texlive[44396] Master: axodraw2 (17may17)

commits+karl at tug.org commits+karl at tug.org
Wed May 17 23:57:11 CEST 2017


Revision: 44396
          http://tug.org/svn/texlive?view=revision&revision=44396
Author:   karl
Date:     2017-05-17 23:57:11 +0200 (Wed, 17 May 2017)
Log Message:
-----------
axodraw2 (17may17)

Modified Paths:
--------------
    trunk/Master/tlpkg/bin/tlpkg-ctan-check
    trunk/Master/tlpkg/libexec/ctan2tds
    trunk/Master/tlpkg/tlpsrc/collection-mathscience.tlpsrc

Added Paths:
-----------
    trunk/Master/texmf-dist/doc/latex/axodraw2/
    trunk/Master/texmf-dist/doc/latex/axodraw2/README
    trunk/Master/texmf-dist/doc/latex/axodraw2/axodraw2-man.pdf
    trunk/Master/texmf-dist/doc/latex/axodraw2/axodraw2-man.tex
    trunk/Master/texmf-dist/doc/latex/axodraw2/example.tex
    trunk/Master/texmf-dist/source/latex/axodraw2/
    trunk/Master/texmf-dist/source/latex/axodraw2/axohelp.c
    trunk/Master/texmf-dist/tex/latex/axodraw2/
    trunk/Master/texmf-dist/tex/latex/axodraw2/axodraw2.sty
    trunk/Master/tlpkg/tlpsrc/axodraw2.tlpsrc

Added: trunk/Master/texmf-dist/doc/latex/axodraw2/README
===================================================================
--- trunk/Master/texmf-dist/doc/latex/axodraw2/README	                        (rev 0)
+++ trunk/Master/texmf-dist/doc/latex/axodraw2/README	2017-05-17 21:57:11 UTC (rev 44396)
@@ -0,0 +1,41 @@
+Axodraw2 is a package that defines macros for drawing Feynman graphs
+in LaTeX documents.
+
+It is an important update of the axodraw package, but since it is not
+completely backwards compatible, we have given the style file a
+changed name.
+
+Many new features have been added, with new types of line, and much
+more flexibility in their properties: For details see the
+documentation.
+
+In addition, it is now possible to use axodraw2 with pdflatex, as well
+as with the latex-dvips method. However with pdflatex (and also lualatex
+and xelatex), an external program, axohelp, is used to perform the
+geometrical calculations needed for the pdf code inserted in the
+output file.  The processing involves a run of pdflatex, a run of
+axohelp, and then another run of pdflatex.
+
+The files in the distribution are:
+
+     README           This file
+     axodraw2.sty     The main style file
+     axohelp.c        Source code of axohelp
+     axohelp.exe      MS-Windows executable for axohelp
+     axodraw2-man.pdf Documentation
+     axodraw2-man.tex Source for documentation
+     example.tex      Example latex file for use of axodraw2
+
+
+Authors, copyright, license
+---------------------------
+
+(C) 1994-2016 John Collins (jcc8 at psu dot edu) and Jos Vermaseren
+(t68 at nikhef dot nl) 
+
+Axodraw2 is free software: you can redistribute it and/or modify it
+under the terms of the GNU General Public License as published by the
+Free Software Foundation, either version 3 of the License, or (at your
+option) any later version.  See the files axodraw2.sty or axohelp.c
+for more details.
+


Property changes on: trunk/Master/texmf-dist/doc/latex/axodraw2/README
___________________________________________________________________
Added: svn:eol-style
## -0,0 +1 ##
+native
\ No newline at end of property
Added: trunk/Master/texmf-dist/doc/latex/axodraw2/axodraw2-man.pdf
===================================================================
(Binary files differ)

Index: trunk/Master/texmf-dist/doc/latex/axodraw2/axodraw2-man.pdf
===================================================================
--- trunk/Master/texmf-dist/doc/latex/axodraw2/axodraw2-man.pdf	2017-05-17 21:54:24 UTC (rev 44395)
+++ trunk/Master/texmf-dist/doc/latex/axodraw2/axodraw2-man.pdf	2017-05-17 21:57:11 UTC (rev 44396)

Property changes on: trunk/Master/texmf-dist/doc/latex/axodraw2/axodraw2-man.pdf
___________________________________________________________________
Added: svn:mime-type
## -0,0 +1 ##
+application/pdf
\ No newline at end of property
Added: trunk/Master/texmf-dist/doc/latex/axodraw2/axodraw2-man.tex
===================================================================
--- trunk/Master/texmf-dist/doc/latex/axodraw2/axodraw2-man.tex	                        (rev 0)
+++ trunk/Master/texmf-dist/doc/latex/axodraw2/axodraw2-man.tex	2017-05-17 21:57:11 UTC (rev 44396)
@@ -0,0 +1,5160 @@
+\documentclass[12pt]{article}
+\usepackage{a4wide}
+% Use fix-cm or lmodern to get scaleable cm fonts
+\usepackage{longtable,fix-cm,url,units,hyperref}
+
+\usepackage{axodraw2}
+
+\def\num{$\langle$number$\rangle$}
+\def\colorname{$\langle$colorname$\rangle$}
+
+% How to typeset filenames and program names: Use \file and \program
+%  to allow stylistic changes.
