texlive[67805] Master/texmf-dist: lualinalg (3aug23)
commits+karl at tug.org
commits+karl at tug.org
Thu Aug 3 21:59:09 CEST 2023
Revision: 67805
http://tug.org/svn/texlive?view=revision&revision=67805
Author: karl
Date: 2023-08-03 21:59:09 +0200 (Thu, 03 Aug 2023)
Log Message:
-----------
lualinalg (3aug23)
Modified Paths:
--------------
trunk/Master/texmf-dist/doc/lualatex/lualinalg/README.txt
trunk/Master/texmf-dist/doc/lualatex/lualinalg/lualinalg.pdf
trunk/Master/texmf-dist/doc/lualatex/lualinalg/lualinalg.tex
trunk/Master/texmf-dist/tex/lualatex/lualinalg/lualinalg.sty
Added Paths:
-----------
trunk/Master/texmf-dist/tex/lualatex/lualinalg/lualinalg-complex.lua
trunk/Master/texmf-dist/tex/lualatex/lualinalg/lualinalg-fractions.lua
Removed Paths:
-------------
trunk/Master/texmf-dist/doc/lualatex/lualinalg/2dvec.jpg
trunk/Master/texmf-dist/doc/lualatex/lualinalg/3dvec.jpg
trunk/Master/texmf-dist/tex/lualatex/lualinalg/lualinalg_complex.lua
Deleted: trunk/Master/texmf-dist/doc/lualatex/lualinalg/2dvec.jpg
===================================================================
(Binary files differ)
Deleted: trunk/Master/texmf-dist/doc/lualatex/lualinalg/3dvec.jpg
===================================================================
(Binary files differ)
Modified: trunk/Master/texmf-dist/doc/lualatex/lualinalg/README.txt
===================================================================
--- trunk/Master/texmf-dist/doc/lualatex/lualinalg/README.txt 2023-08-03 19:58:43 UTC (rev 67804)
+++ trunk/Master/texmf-dist/doc/lualatex/lualinalg/README.txt 2023-08-03 19:59:09 UTC (rev 67805)
@@ -1,3 +1,8 @@
+# The lualinalg package
+# version 1.3
+# Authors: Chetan Shirore and Ajit Kumar
+# Email: mathsbeauty at gmail.com
+
# Introduction
The lualinalg package is developed to perform operations on vectors and matrices defined over the field of real or complex numbers inside LaTeX documents.
It provides flexible ways for defining and displaying vectors and matrices.
Modified: trunk/Master/texmf-dist/doc/lualatex/lualinalg/lualinalg.pdf
===================================================================
(Binary files differ)
Modified: trunk/Master/texmf-dist/doc/lualatex/lualinalg/lualinalg.tex
===================================================================
--- trunk/Master/texmf-dist/doc/lualatex/lualinalg/lualinalg.tex 2023-08-03 19:58:43 UTC (rev 67804)
+++ trunk/Master/texmf-dist/doc/lualatex/lualinalg/lualinalg.tex 2023-08-03 19:59:09 UTC (rev 67805)
@@ -1,7 +1,8 @@
\documentclass{article}
\usepackage{listings,color,parskip,booktabs,longtable,array,
-hyperref,multirow,multicol,url,amsmath,amssymb,framed,graphicx,mismath}
-\usepackage[top=1.1in, bottom=1.1in, left=1in, right=1in]{geometry}
+hyperref,multirow,multicol,url,amsmath,amssymb,framed,graphicx,lualinalg,tikz,tikz-3dplot,float}
+\usepackage[top=1in, bottom=1in, left=1in, right=1in]{geometry}
+\usetikzlibrary{calc,3d,arrows}
\hypersetup{colorlinks,urlcolor=blue}
\lstset{frame=none,
language=[LaTeX]{TeX},
@@ -20,7 +21,7 @@
}
\begin{document}
\title{The lualinalg Package}
-\author{Chetan Shirore and Ajit Kumar}
+\author{Chetan Shirore\thanks{Email id: mathsbeauty at gmail.com} \space and Ajit Kumar}
\maketitle
\section{Introduction}
@@ -27,19 +28,26 @@
The \verb|lualinalg| package is developed to perform operations on vectors and matrices defined over the field of real or complex numbers inside LaTeX documents. It provides flexible ways for defining and displaying vectors and matrices. No particular environment of LaTeX is required to use commands in the package. The package is written in Lua, and tex file is to be compiled with the LuaLaTeX engine. The time required for calculations is not an issue while compiling with LuaLaTeX. There is no need to install Lua on the user's system as TeX distributions (TeXLive or MikTeX) come bundled with LuaLaTeX. It may also save users' efforts to copy vectors and matrices from other software (which may not be in latex-compatible format) and to use them in a tex file. The vectors and matrices of reasonable size can be handled with ease. The package can be modified or extended by writing custom Lua programs (Section \ref{customuse}).
+The package supports fractions; numerators and denominators must be integers. A fraction can be specified with the Lua function: \verb|lfrac|. This function has the syntax \verb|lfrac(n,d,mode)|: \(n\) is an integer and \(d\) is a non-zero integer. The mode is optional. It can be \verb|fracs| or \verb|nofracs|. The default mode is \verb|fracs|. If fractions are input, the package will display vectors and matrices in fraction mode wherever possible. The package does not attempt to convert floats into fractions. If fractions are expected, then the input should contain fractions. If fractions are input and answers are expected in numbers, the mode can be specified as \verb|nofracs|.
+
+The Lua function \verb|lcomplex| defines the complex numbers. It has the syntax \verb|lcomplex(x,y)|, where \(x\) is a real part, and \(y\) is an imaginary part. \(x\) and \(y\) can also be fractions (numerators and denominators should be integers). The package has a command \verb|\imUnit| which provides typesetting for the imaginary unit. Its default value is \verb|\mathrm{i}|. It can be redefined. For example, one can redefine it as \verb|\renewcommand{\imUnit}{j}}|.
+
+
\section{Installation and License}
The installation of the \verb|lualinalg| package is similar to the plain latex package, where the \verb|.sty| file is in the LaTeX directory of the texmf tree. The package can be included with \verb|\usepackage{lualinalg}| command in the preamble of the LaTeX document.
The \verb|lualinalg| package is released under the LaTeX Project Public License v1.3c or later. The complete license text is available at \url{http://www.latex-project.org/lppl.txt}. It is developed in Lua. Lua is available as a certified open-source software. Its license is simple and liberal, which is compatible with GPL. The package makes use of \verb|complex.lua| file which is available on \url{https://github.com/davidm/lua-matrix/blob/master/lua/complex.lua}. It is available under the same licensing as that of Lua. The package also loads the \href{https://ctan.org/pkg/luamaths}{luamaths} package, which is available under the LaTeX Project Public License v1.3c or later. This package is loaded to use the standard mathematical functions and for computations on real numbers while performing operations on vectors and matrices.
+
\section{Defining vectors and performing operations on vectors}
\subsection{Defining Vectors} Vectors are defined with the \verb|\vectornew| command.
-\begin{verbatim}
+\begin{lstlisting}
\vectorNew{vector name}{coordinates}
-\end{verbatim}
- This command has two compulsory arguments: \verb|vector name| and \verb|coordinates|. Coordinates of vectors are enclosed in curly braces. A comma separates coordinates. The complex numbers are to be enclosed in single or double quotes inside the \verb|complex()| function. The following are a few valid ways of defining vectors.
+\end{lstlisting}
+
+ This command has two compulsory arguments: \verb|vector name| and \verb|coordinates|. Coordinates of vectors are enclosed in curly braces. A comma separates coordinates. The following are a few valid ways of defining vectors.
\begin{lstlisting}
\vectorNew{v1}{{1,2,3,4,5,6}}
-\vectorNew{v2}{{3,6,complex('6+6i')}}
+\vectorNew{v2}{{3,6,lcomplex(6,6)}}
\end{lstlisting}
The standard vector of dimension \(n \) with \(i^{th}\) coordinate \(1\) can be produced by using the following command.
\begin{lstlisting}
@@ -50,10 +58,12 @@
\vectorNew{e_1}{3,'e',1}
\(e_1=\left(\vectorPrint{e}\right)\)
\end{lstlisting}
-output to \(e_1 = \left(1.0,0.0,0.0\right) \).
+output to \vectorNew{e_1}{3,'e',1}
+\(e_1=\left(\vectorPrint{e_1}\right)\).
+
\subsection{Commands for operations on vectors}
Table \ref{tbl:luavector} lists commands for operations on vectors.
-\begin{longtable}{m{7cm}m{7cm}}
+\begin{longtable}{m{7cm}m{8.2cm}}
\toprule
\multicolumn{1}{c}{\textcolor{blue}{Command Format}} & \multicolumn{1}{c}{\textcolor{blue}{Description}} \\
\toprule
@@ -117,7 +127,7 @@
\begin{lstlisting}
\vectorpNorm{v}
\end{lstlisting}&
-Calculates the \(p\) \((p > 1)\) norm of a vector \(v\). If \(v=\left(v_1, \ldots, v_n \right)\) then it is given by \(\sqrt[p]{|v_1|^2 + \cdots + |v_n|^2} \). \\
+Calculates the \(p\) \((p > 1)\) norm of a vector \(v\). If \(v=\left(v_1, \ldots, v_n \right)\) then it is given by \(\sqrt[\leftroot{-2}\uproot{2} p]{|v_1|^p + \cdots + |v_n|^p} \). \\
\midrule
\begin{lstlisting}
\vectorSupNorm{v}
@@ -157,16 +167,21 @@
\caption{Commands for operations on vectors}
\label{tbl:luavector}
\end{longtable}
+
\subsection{Illustrations of commands for operations on vectors}
The following commands define vectors \(v,w,x,\) and \(y\).
\begin{lstlisting}
-\vectorNew{v}{{1,2,complex('3+3i')}}
-\vectorNew{w}{{3,6,complex('6+6i')}}
-\vectorNew{x}{{1.12345678,6,complex('6+6i')}}
+\vectorNew{v}{{1,2,lcomplex(3,3)}}
+\vectorNew{w}{{3,6,lcomplex(6,6)}}
+\vectorNew{x}{{1.12345678,6,lcomplex(6,6)}}
\vectorNew{y}{{1,2,3}}
\end{lstlisting}
Table \ref{tbl:illluavector} illustrates various operations on vectors \(v,w,x\) and \(y\).
