
-\end{pspicture}
-\quad
-\begin{pspicture}(-3,-2)(3,3.5)
-\psdiffractionTriangle[IIID,f=10,h=1e-3,colorMode=0,contrast=38,lambda=515]
-\end{pspicture}
-\end{lstlisting}
-
-
-%\section{Credits}
-
-
-\bgroup
-\nocite{*}
-\raggedright
-\bibliographystyle{plain}
-\bibliography{pst-diffraction-doc}
-\egroup
-
-
-
-\end{document}

Deleted: trunk/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docE.pdf
===================================================================
(Binary files differ)

Deleted: trunk/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docE.tex
===================================================================
--- trunk/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docE.tex	2024-06-29 19:59:54 UTC (rev 71656)
+++ trunk/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docE.tex	2024-06-29 20:00:37 UTC (rev 71657)
@@ -1,485 +0,0 @@
-\documentclass[dvips,english,a4paper]{article}
-\usepackage[utf8]{inputenc}%
-\usepackage[T1]{fontenc}
-\usepackage[bmargin=2cm,tmargin=2cm]{geometry}
-%
-\usepackage{pstricks,pst-node,pst-grad,url}
-\usepackage{pst-diffraction}
-\let\PSTfileversion\fileversion
-\let\PSTfiledate\filedate
-%
-\usepackage{ccfonts}
-\usepackage[euler-digits]{eulervm}
-\usepackage[scaled=0.85]{luximono}
-\usepackage{xspace}
-\newcommand*\psp{\texttt{pspicture}\xspace}
-\def\UrlFont{\small\ttfamily}
-\makeatletter
-\def\verbatim at font{\small\normalfont\ttfamily}
-\makeatother
-\usepackage{prettyref,multicol}
-\usepackage{fancyhdr}
-\usepackage{showexpl}
-\lstdefinestyle{syntax}{backgroundcolor=\color{blue!20},numbers=none,xleftmargin=0pt,xrightmargin=0pt,
-    frame=single}
-\lstdefinestyle{example}{backgroundcolor=\color{red!20},numbers=none,xleftmargin=0pt,xrightmargin=0pt,
-    frame=single}
-\lstset{wide=true,language=PSTricks,
-    morekeywords={psdiffractionCircular,psdiffractionRectangle,psdiffractionTriangle}}
-
-\usepackage{babel}
-\usepackage[colorlinks,linktocpage]{hyperref}
-
-\pagestyle{fancy}
-\def\Lcs#1{{\ttfamily\textbackslash #1}}
-\lfoot{\small\ttfamily\jobname.tex}
-\cfoot{Documentation}
-\rfoot{\thepage}
-\lhead{PSTricks}
-\renewcommand{\headrulewidth}{0pt}
-\renewcommand{\footrulewidth}{0pt}
-\newcommand{\PS}{PostScript}
-\newcommand\CMD[1]{\texttt{\textbackslash#1}}
-\makeatother
-\usepackage{framed}
-\definecolor{shadecolor}{cmyk}{0.2,0,0,0}
-\SpecialCoor
-
-\title{\texttt{pst-diffraction}\\[6pt]
-Diffraction patterns for diffraction from circular, rectangular and triangular
-apertures
-\\[1cm]
----\\[10pt]
-{\normalsize v. \PSTfileversion (\PSTfiledate)}}
-\author{%
-    \tabular[t]{c}Manuel Luque\\[3pt]
-    \url{ml at PSTricks.de}
-    \endtabular   \and 
-    \tabular[t]{c}Herbert Vo\ss\\[3pt]
-    \url{hv at PSTricks.de}\endtabular%
-} 
-\date{\today}
-\begin{document}
-\maketitle
-\vfill\noindent
-Thanks to Doris Wagner for help with the documentation.\\
-Also thanks to: Julien Cubizolles.
-
-
-\clearpage
-\tableofcontents
-
-\clearpage
-
-\section{Optical setup}
-
-\begin{center}
-\begin{pspicture}(0,-3)(12,3)
-\pnode(0,0){S}   \pnode(4,1){L'1}  \pnode(4,-1){L'2}  \pnode(6,1){E'1}   \pnode(6,-1){E'2}
-\pnode(6,0.5){E1}\pnode(6,-0.5){E2}\pnode(8.5,1.5){L1}\pnode(8.5,0.5){L2}\pnode(11.5,1.25){P}
-% lentille L'
-\pscustom[fillstyle=gradient,linecolor=blue,gradend=white]{%
-  \code{0.5 0.83333 scale}
-  \psarc(4,0){4.176}{-16.699}{16.699}
-  \psarc(12,0){4.176}{163.30}{196.699}}
-% lentille L
-\pscustom[fillstyle=gradient,linecolor=blue,gradend=white]{%
-  \code{1 1.5 scale}
-  \psarc(4.5,0){4.176}{-16.699}{16.699}
-  \psarc(12.5,0){4.176}{163.30}{196.699}}
-\pspolygon[linestyle=none,fillstyle=vlines,
-    hatchcolor=yellow](S)(L'1)(E'1)(E1)(L1)(P)(L2)(E2)(E'2)(L'2)
-\uput[90](4,1){$L'$}\uput[90](8.5,2){$L$}
-\psdot(S)\uput[180](S){S}
-\psline(S)(12,0)\psline[linewidth=2\pslinewidth](6,2)(6,0.5)\psline[linewidth=2\pslinewidth](6,-2)(6,-0.5)
-\psline[linestyle=dashed](6,0.5)(6,-0.5)\psline(11.5,-3)(11.5,3)\psline(S)(L'1)(E'1)\psline(S)(L'2)(E'2)
-\uput[0](P){P}
-\psline(E1)(L1)(P)\psline(E2)(L2)(P)\psline[linestyle=dashed](8.5,0)(P)
-%\rput(8.5,0){\psarc{->}(0,0){1.5}{0}{!1.25 3 atan}\uput[0](1.5;15){$\theta$}}
-\uput[-90](10,0){$f$}\uput[0](6,2){E}\uput[135](6,0){T}\uput[45](11.5,0){O}
-\end{pspicture}
-\end{center}
-
-Monochromatic light rays diverging from the focal point S of a positive lens L' emerge parallel to
-the axis and strike the aperture stop E with the aperture T.