+% Basic definition of \file would bes \def\file#1{\texttt{#1}}, but
+% that would not allow line breaks in long names.  So define it by
+% \DeclareUrlCommand from url package.  (We can't use \url itself,
+% because that provokes hyperref into making a hyperlink.)
+\DeclareUrlCommand\file{\urlstyle{tt}}
+
+% Similarly specify how to typeset names of programs
+\def\program#1{\texttt{#1}}
+
+% Backslash of the kind used in verbatim 
+\newcommand\BS{\symbol{`\\}}
+
+% Set the name of a TeX macro (and possibly its signature). 
+% In the argument, the initial backslash. Allow \{ and \} in the
+% argument.  E.g. \name{SetSpace\{\#\}}}
+\newcommand\name[1]{%
+ \bgroup
+   \def\{{\symbol{`\{}}%
+   \def\}{\symbol{`\}}}%
+   \texttt{\BS#1}%
+ \egroup
+}
+
+
+\begin{document}
+
+%% ?? To get settings useful to test compatibility of axodraw2 with
+%% color.sty, uncomment the following line:
+%\SetColor{Blue} \color{green} \pagecolor[cmyk]{0,0.02,0.05,0}
+%%   Note green is useful, because it is defined in rgb color model
+%% and the apparently equivalent Green, cmyk 1 0 1 0, looks quite
+%% different on screen. So we can test the colors are entering graphics
+%% correctly. 
+
+%% ?? To test whether offsets work correctly, uncomment the following
+%% line:
+%\SetOffset(10,20) \SetScaledOffset(10,-20)
+
+
+\setcounter{page}{0}
+\thispagestyle{empty}
+\hfill \begin{minipage}{3.0cm}
+Nikhef 2015-025
+\end{minipage}
+\vspace{20mm}
+
+\begin{center}
+{\LARGE\bf\sc Axodraw Version 2}
+\end{center}
+\vspace{5mm}
+\begin{center}
+{\large John C. Collins$^{\, a}$ and J.A.M. Vermaseren$^{\, b}$} 
+\vspace{1cm}\\
+{\it $^a$ Department of Physics, Pennsylvania State University, \\
+\vspace{0.1cm}
+University Park, Pennsylvania 16802, USA} \\
+\texttt{jcc8 at psu dot edu} \\
+\vspace{0.5cm}
+{\it $^b$Nikhef Theory Group \\
+\vspace{0.1cm}
+Science Park 105, 1098 XG Amsterdam, The Netherlands} \\
+\texttt{t68 at nikhef dot nl} \\
+\vspace{1.0cm}
+(3 June 2016)
+\end{center}
+\vspace{5mm}
+
+\begin{abstract}
+We present version two of the \LaTeX{} graphical style file Axodraw. 
+It has a number of new drawing primitives and many extra options, and 
+it can now work with \program{pdflatex} to directly produce
+output in PDF file format (but with the aid of an auxiliary program).
+\end{abstract}
+
+\newpage
+
+\tableofcontents
+
+\newpage
+
+
+%>>#[ Introduction :
+%=========================
+\section{Introduction}
+\label{sec:intro}
+
+This is the documentation for axodraw2, a \LaTeX{} package for drawing
+Feynman graphs (and other simple graphics).  This version is a
+substantial update of the original axodraw package \cite{axodraw1},
+which was released
+in 1994, and which has become rather popular in the preparation of articles in
+elementary-particle physics.  One of its advantages is that its
+drawing primitives are included in the .tex document, in a
+human-writable form. (This also allows convenient production of
+axodraw figures by other software, e.g., Jaxodraw
+\cite{jaxodraw1,jaxodraw2}.)
+This is in distinction to methods that
+use a separate program to create graphics files that are read in
+during the processing of the \LaTeX{} file.  The objects needed in
+Feynman graphs are often difficult to draw at high quality with
+conventional computer graphics software.
+
+The original axodraw package has hardly been modified since its
+introduction.  The new version addresses several later needs.  A
+detailed list of the changes is given in Sec.\ \ref{sec:changes}.
+
+One change arises from the fact that \TeX{} (and hence \LaTeX{})
+themselves do not possess sufficiently useful methods of drawing
+complicated graphics, so that the drawing of the graphics is actually
+done inserting suitable code in the final output file (postscript or
+pdf).  The original axodraw worked only with the
+\program{latex}-\program{dvips} processing chain to put the diagrams in
+the final postscript file.\footnote{A pdf file can be produced from
+  the postscript file by a program like \program{ps2pdf}.}  Now we also
+have in common use the \program{pdflatex} (and \program{lualatex} and
+\program{xelatex}) programs that directly produce pdf.  The new version
+of axodraw works with \program{pdflatex}, \program{lualatex}, and
+\program{xelatex}, as well as with the \program{latex}-\program{dvips}
+method.
+
+Furthermore, more kinds of graphical object and greater flexibility in
+their properties have been found useful for Feynman graphs.  The new
+version provides a new kind of line, B\'ezier, and is able to make the
+various kinds of line doubled.  There is now a very flexible
+configuration of arrows.  Many of the changes correspond to
+capabilities of JaxoDraw \cite{jaxodraw1,jaxodraw2}, which is a
+graphical program for drawing Feynman graphs, and which is able to
+write and to import diagrams in the axodraw format.
+
+Finally, substantial improvements have been made in the handling of
+colors, with much better compatibility with modern packages used to
+set colors in the normal \LaTeX{} part of a document.