-\begin{longtable}{lc}
+\vectorNew{v}{{1,2,lcomplex(3,3)}}
+\vectorNew{w}{{3,6,lcomplex(6,6)}}
+\vectorNew{x}{{1.12345678,6,lcomplex(6,6)}}
+\vectorNew{y}{{1,2,3}}
+\begin{longtable}{lp{6.5cm}}
\toprule
Commands & Output Produced\\
\toprule
@@ -174,9 +189,8 @@
\(v=\left(\vectorPrint{v}\right)\)
\(w=\left(\vectorPrint{w}\right)\)
\end{lstlisting} &
-\(v=\left(1.0,2.0,3.0+3.0i\right)\) \\
-&
-\(w=\left(3.0,6.0,6.0+6.0i\right)\)
+\(v=\left(\vectorPrint{v}\right)\) \newline
+\(w=\left(\vectorPrint{w}\right)\)
\\
\midrule
\begin{lstlisting}
@@ -183,7 +197,8 @@
\(x=\left(\vectorPrint
[truncate=3]{x}\right)\)
\end{lstlisting} &
-\(x=\left(1.123,6.0,6.0+6.0i\right)\)
+\(x=\left(\vectorPrint
+[truncate=3]{x}\right)\)
\\
\midrule
\begin{lstlisting}
@@ -190,23 +205,26 @@
third coordinate of vector
\(v = \vectorGetCoordinate{v}{3}\)
\end{lstlisting} &
-third coordinate of vector \(v = 3 + 3i\)
+third coordinate of vector
+\(v = \vectorGetCoordinate{v}{3}\)
\\
\midrule
\begin{lstlisting}
-\(y = \vectorCopy{y}{w}\)
-\(\left(\vectorPrint{y}\right)\)
+\(\vectorCopy{z}{w}\)
+\(z = \left(\vectorPrint{z}\right)\)
\end{lstlisting} &
-\(y = \left( 3.0,6.0,6.0+6.0i\right)\)
+\(\vectorCopy{z}{w}\)
+\(z = \left(\vectorPrint{z}\right)\)
\\
\midrule
\begin{lstlisting}
new third coordinate of vector
-\(y = \vectorSetCoordinate{y}{3}{9.3}\)
-\(y=\left(\vectorPrint{y}\right)\)
+\(z = \vectorSetCoordinate{z}{3}{9.3}\)
+\(z=\left(\vectorPrint{z}\right)\)
\end{lstlisting} &
-new third coordinate of vector \(y = 9.3\) \\
-& \(y = \left( 3.0,6.0,9.3\right)\)
+new third coordinate of vector
+\(z = \vectorSetCoordinate{z}{3}{9.3}\) \newline
+\(z=\left(\vectorPrint{z}\right)\)
\\
\midrule
\begin{lstlisting}
@@ -213,7 +231,8 @@
\vectorAdd{v1}{v}{w}
\(v1 = v+w =\left(\vectorPrint{v1}\right)\)
\end{lstlisting} &
-\(v1 = v+w =\left(4.0, 8.0, 9.0 + 9.0i\right)\)
+\vectorAdd{v1}{v}{w}
+\(v1 = v+w =\left(\vectorPrint{v1}\right)\)
\\
\midrule
\begin{lstlisting}
@@ -220,7 +239,8 @@
\vectorSub{v2}{v}{w}
\(v2 = v-w =\left(\vectorPrint{v2}\right)\)
\end{lstlisting} &
-\(v2 = v-w =\left(-2.0, -4.0, -3.0 -3.0i\right)\)
+\vectorSub{v2}{v}{w}
+\(v2 = v-w =\left(\vectorPrint{v2}\right)\)
\\
\midrule
\begin{lstlisting}
@@ -227,14 +247,14 @@
\vectorMulNum{v3}{v}{complex('3+i')}
\(v3 = 3v =\left(\vectorPrint{v3}\right)\)
\end{lstlisting} &
-\(v3 = 3v =\left(3.0 + i, 6.0 + 2.0i, 6.0 + 12.0i\right)\)
+\vectorMulNum{v3}{v}{complex('3+i')}
+\(v3 = 3v =\left(\vectorPrint{v3}\right)\)
\\
\midrule
\begin{lstlisting}
-\vectorDot{v}{w}
\(v \cdot w =\vectorDot{v}{w}\)
\end{lstlisting} &
-\(v \cdot w = 51\)
+\(v \cdot w =\vectorDot{v}{w}\)
\\
\midrule
\begin{lstlisting}
@@ -241,13 +261,14 @@
\vectorCross{v4}{v}{w}
\(v \times w =\left(\vectorPrint{v4}\right)\)
\end{lstlisting} &
-\(v \times w = \left(-6.0 - 6.0i, 3.0 + 3.0i, 0.0\right)\)
+\vectorCross{v4}{v}{w}
+\(v \times w =\left(\vectorPrint{v4}\right)\)
\\
\midrule
\begin{lstlisting}
Sum norm of a vector \(v = \vectorSumNorm{v}\)
\end{lstlisting} &
- Sum norm of a vector \(v = 7.2426406871193\)
+ Sum norm of a vector \(v = \vectorSumNorm{v}\)
\\
\midrule
\begin{lstlisting}
@@ -254,13 +275,14 @@
Euclidean norm of a vector
\(v = \vectorEuclidNorm{v}\)
\end{lstlisting} &
-Euclidean norm of a vector \(v = 4.7958315233127\)
+Euclidean norm of a vector
+ \(v = \vectorEuclidNorm{v}\)
\\
\midrule
\begin{lstlisting}
p norm of a vector \(v = \vectorpNorm{v}{3}\)
\end{lstlisting} &
-p norm of a vector \(v = 4.4031577258332\)
+p norm of a vector \(v = \vectorpNorm{v}{3}\)
\\
\midrule
\begin{lstlisting}
@@ -273,14 +295,16 @@
\vectorCreateRandom{v5}{3}{9}{90}
\(v5 =\left(\vectorPrint{v5}\right)\)
\end{lstlisting} &
-\(v5 =\left(18.290405, 23.356018, 49.966278\right)\)
+\vectorCreateRandom{v5}{3}{9}{90}
+\(v5 =\left(\vectorPrint{v5}\right)\)
\\
\midrule
\begin{lstlisting}
\vectorOp{v6}{v+w-2*v}
-\(v6 =\left(\vectorPrint{v7}\right)\)
+\(v6 =\left(\vectorPrint{v6}\right)\)
\end{lstlisting} &
-\(v6=\left(2.0, 4.0, 27.0 + 27.0i \right)\)
+\vectorOp{v6}{v+w-2*v}
+\(v6 =\left(\vectorPrint{v6}\right)\)
\\
\midrule
\begin{lstlisting}
@@ -287,14 +311,14 @@
angle between vector \(v\) and \(w\) is
\( \vectorGetAngle{v}{w}\).
\end{lstlisting} &
-angle between vector \(v\) and \(w\) is
- \( 0.32823410158508\).
+ angle between vector \(v\) and \(w\) is
+ \( \vectorGetAngle{v}{w}\).
\\
\midrule
\begin{lstlisting}
\vectorParse{y}
\end{lstlisting} &
-\(\left(1,2,3 \right)\)
+\vectorParse{y}
\\
\bottomrule \\
\caption{Illustration of commands for operations on vectors}
@@ -315,12 +339,14 @@
\end{framed}
Listing \ref{code:luavecgs} outputs the following.
\begin{framed}
-\[v1=\left(1,2,3\right)\]
-\[v2=\left(4,5,6\right)\]
-\[v3=\left(7,8,90\right)\]
-Gram Schmidt on \(v1,v2,v3\): $\left(0.267,0.535,0.802\right),\left(0.873,0.218,-0.436\right),\left(0.408,-0.816,0.408\right)$
-
-Take given vectors as $v_1,\ldots, v_3$ in order.\ \newline Step 1: $$ u_1=v_1=\left(1.0,2.0,3.0\right)$$ $$ e_1=\frac{u_{1}}{||u_{1}||} =\left(0.267,0.535,0.802\right)$$ Step 2: $$ u_2=v_2-\sum_{j=1}^{1}{{proj_{u_j}(v_2)}}=\left(1.714,0.429,-0.857\right)$$ $$ e_2=\frac{u_{2}}{||u_{2}||} =\left(0.873,0.218,-0.436\right)$$ Step 3: $$ u_3=v_3-\sum_{j=1}^{2}{{proj_{u_j}(v_3)}}=\left(13.5,-27.0,13.5\right)$$ $$ e_3=\frac{u_{3}}{||u_{3}||} =\left(0.408,-0.816,0.408\right)$$
+\vectorNew{v1}{{1,2,3}}
+\vectorNew{v2}{{4,5,6}}
+\vectorNew{v3}{{7,8,90}}
+\[v1=\left(\vectorPrint{v1}\right)\]
+\[v2=\left(\vectorPrint{v2}\right)\]
+\[v3=\left(\vectorPrint{v3}\right)\]
+Gram Schmidt on \(v1,v2,v3\): \vectorGramSchmidt[brckt=round,truncate=3]{{'v1','v2','v3'}}
+\vectorGramSchmidtSteps[brckt=round,truncate=3]{{'v1','v2','v3'}}
\end{framed}
In addition to \verb|\mathRound|, the command \verb|complexRound| is also available. It has the following syntax.
@@ -329,12 +355,11 @@
\end{verbatim}
This command has two compulsory arguments. The complex number and number of decimal places to which number should be rounded off. For example,
- \verb| \complexRound{3.3333666+6.777666i}{3}| outputs to \(3.333+6.778i\). This command can be nested with other commands in the package.
+ \verb| \complexRound{lcomplex(3.3333666, 6.777666)}{3}| outputs to \(\complexRound{lcomplex(3.3333666, 6.777666)}{3}\). This command can be nested with other commands in the package.
\subsection{Plotting vectors}
The \verb|lualinalg| package can be used with other packages that have facility to plot vectors defined over the field of real numbers in 2 or 3 dimensions. Listing \ref{code:luavecplot} illustrates plotting of vectors in 2-D plane by using \verb|lualinalg| and \verb|tikz| package.
\begin{lstlisting}[label={code:luavecplot}, caption={Plotting vectors in 2-dimensions with the lualinalg and tikz packages}]
-\begin{document}
\tdplotsetmaincoords{0}{0}
\begin{tikzpicture}[scale=1,
tdplot_main_coords,
@@ -363,15 +388,43 @@
\draw[vector guide, black] \vectorParse{h} -- (\vectorGetCoordinate{h}{1},0) node [below] {$x=\vectorGetCoordinate{h}{1}$};
\draw[vector guide, black] \vectorParse{h} -- (0,\vectorGetCoordinate{h}{2}) node [left] {$y=\vectorGetCoordinate{h}{2}$};
\end{tikzpicture}
-\end{document}
\end{lstlisting}
Listing \ref{code:luavecplot} produces figure \ref{fig:2dvecplot}.
-\begin{figure}[!ht] % or [H] to turn off float
+\begin{figure}[H]
\centering
- \includegraphics[scale=0.9]{2dvec.jpg}
- \caption{Plotting of 3-D Vectors with lualinalg and tikz packages}
+ \tdplotsetmaincoords{0}{0}
+\begin{tikzpicture}[scale=1,
+ tdplot_main_coords,
+ axis/.style={->,blue,thick},
+ vector/.style={-stealth,red,very thick},
+ vector guide/.style={dashed,red,thick}]
+\vectorNew{o}{{0,0}}
+\vectorNew{e1}{{4,0}}
+\vectorNew{e2}{{0,4}}
+\vectorNew{f}{{2,1}}
+\vectorNew{g}{{1,2}}
+% Axes
+\draw [axis] \vectorParse{o}-- \vectorParse{e1} node [below left] {$x$};
+\draw [axis] \vectorParse{o}-- \vectorParse{e2} node [right] {$y$};
+% Plotting Vectors
+\draw [vector] \vectorParse{o} --\vectorParse{f};
+\draw [vector] \vectorParse{o} --\vectorParse{g};
+\vectorOp{h}{f+g}
+\draw [vector] \vectorParse{o} --\vectorParse{h};
+\draw [vector,dashed,black] \vectorParse{f} --\vectorParse{h};
+\draw [vector,dashed,black] \vectorParse{g} --\vectorParse{h};
+% Labels
+ \node [below right] at \vectorParse{f} {$f$};
+ \node [above left] at \vectorParse{g} {$g$};
+\node [above left] at \vectorParse{h} {$f+g$};
+ \draw[vector guide, black] \vectorParse{h} -- (\vectorGetCoordinate{h}{1},0) node [below] {$x=\vectorGetCoordinate{h}{1}$};
+ \draw[vector guide, black] \vectorParse{h} -- (0,\vectorGetCoordinate{h}{2}) node [left] {$y=\vectorGetCoordinate{h}{2}$};
+\end{tikzpicture}
+ \caption{Plotting 2-D Vectors with lualinalg and tikz packages}
\label{fig:2dvecplot}
\end{figure}
+
+
Listing \ref{code:luavecplot2} illustrates plotting of vectors in 3-D plane by using \verb|lualinalg| and \verb|tikz| package.
\begin{lstlisting}[label={code:luavecplot2}, caption={Plotting vectors in 3-dimensions with the lualinalg and tikz packages}]
\documentclass{article}
@@ -410,10 +463,38 @@
\end{lstlisting}
Listing \ref{code:luavecplot2} produces figure \ref{fig:3dvecplot}.