-The light bends behind the aperture, this bending is called diffraction:
-Every point in the opening acts as if it was a point source (Huygens's principle) and the
-light waves of all those points overlap and produce an interference pattern (diffraction
-pattern) on a screen. When the screen is very far away, the observed patterns are called
-Fraunhofer diffraction patterns. In this case one can assume that the rays from the aperture
-striking the same point P on the screen are parallel.\\
-In practice one wants to realize a short distance between the aperture stop and the screen.
-Hence one sets up a converging lens L after the opening and installs the screen
-into the focal plane (containing the points P and O) of this lens. Parallel rays incident on
-the lens are then focused at a point P in the focal plane.
-
-With the following PSTricks-commands we can draw the diffraction patterns for different
-geometric forms
-of apertures. It is understood that only monochromatic light is used. The aperture stops can
-have rectangular, circular or triangular openings.
-
-The options available are the dimensions of the aperture under consideration and of the particular optical
-setting, e.g. the radius in case of an circular opening. Moreover one can choose the wavelength
-of the light (the associated color will be given automatically by the package).
-
-There are three commands, for rectangular, circular and triangular openings respectively:
-
-\begin{lstlisting}[style=syntax]
-\psdiffractionRectangle[<Optionen>]
-\psdiffractionCircular[<Optionen>]
-\psdiffractionTriangle[<Optionen>]
-\end{lstlisting}
-
-
-\section{The color}
-The desired color is defined by specifying the associated wavelength $\lambda$ (in nanometers).
-Red for instance one gets by the option \texttt{[lambda=632]} because 
-red light has the wavelength $\lambda_{\textrm{rot}}=632\,\textrm{nm}$.
-
-The conversion of the wavelength into the associated \texttt{RGB}-value is done by PostScript. 
-The code is similar to the code of a FORTRAN program which can be found here: \\
-\url{http://www.midnightkite.com/color.html}
-
-\clearpage
-
-\section{Diffraction from a rectangular aperture}
-
-\begin{center}
-\begin{pspicture}(-2,-1)(2,1.5)
-\psframe(-0.5,-1)(0.5,1)
-\pcline{<->}(-0.5,1.1)(0.5,1.1)
-\Aput{$a$}
-\pcline{<->}(0.6,1)(0.6,-1)
-\Aput{$h=k\times a$}
-\end{pspicture}
-\end{center}
-
-The width of the rectangle with the area $h=k\times a$ is defined by the letter \texttt{[a]},
-the height by \texttt{[k]}.
-The focal length is specified by \texttt{[f]}, the desired resolution in pixels [pixel].
-With the option \texttt{[contrast]} one can improve the visibility of the minor secondary
-maxima more.\\ 
-We get a black and white picture if we use the option \texttt{[colorMode=0]},
-the option \texttt{[colorMode=1]} provides the associated negative pattern. The options
-\texttt{[colorMode=2]} and \texttt{[colorMode=3]} render color pictures in the
-CMYK and RGB color model respectively.
-
-By default the settings are as follows: 
-
-
-\begin{tabular}{@{}lll@{}}
-\texttt{[a=0.2e-3]} in m;    & \texttt{[k=1]};       &  \texttt{[f=5]} in m;\\
-\texttt{[lambda=650]} in nm; & \texttt{[pixel=0.5]}; &   \texttt{[contrast=38]}, greates value;\\
-\texttt{[colorMode=3]};   &   \texttt{[IIID=false]}.
-\end{tabular}
-
-\bigskip
-\noindent
-\begin{pspicture}(-3.5,-3.5)(3.5,3.5)
-\psdiffractionRectangle[f=2.5]
-\end{pspicture}
-\hfill
-\begin{pspicture}(-1.5,-2.5)(3.5,3.5)
-\psdiffractionRectangle[IIID,Alpha=30,f=2.5]
-\end{pspicture}
-
-\begin{lstlisting}[style=example]
-\begin{pspicture}(-3.5,-3.5)(3.5,3.5)
-\psdiffractionRectangle[f=2.5]
-\end{pspicture}
-\hfill
-\begin{pspicture}(-1.5,-2.5)(3.5,3.5)
-\psdiffractionRectangle[IIID,Alpha=30,f=2.5]
-\end{pspicture}
-\end{lstlisting}
-
-
-
-\noindent\begin{pspicture}(-2,-4)(2,4)
-\psdiffractionRectangle[a=0.5e-3,k=0.5,f=4,pixel=0.5,colorMode=0]
-\end{pspicture}
-\hfill
-\begin{pspicture}(0,-3)(4,4)
-\psdiffractionRectangle[IIID,a=0.5e-3,k=0.5,f=4,pixel=0.5,colorMode=0]
-\end{pspicture}
-
-
-\begin{lstlisting}[style=example]
-\begin{pspicture}(-2,-4)(2,4)
-\psdiffractionRectangle[a=0.5e-3,k=0.5,f=4,pixel=0.5,colorMode=0]
-\end{pspicture}
-\hfill
-\begin{pspicture}(0,-3)(4,4)
-\psdiffractionRectangle[IIID,a=0.5e-3,k=0.5,f=4,pixel=0.5,colorMode=0]
-\end{pspicture}
-\end{lstlisting}
-
-
-
-\noindent
-\begin{pspicture}(-2.5,-2.5)(3.5,3)
-\psdiffractionRectangle[a=0.5e-3,k=2,f=10,lambda=515,colorMode=1]
-\end{pspicture}
-\hfill
-\begin{pspicture}(-1.5,-2)(3.5,3)
-\psdiffractionRectangle[IIID,Alpha=20,a=0.5e-3,k=2,f=10,lambda=515,colorMode=1]
-\end{pspicture}
-
-
-\begin{lstlisting}[style=example]
-\begin{pspicture}(-2.5,-2.5)(3.5,3)
-\psdiffractionRectangle[a=0.5e-3,k=2,f=10,lambda=515,colorMode=1]
-\end{pspicture}
-\hfill
-\begin{pspicture}(-1.5,-2)(3.5,3)
-\psdiffractionRectangle[IIID,Alpha=20,a=0.5e-3,k=2,f=10,lambda=515,colorMode=1]
-\end{pspicture}
-\end{lstlisting}
-
-
-\noindent
-\begin{pspicture}(-3.5,-1)(3.5,1)
-\psdiffractionRectangle[a=0.5e-3,k=20,f=10,pixel=0.5,lambda=450]
-\end{pspicture}
-\hfill
-\begin{pspicture}(-3.5,-1)(3.5,4)
-\psdiffractionRectangle[IIID,Alpha=10,a=0.5e-3,k=20,f=10,pixel=0.5,lambda=450]
-\end{pspicture}
-
-\begin{lstlisting}[style=example]
-\begin{pspicture}(-3.5,-1)(3.5,1)
-\psdiffractionRectangle[a=0.5e-3,k=20,f=10,pixel=0.5,lambda=450]
-\end{pspicture}
-\hfill
-\begin{pspicture}(-3.5,-1)(3.5,4)
-\psdiffractionRectangle[IIID,Alpha=10,a=0.5e-3,k=20,f=10,pixel=0.5,lambda=450]
-\end{pspicture}
-\end{lstlisting}
-
-\section{Diffraction from two rectangular apertures}
-
-\begin{shaded}
-This simulation was provided by Julien
-\textsc{Cubizolles}.