+
+Since some of the changes (especially in the internal coding)
+introduce potential incompatibilities with the original version of
+axodraw, the new version of the style file is given a new name
+\file{axodraw2.sty}.  Then the many legacy documents (e.g., on
+\url{http://arxiv.org}) that use the old axodraw will continue to use
+the old version, and will therefore continue to be compilable without
+any need for any possible changes in the source document, and with unchanged
+output.  Even so, as regards the coding of diagrams, there are very
+few backwardly incompatible changes in axodraw2.
+
+The software is available under the GNU General Public License
+\cite{GPL} version 3.
+
+
+
+%=========================
+\section{Changes}
+\label{sec:changes}
+
+\subsection{Changes relative to original, axodraw version 1}
+\label{sec:changes.wrt.1}
+
+Relative to the original version of axodraw, the current version,
+axodraw2, has the following main changes:
+\begin{itemize}
+
+\item A bug that the line bounding an oval did not have a uniform
+  width has been corrected.
+
+\item A bug has been corrected that axodraw did not work with the
+  revtex4 document class when \verb+\maketitle+ and two-column mode
+  were used.
+
+\item Axodraw2 works both when pdf output is produced directly using
+  the programs \program{pdflatex}, \program{lualatex}, and
+  \program{xelatex}, as well as when a postscript file is produced by
+  the latex--dvips method.  The old version only worked when
+  postscript output was produced.  However, an auxiliary program is
+  needed when using \program{pdflatex}, \program{lualatex}, or
+  \program{xelatex}.  See Sec.\ \ref{sec:doc.compile} for how this is
+  done.
+
+\item In the original axodraw, a diagram is coded inside a
+  \verb+picture+ environment of \LaTeX.  Now, a specialized
+  \verb+axopicture+ environment is provided and preferred; it provides
+  better behavior, especially when diagrams are to be scaled.
+
+\item In association with this, there are some changes in how scaling
+  of diagrams is done.
+
+\item An inconsistency in length units between postscript and \TeX{}
+  has been corrected.  All lengths are now specified in terms of
+  $\unit[1]{pt} = \unit[1/72.27]{in} = \unit[0.3515]{mm}$.  Previously
+  the unit length for graphics was the one defined by postscript to be 
+  $\unit[1]{bp} = \unit[1/72]{in} = \unit[0.3528]{mm}$.
+
+\item Substantial improvements have been made in the treatment of
+  color.  When named colors are used, axodraw2's use of color is
+  generally compatible with that of the modern, \LaTeX-standard
+  \file{color.sty} package.  It also provides all the macros that were
+  defined in v.\ 1 of axodraw, including those of the \file{colordvi.sty}
+  package used by v.\ 1.
+
+\item The various types of line can now be produced as double lines,
+  e.g.,
+  \begin{axopicture}(35,5)(0,-2)
+    \SetWidth{1}
+    \Line[double,sep=2.5](0,2)(35,2)
+  \end{axopicture}.
+  This is commonly used, for example, for notating Wilson lines. 
+
+\item Lines can be made from B\'ezier curves.
+  Currently this is only for simple lines, not photon, gluon, or
+  zigzag lines.
+
+\item Gluon, photon, and zigzag lines can be dashed.
+
+\item Macros are provided for drawing gluon circles, without the
+  endpoint effects given by the corresponding gluon arc macros.
+
+\item The positions and sizes of arrows can be adjusted.  See Sec.\
+  \ref{sec:arrows} for all the possibilities.  One example is 
+  \begin{axopicture}(30,6)(0,-2)
+    \SetWidth{1}
+    \Line[arrow,arrowpos=0.8](0,2)(30,2)
+  \end{axopicture}
+
+\item Macros for drawing polygons and filled polygons are provided.
+
+\item Macros for drawing rotated boxes are provided.
+
+\item A macro \verb+\ECirc+ is provided for drawing a circle with a
+  transparent interior.
+
+\item A macro \verb+\EBoxc+ is provided for drawing a box with a
+  specified center.
+
+\item A macro \verb+\AxoGrid+ is provided for drawing a grid.  One
+  use is to provide a useful tool in designing pictures.
+
+\item Since there are now many more possibilities to specify the
+  properties of a line, optional arguments to the main line drawing
+  commands can be used to specify them in a keyword style.  
+
+\item A new macro named \verb+\Arc+ is introduced.  With the aid of
+  optional arguments, this unifies the behavior of various arc-drawing
+  commands in the original axodraw.
+
+\item For consistency with the \verb+\Gluon+ macro, the
+  \verb+\GlueArc+ macro has been renamed to \verb+\GluonArc+, with the old
+  macro retained as a synonym.
+
+\item The behavior of arcs is changed to what we think is more natural
+  behavior when the specified opening is outside the natural range.
+
+\item What we call macros for drawing objects with postscript text are
+  now implemented within \LaTeX{} instead of relying on instructions
+  inserted in the postscript code.  Thus all the normal \LaTeX{}
+  commands, including mathematics, can now be used in all text
+  objects, with proper scaling.  The placement and scaling of text
+  objects are more consistent. 
+
+\item Some new named colors are provided:
+  \LightYellow{LightYellow}, \LightRed{LightRed},
+  \LightBlue{LightBlue}, \LightGray{LightGray},
+  \VeryLightBlue{VeryLightBlue}.  