-\begin{figure}[!ht] % or [H] to turn off float
+\begin{figure}[H]
\centering
- \includegraphics[scale=0.9]{3dvec.jpg}
- \caption{Plotting of Vectors with lualinalg and tikz packages}
+ \tdplotsetmaincoords{60}{120}
+\begin{tikzpicture}[scale=1,
+ tdplot_main_coords,
+ axis/.style={->,blue,thick},
+ vector/.style={-stealth,red,very thick},
+ vector guide/.style={dashed,red,thick}]
+\vectorNew{o}{{0,0,0}}
+\vectorNew{e1}{{3,0,0}}
+\vectorNew{e2}{{0,5,0}}
+\vectorNew{e3}{{0,0,4}}
+\vectorNew{f}{{2,2,0}}
+\vectorNew{g}{{-1,2,2}}
+% Axes
+\draw [axis] \vectorParse{o}-- \vectorParse{e1} node [below left] {$x$};
+\draw [axis] \vectorParse{o}-- \vectorParse{e2} node [right] {$y$};
+\draw [axis] \vectorParse{o}-- \vectorParse{e3} node [above] {$z$};
+% Plotting Vectors
+\draw [vector] \vectorParse{o} --\vectorParse{f};
+\draw [vector] \vectorParse{o} --\vectorParse{g};
+\vectorOp{h}{f+g}
+\draw [vector] \vectorParse{o} --\vectorParse{h};
+% Labels
+ \node [below right] at \vectorParse{f} {$f$};
+ \node [above left] at \vectorParse{g} {$g$};
+\node [right] at \vectorParse{h} {$f+g$};
+ \draw[vector guide, black] \vectorParse{h} -- (\vectorGetCoordinate{h}{1},0,0) node [left] {$x=\vectorGetCoordinate{h}{1}$};
+ \draw[vector guide, black] \vectorParse{h} -- (0,\vectorGetCoordinate{h}{2},0) node [below] {$y=\vectorGetCoordinate{h}{2}$};
+ \draw[vector guide, black] \vectorParse{h} -- (0,0,\vectorGetCoordinate{h}{3}) node [left] {$z=\vectorGetCoordinate{h}{3}$};
+\end{tikzpicture}
+ \caption{Plotting 3-D Vectors with lualinalg and tikz packages}
\label{fig:3dvecplot}
\end{figure}
@@ -422,15 +503,15 @@
\begin{lstlisting}
\matrixNew{matrix name}{row entries}
\end{lstlisting}
-This command has two compulsory arguments: \verb|matrix name| and \verb|row entries|. Each row of the matrix is enclosed in curly brackets. A comma separates numbers in rows. Rows are also separated by a comma. The whole matrix is then enclosed in curly brackets. The complex numbers are to be enclosed in single or double quotes inside the parenthesis of the \verb|complex()| function. The following are a few valid ways of defining matrices.
+This command has two compulsory arguments: \verb|matrix name| and \verb|row entries|. Each row of the matrix is enclosed in curly brackets. A comma separates numbers in rows. Rows are also separated by a comma. The whole matrix is then enclosed in curly brackets. The following are a few valid ways of defining matrices.
\begin{lstlisting}
-\def\n{{{1,2,3},{4,5,6},{7,8,complex('9+3i')}}}
+\def\n{{{1,2,3},{4,5,6},{7,8,lcomplex(9,3)}}}
\def\s{{{1,2,3},{4,5,6},{7,8,10}}}
\matrixNew{m}{\n}
\matrixNew{n}{\s}
% an alternative way
-\matrixNew{m}{{{1,2,3},{4,5,6},{7,8,complex('9+3i')}}}
+\matrixNew{m}{{{1,2,3},{4,5,6},{7,8,lcomplex(9,3)}}}
\matrixNew{n}{{{1,2,3},{4,5,6},{7,8,10}}}
\end{lstlisting}
@@ -440,7 +521,8 @@
I = \(\matrixPrint{mtx}\)
\end{lstlisting}
output to
-\[I = \begin{bmatrix} 1.0 & 0.0 & 0.0 \\ 0.0 & 1.0 & 0.0 \\ 0.0 & 0.0 & 1.0\\\end{bmatrix} \]
+\matrixNew{mtx}{3,'I'}
+I = \(\matrixPrint{mtx}\)
\subsection{Commands for operations on matrices}
Table \ref{tbl:luamtxcmd} lists all commands for operations on matrices in the \verb|lualinalg| package.
@@ -662,19 +744,35 @@
\caption{Commands for operations on matrices}
\label{tbl:luamtxcmd}
\end{longtable}
+
\subsection{Illustrations of matrix operations}
The following commands define matrices \(m,n,\) and \(r\).
\begin{lstlisting}
-\def\r{{{1,2,3},{4,5,6},{7,8,complex('9+3i')}}}
+\def\r{{{1,2,3},{4,5,6},{7,8,lcomplex(9,3)}}}
\def\s{{{1,2,3},{4,5,6},{7,8,10}}}
\def\t{{{1,2,3},{4,5,6},{7,8,9}}}
\def\u{{{1},{2},{3}}}
+\def\z{{{lfrac(1,2),lcomplex(2,3),3},{4,5,6},{7,8,9}}}
\matrixNew{m}{\r}
\matrixNew{n}{\s}
\matrixNew{p}{\t}
\matrixNew{q}{\u}
+\matrixNew{r}{\z}
+
\end{lstlisting}
+
+\def\r{{{1,2,3},{4,5,6},{7,8,lcomplex(9,3)}}}
+\def\s{{{1,2,3},{4,5,6},{7,8,10}}}
+\def\t{{{1,2,3},{4,5,6},{7,8,9}}}
+\def\u{{{1},{2},{3}}}
+\def\z{{{lfrac(1,2),lcomplex(2,3),3},{4,5,6},{7,8,9}}}
+
+\matrixNew{m}{\r}
+\matrixNew{n}{\s}
+\matrixNew{p}{\t}
+\matrixNew{q}{\u}
+\matrixNew{r}{\z}
Table \ref{tbl:illluamatrix} illustrates various operations on matrices \(m,n,p,\) and \(q\).
\begin{center}
\begin{longtable}{lc}
@@ -684,36 +782,39 @@
\multicolumn{2}{c}{Printing matrices}\\
\midrule
\begin{lstlisting}
-\(m=\matrixPrint{\m}\)
+\(m=\matrixPrint{m}\)
\end{lstlisting} &
-\(m=\begin{bmatrix} 1.0 & 2.0 & 3.0 \\ 4.0 & 5.0 & 6.0 \\ 7.0 & 8.0 & 9.0+3.0i\end{bmatrix}\)
+\(m=\matrixPrint{m}\)
\\
\midrule
\begin{lstlisting}
-\(m=\matrixPrint[type=pmatrix]{\m}\)
+\(m=\matrixPrint[type=pmatrix]{m}\)
\end{lstlisting} &
-\(m=\begin{pmatrix} 1.0 & 2.0 & 3.0 \\ 4.0 & 5.0 & 6.0 \\ 7.0 & 8.0 & 9.0+3.0i\end{pmatrix}\)
+\(m=\matrixPrint[type=pmatrix]{m}\)
\\
\midrule
\multicolumn{2}{c}{Some parameters of defined matrices}\\
\midrule
\begin{lstlisting}
-\(No. or rows in matrix m
+No. or rows in matrix \(m
= \matrixNumRows{m}\)
\end{lstlisting} &
-No. or rows in matrix \(m = 3\)\\
+No. or rows in matrix \(m
+= \matrixNumRows{m}\)\\
\midrule
\begin{lstlisting}
-\(No. or columns in matrix m
+No. or columns in matrix \(m
= \matrixNumCols{m}\)
\end{lstlisting} &
-No. or columns in matrix \(m = 3\)\\
+No. or columns in matrix \(m
+= \matrixNumCols{m}\)\\
\midrule
\begin{lstlisting}
-\(Element of matrix m at (3,3) =
+Element of matrix \(m\) at \((3,3) =
\matrixGetElement{m}{3}{3}\)
\end{lstlisting} &
-\(9+3i\)\\
+Element of matrix \(m\) at \((3,3) =
+ \matrixGetElement{m}{3}{3}\)\\
\midrule
\multicolumn{2}{c}{Algebraic operations on matrices}\\
\midrule
@@ -721,43 +822,44 @@
\matrixAdd{m1}{m}{p}
\(m1 = \matrixPrint{m1}\)
\end{lstlisting} &
-\(m1 = \begin{bmatrix} 2.0 & 4.0 & 6.0 \\ 8.0 & 10.0 & 12.0 \\ 14.0 & 16.0 & 18.0+3.0i\end{bmatrix}
-\)\\
+\matrixAdd{m1}{m}{p}
+\matrixAdd{m1}{m}{p}
+\(m1 = \matrixPrint{m1}\)\\
\midrule
\begin{lstlisting}
\matrixSub{m2}{m}{p}
\(m2 = \matrixPrint{m2}\)
\end{lstlisting} &
-\(m2 = \begin{bmatrix} 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 3.0i \end{bmatrix}
-\)\\
+\matrixSub{m2}{m}{p}
+\(m2 = \matrixPrint{m2}\)\\
\midrule
\begin{lstlisting}
\matrixMulNum{m3}{3}{m}
\(m3 = \matrixPrint{m3}\)
\end{lstlisting} &
-\(m3 = \begin{bmatrix} 3.0 & 6.0 & 9.0 \\ 12.0 & 15.0 & 18.0 \\ 21.0 & 24.0 & 27.0+9.0i\end{bmatrix}
-\)\\
+\matrixMulNum{m3}{3}{m}
+\(m3 = \matrixPrint{m3}\)\\
\midrule
\begin{lstlisting}
\matrixMul{m4}{m}{p}
\(m4 = \matrixPrint{m4}\)
\end{lstlisting} &
-\(m4 = \begin{bmatrix} 30.0 & 36.0 & 42.0 \\ 66.0 & 81.0 & 96.0 \\ 102.0+21.0i & 126.0+24.0i & 150.0+27.0i\end{bmatrix}
-\)\\
+\matrixMul{m4}{m}{p}
+\(m4 = \matrixPrint{m4}\)\\
\midrule
\begin{lstlisting}
\matrixPow{m5}{m}{2}
\(m5 = \matrixPrint{m5}\)
\end{lstlisting} &
-\(m5 = \begin{bmatrix} 30.0 & 36.0 & 42.0+9.0i \\ 66.0 & 81.0 & 96.0+18.0i \\ 102.0+21.0i & 126.0+24.0i & 141.0+54.0i\end{bmatrix}
-\)\\
+\matrixPow{m5}{m}{2}
+\(m5 = \matrixPrint{m5}\)\\
\midrule
\begin{lstlisting}
\matrixInvert{m6}{m}
-\(m6 = \matrixPrint[truncate=4]{m6}\)
+\(m6 = \matrixPrint[truncate=2]{m6}\)
\end{lstlisting} &
-\(m6 = \begin{bmatrix} -1.6667-0.3333i & 0.6667+0.6667i & -0.3333i \\ 1.3333+0.6667i & -0.3333-1.3333i & 0.6667i \\ -0.3333i & 0.6667i & -0.3333i\end{bmatrix}