-\end{shaded}
-It is also possible to render the diffraction pattern of two congruent rectangles
-(placed parallel such that their base is located on the $x$-axis)
-by using the option \texttt{[twoSlit]}.
-By default this option is deactivated.
-The distance of the two rectangles is specified by the option $s$.
-The default for $s$ is $12e^{-3}\,\mathrm{m}$.
-
-
-\begin{center}
-\noindent
-\begin{pspicture}(-4,-1)(4,1)
-\psdiffractionRectangle[a=0.5e-3,k=10,f=10,pixel=0.5,lambda=650,twoSlit,s=2e-3]
-\end{pspicture}
-\end{center}
-
-\begin{lstlisting}[style=example]
-\begin{pspicture}(-4,-1)(4,1)
-\psdiffractionRectangle[a=0.5e-3,k=10,f=10,pixel=0.5,lambda=650,twoSlit,s=2e-3]
-\end{pspicture}
-\end{lstlisting}
-
-\begin{center}
-\begin{pspicture}(-2,-1)(4,4)
-\psdiffractionRectangle[IIID,Alpha=20,a=0.5e-3,k=10,f=10,pixel=0.5,lambda=650,twoSlit,s=2e-3]
-\end{pspicture}
-\end{center}
-
-\begin{lstlisting}[pos=t,style=example,wide=false]
-\begin{pspicture}(-2,-1)(4,4)
-\psdiffractionRectangle[IIID,Alpha=20,a=0.5e-3,k=10,f=10,pixel=0.5,lambda=650,twoSlit,s=2e-3]
-\end{pspicture}
-\end{lstlisting}
-
-
-
-
-
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\section{Diffraction from a circular aperture}
-The radius of the circular opening can be chosen via the letter \texttt{r}, e.g.
-\texttt{[r=1e-3]}. The default is $r=1$ mm. In the first quadrant
-PSTricks displays the graph of the intensity distribution (the maximum in the center will be
-cropped if its height exceeds the margin of the \psp-environment).
-
-\hspace*{-1cm}%
-\begin{LTXexample}[pos=t,style=example,wide=false]
-\begin{pspicture}(-3.5,-3.5)(3.5,3.5)
-\psdiffractionCircular[r=0.5e-3,f=10,pixel=0.5,lambda=520]
-\end{pspicture}
-%
-\begin{pspicture}(-3.5,-1.5)(3.5,3.5)
-\psdiffractionCircular[IIID,r=0.5e-3,f=10,pixel=0.5,lambda=520]
-\end{pspicture}
-\end{LTXexample}
-
-
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\section{Diffraction from two circular apertures}
-Only the case of equal radii is provided, this common radius can be defined like in the
-previous section via \texttt{[r=\dots]}.
-Furthermore one has to give the half distance of the circles measured from their centers by 
-\texttt{[d=\dots]}, e.g. \texttt{[d=3e-3]}. Also the option
-\texttt{[twoHole]} has to be used.\\
-The rendering process could take some time in this case\dots
-
-
-\begin{pspicture}(-3,-3.5)(3.5,3.5)
-\psdiffractionCircular[r=0.5e-3,f=10,d=3e-3,lambda=515,twoHole]
-\end{pspicture}
-%
-\begin{pspicture}(-3.5,-1.5)(3.5,3.5)
-\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=3e-3,lambda=515,twoHole]
-\end{pspicture}
-
-
-\begin{lstlisting}[style=example]
-\begin{pspicture}(-3,-3.5)(3.5,3.5)
-\psdiffractionCircular[r=0.5e-3,f=10,d=3e-3,lambda=515,twoHole]
-\end{pspicture}
-%
-\begin{pspicture}(-3.5,-1.5)(3.5,3.5)
-\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=3e-3,lambda=515,twoHole]
-\end{pspicture}
-\end{lstlisting}
-
-
-\hspace*{-1cm}%
-\begin{pspicture}(-3,-3)(3.5,4)
-\psdiffractionCircular[r=0.5e-3,f=10,d=2e-3,lambda=700,twoHole,colorMode=0]
-\end{pspicture}
-%
-\begin{pspicture}(-3.5,-2)(3.5,3.5)
-\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=2e-3,lambda=700,twoHole,colorMode=0]
-\end{pspicture}
-
-\begin{lstlisting}[style=example]
-\begin{pspicture}(-3.5,-3)(3.5,4)
-\psdiffractionCircular[r=0.5e-3,f=10,d=2e-3,lambda=700,twoHole,colorMode=0]
-\end{pspicture}
-%
-\begin{pspicture}(-3.5,-2)(3.5,3.5)
-\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=2e-3,lambda=700,twoHole,colorMode=0]
-\end{pspicture}
-\end{lstlisting}
-
-Not in every case bands occur in the central circle. The number $N$ of those inner
-bands is given by $N=2.44\frac{d}{r}$. Thus this effect is not observable until $N\geq2$
-or $d=\frac{2r}{1.22}$ (see 
-\url{http://www.unice.fr/DeptPhys/optique/diff/trouscirc/diffrac.html}).
-
-\hspace*{-1cm}%
-\begin{pspicture}(-3,-3.5)(3,3.5)
-\psdiffractionCircular[r=0.5e-3,f=10,d=4.1e-4,lambda=632,twoHole]
-\end{pspicture}
-%
-\begin{pspicture}(-3.5,-1.5)(3.5,3)
-\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=4.1e-4,lambda=632,twoHole]
-\end{pspicture}
-
-
-\begin{lstlisting}[style=example]
-\begin{pspicture}(-3,-3.5)(3,3.5)
-\psdiffractionCircular[r=0.5e-3,f=10,d=4.1e-4,lambda=632,twoHole]
-\end{pspicture}
-%
-\begin{pspicture}(-3.5,-1.5)(3.5,3)
-\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=4.1e-4,lambda=632,twoHole]
-\end{pspicture}
-\end{lstlisting}
-
-
-
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\section{Diffraction from a triangular aperture}
-
-Only the case of an equilateral triangle is provided, whose height \texttt{[h]} has to be
-defined as an option. As is generally known, $h$ can be computed from the length $s$ of 
-its side by $h=\frac{\sqrt{3}}{2}s$. A black and white picture can be obtained by using the
-option \texttt{[colorMode=0]}.