+  (LightYellow, LightRed, LightBlue, LightGray, VeryLightBlue.)
+
+\item The macros originally specified as \verb+\B2Text+,
+  \verb+\G2Text+, and \verb+\C2Text+ are now named \verb+\BTwoText+,
+  \verb+\GTwoText+, and \verb+\CTwoText+.  The intent of the
+    original code was to define macros with names \verb+\B2Text+, etc.
+    However in normal \TeX, macro names of more than one character
+    must only contain letters, unlike typical programming languages
+    that also allow digits.  So the rules for \TeX{} macro names mean
+    that in defining, for example \verb+\def\B2Text(#1,#2)#3#4{...}+,
+    the original version of axodraw actually defined a macro named
+    named \verb+\B+, obligatorially followed by \verb+2Text+.  This
+    caused a conflict if the user wished to define a macro \verb+\B+.
+    If it is desired to retain the old behavior, then the following
+    should be placed in the preamble of the .tex file, then the
+    axodraw2 package should be invoked in the source document with the
+    \texttt{v1compatible} option:
+    \begin{verbatim}
+          \usepackage[v1compatible]{axodraw2}
+    \end{verbatim}
+
+\end{itemize}
+
+\subsection{Changes relative to axodraw4j distributed with JaxoDraw}
+\label{sec:changes.wrt.4j}
+
+The JaxoDraw program \cite{jaxodraw2} is distributed with a
+version of axodraw called axodraw4j.  As of July 2014, this was
+effectively a predecessor of axodraw2, but without the possibility of
+working with \program{pdflatex}.  (The suffix ``4j'' is intended to mean ``for
+JaxoDraw''.)
+
+The changes in axodraw2 relative to the version of axodraw4j dated
+2008/11/19 are the following subset of those listed in Sec.\
+\ref{sec:changes.wrt.1}:
+\begin{itemize}
+\item Correction of the oval-drawing bug.
+\item The ability to work with \program{pdflatex}, \program{lualatex},
+  and  \program{xelatex}.
+\item The improvements in the handling of color.
+\item The double and arrow options for B\'ezier lines.
+\item The dash option for gluons and photons.
+\item Color option for all lines.
+\item Correction of inconsistency of length unit between \TeX{} and
+  postscript. 
+\item Better drawing of double gluons and photons.
+\item The gluon circle, polygon, rotated box, \verb+\ECirc+,
+  \verb+\EBoxc+, and the \verb+\AxoGrid+ macros
+\item A series of ``LongArrow'' macros for drawing lines with the
+  arrow at the end.  The same effect could only be achieved in
+  axodraw4j with arrowpos=1 option to the basic line-drawing
+  commands.
+\item A series of macros like \verb+\DashDoubleLine+ to provide access
+  to the dashed and double properties in the style of the macros
+  provided in v.\ 1 of axodraw.  This is in addition to the optional
+  arguments that allow the same effect in axodraw4j and in axodraw2.
+\item The \texttt{v1compatible} and other options are provided for the
+  package.
+\item Better treatment of the scaling of objects.
+\item The treatment of ``postscript text objects'' within \LaTeX{}
+  itself. 
+\end{itemize}
+
+
+%---------------
+\subsection{Backward compatibility, etc}
+
+The official user interface of axodraw2 is backward-compatible with
+versions 1 and 4j, with the exception of the issue mentioned above
+about the commands that have the signatures \verb+\B2Text+,
+\verb+\G2Text+, and \verb+\C2Text+.  There are some minor changes in
+the objects that are drawn, mostly concerning the exact dimensions of
+default arrows and the scaling of the sizes of text objects.  The
+scoping of color changes is significantly different, but improved.
+
+The old axodraw only used the tools available in \LaTeX{} in the early
+1990s.  The new version needs a more modern installation.  It has been
+extensively tested with TeXLive 2011 and 2016.
+
+We have tested backwards compatibility by compiling the version 1
+manual with axodraw2; only a trivially modified preamble was needed.
+It also worked to compile Collins's QCD book\cite{qcdbook},
+which has a large number
+of JaxoDraw figures (processed automatically to pieces of axodraw code
+imported into the document); only changes in the preamble were needed.
+
+Axodraw2 uses the following \LaTeX{} packages: \program{keyval},
+\program{ifthen}, \program{graphicx}, \program{color}, \program{ifxetex}. 
+It defines its own set of 73 named colors --- Sec.\ \ref{sec:colors}
+--- which are the same as the 68 defined as dvips-defined names in the
+color package, plus 5 more.
+
+In addition axodraw2 provides an \verb+axopicture+ environment
+inside of which axodraw2's graphics are coded and drawn.  In the old
+axodraw, \LaTeX's \verb+picture+ environment was used instead.  We
+recommend the use of \verb+axopicture+ environment in axodraw2, and
+that is the only method we document.  However, old diagrams coded with
+\verb+picture+ environment continue to work.
+
+
+%=========================
+\section{Installation}
+\label{sec:installation}
+
+%---------------
+\subsection{Installation from standard \TeX{} distribution}
+
+At the moment that this document was written, axodraw2 was not part of any
+standard \TeX{} distribution.
+
+It is on CTAN at \url{http://ctan.org/tex-archive/graphics/axodraw2},
+so that it should eventually be part of the standard distributions
+(TeXLive and MiKTeX).  After that, axodraw2 will either be installed
+by default or can be installed by using the package manager of the
+\TeX{} distribution. When available, this will be the easiest method
+of installation.