-\)\\
+\matrixInvert{m6}{m}
+\(m6 = \matrixPrint[truncate=2]{m6}\)\\
\midrule
\begin{lstlisting}
@@ -764,26 +866,26 @@
Rank of matrix \(m =\matrixRank{m}\)
\end{lstlisting} &
-Rank of matrix \(m = 3\)\\
+Rank of matrix \(m =\matrixRank{m}\)\\
\midrule
\begin{lstlisting}
Determinant of matrix \(m =\matrixDet{m}\)
\end{lstlisting} &
-Determinant of matrix \(m = -9i\)\\
+Determinant of matrix \(m =\matrixDet{m}\)\\
\midrule
\begin{lstlisting}
\matrixTranspose{m7}{m}
\(m7 = \matrixPrint{m7}\)
\end{lstlisting} &
-\(m7 = \begin{bmatrix}1.0 & 4.0 & 7.0 \\ 2.0 & 5.0 & 8.0 \\ 3.0 & 6.0 & 9.0+3.0i\end{bmatrix}
-\)\\
+\matrixTranspose{m7}{m}
+\(m7 = \matrixPrint{m7}\)\\
\midrule
\begin{lstlisting}
\matrixSetElement{n}{3}{3}{300}
\(n= \matrixPrint{n}\)
\end{lstlisting} &
-\(n = \begin{bmatrix}1.0 & 2.0 & 3.0 \\ 4.0 & 5.0 & 6.0 \\ 7.0 & 8.0 & 300.0\end{bmatrix}
-\)\\
+\matrixSetElement{n}{3}{3}{300}
+\(n= \matrixPrint{n}\)\\
\midrule
\begin{lstlisting}
@@ -790,42 +892,42 @@
\matrixSubmatrix{m8}{m}{1}{2}{2}{3}
\(m8 = \matrixPrint{m8}\)
\end{lstlisting} &
-\(m8 = \begin{bmatrix} 2.0 & 3.0 \\ 5.0 & 6.0\end{bmatrix}
-\)\\
+\matrixSubmatrix{m8}{m}{1}{2}{2}{3}
+\(m8 = \matrixPrint{m8}\)\\
\midrule
\begin{lstlisting}
\matrixConcatH{m9}{m}{q}
\(m9= \matrixPrint{m9}\)
\end{lstlisting} &
-\(m9 = \begin{bmatrix}1.0 & 2.0 & 3.0 & 1.0 \\ 4.0 & 5.0 & 6.0 & 2.0 \\ 7.0 & 8.0 & 9.0+3.0i & 3.0\end{bmatrix}
-\)\\
+\matrixConcatH{m9}{m}{q}
+\(m9= \matrixPrint{m9}\)\\
\midrule
\begin{lstlisting}
\matrixConcatV{m10}{m}{n}
\(m10= \matrixPrint{m10}\)
\end{lstlisting} &
-\(m10= \begin{bmatrix} 1.0 & 2.0 & 3.0 \\ 4.0 & 5.0 & 6.0 \\ 7.0 & 8.0 & 9.0+3.0i \\ 1.0 & 2.0 & 3.0 \\ 4.0 & 5.0 & 6.0 \\ 7.0 & 8.0 & 300.0\end{bmatrix}
-\)\\
+\matrixConcatV{m10}{m}{n}
+\(m10= \matrixPrint{m10}\)\\
\midrule
\begin{lstlisting}
\matrixOp{m11}{m*m+2*m}
\(\matrixPrint[truncate=4]{m11}\)
\end{lstlisting} &
-\(m11 = \begin{bmatrix} 32.0 & 40.0 & 48.0+9.0i \\ 74.0 & 91.0 & 108.0+18.0i \\ 116.0+21.0i & 142.0+24.0i & 159.0+60.0i\end{bmatrix}
-\)\\
+\matrixOp{m11}{m*m+2*m}
+\(\matrixPrint[truncate=4]{m11}\)\\
\midrule
\begin{lstlisting}
\matrixCopy{m12}{m}
\(m12 = \matrixPrint{m12}\)
\end{lstlisting} &
-\(m12 = \begin{bmatrix}1.0 & 2.0 & 3.0 \\ 4.0 & 5.0 & 6.0 \\ 7.0 & 8.0 & 9.0+3.0i\end{bmatrix}
-\)\\
+\matrixCopy{m12}{m}
+\(m12 = \matrixPrint{m12}\)\\
\midrule
\begin{lstlisting}
trace of matrix \( m = \matrixTrace{m}\)
\end{lstlisting} &
-trace of matrix \( m = 15+3i\) \\
+trace of matrix \( m = \matrixTrace{m}\) \\
\midrule
\begin{lstlisting}
@@ -832,8 +934,8 @@
\matrixConjugate{mc}{m}
\(mc = \matrixPrint{mc}\)
\end{lstlisting} &
-\(mc = \begin{bmatrix} 1.0 & 2.0 & 3.0 \\ 4.0 & 5.0 & 6.0 \\ 7.0 & 8.0 & 9.0-3.0i\end{bmatrix}
-\)\\
+\matrixConjugate{mc}{m}
+\(mc = \matrixPrint{mc}\)\\
\midrule
\begin{lstlisting}
@@ -840,32 +942,32 @@
\matrixConjugateT{mct}{m}
\(mct = \matrixPrint{mct}\)
\end{lstlisting} &
-\(mct = \begin{bmatrix} 1.0 & 4.0 & 7.0 \\ 2.0 & 5.0 & 8.0 \\ 3.0 & 6.0 & 9.0-3.0i\end{bmatrix}
-\)\\
+\matrixConjugateT{mct}{m}
+\(mct = \matrixPrint{mct}\)\\
\midrule
\begin{lstlisting}
\(\matrixNormOne{m}\)
\end{lstlisting} &
- \(18.486832980505\) \\
+ \(\matrixNormOne{m}\) \\
\midrule
\begin{lstlisting}
\(\matrixNormInfty{m}\)
\end{lstlisting} &
- \(24.486832980505\) \\
+ \(\matrixNormInfty{m}\) \\
\midrule
\begin{lstlisting}
\(\matrixNormMax{m}\)
\end{lstlisting} &
- \(9.4868329805051\) \\
+\(\matrixNormMax{m}\) \\
\midrule
\begin{lstlisting}
\(\matrixNormF{m}\)
\end{lstlisting} &
-\( 17.146428199482\) \\
+ \(\matrixNormF{m}\) \\
\midrule
\multicolumn{2}{c}{Elementary row operations on matrices}\\
@@ -874,22 +976,22 @@
\matrixSwapRows{m13}{m}{2}{3}
\(m13 = \matrixPrint{m13}\)
\end{lstlisting} &
-\(m13 = \begin{bmatrix}1.0 & 2.0 & 3.0 \\ 7.0 & 8.0 & 9.0+3.0i \\ 4.0 & 5.0 & 6.0\end{bmatrix}
-\)\\
+\matrixSwapRows{m13}{m}{2}{3}
+\(m13 = \matrixPrint{m13}\)\\
\midrule
\begin{lstlisting}
\matrixMulRow{m14}{m}{3}{300}
\(m14 = \matrixPrint{m14}\)
\end{lstlisting} &
-\(m14 = \begin{bmatrix}1.0 & 2.0 & 3.0 \\ 4.0 & 5.0 & 6.0 \\ 2100.0 & 2400.0 & 2700.0+900.0i \end{bmatrix}
-\)\\
+\matrixMulRow{m14}{m}{3}{300}
+\(m14 = \matrixPrint{m14}\)\\
\midrule
\begin{lstlisting}
\matrixMulAddRow{m15}{m}{2}{10}{3}
\(m15 = \matrixPrint{m15}\)
\end{lstlisting} &
-\(m15 = \begin{bmatrix}1.0 & 2.0 & 3.0 \\ 4.0 & 5.0 & 6.0 \\ 47.0 & 58.0 & 69.0+3.0i\end{bmatrix}
-\)\\
+\matrixMulAddRow{m15}{m}{2}{10}{3}
+\(m15 = \matrixPrint{m15}\)\\
\midrule
\multicolumn{2}{c}{Elementary column operations on matrices}\\
\midrule
@@ -897,15 +999,15 @@
\matrixSwapCols{m16}{m}{2}{3}
\(m16 = \matrixPrint{m16}\)
\end{lstlisting} &
-\(m16 = \begin{bmatrix}1.0 & 3.0 & 2.0 \\ 4.0 & 6.0 & 5.0 \\ 7.0 & 9.0+3.0i & 8.0\end{bmatrix}
-\)\\
+\matrixSwapCols{m16}{m}{2}{3}
+\(m16 = \matrixPrint{m16}\)\\
\midrule
\begin{lstlisting}
\matrixMulCol{m17}{m}{3}{300}
\(m17 = \matrixPrint{m17}\)
\end{lstlisting} &
-\(m17 = \begin{bmatrix} 1.0 & 2.0 & 900.0 \\ 4.0 & 5.0 & 1800.0 \\ 7.0 & 8.0 & 2700.0+900.0i \end{bmatrix}
-\)\\
+\matrixMulCol{m17}{m}{3}{300}
+\(m17 = \matrixPrint{m17}\)\\
\midrule
\begin{lstlisting}
@@ -912,8 +1014,8 @@
\matrixMulAddCol{m18}{m}{2}{10}{3}
\(m18 = \matrixPrint{m18}\)
\end{lstlisting} &
-\(m18 = \begin{bmatrix}1.0 & 2.0 & 23.0 \\ 4.0 & 5.0 & 56.0 \\ 7.0 & 8.0 & 89.0+3.0i\end{bmatrix}
-\)\\
+\matrixMulAddCol{m18}{m}{2}{10}{3}
+\(m18 = \matrixPrint{m18}\)\\
\midrule
\multicolumn{2}{c}{Reduced row echelon form of a matrix}\\
@@ -922,27 +1024,27 @@
\matrixRREF{m19}{p}
\(m19 = \matrixPrint{m19}\)
\end{lstlisting} &
-\(m19 = \begin{bmatrix}1.0 & 0.0 & -1.0 \\ 0.0 & 1.0 & 2.0 \\ 0.0 & 0.0 & 0.0\end{bmatrix}
-\)\\
+\matrixRREF{m19}{p}
+\(m19 = \matrixPrint{m19}\)\\
\midrule
\begin{lstlisting}
\matrixRREF{m20}{m}
\(m20 = \matrixPrint{m20}\)
\end{lstlisting} &
-\(m20 = \begin{bmatrix} 1.0 & 0.0 & 0.0 \\ 0.0 & 1.0 & 0.0 \\ 0.0 & 0.0 & 1.0\end{bmatrix}
-\)\\
+\matrixRREF{m20}{m}
+\(m20 = \matrixPrint{m20}\)\\
\bottomrule \\
\caption{Illustration of commands for operations on matrices}
\label{tbl:illluamatrix}
\end{longtable}
\end{center}
-
-The package has command \verb|\matrixRREFSteps| to produce step-by-step computation of reduced row echelon form of a matrix. The command \verb|\matrixRREFSteps{p}| outputs the following.
-\begin{framed}Step 1:Multiply row 1 by 4.0 and subtract it from row 2.$$\begin{bmatrix} 1.0 & 2.0 & 3.0 \\ 0.0 & -3.0 & -6.0 \\ 7.0 & 8.0 & 9.0 \\ \end{bmatrix} $$Step 2:Multiply row 1 by 7.0 and subtract it from row 3.$$\begin{bmatrix} 1.0 & 2.0 & 3.0 \\ 0.0 & -3.0 & -6.0 \\ 0.0 & -6.0 & -12.0 \\ \end{bmatrix} $$Step 3:Divide row 2 by -3.0.$$\begin{bmatrix} 1.0 & 2.0 & 3.0 \\ 0.0 & 1.0 & 2.0 \\ 0.0 & -6.0 & -12.0 \\ \end{bmatrix} $$Step 4:Multiply row 2 by 2.0 and subtract it from row 1.$$\begin{bmatrix} 1.0 & 0.0 & -1.0 \\ 0.0 & 1.0 & 2.0 \\ 0.0 & -6.0 & -12.0 \\ \end{bmatrix} $$Step 5:Multiply row 2 by -6.0 and subtract it from row 3.$$\begin{bmatrix} 1.0 & 0.0 & -1.0 \\ 0.0 & 1.0 & 2.0 \\ 0.0 & 0.0 & 0.0 \\ \end{bmatrix} $$
+The package has command \verb|\matrixRREFSteps| to produce step-by-step computation of reduced row echelon form of a matrix. The command \verb|\matrixRREFSteps{r}| outputs the following.