-
-
-
-\begin{center}
-\begin{pspicture}(-1,-1)(1,1)
-\pspolygon*(0,0)(1;150)(1;210)
-\pcline{|-|}(-0.732,-1)(0,-1)
-\Aput{$h$}
-\end{pspicture}
-\end{center}
-
-\makebox[\linewidth]{%
-\begin{pspicture}(-3,-3)(3,2.5)
-\psdiffractionTriangle[f=10,h=1e-3,lambda=515,contrast=38]
-\end{pspicture}
-\quad
-\begin{pspicture}(-3,-3)(3,2.5)
-\psdiffractionTriangle[f=10,h=1e-3,colorMode=1,contrast=38,lambda=515]
-\end{pspicture}
-\quad
-\begin{pspicture}(-3,-3)(3,2.5)
-\psdiffractionTriangle[f=10,h=1e-3,colorMode=0,contrast=38,lambda=515]
-\end{pspicture}}
-
-
-\begin{lstlisting}[style=example]
-\begin{pspicture}(-3,-3)(3,2.5)
-\psdiffractionTriangle[f=10,h=1e-3,lambda=515,contrast=38]
-\end{pspicture}
-\quad
-\begin{pspicture}(-3,-3)(3,2.5)
-\psdiffractionTriangle[f=10,h=1e-3,colorMode=1,contrast=38,lambda=515]
-\end{pspicture}
-\quad
-\begin{pspicture}(-3,-3)(3,2.5)
-\psdiffractionTriangle[f=10,h=1e-3,colorMode=0,contrast=38,lambda=515]
-\end{pspicture}
-\end{lstlisting}
-
-
-\makebox[\linewidth]{%
-\begin{pspicture}(-3,-2)(3,3.5)
-\psdiffractionTriangle[IIID,f=10,h=1e-3,lambda=515,contrast=38]
-\end{pspicture}
-\quad
-\begin{pspicture}(-3,-2)(3,3.5)
-\psdiffractionTriangle[IIID,f=10,h=1e-3,colorMode=1,contrast=38,lambda=515]
-\end{pspicture}
-\quad
-\begin{pspicture}(-3,-2)(3,3.5)
-\psdiffractionTriangle[IIID,f=10,h=1e-3,colorMode=0,contrast=38,lambda=515]
-\end{pspicture}}
-
-\begin{lstlisting}[style=example]
-\begin{pspicture}(-3,-2)(3,3.5)
-\psdiffractionTriangle[IIID,f=10,h=1e-3,lambda=515,contrast=38]
-\end{pspicture}
-\quad
-\begin{pspicture}(-3,-2)(3,3.5)
-\psdiffractionTriangle[IIID,f=10,h=1e-3,colorMode=1,contrast=38,lambda=515]
-\end{pspicture}
-\quad
-\begin{pspicture}(-3,-2)(3,3.5)
-\psdiffractionTriangle[IIID,f=10,h=1e-3,colorMode=0,contrast=38,lambda=515]
-\end{pspicture}
-\end{lstlisting}
-
-
-
-
-%\section{Credits}
-
-
-\bgroup
-\nocite{*}
-\raggedright
-\bibliographystyle{plain}
-\bibliography{pst-diffraction-doc}
-\egroup
-
-
-\end{document}

Deleted: trunk/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docFR.pdf
===================================================================
(Binary files differ)

Deleted: trunk/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docFR.tex
===================================================================
--- trunk/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docFR.tex	2024-06-29 19:59:54 UTC (rev 71656)
+++ trunk/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docFR.tex	2024-06-29 20:00:37 UTC (rev 71657)
@@ -1,483 +0,0 @@
-\documentclass[frenchb,dvips,a4paper]{article}
-\usepackage[latin9]{inputenc}%
-\usepackage[T1]{fontenc}
-\usepackage[bmargin=2cm,tmargin=2cm]{geometry}
-%
-\usepackage{pstricks,pst-node,pst-grad,url}
-\usepackage{pst-diffraction}
-\let\PSTfileversion\fileversion
-\let\PSTfiledate\filedate
-%
-\usepackage{ccfonts}
-\usepackage[euler-digits]{eulervm}
-\usepackage[scaled=0.85]{luximono}
-\usepackage{xspace}
-\newcommand*\psp{\texttt{pspicture}\xspace}
-\def\UrlFont{\small\ttfamily}
-\makeatletter
-\def\verbatim at font{\small\normalfont\ttfamily}
-\makeatother
-\usepackage{prettyref,multicol}
-\usepackage{fancyhdr}
-
-\usepackage{showexpl}
-\lstdefinestyle{syntax}{backgroundcolor=\color{blue!20},numbers=none,xleftmargin=0pt,xrightmargin=0pt,
-    frame=single}
-\lstdefinestyle{example}{backgroundcolor=\color{red!20},numbers=none,xleftmargin=0pt,xrightmargin=0pt,
-    frame=single}
-\lstset{wide=true,language=PSTricks,
-    morekeywords={psdiffractionCircular,psdiffractionRectangle,psdiffractionTriangle}}
-
-\usepackage{babel}
-\usepackage[colorlinks,linktocpage]{hyperref}
-
-\pagestyle{fancy}
-\def\Lcs#1{{\ttfamily\textbackslash #1}}
-\lfoot{\small\ttfamily\jobname.tex}
-\cfoot{Documentation}
-\rfoot{\thepage}
-\lhead{PSTricks}
-\renewcommand{\headrulewidth}{0pt}
-\renewcommand{\footrulewidth}{0pt}
-\newcommand{\PS}{PostScript}
-\newcommand\CMD[1]{\texttt{\textbackslash#1}}
-\makeatother
-\usepackage{framed}
-\definecolor{shadecolor}{cmyk}{0.2,0,0,0}
-\SpecialCoor
-
-\title{\texttt{pst-diffraction}\\[6pt]
-Diffraction \`a l'infini 
-par un trou rectangulaire,
-un trou circulaire,  deux trous circulaires,
-un trou triangulaire.\\[1cm]
----\\[10pt]
-{\normalsize v. \PSTfileversion (\PSTfiledate)}}