+
+
+
+%---------------
+\subsection{Manual installation}
+
+%For a manual installation, the minimum that needs to be done is to put
+For a manual installation, what needs to be done is to put
+the file \file{axodraw2.sty} in a place where it will be found by
+the \program{latex} program.  If you wish to use axodraw2 with
+\program{pdflatex}, you will also need to compile the \program{axohelp}
+program and put it in an appropriate directory.  Documentation can
+also be installed if you want.
+
+%--
+\subsubsection{Style file texttt{axodraw2.sty}}
+
+If you merely want to try out axodraw2, just put the file
+\file{axodraw2.sty} in the same directory as the \file{.tex}
+file(s) you are working on. 
+
+Otherwise, put it in an appropriate directory for a \LaTeX{} style
+file, and, if necessary, run the texhash program to ensure that the
+file is in the \TeX{} system's database of files.  For example,
+suppose that you have a TeXLive system installed for all users on a
+Unix-like system (e.g., Linux or OS-X), and that TeXLive is installed,
+as is usual, under the directory \file{/usr/local/texlive}.  Then an
+appropriate place for axodraw2 is in a directory
+\file{/usr/local/texlive/texmf-local/tex/latex/axodraw2}.  You will
+need to run the \program{texhash} program in this last case.  For such
+a system-wide installation, you will probably have to do these
+operations as an administrative user (e.g., root), possibly
+supplemented by running the relevant commands with the \program{sudo}
+program.
+
+%--
+\subsubsection{Helper program \program{axohelp}}
+\label{sec:axohelp}
+
+If you wish to use axodraw2 with \program{pdflatex}, \program{lualatex},
+or \program{xelatex}., then you need to install the \program{axohelp}
+program.
+
+On a Unix-like system (e.g., linux or OS-X), you first need to compile
+the program by a C compiler.  An appropriate shell command to do this
+is
+\begin{verbatim}
+   cc -o axohelp -O3 axohelp.c -lm
+\end{verbatim}
+(Note that this is a C compiler, \emph{not} a C++ compiler.)  Most linux
+systems have the program \program{cc} already installed.  This also applies to
+OS-X at versions below 10.7.  But on OS-X version 10.7 and higher, you
+will need to install a compiler, which can be done by installing XCode
+and the associated command-line utilities.  If you have the GNU
+compilers installed, you might need to use the command \program{gcc}
+instead of \program{cc}.
+
+For Microsoft Windows, if you do not have a C compiler available, you
+can use the Windows binary \file{axohelp.exe} we have provided.  It
+should work with Windows 7 or higher.
+
+In any case once you have the executable (named \program{axohelp} on
+unix-like systems, or \program{axohelp.exe} on a Microsoft system), put
+it in a directory where it will be found when you run programs from
+the command line.
+
+
+%--
+\subsubsection{Testing}
+
+To test whether the installation works, you need a simple test file.
+An example is given in Sec.\ \ref{sec:example}, and is provided
+with the axodraw2 distribution as \file{example.tex}.
+
+At a command line with the current directory set to the directory
+containing the file \file{example.tex}, run the following commands:
+\begin{verbatim}
+   latex example
+   dvips example -o
+\end{verbatim}
+If all goes well, you will obtain a file \file{example.ps}.  When
+you view it, it should contain the diagram shown in Sec.\
+\ref{sec:example}.  You can make a pdf file instead by the commands
+\begin{verbatim}
+   latex example
+   dvipdf example
+\end{verbatim}
+A more extensive test can be made by compiling the manual.
+
+To make a pdf file directly, with \program{pdflatex}, you use the commands
+\begin{verbatim}
+   pdflatex example
+   axohelp example
+   pdflatex example
+\end{verbatim}
+The \program{axohelp} run takes as input a file \file{example.ax1}
+produced by the first run of \program{pdflatex} and makes an output
+file \file{example.ax2}.  The second run of \program{pdflatex} reads
+the \file{example.ax2} file and uses the result to place the axodraw
+objects in the \file{example.pdf} file.
+
+
+%--
+\subsubsection{Documentation}
+
+Put the documentation in a place where you can find it.  If you
+installed the \file{axodraw2.sty} file in
+\file{/usr/local/texlive/texmf-local/tex/latex/axodraw2}, the 
+standard place for the documentation would be
+\file{usr/local/texlive/texmf-local/doc/latex/axodraw2}.
+
+
+%=========================
+\section{Use}
+\label{sec:use}
+
+In this section we show how to use axodraw2, illustrated with an
+example.