+\renewcommand*{\arraystretch}{1.5}
+\begin{framed}
+ \matrixRREFSteps{r}
\end{framed}
-
+\renewcommand*{\arraystretch}{1.0}
The command \verb|\matrixGaussJordan| is used to obtain Gauss-Jordan elimination of an augmented matrix.
-
\begin{lstlisting}
\def\a{{{1,1,1},{2,-1,-1},{1,-1,1}}}
\def\b{{{3},{3},{9}}}
@@ -953,20 +1055,21 @@
\matrixGaussJordan{U}{S}{T}
$$U = \matrixPrint{U}$$
\end{lstlisting}
-
The above code produces the following output.
+\def\a{{{1,1,1},{2,-1,-1},{1,-1,1}}}
+\def\b{{{3},{3},{9}}}
+\matrixNew{S}{\a}
+\matrixNew{T}{\b}
+\matrixConcatH{W}{S}{T}
\begin{framed}
-$$W =\begin{bmatrix} 1.0 & 1.0 & 1.0 & 3.0 \\ 2.0 & -1.0 & -1.0 & 3.0 \\ 1.0 & -1.0 & 1.0 & 9.0 \\ \end{bmatrix} $$
-$$U = \begin{bmatrix} 1.0 & 0.0 & 0.0 & 2.0 \\ 0.0 & 1.0 & 0.0 & -3.0 \\ 0.0 & 0.0 & 1.0 & 4.0 \\ \end{bmatrix}$$
+$$W = \matrixPrint{W}$$
+\matrixGaussJordan{U}{S}{T}
+$$U = \matrixPrint{U}$$
\end{framed}
-
The package also has a command \verb|\matrixGaussJordanSteps| to produce step-by-step computation of Gauss-Jordan elimination of an augmented matrix. The command \verb|\matrixGaussJordanSteps{S}{T}| produces the following output.
-
\begin{framed}
-$$W =\begin{bmatrix} 1.0 & 1.0 & 1.0 & 3.0 \\ 2.0 & -1.0 & -1.0 & 3.0 \\ 1.0 & -1.0 & 1.0 & 9.0 \\ \end{bmatrix} $$
-Step 1:Multiply row 1 by 2.0 and subtract it from row 2.$$\begin{bmatrix} 1.0 & 1.0 & 1.0 & 3.0 \\ 0.0 & -3.0 & -3.0 & -3.0 \\ 1.0 & -1.0 & 1.0 & 9.0 \\ \end{bmatrix} $$Step 2:Multiply row 1 by 1.0 and subtract it from row 3.$$\begin{bmatrix} 1.0 & 1.0 & 1.0 & 3.0 \\ 0.0 & -3.0 & -3.0 & -3.0 \\ 0.0 & -2.0 & 0.0 & 6.0 \\ \end{bmatrix} $$Step 3:Divide row 2 by -3.0.$$\begin{bmatrix} 1.0 & 1.0 & 1.0 & 3.0 \\ 0.0 & 1.0 & 1.0 & 1.0 \\ 0.0 & -2.0 & 0.0 & 6.0 \\ \end{bmatrix} $$Step 4:Multiply row 2 by 1.0 and subtract it from row 1.$$\begin{bmatrix} 1.0 & 0.0 & 0.0 & 2.0 \\ 0.0 & 1.0 & 1.0 & 1.0 \\ 0.0 & -2.0 & 0.0 & 6.0 \\ \end{bmatrix} $$Step 5:Multiply row 2 by -2.0 and subtract it from row 3.$$\begin{bmatrix} 1.0 & 0.0 & 0.0 & 2.0 \\ 0.0 & 1.0 & 1.0 & 1.0 \\ 0.0 & 0.0 & 2.0 & 8.0 \\ \end{bmatrix} $$Step 6:Divide row 3 by 2.0.$$\begin{bmatrix} 1.0 & 0.0 & 0.0 & 2.0 \\ 0.0 & 1.0 & 1.0 & 1.0 \\ 0.0 & 0.0 & 1.0 & 4.0 \\ \end{bmatrix} $$Step 7:Multiply row 3 by 1.0 and subtract it from row 2.$$\begin{bmatrix} 1.0 & 0.0 & 0.0 & 2.0 \\ 0.0 & 1.0 & 0.0 & -3.0 \\ 0.0 & 0.0 & 1.0 & 4.0 \\ \end{bmatrix} $$
+\matrixGaussJordanSteps{S}{T}
\end{framed}
-
\section{Customized usage}\label{customuse}
The commands available in the package can be used for performing further operations on vectors and matrices. The command \verb|\vectorAdd| can be extended to add more than two vectors. The latex document (listing \ref{code:custluavec}) provides some instances of such usage.
\begin{lstlisting}[label={code:custluavec}, caption={Customized usage of the lualinalg package}]
@@ -973,7 +1076,7 @@
\documentclass{article}
\usepackage{lualinalg}
\begin{document}
-\begin{luacode}
+\begin{luacode*}
function sumcoordinates(v1)
local sum = 0
for i = 1,#v1 do
@@ -990,10 +1093,10 @@
end
return s
end
-\end{luacode}
-\vectorNew{v}{{1,2,complex('3+3i')}}
+\end{luacode*}
+\vectorNew{v}{{1,2,lcomplex(3,3)}}
The sum of coordinates of vector
- \(v = \directlua{tex.sprint(tostring( sumcoordinates(v)))}\).
+ \(v = \directlua{tex.sprint(tostring( sumcoordinates(vectors['v'])))}\).
\newcommand\vectorAddmulti[2]{%
\directlua{%
@@ -1000,22 +1103,18 @@
vectors['#1'] = vector.addmulti(#2)
}%
}
-
-\vectorNew{w}{{3,6,complex('6+6i')}}
-\vectorNew{x}{{9,12,complex('12+12i')}}
-\vectorAddmulti{y}{v,w,x}
+\vectorNew{w}{{3,6,lcomplex(6,6)}}
+\vectorNew{x}{{9,12,lcomplex(12,12)}}
+\vectorAddmulti{y}{vectors['v'],vectors['w'],vectors['x']}
The sum of vectors \(v,w \text{ and } x =\left( \vectorPrint{y} \right)\).
\end{document}
\end{lstlisting}
-
The latex document (listing \ref{code:custluavec}) outputs the following on compilation.
\begin{framed}
-The sum of coordinates of vector \(v = 6 + 3i\).
+The sum of coordinates of vector \(v = 6 + 3\mathrm{i}\).
-The sum of vectors \(v,w \text{ and } x = \left(13.0, 20.0, 21.0 + 21.0i \right) \).
+The sum of vectors \(v,w \text{ and } x = \left(13, 20, 21 + 21\mathrm{i} \right) \).
\end{framed}
-
-
The command \verb|\matrixAdd| can be extended to add more than two matrices. The latex document (listing \ref{code:custluamtx}) provides some instances of such usage.
\begin{lstlisting}[label={code:custluamtx}, caption={Customized usage of the lualinalg package}]
@@ -1031,7 +1130,7 @@
if i == j then sum = sum + (m1[i][j])^2 end
end
end
-return sum
+return complex.round(sum)
end
function matrix.addmulti(...)
@@ -1044,14 +1143,14 @@
end
\end{luacode}
-\def\r{{{1,2,3},{4,5,6},{7,8,complex('9+3i')}}}
+\def\r{{{1,2,3},{4,5,6},{7,8,lcomplex(9,3)}}}
\matrixNew{m}{\r}
The sum of squares of diagonal entries of matrix
- \(m = \directlua{tex.sprint(tostring(squareDiagEntries(m)))}\).
+ \(m = \directlua{tex.sprint(tostring(squareDiagEntries(matrices['m'])))}\).
-\def\s{{{1,2,3},{4,5,complex('6+6i')}}}
-\def\t{{{10,20,30},{40,50,complex('60+60i')}}}
-\def\u{{{100,200,300},{400,500,complex('600+600i')}}}
+\def\s{{{1,2,3},{4,5,lcomplex(6,6)}}}
+\def\t{{{10,20,30},{40,50,lcomplex(60,60)}}}
+\def\u{{{100,200,300},{400,500,lcomplex(600,600)}}}
\matrixNew{m1}{\s}
\matrixNew{m2}{\t}
\matrixNew{m3}{\u}
@@ -1060,7 +1159,7 @@
matrices['#1'] = matrix.addmulti(#2)
}%
}
-\matrixAddmulti{m4}{m1,m2,m3}
+\matrixAddmulti{m4}{matrices['m1'],matrices['m2'],matrices['m3']}
The sum of matrices \(m1,m2 \text{ and } m3 = \matrixPrint{m4}\).
\end{document}
\end{lstlisting}
@@ -1067,11 +1166,10 @@
The latex document (listing \ref{code:custluamtx}) outputs the following on compilation.
\begin{framed}
-The sum of squares of diagonal entries of matrix \(m = 98.0 + 54i\).
+The sum of squares of diagonal entries of matrix \(m = 98 + 54\mathrm{i}\).
-The sum of matrices \(m1,m2 \text{ and } m3 =\begin{bmatrix} 111.0 & 222.0 & 333.0 \\ 444.0 & 555.0 & 666.0+666.0i \end{bmatrix} \).
+The sum of matrices \(m1,m2 \text{ and } m3 =\begin{bmatrix} 111 & 222 & 333 \\ 444 & 555 & 666+666\mathrm{i} \end{bmatrix} \).
\end{framed}
-
\section{Known issues and limitations}
\begin{itemize}
\item The package supports small and big numbers. They can be input in the usual scientific notation. The math library in Lua defines constants with the maximum \verb|math.maxinteger| and the minimum \verb|math.mininteger| values for an integer. The result wraps around when there is a computational operation on integers that would result in a value smaller than the \verb|mininteger| or larger than the \verb|maxinteger|. It means that the computed result is the only number between the \verb|miniinteger| and \verb|maxinteger|.
Added: trunk/Master/texmf-dist/tex/lualatex/lualinalg/lualinalg-complex.lua
===================================================================
--- trunk/Master/texmf-dist/tex/lualatex/lualinalg/lualinalg-complex.lua (rev 0)
+++ trunk/Master/texmf-dist/tex/lualatex/lualinalg/lualinalg-complex.lua 2023-08-03 19:59:09 UTC (rev 67805)
@@ -0,0 +1,347 @@
+--Version=1.3, Date=30-July-2023
+-- provides module for complex numbers
+--Contains a modified version of the file complex.lua. It is availalbe on the link https://github.com/davidm/lua-matrix/blob/master/lua/complex.lua. This is licensed under the same terms as Lua itself. This license allows to freely copy, modify and distribute the file for any purpose and without any restrictions.
+--Licensed under the same terms as Lua itself. This license allows to freely copy, modify and distribute the file for any purpose and without any restrictions.