-\author{%
-    \tabular[t]{c}Manuel Luque\\[3pt]
-    \url{ml at PSTricks.de}
-    \endtabular   \and 
-    \tabular[t]{c}Herbert Vo\ss\thanks{%
-    Thanks to Julien Cubizolles}%
-    \\[3pt]
-    \url{hv at PSTricks.de}\endtabular%
-} 
-\date{\today}
-\begin{document}
-\maketitle
-
-\tableofcontents
-
-\clearpage
-\section{Pr\xE9sentation et Montage}
-\begin{center}
-\begin{pspicture}(0,-3)(12,3)
-\pnode(0,0){S}   \pnode(4,1){L'1}  \pnode(4,-1){L'2}  \pnode(6,1){E'1}   \pnode(6,-1){E'2}
-\pnode(6,0.5){E1}\pnode(6,-0.5){E2}\pnode(8.5,1.5){L1}\pnode(8.5,0.5){L2}\pnode(11.5,1.25){P}
-% lentille L'
-\pscustom[fillstyle=gradient,linecolor=blue,gradend=white]{%
-  \code{0.5 0.83333 scale}
-  \psarc(4,0){4.176}{-16.699}{16.699}
-  \psarc(12,0){4.176}{163.30}{196.699}}
-% lentille L
-\pscustom[fillstyle=gradient,linecolor=blue,gradend=white]{%
-  \code{1 1.5 scale}
-  \psarc(4.5,0){4.176}{-16.699}{16.699}
-  \psarc(12.5,0){4.176}{163.30}{196.699}}
-\pspolygon[linestyle=none,fillstyle=vlines,
-    hatchcolor=yellow](S)(L'1)(E'1)(E1)(L1)(P)(L2)(E2)(E'2)(L'2)
-\uput[90](4,1){$L'$}\uput[90](8.5,2){$L$}
-\psdot(S)\uput[180](S){S}
-\psline(S)(12,0)\psline[linewidth=2\pslinewidth](6,2)(6,0.5)\psline[linewidth=2\pslinewidth](6,-2)(6,-0.5)
-\psline[linestyle=dashed](6,0.5)(6,-0.5)\psline(11.5,-3)(11.5,3)\psline(S)(L'1)(E'1)\psline(S)(L'2)(E'2)
-\uput[0](P){P}
-\psline(E1)(L1)(P)\psline(E2)(L2)(P)\psline[linestyle=dashed](8.5,0)(P)
-\rput(8.5,0){\psarc{->}(0,0){1.5}{0}{!1.25 3 atan}\uput[0](1.5;15){$\theta$}}
-\uput[-90](10,0){$f$}\uput[0](6,2){E}\uput[135](6,0){T}\uput[45](11.5,0){O}
-\end{pspicture}
-\end{center}
-Ceci est la reproduction de montage
-propos\xE9 par Henri \textsc{Bouasse} dans son livre sur la
-diffraction, page 25, publi\xE9 aux \xE9ditions Delagrave en 1\,925. Les commentaires dont il accompagne ce
-sch\xE9ma sont les suivants :\newline
-\begin{shaded}
-\xAB Une source ponctuelle unique S, tr\xE8s \xE9loign\xE9e ou plac\xE9e dans le plan focal
-principal de la lentille collimatrice $L'$, fournit un faisceau cylindrique
-unique de rayons. On le re\xE7oit sur le plan~E, perc\xE9 d'un trou~T dont la
-forme caract\xE9rise le ph\xE9nom\xE8ne \xE9tudi\xE9.
-Au-del\xE0 de l'\xE9cran~E la lumi\xE8re est diffract\xE9e \textit{une infinit\xE9 de
-directions}, ou si l'on veut suivant une infinit\xE9 de faisceaux
-cylindriques.
-Les rayons diffract\xE9s dans chaque direction sont concentr\xE9s aux divers points
-du plan focal image d'une lunette accommod\xE9e sur l'infini, o\xF9 ils forment la
-\textit{figure de diffraction} : d'o\xF9 le nom de \textit{ph\xE9nom\xE8ne \xE0
-l'infini}. De chaque faisceau cylindrique diffract\xE9, l'objectif~L de la
-lunette donne une image au point~P de son plan focal principal.
-[\ldots]Au point P correspond un faisceau cylindrique ant\xE9rieur \xE0 l'objectif
-qui fait avec l'axe optique l'angle $\theta$ tel que :
-$\overline{OP}=f\tan\theta\approx\theta$
-\xBB
-\end{shaded}
-
-Ces quelques commandes r\xE9alis\xE9es avec \texttt{PSTricks} permettent d'obtenir
-les figures de diffraction \textit{\xE0 l'infini}, en lumi\xE8re monochromatique,
-d'un trou rectangulaire, d'un trou circulaire, de deux trous circulaires et
-d'un trou triangulaire.
-
-Les dimensions des ouvertures sont bien s\xFBr param\xE9trables, ainsi que le
-choix de la longueur d'onde : la couleur s'adapte automatiquement, et des
-divers param\xE8tres du montage.
-
-Il y a trois commandes, l'une pour les ouvertures rectangulaires, l'autre
-pour les ouvertures circulaires et la derni\xE8re pour une ouverture
-triangulaire.
-\begin{lstlisting}[style=syntax]
-\psdiffractionRectangle[<liste de param\xE8tres>]
-\psdiffractionCircular[<liste de param\xE8tres>]
-\psdiffractionTriangle[<liste de param\xE8tres>]
-\end{lstlisting}
-
-Nous allons passer en revue ces diff\xE9rentes commandes et leurs param\xE8tres.
-\section{La couleur de la radiation}
-La longueur d'onde est d\xE9finie par le param\xE8tres \texttt{[lambda=632]} (si
-l'on veut du rouge  de longueur d'onde~:~ $\lambda=632$~nm), cette valeur est donc en~nm. La
-conversion de la longueur d'onde dans le syst\xE8me \texttt{rgb} est une adaptation en
-postscript de celle qu'on trouve sur~:\\  
-\url{http://www.physics.sfasu.edu/astro/color.html}.