+
+\subsection{Basic example}
+\label{sec:example}
+
+The principles of using axodraw2 are illustrated by the following
+complete \LaTeX{} document:
+\begin{verbatim}
+        \documentclass{article}
+        \usepackage{axodraw2}
+        \begin{document}
+        Example of Feynman graph using axodraw2 macros:
+        \begin{center}
+          \begin{axopicture}(200,110)
+            \SetColor{Red}
+            \Arc[arrow](100,50)(40,0,180)
+            \Text(100,100){$\alpha P_1 + \beta P_2 + k_\perp$}
+            \SetColor{Black}
+            \Arc[arrow](100,50)(40,180,360)
+            \Gluon(0,50)(60,50){5}{4}
+            \Vertex(60,50){2} 
+            \Gluon(140,50)(200,50){5}{4}
+            \Vertex(140,50){2}
+          \end{axopicture}
+        \end{center}
+        \end{document}
+\end{verbatim}
+After compilation according to the instructions in Sec.\
+\ref{sec:doc.compile}, viewing the resulting file should show the
+following Feynman graph:
+\begin{center}
+  \begin{axopicture}(200,110)
+    \SetColor{Red}
+    \Arc[arrow](100,50)(40,0,180)
+    \Text(100,100){$\alpha P_1 + \beta P_2 + k_\perp$}
+    \SetColor{Black}
+    \Arc[arrow](100,50)(40,180,360)
+    \Gluon(0,50)(60,50){5}{4}
+    \Vertex(60,50){2} 
+    \Gluon(140,50)(200,50){5}{4}
+    \Vertex(140,50){2}
+  \end{axopicture}
+\end{center}
+See Sec.\ \ref{sec:examples} for more examples
+
+\emph{Important note about visibility of graphics objects:} If you
+view this document on a computer monitor, Feynman graphs drawn with
+narrow lines may not fully match what was intended.  This is because
+of the way graphics viewers interact with the limited resolution of
+computer monitors. To see the example graphs properly, you may need to
+use a large enough magnification, or to use an actual print out.
+
+\emph{Note about sending a document to others}: If for example, you
+submit an article to arXiv.org, it is likely that their automated
+system for processing the file will not run axohelp. So together with
+the tex file, you one should also submit the .ax2 file.
+
+
+%-----------------------
+\subsection{Document preparation}
+\label{sec:doc.prep}
+
+The general rules for preparation of a document are:
+\begin{itemize}
+
+\item Insert the following
+   \begin{verbatim}
+     \usepackage{axodraw2}
+  \end{verbatim}
+  in the preamble of the \file{.tex} file.
+  There are some options and commands that can be used to change axodraw2's
+  behavior from its default.  See Secs.\ \ref{sec:invoke} and
+  \ref{sec:settings} for details. 
+
+\item Where you want to insert axodraw2 objects, put them inside an
+  axopicture environment, specified in Sec.\ \ref{sec:env},
+  \begin{verbatim}
+     \begin{axopicture}(x,y)
+        ...
+     \end{axopicture}
+  \end{verbatim}
+  Here \texttt{x} and \texttt{y} denote the desired size of the box
+  that is to be inserted in the document and that contains the graph.
+  An optional offset can be specified (as with \LaTeX's
+  \texttt{picture} environment). By default the units are
+  $\unit[1]{pt} = \unit[1/72.27]{in} = \unit[0.3515]{mm}$.
+
+\end{itemize}
+Full details of all these components are in Sec.\
+\ref{sec:reference}. 
+
+The design of graphs can be done manually, and this can be greatly
+facilitated with the new \verb:\AxoGrid: command.  A convenient way of
+constructing diagrams is to use the graphical program
+JaxoDraw~\cite{jaxodraw1,jaxodraw2}, which is what most people
+do. This program can export axodraw code.  It also uses axodraw as one
+way of making postscript and pdf files.  The original version of
+axodraw was used by JaxoDraw until version 1.3. In version 2 of
+JaxoDraw, a specially adapted version of \file{axodraw.sty} is used,
+named \file{axodraw4j.sty}. The output from version 2 of
+JaxoDraw is compatible with axodraw2.
+
+
+%-----------------------
+\subsection{Document compilation}
+\label{sec:doc.compile}
+
+\subsubsection{To make a postscript file}
+\label{sec:doc.compile.ps}
+
+When a postscript file is needed, you just make the postscript file as
+usual.  E.g., when the source file is \file{example.tex}, you run
+the following commands:
+\begin{verbatim}
+   latex example
+   dvips example -o
+\end{verbatim}
+which results in a postscript file \file{example.ps}.  Of course, if
+there are cross references to be resolved, you may need multiple runs
+of \program{latex}, as usual.  When needed, use of \program{bibtex},
+\program{makeindex}, and other similar programs is also as usual.
+Instead of \program{latex}, one may also use the \program{dvilualatex}
+program, which behaves like \program{latex} except for providing some
+extra capabilities that are sometimes useful.
+
+Internally, axodraw uses \TeX's \verb+\special+ mechanism to put
+specifications of postscript code into the \file{.dvi} file, and
+\program{dvips} puts this code in the postscript file.  This postscript
+code performs the geometrical calculations needed to specific
+axodraw's objects, and then draws them when the file is displayed or
+printed. 
+
+\emph{Important note about configuration of \program{dvips}:} You may
+possibly find that when you run \program{dvips} that it spends a lot of
+time running \program{mktexpk} to make bitmapped fonts, or that the
+postscript
+file contains bitmapped type-3 fonts.  This is \emph{not} the default
+situation in typical current installations.  But if you do find this
+situation, which is highly undesirable in most circumstances, you
+should arrange for \program{dvips} to use type 1 fonts.  This can be
+done either by appropriately configuring your \TeX{} installation, for
+which you will have to locate instructions, or by giving
+\program{dvips} its \texttt{-V0} option:
+\begin{verbatim}
+   dvips -V0 example -o
+\end{verbatim}
+Once you do this, you should see, from \program{dvips}'s output,
+symptoms of its use of type 1 fonts. \emph{Let us re-emphasize that
+  you do not have to be concerned with this issue, under
+  normal circumstances.  But since things were different within our
+  memory, we give some suggestions as to what to do in what are
+  currently abnormal circumstances.}
+
+\subsubsection{To make a pdf file via \program{latex}}
+
+There are multiple methods of making pdf files for a latex document;
+we will not give all the advantages and disadvantages here.