+
+frac= require("luamaths-fractions")
+complex = {}
+complex_meta = {}
+
+local function parse_scalar(s, pos0)
+ local x, n, pos = s:match('^([+-]?[%d%.]+)(.?)()', pos0)
+ if not x then return end
+ if n == 'e' or n == 'E' then
+ local x2, n2, pos2 = s:match('^([+-]?%d+)(.?)()', pos)
+ if not x2 then error 'number format error' end
+ x = tonumber(x..n..x2)
+ if not x then error 'number format error' end
+ return x, n2, pos2
+ else
+ x = tonumber(x)
+ if not x then error 'number format error' end
+ return x, n, pos
+ end
+end
+local function parse_component(s, pos0)
+ local x, n, pos = parse_scalar(s, pos0)
+ if not x then
+ local x2, n2, pos2 = s:match('^([+-]?)(i)()$', pos0)
+ if not x2 then error 'number format error' end
+ return (x2=='-' and -1 or 1), n2, pos2
+ end
+ if n == '/' then
+ local x2, n2, pos2 = parse_scalar(s, pos)
+ x = x / x2
+ return x, n2, pos2
+ end
+ return x, n, pos
+end
+local function parse_complex(s)
+ local x, n, pos = parse_component(s, 1)
+ if n == '+' or n == '-' then
+ local x2, n2, pos2 = parse_component(s, pos)
+ if n2 ~= 'i' or pos2 ~= #s+1 then error 'number format error' end
+ if n == '-' then x2 = - x2 end
+ return x, x2
+ elseif n == '' then
+ return x, 0
+ elseif n == 'i' then
+ if pos ~= #s+1 then error 'number format error' end
+ return 0, x
+ else
+ error 'number format error'
+ end
+end
+
+function complex.to( num )
+ -- check for table type
+ if type( num ) == "table" then
+ -- check for a complex number
+ if getmetatable( num ) == complex_meta then
+ return num
+ end
+
+ if getmetatable( num) == frac_mt then
+ return setmetatable( { num, 0 }, complex_meta )
+ end
+
+ local real,imag = tonumber( num[1] ),tonumber( num[2] )
+ if real and imag then
+ return setmetatable( { real,imag }, complex_meta )
+ end
+ return
+ end
+ local isnum = tonumber( num )
+ if isnum then
+ return setmetatable( { isnum,0 }, complex_meta )
+ end
+ if type( num ) == "string" then
+ local real, imag = parse_complex(num)
+ return setmetatable( { real, imag }, complex_meta )
+ end
+end
+
+setmetatable( complex, { __call = function( _,num ) return complex.to( num ) end } )
+
+function complex.new( x,y)
+ return setmetatable( {x,y}, complex_meta )
+end
+
+lcomplex = complex.new
+function complex.type( arg )
+ if getmetatable( arg ) == complex_meta then
+ return "complex"
+ end
+end
+
+function complex.convpolar( radius, phi )
+ return setmetatable( { radius * math.cos( phi ), radius * math.sin( phi ) }, complex_meta )
+end
+
+function complex.convpolardeg( radius, phi )
+ phi = phi/180 * math.pi
+ return setmetatable( { radius * math.cos( phi ), radius * math.sin( phi ) }, complex_meta )
+end
+
+function complex.tostring( cx,formatstr )
+ imunit = "\\imUnit"
+ local real,imag = cx[1],cx[2]
+ if type(cx[1]) ~= "table" and type(cx[2]) ~= "table" then
+ if imag == 0 then
+ return real
+ elseif real == 0 then
+ return ((imag==1 and "") or (imag==-1 and "-") or imag)..imunit
+ elseif imag > 0 then
+ return real.."+"..(imag==1 and "" or imag)..imunit
+ end
+ return real..(imag==-1 and "-" or imag)..imunit
+ end
+
+ if type(cx[1]) == "table" and type(cx[2]) ~= "table" then
+ if cx[2] == 0 then
+ return frac.tostring(cx[1])
+ end
+ if cx[2] > 0 then
+ return frac.tostring(cx[1]).. "+"..(imag==1 and "" or imag)..imunit
+ end
+ if cx[2] < 0 then
+ return frac.tostring(cx[1])..(imag==-1 and "-" or imag)..imunit
+ end
+
+ end
+
+ if type(cx[1]) ~= "table" and type(cx[2]) == "table" then
+ if frac.toFnumber(cx[2])==0 then return cx[1] end
+ return cx[1].."+"..frac.tostring(cx[2])..imunit
+ end
+
+ if type(cx[1]) == "table" and type(cx[2]) == "table" then
+ if frac.toFnumber(cx[1]) == 0 and frac.toFnumber(cx[2]) ~= 0 then
+ return frac.tostring(cx[2])..imunit
+ end
+
+ if frac.toFnumber(cx[2]) == 0 then
+ return frac.tostring(cx[1] + 0)
+ end
+
+ if cx[2].d == 1 then
+ if cx[2].n > 0 then
+ return frac.tostring(cx[1]).. "+"..(cx[2].n==1 and "" or math.floor(cx[2].n))..imunit
+ end
+ if cx[2].n < 0 then
+ return frac.tostring(cx[1])..(cx[2].n==-1 and "-" or math.floor(cx[2].n))..imunit
+ end
+ end
+ end
+ return frac.tostring(cx[1]).. "+"..frac.tostring(cx[2])..imunit
+end
+
+function complex.print( ... )
+ print( complex.tostring( ... ) )
+end
+
+function complex.polar( cx )
+ return math.sqrt( cx[1]^2 + cx[2]^2 ), math.atan2( cx[2], cx[1] )
+end
+
+function complex.polardeg( cx )
+ return math.sqrt( cx[1]^2 + cx[2]^2 ), math.atan2( cx[2], cx[1] ) / math.pi * 180
+end
+
+function complex.norm2( cx )
+ return cx[1]^2 + cx[2]^2
+end
+
+function complex.abs( cx )
+ return math.sqrt( cx[1]^2 + cx[2]^2 )
+end
+
+function complex.get( cx )
+ return cx[1],cx[2]
+end
+
+function complex.set( cx,real,imag )
+ cx[1],cx[2] = real,imag
+end
+
+function complex.is( cx,real,imag )
+ if cx[1] == real and cx[2] == imag then
+ return true
+ end
+ return false
+end
+
+function complex.copy( cx )
+ return setmetatable( { cx[1],cx[2] }, complex_meta )
+end
+
+function complex.add( cx1,cx2 )
+ return setmetatable( { cx1[1]+cx2[1], cx1[2]+cx2[2] }, complex_meta )
+end
+
+function complex.sub( cx1,cx2 )
+ return setmetatable( { cx1[1]-cx2[1], cx1[2]-cx2[2] }, complex_meta )
+end
+
+function complex.mul( cx1,cx2 )
+ return setmetatable( { cx1[1]*cx2[1] - cx1[2]*cx2[2],cx1[1]*cx2[2] + cx1[2]*cx2[1] }, complex_meta )
+end
+
+function complex.mulnum( cx,num )
+ return setmetatable( { cx[1]*num,cx[2]*num }, complex_meta )
+end
+
+function complex.div( cx1,cx2 )
+ local val = cx2[1]*cx2[1] + cx2[2]*cx2[2]
+ return setmetatable( { (cx1[1]*cx2[1]+cx1[2]*cx2[2])/val,(cx1[2]*cx2[1]-cx1[1]*cx2[2])/val }, complex_meta )
+end
+
+function complex.divnum( cx,num )
+ return setmetatable( { cx[1]/num,cx[2]/num }, complex_meta )
+end
+
+function complex.pow( cx,num )
+ if math.floor( num ) == num then
+ if num < 0 then
+ local val = cx[1]^2 + cx[2]^2
+ cx = { cx[1]/val,-cx[2]/val }
+ num = -num
+ end
+ local real,imag = cx[1],cx[2]
+ for i = 2,num do
+ real,imag = real*cx[1] - imag*cx[2],real*cx[2] + imag*cx[1]
+ end
+ return setmetatable( { real,imag }, complex_meta )
+ end
+ local length,phi = math.sqrt( cx[1]^2 + cx[2]^2 )^num, math.atan2( cx[2], cx[1] )*num
+ return setmetatable( { length * math.cos( phi ), length * math.sin( phi ) }, complex_meta )
+end
+
+function complex.sqrt( cx )
+ local h
+ local k
+
+ if type(cx[1]) ~= "table" then h = cx[1] end
+ if type(cx[2]) ~= "table" then k = cx[2] end
+
+ if type(cx[1]) == "table" then h = frac.toFnumber(cx[1]) end
+ if type(cx[2]) == "table" then k = frac.toFnumber(cx[2]) end
+ local len = math.sqrt( h^2 + k^2 )
+ local sign = ( h<0 and -1) or 1
+ return setmetatable( { math.sqrt((h +len)/2), sign*math.sqrt((len-h)/2) }, complex_meta )
+end
+
+function complex.ln( cx )
+ return setmetatable( { math.log(math.sqrt( cx[1]^2 + cx[2]^2 )),
+ math.atan2( cx[2], cx[1] ) }, complex_meta )
+end
+
+function complex.exp( cx )
+ local expreal = math.exp(cx[1])
+ return setmetatable( { expreal*math.cos(cx[2]), expreal*math.sin(cx[2]) }, complex_meta )
+end
+
+function complex.conjugate( cx )
+ return setmetatable( { cx[1], -cx[2] }, complex_meta )
+end
+
+function Xround(num, numDecimalPlaces)
+ if type(num)=="number" then
+ if num==math.floor(num) then
+ return math.floor(num)
+ end
+ end
+ if type(num)=="number" then
+ local mult = 10^(numDecimalPlaces or 0)
+ return math.floor(num * mult + 0.5) / mult
+ end
+ return num
+end
+
+function complex.round( cx,idp )
+ local mult =10^( idp or 0 )
+ if type(cx[1]) ~= "table" and type(cx[2]) ~= "table" then
+ return setmetatable( {Xround(cx[1],idp), Xround(cx[2],idp)}, complex_meta )
+ end
+ if type(cx[1]) ~= "table" and type(cx[2]) == "table" then
+ return setmetatable( {Xround(cx[1],idp), cx[2]}, complex_meta )
+ end
+ if type(cx[1]) == "table" and type(cx[2]) ~= "table" then
+ return setmetatable({cx[1],Xround(cx[2],idp)}, complex_meta )
+ end
+ if type(cx[1]) == "table" and type(cx[2]) == "table" then
+ return setmetatable({cx[1],cx[2]}, complex_meta )
+ end
+end
+
+complex.zero = complex.new(0, 0)
+complex.one = complex.new(1, 0)
+
+complex_meta.__add = function( cx1,cx2 )
+local cx1,cx2 = complex.to( cx1 ),complex.to( cx2 )
+return complex.add( cx1,cx2 )
+end
+complex_meta.__sub = function( cx1,cx2 )
+local cx1,cx2 = complex.to( cx1 ),complex.to( cx2 )
+return complex.sub( cx1,cx2 )
+end
+complex_meta.__mul = function( cx1,cx2 )
+local cx1,cx2 = complex.to( cx1 ),complex.to( cx2 )
+return complex.mul( cx1,cx2 )
+end
+complex_meta.__div = function( cx1,cx2 )
+local cx1,cx2 = complex.to( cx1 ),complex.to( cx2 )
+return complex.div( cx1,cx2 )
+end
+complex_meta.__pow = function( cx,num )
+if num == "*" then
+return complex.conjugate( cx )
+end
+return complex.pow( cx,num )
+end
+complex_meta.__unm = function( cx )
+return setmetatable( { -cx[1], -cx[2] }, complex_meta )
+end
+complex_meta.__eq = function( cx1,cx2 )
+if cx1[1] == cx2[1] and cx1[2] == cx2[2] then
+return true
+end
+return false
+end
+complex_meta.__tostring = function( cx )
+return tostring( complex.tostring( cx ) )
+end
+complex_meta.__concat = function( cx,cx2 )
+return tostring(cx)..tostring(cx2)
+end
+-- cx( cx, formatstr )
+complex_meta.__call = function( ... )
+print( complex.tostring( ... ) )
+end
+complex_meta.__index = {}
+for k,v in pairs( complex ) do
+complex_meta.__index[k] = v
+end
+
+return complex
+
Property changes on: trunk/Master/texmf-dist/tex/lualatex/lualinalg/lualinalg-complex.lua
___________________________________________________________________
Added: svn:eol-style
## -0,0 +1 ##
+native
\ No newline at end of property
Added: trunk/Master/texmf-dist/tex/lualatex/lualinalg/lualinalg-fractions.lua
===================================================================
--- trunk/Master/texmf-dist/tex/lualatex/lualinalg/lualinalg-fractions.lua (rev 0)
+++ trunk/Master/texmf-dist/tex/lualatex/lualinalg/lualinalg-fractions.lua 2023-08-03 19:59:09 UTC (rev 67805)
@@ -0,0 +1,225 @@
+-- The luafractions module
+-- Authors: Chetan Shirore and Ajit Kumar
+-- version 1.0, Date=03-Aug-2023
+-- Licensed under LaTeX Project Public License v1.3c or later. The complete license text is available at http://www.latex-project.org/lppl.txt.