-
-
-
-\section{Diffraction par une ouverture rectangulaire}
-
-\begin{center}
-\begin{pspicture}(-2,-1)(2,1.5)
-\psframe(-0.5,-1)(0.5,1)
-\pcline{<->}(-0.5,1.1)(0.5,1.1)
-\Aput{$a$}
-\pcline{<->}(0.6,1)(0.6,-1)
-\Aput{$h=k\times a$}
-\end{pspicture}
-\end{center}
-On donnera la largeur de la fente \texttt{[a]} et le param\xE8tre \texttt{[k]}
-qui d\xE9terminera la hauteur de la fente $h=k\times a$. On choisira aussi la
-distance focale de la lentille \texttt{[a]}, la r\xE9solution du trac\xE9 par la dimension du
-\texttt{[pixel]}. On pourra jouer sur le contraste pour rendre les franges
-\xE9loign\xE9es un peu plus visibles avec \texttt{[contrast]}et \xE9ventuellement, obtenir un trac\xE9 en niveaux de
-gris en n\xE9gatif inverse avec \texttt{[colorMode=0]} ou 
-negativ avec \texttt{[colorMode=1]} ou cmyk couleur avec \texttt{[colorMode=2]} ou
-rgb avec \texttt{[colorMode=3]}.
-
-Par d\xE9faut les param\xE8tres ont les valeurs suivantes :
-
-\begin{tabular}{@{}lll@{}}
-\texttt{[a=0.2e-3]} en m;    & \texttt{[k=1]};       &  \texttt{[f=5]} en m;\\
-\texttt{[lambda=650]} en nm; & \texttt{[pixel=0.5]}; &   \texttt{[contrast=38]}, valeur maximale;\\
-\texttt{[colorMode=3]};   &   \texttt{[IIID=false]}.
-\end{tabular}
-
-\bigskip
-\noindent
-\begin{pspicture}(-3.5,-3.5)(3.5,3.5)
-\psdiffractionRectangle[f=2.5]
-\end{pspicture}
-\hfill
-\begin{pspicture}(-1.5,-2.5)(3.5,3.5)
-\psdiffractionRectangle[IIID,Alpha=30,f=2.5]
-\end{pspicture}
-
-\begin{lstlisting}[style=example]
-\begin{pspicture}(-3.5,-3.5)(3.5,3.5)
-\psdiffractionRectangle[f=2.5]
-\end{pspicture}
-\hfill
-\begin{pspicture}(-1.5,-2.5)(3.5,3.5)
-\psdiffractionRectangle[IIID,Alpha=30,f=2.5]
-\end{pspicture}
-\end{lstlisting}
-
-
-
-\noindent\begin{pspicture}(-2,-4)(2,4)
-\psdiffractionRectangle[a=0.5e-3,k=0.5,f=4,pixel=0.5,colorMode=0]
-\end{pspicture}
-\hfill
-\begin{pspicture}(0,-3)(4,4)
-\psdiffractionRectangle[IIID,a=0.5e-3,k=0.5,f=4,pixel=0.5,colorMode=0]
-\end{pspicture}
-
-
-\begin{lstlisting}[style=example]
-\begin{pspicture}(-2,-4)(2,4)
-\psdiffractionRectangle[a=0.5e-3,k=0.5,f=4,pixel=0.5,colorMode=0]
-\end{pspicture}
-\hfill
-\begin{pspicture}(0,-3)(4,4)
-\psdiffractionRectangle[IIID,a=0.5e-3,k=0.5,f=4,pixel=0.5,colorMode=0]
-\end{pspicture}
-\end{lstlisting}
-
-
-
-\noindent
-\begin{pspicture}(-2.5,-2.5)(3.5,3)
-\psdiffractionRectangle[a=0.5e-3,k=2,f=10,lambda=515,colorMode=1]
-\end{pspicture}
-\hfill
-\begin{pspicture}(-1.5,-2)(3.5,3)
-\psdiffractionRectangle[IIID,Alpha=20,a=0.5e-3,k=2,f=10,lambda=515,colorMode=1]
-\end{pspicture}
-
-
-\begin{lstlisting}[style=example]
-\begin{pspicture}(-2.5,-2.5)(3.5,3)
-\psdiffractionRectangle[a=0.5e-3,k=2,f=10,lambda=515,colorMode=1]
-\end{pspicture}
-\hfill
-\begin{pspicture}(-1.5,-2)(3.5,3)
-\psdiffractionRectangle[IIID,Alpha=20,a=0.5e-3,k=2,f=10,lambda=515,colorMode=1]
-\end{pspicture}
-\end{lstlisting}
-
-
-\noindent
-\begin{pspicture}(-3.5,-1)(3.5,1)
-\psdiffractionRectangle[a=0.5e-3,k=20,f=10,pixel=0.5,lambda=450]
-\end{pspicture}
-\hfill
-\begin{pspicture}(-3.5,-1)(3.5,4)
-\psdiffractionRectangle[IIID,Alpha=10,a=0.5e-3,k=20,f=10,pixel=0.5,lambda=450]
-\end{pspicture}
-
-\begin{lstlisting}[style=example]
-\begin{pspicture}(-3.5,-1)(3.5,1)
-\psdiffractionRectangle[a=0.5e-3,k=20,f=10,pixel=0.5,lambda=450]
-\end{pspicture}
-\hfill
-\begin{pspicture}(-3.5,-1)(3.5,4)
-\psdiffractionRectangle[IIID,Alpha=10,a=0.5e-3,k=20,f=10,pixel=0.5,lambda=450]
-\end{pspicture}
-\end{lstlisting}
-
-\section{Diffraction par deux ouverture rectangulaire}
-
-\begin{shaded}
-This simulation was provided by Julien \textsc{Cubizolles}.
-\end{shaded}
-
-\begin{center}
-\noindent
-\begin{pspicture}(-4,-1)(4,1)
-\psdiffractionRectangle[a=0.5e-3,k=10,f=10,pixel=0.5,lambda=650,twoSlit,s=2e-3]
-\end{pspicture}
-\end{center}
-
-\begin{lstlisting}[style=example]
-\begin{pspicture}(-4,-1)(4,1)
-\psdiffractionRectangle[a=0.5e-3,k=10,f=10,pixel=0.5,lambda=650,twoSlit,s=2e-3]
-\end{pspicture}
-\end{lstlisting}
-
-\begin{center}
-\begin{pspicture}(-2,-1)(4,4)
-\psdiffractionRectangle[IIID,Alpha=20,a=0.5e-3,k=10,f=10,pixel=0.5,lambda=650,twoSlit,s=2e-3]
-\end{pspicture}
-\end{center}
-
-\begin{lstlisting}[pos=t,style=example,wide=false]
-\begin{pspicture}(-2,-1)(4,4)
-\psdiffractionRectangle[IIID,Alpha=20,a=0.5e-3,k=10,f=10,pixel=0.5,lambda=650,twoSlit,s=2e-3]
-\end{pspicture}
-\end{lstlisting}
-
-
-
-\section{Diffraction par une ouverture circulaire}
-On donnera le rayon du trou : \texttt{[r=1e-3]}, $r=1$ mm par d\xE9faut. Les
-variations de l'intensit\xE9 sont superpos\xE9es \xE0 la figure de diffraction dans
-le premier quadrant (le maximum au centre a \xE9t\xE9 \xE9cr\xEAt\xE9).