+
+One way is to convert the postscript file, e.g., by
+\begin{verbatim}
+   ps2pdf example.ps
+\end{verbatim}
+You can also produce a pdf file from the dvi file produced by
+\program{latex} by the \program{dvipdf} command, e.g,.
+\begin{verbatim}
+   dvipdf example
+\end{verbatim}
+\emph{Important note:} The program here is \program{dvipdf} and
+\emph{not} the similarly named \program{dvipdfm} or \program{dvipdfmx},
+which are incompatible with axodraw.  The reason why \program{dvipdf}
+works is that it internally makes a postscript file and then converts
+it to pdf.
+
+
+\subsubsection{To make a pdf file by \program{pdflatex},
+  \program{lualatex}, or  \program{xelatex}}
+
+A common and standard way to make a pdf file is the \program{pdflatex}
+program, which makes pdf directly.  It has certain advantages, among
+which are the possibility of importing a wide variety of graphics file
+formats.  (In contrast, the \program{latex} program only handles
+encapsulated postscript.)
+
+However, to use axodraw2 with \program{pdflatex}, you need an 
+auxiliary program, \program{axohelp}, as in
+\begin{verbatim}
+   pdflatex example
+   axohelp example
+   pdflatex example
+\end{verbatim}
+What happens is that during a run of \program{pdflatex}, axodraw2
+%writes a file \file{example.ax1} with specifications of its
+writes a file \file{example.ax1} containing specifications of its
+graphical objects.  Then running \program{axohelp} reads the
+%\file{example.ax1} file, computes the necessary pdf code to draw the
+\file{example.ax1} file, computes the necessary pdf code to draw the
+objects, and writes the results to \file{example.ax2}.  The next run
+of \program{pdflatex} reads \file{example.ax2} and uses it to put the
+appropriate code in the output pdf file.
+
+The reason for the extra program is that axodraw needs many
+geometrical calculations to place and draw its graphical objects.
+\LaTeX{} itself does not provide anything convenient and efficient for
+these calculations, while the PDF language does not offer sufficient
+computational facilities, unlike the postscript language.
+
+If you modify a document, and recompile with \program{pdflatex}, you
+will only need to rerun \program{axohelp} if the modifications
+involve axodraw objects.  Axodraw2 will output an appropriate message
+when a rerun of \program{axohelp} is needed.
+
+If you wish to use \program{lualatex} or \program{xelatex}, instead of
+\program{pdflatex}, then you can simply run the program
+\program{lualatex} or \program{xelatex} instead of
+\program{pdflatex}. These are equally compatible with axodraw2.
+
+
+
+
+%-----------------------
+\subsection{Automation of document compilation}
+\label{sec:doc.auto.compile}
+
+It can be useful to automate the multiple steps for compiling a
+\LaTeX{} document.  One of us has provided a program \program{latexmk}
+to do this --- see \url{http://www.ctan.org/pkg/latexmk/}.  Here we
+show how to configure 
+\program{latexmk} to run \program{axohelp} as needed when a document is
+compiled via the \program{pdflatex} route.
+
+All you need to do is to put the following lines in one of
+\program{latexmk}'s initialization files (as specified in its
+documentation):
+\begin{verbatim}
+     add_cus_dep( "ax1", "ax2", 0, "axohelp" );
+     sub axohelp { return system "axohelp \"$_[0]\""; }
+     $clean_ext .= " %R.ax1 %R.ax2";
+\end{verbatim}
+The first two lines specify that \program{latexmk} is to make
+\file{.ax2} files from \file{.ax1} files by the \program{axohelp}
+program, whenever necessary.  (After that \program{latexmk}
+automatically also does any further runs of \program{pdflatex} that are
+necessary.)  The last line is optional; it adds \file{.ax1} and
+\file{.ax2} files to the list of files that will be deleted when
+\program{latexmk} is requested to do a clean up of generated,
+recreatable files.
+
+\program{Latexmk} is installed by default by the currently common
+distributions of \TeX{} software, i.e., TeXLive and MiKTeX.  It has as
+an additional requirement a properly installed Perl system.  For the
+TeXLive distribution, this requirement is always met.
+
+With the above configuration, you need no change in how you invoke
+\program{latexmk} to compile a document, when it uses axodraw2.  For
+producing postscript, you can simply use
+\begin{verbatim}
+     latexmk -ps example
+\end{verbatim}
+and for producing pdf via \program{pdflatex} you can use
+\begin{verbatim}
+     latexmk -pdf example
+\end{verbatim}
+Then \program{latexmk} takes care of whatever runs are needed of all
+the relevant programs, now including \program{axohelp}, as well
+whatever, possibly multiple, runs are needed for the usual programs
+(\program{latex}, \program{pdflatex}, \program{bibtex}, etc).
+
+
+
+%>>#] Introduction :
+%>>#[ The Commands :
+
+\section{Reference}
+\label{sec:reference}
+
+\subsection{Package invocation}
+\label{sec:invoke}
+
+To use the axodraw2 package in a \LaTeX{} document, you simply put
+\begin{verbatim}
+     \usepackage{axodraw2}
+\end{verbatim}
+in the preamble of the document, as normal.  