+
+M = {} -- the module
+frac_mt = {} -- the metatable
+function M.new (n, d, mode)
+ mode = mode or 'fracs'
+ if mode == 'nofracs' then
+ return (n/d)
+ end
+ if mode == 'fracs' then
+ if n~=math.floor(n) or d~=math.floor(d) then
+ error('Only integers are expected.')
+ end
+ if d == 0 then
+ error('Invalid fraction')
+ end
+ local fr = {}
+ local g = M.lgcd(n,d)
+ fr = {n=n/g, d=d/g}
+ return setmetatable(fr,frac_mt)
+ end
+end
+lfrac = M.new
+
+function M.lgcd (a, b)
+ local r
+ while (b ~= 0) do
+ r = a % b
+ a = b
+ b = r
+ end
+ return a
+end
+
+function M.simp (num)
+ local cf = gcd(num[1], num[2])
+ return M.new(num[1] / cf, num2[2] / cf)
+end
+
+function M.toFnumber(c)
+ return c.n / c.d
+end
+
+function M.toFrac(x)
+ if type(x) == "number" then
+ if x==math.floor(x) then
+ return M.new(math.floor(x),1)
+ else
+ return x
+ end
+ end
+ return x
+end
+
+
+function addFracs (c1, c2)
+ return M.new(c1.n * c2.d + c1.d * c2.n, c1.d*c2.d)
+end
+
+function subFracs (c1, c2)
+ return M.new(c1.n * c2.d - c1.d * c2.n, c1.d*c2.d)
+end
+
+function mulFracs (c1, c2)
+ return M.new(c1.n * c2.n, c1.d*c2.d)
+end
+
+function divFracs (c1, c2)
+ return M.new(c1.n * c2.d, c1.d*c2.n)
+end
+
+function minusFracs (c1)
+ return M.new(-c1.n,c1.d)
+end
+
+function powerFracs (c1,m)
+ return M.new((c1.n)^m,(c1.d)^m)
+end
+
+
+function M.add(a, b)
+ if type(a) == "number" then
+ if a==math.floor(a) then
+ return addFracs(M.new(a,1),b)
+ else
+ return a + M.toFnumber(b)
+ end
+ end
+
+ if type(b) == "number" then
+ if b==math.floor(b) then
+ return addFracs(a,M.new(b,1))
+ else
+ return M.toFnumber(a) + b
+ end
+ end
+
+ if type( a ) == "table" and type(b) =="table" then
+ if getmetatable( a ) == frac_mt and getmetatable( b ) == complex_meta then
+ return setmetatable( { a+b[1], b[2] }, complex_meta )
+ end
+ end
+
+ if type( a ) == "table" and type(b) =="table" then
+ if getmetatable( b ) == frac_mt and getmetatable( a ) == complex_meta then
+ return setmetatable( { b+a[1], a[2] }, complex_meta )
+ end
+ end
+ return addFracs(a, b)
+end
+
+
+function M.sub(a, b)
+ if type(a) == "number" then
+ if a==math.floor(a) then
+ return subFracs(M.new(a,1),b)
+ else
+ return a - M.toFnumber(b)
+ end
+ end
+
+ if type(b) == "number" then
+ if b==math.floor(b) then
+ return subFracs(a,M.new(b,1))
+ else
+ return M.toFnumber(a) - b
+ end
+ end
+
+ if type( a ) == "table" and type(b) =="table" then
+ if getmetatable( a ) == frac_mt and getmetatable( b ) == complex_meta then
+ return setmetatable( { a-b[1], b[2] }, complex_meta )
+ end
+ end
+
+ if type( a ) == "table" and type(b) =="table" then
+ if getmetatable( b ) == frac_mt and getmetatable( a ) == complex_meta then
+ return setmetatable( { a[1]-b, a[2] }, complex_meta )
+ end
+ end
+ return subFracs(a, b)
+end
+
+
+function M.mul(a, b)
+ if type(a) == "number" then
+ if a==math.floor(a) then
+ return mulFracs(M.new(a,1),b)
+ else
+ return a * M.toFnumber(b)
+ end
+ end
+
+ if type(b) == "number" then
+ if b==math.floor(b) then
+ return mulFracs(a,M.new(b,1))
+ else
+ return M.toFnumber(a) * b
+ end
+ end
+
+ if type( a ) == "table" and type(b) =="table" then
+ if getmetatable( a ) == frac_mt and getmetatable( b ) == complex_meta then
+ return setmetatable( { a*b[1], a*b[2] }, complex_meta )
+ end
+ end
+
+ if type( a ) == "table" and type(b) =="table" then
+ if getmetatable( b ) == frac_mt and getmetatable( a ) == complex_meta then
+ return setmetatable( { b*a[1], b*a[2] }, complex_meta )
+ end
+ end
+ return mulFracs(a, b)
+end
+
+
+function M.div(a, b)
+ if type(a) == "number" then
+ if a==math.floor(a) then
+ return divFracs(M.new(a,1),b)
+ else
+ return a / M.toFnumber(b)
+ end
+ end
+
+ if type(b) == "number" then
+ if b==math.floor(b) then
+ return divFracs(a,M.new(b,1))
+ else
+ return M.toFnumber(a) / b
+ end
+ end
+
+ if type( a ) == "table" and type(b) =="table" then
+ if getmetatable( a ) == frac_mt and getmetatable( b ) == complex_meta then
+ b= setmetatable( { M.toFrac(b[1]), M.toFrac(b[2]) }, complex_meta )
+ return a*(1/b)
+ end
+ end
+ return divFracs(a, b)
+end
+
+function M.tostring (c)
+ if c.d == 1 then
+ return string.format("%g",c.n)
+ end
+ if c.d == -1 then
+ return string.format("%g",-c.n)
+ end
+ return string.format("\\frac{%g}{%g}", c.n, c.d)
+end
+
+--Setting Metatable operations.
+frac_mt.__add = M.add
+frac_mt.__sub = M.sub
+frac_mt.__mul = M.mul
+frac_mt.__div = M.div
+frac_mt.__unm = minusFracs
+frac_mt.__pow = powerFracs
+frac_mt.__tostring = M.tostring
+
+return M
\ No newline at end of file
Property changes on: trunk/Master/texmf-dist/tex/lualatex/lualinalg/lualinalg-fractions.lua
___________________________________________________________________
Added: svn:eol-style
## -0,0 +1 ##
+native
\ No newline at end of property
Modified: trunk/Master/texmf-dist/tex/lualatex/lualinalg/lualinalg.sty
===================================================================
--- trunk/Master/texmf-dist/tex/lualatex/lualinalg/lualinalg.sty 2023-08-03 19:58:43 UTC (rev 67804)
+++ trunk/Master/texmf-dist/tex/lualatex/lualinalg/lualinalg.sty 2023-08-03 19:59:09 UTC (rev 67805)
@@ -1,17 +1,18 @@
% The lualinalg package
% Authors: Chetan Shirore and Ajit Kumar
-% version 1.2, Date=14-Feb-2023
+% version 1.3, Date=03-Aug-2023
% Licensed under LaTeX Project Public License v1.3c or later. The complete license text is available at http://www.latex-project.org/lppl.txt.
-\ProvidesPackage{lualinalg}[1.2]
+\ProvidesPackage{lualinalg}[1.3]
\RequirePackage{xkeyval}
\RequirePackage{amsmath}
\RequirePackage{luamaths}
\RequirePackage{luacode}
\begin{luacode*}
-local complex = require "lualinalg_complex"
+local complex = require "lualinalg-complex"
+ local lfrac = require "lualinalg-fractions"
-- matrices part
matrices = {}
@@ -431,7 +432,7 @@
function matrix.process(m1)
--m1=load("return "..m1)()
- return matrix.mulnum(m1, 1.0)
+ return matrix.mulnum(m1, 1)
end
function matrix.det(m1)
@@ -558,7 +559,7 @@
local m = mtx[i][lead]
if (i ~= r) then
for v = 1, columnCount do
- mtx[i][v] = mtx[i][v] - m * mtx[r][v]
+ mtx[i][v] = mtx[i][v] + ((-m) * (mtx[r][v]))
end
end
end
@@ -623,9 +624,9 @@
tostring(stepCnt) ..
": Divide row " ..
tostring(r) ..
- " by " ..
+ " by $" ..
tostring(complex.round(complex(m), dignum)) ..
- ".$$" .. tostring(matrix.show(mtx, fom, dignum)) .. "$$"
+ "$.$$" .. tostring(matrix.show(mtx, fom, dignum)) .. "$$"
end
end
end
@@ -633,7 +634,7 @@
local m = mtx[i][lead]
if (i ~= r) then
for v = 1, columnCount do
- mtx[i][v] = mtx[i][v] - m * mtx[r][v]
+ mtx[i][v] = mtx[i][v] + ((-m) * (mtx[r][v]))
end
if m ~= 0 then
if m ~= complex("0.0") then
@@ -644,9 +645,9 @@
tostring(stepCnt) ..
": Multiply row " ..
tostring(r) ..
- " by " ..
+ " by $" ..
tostring(complex.round(complex(m), dignum)) ..
- " and subtract it from row " ..
+ "$ and subtract it from row " ..
tostring(i) ..