-
-
-\begin{center}
-\begin{pspicture}(-3.5,-3.5)(3.5,3.5)
-\psdiffractionCircular[r=0.5e-3,f=10,pixel=0.5,lambda=520]
-\end{pspicture}
-%
-\begin{pspicture}(-3.5,-1.5)(3.5,3.5)
-\psdiffractionCircular[IIID,r=0.5e-3,f=10,pixel=0.5,lambda=520]
-\end{pspicture}
-\end{center}
-
-
-
-\begin{lstlisting}[style=example]
-\begin{pspicture}(-3.5,-3.5)(3.5,3.5)
-\psdiffractionCircular[r=0.5e-3,f=10,pixel=0.5,lambda=520]
-\end{pspicture}
-%
-\begin{pspicture}(-3.5,-1.5)(3.5,3.5)
-\psdiffractionCircular[IIID,r=0.5e-3,f=10,pixel=0.5,lambda=520]
-\end{pspicture}
-\end{lstlisting}
-
-
-
-\section{Diffraction par deux trous circulaires}
-Les deux trous sont identiques, outre le rayon commun des trous on fixera la
-demi-distance entre les centres des deux trous avec : \texttt{[d]} et pour
-ce cas de figure on activera l'option \texttt{[twoHole]}. On notera que
-les temps de calculs d'allongent\ldots
-
-
-\begin{pspicture}(-3,-3.5)(3.5,3.5)
-\psdiffractionCircular[r=0.5e-3,f=10,d=3e-3,lambda=515,twoHole]
-\end{pspicture}
-%
-\begin{pspicture}(-3.5,-1.5)(3.5,3.5)
-\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=3e-3,lambda=515,twoHole]
-\end{pspicture}
-
-
-\begin{lstlisting}[style=example]
-\begin{pspicture}(-3,-3.5)(3.5,3.5)
-\psdiffractionCircular[r=0.5e-3,f=10,d=3e-3,lambda=515,twoHole]
-\end{pspicture}
-%
-\begin{pspicture}(-3.5,-1.5)(3.5,3.5)
-\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=3e-3,lambda=515,twoHole]
-\end{pspicture}
-\end{lstlisting}
-
-
-\hspace*{-1cm}%
-\begin{pspicture}(-3,-3)(3.5,4)
-\psdiffractionCircular[r=0.5e-3,f=10,d=2e-3,lambda=700,twoHole,colorMode=0]
-\end{pspicture}
-%
-\begin{pspicture}(-3.5,-2)(3.5,3.5)
-\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=2e-3,lambda=700,twoHole,colorMode=0]
-\end{pspicture}
-
-\begin{lstlisting}[style=example]
-\begin{pspicture}(-3.5,-3)(3.5,4)
-\psdiffractionCircular[r=0.5e-3,f=10,d=2e-3,lambda=700,twoHole,colorMode=0]
-\end{pspicture}
-%
-\begin{pspicture}(-3.5,-2)(3.5,3.5)
-\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=2e-3,lambda=700,twoHole,colorMode=0]
-\end{pspicture}
-\end{lstlisting}
-
-Le cas limite d'obtention de franges se v\xE9rifie avec $\displaystyle d
-=\frac{a}{1.22}$. Voir~:\\
-\url{http://www.unice.fr/DeptPhys/optique/diff/trouscirc/diffrac.html}).
-
-\hspace*{-1cm}%
-\begin{pspicture}(-3,-3.5)(3,3.5)
-\psdiffractionCircular[r=0.5e-3,f=10,d=4.1e-4,lambda=632,twoHole]
-\end{pspicture}
-%
-\begin{pspicture}(-3.5,-1.5)(3.5,3)
-\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=4.1e-4,lambda=632,twoHole]
-\end{pspicture}
-
-
-\begin{lstlisting}[style=example]
-\begin{pspicture}(-3,-3.5)(3,3.5)
-\psdiffractionCircular[r=0.5e-3,f=10,d=4.1e-4,lambda=632,twoHole]
-\end{pspicture}
-%
-\begin{pspicture}(-3.5,-1.5)(3.5,3)
-\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=4.1e-4,lambda=632,twoHole]
-\end{pspicture}
-\end{lstlisting}
-
-
-
-\section{Diffraction par un trou triangulaire \xE9quilat\xE9ral}
-Le triangle \xE9quilat\xE9ral est d\xE9fini par sa hauteur \texttt{[h]} en m. Pour le
-triangle, on peut obtenir la figure en niveaux de gris avec l'option
-\texttt{[colorMode=0]}. L'\xE9tude th\xE9orique de cette diffraction a \xE9t\xE9 faite par
-\textsc{Airy}, on la trouve dans le livre d'Henri \textsc{Bouasse} sur la
-diffraction, pages 114 et 115.