".$$" .. tostring(matrix.show(mtx, fom, dignum)) .. "$$"
end
@@ -1089,7 +1090,7 @@
function vector.process(v1)
--v1=load("return "..v1)()
- return vector.mulnum(v1, 1.0)
+ return vector.mulnum(v1, 1)
end
function vector.show(vec, dig)
@@ -1137,7 +1138,7 @@
if vector.euclidnorm(inptTbl[1]) ~= complex(0.0) then
tbl[1] = vector.mulnum(inptTbl[1], 1 / vector.euclidnorm(inptTbl[1]))
else
- tbl[1] = vector.mulnum(inptTbl[1], 1.0)
+ tbl[1] = vector.mulnum(inptTbl[1], 1)
end
setmetatable(tbl[1], vector_meta)
str = str .. "$\\left" .. brcktL .. vector.show(tbl[1], dignum) .. "\\right" .. brcktR
@@ -1184,7 +1185,7 @@
if vector.euclidnorm(inptTbl[1]) ~= complex(0.0) then
tbl[1] = vector.mulnum(inptTbl[1], 1 / vector.euclidnorm(inptTbl[1]))
else
- tbl[1] = vector.mulnum(inptTbl[1], 1.0)
+ tbl[1] = vector.mulnum(inptTbl[1], 1)
end
setmetatable(tbl[1], vector_meta)
str = str .. "\\ \\newline Step " .. cnt .. ": $$ u_" .. cnt .. "=v_" .. cnt .. "="
@@ -1205,7 +1206,7 @@
if vector.euclidnorm(tbl[i]) ~= complex(0.0) then
tbl[i] = vector.mulnum(tbl[i], 1 / vector.euclidnorm(tbl[i]))
else
- tbl[i] = vector.mulnum(tbl[i], 1.0)
+ tbl[i] = vector.mulnum(tbl[i], 1)
end
cnt = cnt + 1
@@ -1267,7 +1268,6 @@
% ========= KEY DEFINITIONS =========
\define at key{matrixop}{type}{\def\mop at type{#1}}
\define at key{matrixop}{truncate}{\def\mop at truncate{#1}}
-
% ========= KEY DEFAULTS =========
\setkeys{matrixop}{type=bmatrix,truncate=6}%
@@ -1639,12 +1639,6 @@
}%
}
-\newcommand\complexRound[2]{%
- \directlua{%
- tex.sprint(tostring(complex.round(complex('#1'),#2)))
- }%
-}
-
% ========= KEY DEFINITIONS =========
\define at key{vecrr}{brckt}{\def\voprr at brckt{#1}}
\define at key{vecrr}{truncate}{\def\voprr at truncate{#1}}
Deleted: trunk/Master/texmf-dist/tex/lualatex/lualinalg/lualinalg_complex.lua
===================================================================
--- trunk/Master/texmf-dist/tex/lualatex/lualinalg/lualinalg_complex.lua 2023-08-03 19:58:43 UTC (rev 67804)
+++ trunk/Master/texmf-dist/tex/lualatex/lualinalg/lualinalg_complex.lua 2023-08-03 19:59:09 UTC (rev 67805)
@@ -1,298 +0,0 @@
-
---Version=1.2, Date=14-Feb-2023
--- provides module for complex numbers
-
---Contains a modified version of the file complex.lua. It is availalbe on the link https://github.com/davidm/lua-matrix/blob/master/lua/complex.lua. This is licensed under the same terms as Lua itself. This license allows to freely copy, modify and distribute the file for any purpose and without any restrictions.
-
---Licensed under the same terms as Lua itself. This license allows to freely copy, modify and distribute the file for any purpose and without any restrictions.
-
-
-
-complex = {}
-
-local complex_meta = {}
-
-local function parse_scalar(s, pos0)
- local x, n, pos = s:match('^([+-]?[%d%.]+)(.?)()', pos0)
- if not x then return end
- if n == 'e' or n == 'E' then
- local x2, n2, pos2 = s:match('^([+-]?%d+)(.?)()', pos)
- if not x2 then error 'number format error' end
- x = tonumber(x..n..x2)
- if not x then error 'number format error' end
- return x, n2, pos2
- else
- x = tonumber(x)
- if not x then error 'number format error' end
- return x, n, pos
- end
-end
-local function parse_component(s, pos0)
- local x, n, pos = parse_scalar(s, pos0)
- if not x then
- local x2, n2, pos2 = s:match('^([+-]?)(i)()$', pos0)
- if not x2 then error 'number format error' end
- return (x2=='-' and -1 or 1), n2, pos2
- end
- if n == '/' then
- local x2, n2, pos2 = parse_scalar(s, pos)
- x = x / x2
- return x, n2, pos2
- end
- return x, n, pos
-end
-local function parse_complex(s)
- local x, n, pos = parse_component(s, 1)
- if n == '+' or n == '-' then
- local x2, n2, pos2 = parse_component(s, pos)
- if n2 ~= 'i' or pos2 ~= #s+1 then error 'number format error' end
- if n == '-' then x2 = - x2 end
- return x, x2
- elseif n == '' then
- return x, 0
- elseif n == 'i' then
- if pos ~= #s+1 then error 'number format error' end
- return 0, x
- else
- error 'number format error'
- end
-end
-
-function complex.to( num )
- -- check for table type
- if type( num ) == "table" then
- -- check for a complex number
- if getmetatable( num ) == complex_meta then
- return num
- end
- local real,imag = tonumber( num[1] ),tonumber( num[2] )
- if real and imag then
- return setmetatable( { real,imag }, complex_meta )
- end
- return
- end
- local isnum = tonumber( num )
- if isnum then
- return setmetatable( { isnum,0 }, complex_meta )
- end
- if type( num ) == "string" then
- local real, imag = parse_complex(num)
- return setmetatable( { real, imag }, complex_meta )
- end
-end
-
-setmetatable( complex, { __call = function( _,num ) return complex.to( num ) end } )
-
-
-function complex.new( ... )
- return setmetatable( { ... }, complex_meta )
-end
-
-
-function complex.type( arg )
- if getmetatable( arg ) == complex_meta then
- return "complex"
- end
-end
-
-
-function complex.convpolar( radius, phi )
- return setmetatable( { radius * math.cos( phi ), radius * math.sin( phi ) }, complex_meta )
-end
-
-function complex.convpolardeg( radius, phi )
- phi = phi/180 * math.pi
- return setmetatable( { radius * math.cos( phi ), radius * math.sin( phi ) }, complex_meta )
-end
-
-function complex.tostring( cx,formatstr )
- local real,imag = cx[1],cx[2]
- if formatstr then
- if imag == 0 then
- return string.format( formatstr, real )
- elseif real == 0 then
- return string.format( formatstr, imag ).."i"
- elseif imag > 0 then
- return string.format( formatstr, real ).."+"..string.format( formatstr, imag ).."i"
- end
- return string.format( formatstr, real )..string.format( formatstr, imag ).."i"
- end
- if imag == 0 then
- return real
- elseif real == 0 then
- return ((imag==1 and "") or (imag==-1 and "-") or imag).."i"
- elseif imag > 0 then
- return real.."+"..(imag==1 and "" or imag).."i"
- end
- return real..(imag==-1 and "-" or imag).."i"
-end
-
-function complex.print( ... )
- print( complex.tostring( ... ) )
-end
-
-function complex.polar( cx )
- return math.sqrt( cx[1]^2 + cx[2]^2 ), math.atan2( cx[2], cx[1] )
-end
-
-function complex.polardeg( cx )
- return math.sqrt( cx[1]^2 + cx[2]^2 ), math.atan2( cx[2], cx[1] ) / math.pi * 180
-end
-
-function complex.norm2( cx )
- return cx[1]^2 + cx[2]^2
-end
-
-function complex.abs( cx )
- return math.sqrt( cx[1]^2 + cx[2]^2 )
-end
-
-function complex.get( cx )
- return cx[1],cx[2]
-end
-
-
-function complex.set( cx,real,imag )
- cx[1],cx[2] = real,imag
-end
-
-function complex.is( cx,real,imag )
- if cx[1] == real and cx[2] == imag then
- return true
- end
- return false
-end
-
-
-function complex.copy( cx )
- return setmetatable( { cx[1],cx[2] }, complex_meta )
-end
-
-
-function complex.add( cx1,cx2 )
- return setmetatable( { cx1[1]+cx2[1], cx1[2]+cx2[2] }, complex_meta )
-end
-
-
-function complex.sub( cx1,cx2 )
- return setmetatable( { cx1[1]-cx2[1], cx1[2]-cx2[2] }, complex_meta )
-end
-
-function complex.mul( cx1,cx2 )
- return setmetatable( { cx1[1]*cx2[1] - cx1[2]*cx2[2],cx1[1]*cx2[2] + cx1[2]*cx2[1] }, complex_meta )
-end
-
-
-function complex.mulnum( cx,num )
- return setmetatable( { cx[1]*num,cx[2]*num }, complex_meta )
-end
-
-function complex.div( cx1,cx2 )
- local val = cx2[1]^2 + cx2[2]^2
- return setmetatable( { (cx1[1]*cx2[1]+cx1[2]*cx2[2])/val,(cx1[2]*cx2[1]-cx1[1]*cx2[2])/val }, complex_meta )
-end
-
-function complex.divnum( cx,num )
- return setmetatable( { cx[1]/num,cx[2]/num }, complex_meta )
-end
-
-
-function complex.pow( cx,num )
- if math.floor( num ) == num then
- if num < 0 then
- local val = cx[1]^2 + cx[2]^2
- cx = { cx[1]/val,-cx[2]/val }
- num = -num
- end
- local real,imag = cx[1],cx[2]
- for i = 2,num do
- real,imag = real*cx[1] - imag*cx[2],real*cx[2] + imag*cx[1]
- end
- return setmetatable( { real,imag }, complex_meta )
- end
- local length,phi = math.sqrt( cx[1]^2 + cx[2]^2 )^num, math.atan2( cx[2], cx[1] )*num
- return setmetatable( { length * math.cos( phi ), length * math.sin( phi ) }, complex_meta )
-end
-
-function complex.sqrt( cx )
- local len = math.sqrt( cx[1]^2+cx[2]^2 )
- local sign = (cx[2]<0 and -1) or 1
- return setmetatable( { math.sqrt((cx[1]+len)/2), sign*math.sqrt((len-cx[1])/2) }, complex_meta )
-end
-
-
-function complex.ln( cx )
- return setmetatable( { math.log(math.sqrt( cx[1]^2 + cx[2]^2 )),
- math.atan2( cx[2], cx[1] ) }, complex_meta )
-end
-
-function complex.exp( cx )
- local expreal = math.exp(cx[1])
- return setmetatable( { expreal*math.cos(cx[2]), expreal*math.sin(cx[2]) }, complex_meta )
-end
-
-
-function complex.conjugate( cx )
- return setmetatable( { cx[1], -cx[2] }, complex_meta )
-end
-
-function complex.round( cx,idp )
- local mult = 10^( idp or 0 )
- return setmetatable( { math.floor( cx[1] * mult + 0.5 ) / mult,
- math.floor( cx[2] * mult + 0.5 ) / mult }, complex_meta )
-end
-
-
-complex.zero = complex.new(0, 0)
-complex.one = complex.new(1, 0)
-
-
-
-complex_meta.__add = function( cx1,cx2 )
- local cx1,cx2 = complex.to( cx1 ),complex.to( cx2 )
- return complex.add( cx1,cx2 )
-end
-complex_meta.__sub = function( cx1,cx2 )
- local cx1,cx2 = complex.to( cx1 ),complex.to( cx2 )
- return complex.sub( cx1,cx2 )
-end
-complex_meta.__mul = function( cx1,cx2 )
- local cx1,cx2 = complex.to( cx1 ),complex.to( cx2 )
- return complex.mul( cx1,cx2 )
-end
-complex_meta.__div = function( cx1,cx2 )
- local cx1,cx2 = complex.to( cx1 ),complex.to( cx2 )
- return complex.div( cx1,cx2 )
-end
-complex_meta.__pow = function( cx,num )
- if num == "*" then
- return complex.conjugate( cx )
- end
- return complex.pow( cx,num )
-end
-complex_meta.__unm = function( cx )
- return setmetatable( { -cx[1], -cx[2] }, complex_meta )
-end
-complex_meta.__eq = function( cx1,cx2 )
- if cx1[1] == cx2[1] and cx1[2] == cx2[2] then
- return true
- end
- return false
-end
-complex_meta.__tostring = function( cx )
- return tostring( complex.tostring( cx ) )
-end
-complex_meta.__concat = function( cx,cx2 )
- return tostring(cx)..tostring(cx2)
-end
--- cx( cx, formatstr )
-complex_meta.__call = function( ... )
- print( complex.tostring( ... ) )
-end
-complex_meta.__index = {}
-for k,v in pairs( complex ) do
- complex_meta.__index[k] = v
-end
-
-return complex
-
More information about the tex-live-commits
mailing list.