-
-
-\begin{center}
-\begin{pspicture}(-1,-1)(1,1)
-\pspolygon*(0,0)(1;150)(1;210)
-\pcline{|-|}(-0.732,-1)(0,-1)
-\Aput{$h$}
-\end{pspicture}
-\end{center}
-
-\makebox[\linewidth]{%
-\begin{pspicture}(-3,-3)(3,2.5)
-\psdiffractionTriangle[f=10,h=1e-3,lambda=515,contrast=38]
-\end{pspicture}
-\quad
-\begin{pspicture}(-3,-3)(3,2.5)
-\psdiffractionTriangle[f=10,h=1e-3,colorMode=1,contrast=38,lambda=515]
-\end{pspicture}
-\quad
-\begin{pspicture}(-3,-3)(3,2.5)
-\psdiffractionTriangle[f=10,h=1e-3,colorMode=0,contrast=38,lambda=515]
-\end{pspicture}}
-
-
-\begin{lstlisting}[style=example]
-\begin{pspicture}(-3,-3)(3,2.5)
-\psdiffractionTriangle[f=10,h=1e-3,lambda=515,contrast=38]
-\end{pspicture}
-\quad
-\begin{pspicture}(-3,-3)(3,2.5)
-\psdiffractionTriangle[f=10,h=1e-3,colorMode=1,contrast=38,lambda=515]
-\end{pspicture}
-\quad
-\begin{pspicture}(-3,-3)(3,2.5)
-\psdiffractionTriangle[f=10,h=1e-3,colorMode=0,contrast=38,lambda=515]
-\end{pspicture}
-\end{lstlisting}
-
-
-\makebox[\linewidth]{%
-\begin{pspicture}(-3,-2)(3,3.5)
-\psdiffractionTriangle[IIID,f=10,h=1e-3,lambda=515,contrast=38]
-\end{pspicture}
-\quad
-\begin{pspicture}(-3,-2)(3,3.5)
-\psdiffractionTriangle[IIID,f=10,h=1e-3,colorMode=1,contrast=38,lambda=515]
-\end{pspicture}
-\quad
-\begin{pspicture}(-3,-2)(3,3.5)
-\psdiffractionTriangle[IIID,f=10,h=1e-3,colorMode=0,contrast=38,lambda=515]
-\end{pspicture}}
-
-\begin{lstlisting}[style=example]
-\begin{pspicture}(-3,-2)(3,3.5)
-\psdiffractionTriangle[IIID,f=10,h=1e-3,lambda=515,contrast=38]
-\end{pspicture}
-\quad
-\begin{pspicture}(-3,-2)(3,3.5)
-\psdiffractionTriangle[IIID,f=10,h=1e-3,colorMode=1,contrast=38,lambda=515]
-\end{pspicture}
-\quad
-\begin{pspicture}(-3,-2)(3,3.5)
-\psdiffractionTriangle[IIID,f=10,h=1e-3,colorMode=0,contrast=38,lambda=515]
-\end{pspicture}
-\end{lstlisting}
-
-
-
-
-
-%\section{Credits}
-
-
-\bgroup
-\nocite{*}
-\raggedright
-\bibliographystyle{plain}
-\bibliography{pst-diffraction-doc}
-\egroup
-
-
-\end{document}

Modified: trunk/Master/texmf-dist/tex/generic/pst-diffraction/pst-diffraction.tex
===================================================================
--- trunk/Master/texmf-dist/tex/generic/pst-diffraction/pst-diffraction.tex	2024-06-29 19:59:54 UTC (rev 71656)
+++ trunk/Master/texmf-dist/tex/generic/pst-diffraction/pst-diffraction.tex	2024-06-29 20:00:37 UTC (rev 71657)
@@ -5,8 +5,8 @@
 %%
 %% Package `pst-diffraction.tex'
 %%
-%% Manuel Luque <ml at pstricks.de>
-%% Herbert Voss <hv at pstricks.de>
+%% Manuel Luque <ml at texnik.de>
+%% Herbert Voss <hvoss at tug.org>
 %%
 %% with contributions of Julien Cubizolles
 %%
@@ -21,12 +21,12 @@
 \csname PSTDiffractionLoaded\endcsname
 \let\PSTDiffractionLoaded\endinput
 % Require PSTricks
-\ifx\PSTricksLoaded\endinput\else\input pstricks.tex\fi
+\ifx\PSTricksLoaded\endinput\else     \input pstricks.tex\fi
 \ifx\PSTThreeDplotLoaded\endinput\else\input pst-3dplot.tex\fi
-\ifx\PSTXKeyLoaded\endinput\else \input pst-xkey \fi
+\ifx\PSTXKeyLoaded\endinput\else      \input pst-xkey.tex \fi
 %
-\def\fileversion{2.03}%
-\def\filedate{2008/09/03}%
+\def\fileversion{2.04a}
+\def\filedate{2024/06/29}
 \message{`PST-diffraction v\fileversion, \filedate\space (ML,hv)}%
 \edef\PstAtCode{\the\catcode`\@} \catcode`\@=11\relax
 \pst at addfams{pst-diff}
@@ -94,7 +94,7 @@
     /bornexpt 1 widthSlit div focus mul ondeLongueur mul 2845 mul def
     /borneypt 1 heightSlit div focus mul ondeLongueur mul 2845 mul def
     \ifPst at Diffraction@IIID 
-      \psk at ThreeDplot@zMax dup \tx at ScreenCoor pop /zScale ED 
+      \psk at ThreeDplot@zMax\space dup \tx at ScreenCoor pop /zScale ED 
       tx at 3DPlotDict begin \IIIDplot at variables end 
     \fi
     % Les calculs commencent...
@@ -170,7 +170,7 @@
     \psk at Diffraction@Slit at Lambda tx at addDict begin wavelengthToRGB Red Green Blue end
     /Blue ED /Green ED /Red ED
     \ifPst at Diffraction@IIID 
-      \psk at ThreeDplot@zMax dup \tx at ScreenCoor pop /zScale ED 
+      \psk at ThreeDplot@zMax\space dup \tx at ScreenCoor pop /zScale ED 
       tx at 3DPlotDict begin \IIIDplot at variables end 
     \fi
 %    0 0 translate
@@ -408,7 +408,7 @@
     /bornexpt 1 h div f mul L mul 2845 mul def
     /borneypt 1 h div f mul L mul 2845 mul def
     \ifPst at Diffraction@IIID 
-      \psk at ThreeDplot@zMax dup \tx at ScreenCoor pop /zScale ED 
+      \psk at ThreeDplot@zMax\space dup \tx at ScreenCoor pop /zScale ED 
       tx at 3DPlotDict begin \IIIDplot at variables end 
     \fi
     /P {

Modified: trunk/Master/texmf-dist/tex/latex/pst-diffraction/pst-diffraction.sty
===================================================================
--- trunk/Master/texmf-dist/tex/latex/pst-diffraction/pst-diffraction.sty	2024-06-29 19:59:54 UTC (rev 71656)
+++ trunk/Master/texmf-dist/tex/latex/pst-diffraction/pst-diffraction.sty	2024-06-29 20:00:37 UTC (rev 71657)
@@ -1,7 +1,7 @@
 \RequirePackage{pstricks}
 \RequirePackage{pst-3dplot}
 \RequirePackage{pst-xkey}
-\ProvidesPackage{pst-diffraction}[2009/09/04 package wrapper for 
+\ProvidesPackage{pst-diffraction}[2024/06/29 package wrapper for 
   pst-diffraction.tex (hv)]
 \input{pst-diffraction.tex}
 \ProvidesFile{pst-diffraction.tex}



More information about the tex-live-commits mailing list.