+
+The \verb+\usepackage+ command takes optional arguments
+(comma-separated list of keywords) in square brackets, e.g.,
+\begin{verbatim}
+     \usepackage[v1compatible]{axodraw2}
+\end{verbatim}
+The options supported by axodraw2 are
+\begin{itemize}
+\item \texttt{v1compatible}: This makes axodraw2's operation more
+  compatible with v.\ 1.  It allows the use of \verb+\B2Text+,
+  \verb+\G2Text+, and \verb+\C2Text+ as synonyms for the macros named
+  \verb+\BTwoText+, \verb+\GTwoText+, and \verb+\CTwoText+.
+  (You may wish also to use the \texttt{canvasScaleisUnitLength}
+  option, so that the scaling of the units in the \texttt{axopicture}
+  environment is the same as it was for the \texttt{picture}
+  environment used in v.\ 1.)
+\item \texttt{canvasScaleIs1pt}: Unit for canvas dimensions
+  in an \texttt{axopicture} environment is fixed at $\unit[1]{pt}$,
+\item \texttt{canvasScaleIsObjectScale}: Unit for canvas dimensions
+  in an \texttt{axopicture} environment are the same as those set for
+  axodraw objects (by the \verb+\SetScale+ macro).  This is the
+  default setting, so the option need not be given.
+\item \texttt{canvasScaleIsUnitLength}: Unit for canvas dimensions
+  in an \texttt{axopicture} environment is the current value of
+  \verb+\unitlength+, exactly as for \LaTeX{}'s \texttt{picture}
+  environment.  (Thus, this corresponds to the behavior of the
+  original axodraw v.\ 1, which simply used the \texttt{picture}
+  environment.)
+\item \texttt{PStextScalesIndependently}: Axodraw's text objects are
+  scaled by the factor set by the \verb+\SetTextScale+ command.
+\item \texttt{PStextScalesLikeGraphics}: Axodraw's text objects are
+  scaled by the factor set by same factor for its graphics objects,
+  i.e., the scale set by the \verb+\SetScale+ command.
+\end{itemize}
+(N.B. Default scaling factors are initialized to unity.)
+
+\emph{Note:} If you use \program{axodraw}'s commands for placing text
+and you use the standard \TeX{} Computer Modern fonts for the
+document, then when you compile your document you may get a lot of
+warning messages.  These are about fonts not being available in
+certain sizes.  To fix this problem invoke the package
+\program{fix-cm} in your document's preamble:
+\begin{verbatim}
+    \usepackage{fix-cm}
+\end{verbatim}
+It is also possible to use the package \program{lmodern} for the same
+purpose. 
+
+
+\subsection{Environment(s)}
+\label{sec:env}
+
+The graphical and other objects made by axodraw2 are placed in an
+\texttt{axopicture} environment, which is invoked either as
+\begin{verbatim}
+     \begin{axopicture}(x,y)
+        ...
+     \end{axopicture}
+\end{verbatim}
+or
+\begin{verbatim}
+     \begin{axopicture}(x,y)(xoffset,yoffset)
+        ...
+     \end{axopicture}
+\end{verbatim}
+Here, the \dots{} denote sequences of axodraw2 commands, as documented
+in later sections, for drawing lines, etc.  The \texttt{axopicture}
+environment is just like standard \LaTeX's \texttt{picture}
+environment,\footnote{In fact, the \texttt{axopicture} is changed from
+  the \texttt{picture} environment only by making some
+  axodraw-specific settings. So the \texttt{picture} environment that
+  was used in v.\ 1 may also be used with axodraw2; it merely has a
+  lack of automation on the setting of the canvas scale relative to
+  the object scale, and, in the future, other possible
+  initializations.}, except for doing some axodraw-specific
+initialization.  It inserts a region of size \texttt{x} by \texttt{y}
+(with default units of $\unit[1]{pt} = \unit[1/72.27]{in} =
+\unit[0.3515]{mm}$). Here \texttt{x} and \texttt{y} are set to the
+numerical values you need.
+
+The positioning of axodraw objects is specified by giving $x$ and $y$
+coordinates, e.g., for the ends of lines.  The origin of these
+coordinates is, by default, at the lower left corner of the box that
+\texttt{axopicture} inserts in your document.  But sometimes,
+particularly after editing a graph, you will find this is not
+suitable.  To avoid changing a lot of coordinate values to get correct
+placement, you can specify an offset by the optional arguments
+\texttt{(xoffset,yoffset)} to the \texttt{axopicture} environment,
+exactly as for \LaTeX's \texttt{picture} environment.  The offset
+\texttt{(xoffset,yoffset)} denotes the position of the bottom left
+corner of the box inserted in your document relative to the coordinate
+system used for specifying object positions.  Thus
+\begin{verbatim}
+     \begin{axopicture}(20,20)
+        \Line(0,0)(20,20)
+     \end{axopicture}
+\end{verbatim}
+and 
+\begin{verbatim}
+     \begin{axopicture}(20,20)(-10,20)
+        \Line(-10,20)(10,40)
+     \end{axopicture}
+\end{verbatim}
+are exactly equivalent.
+
+Within an \texttt{axopicture} environment, all the commands that can
+be used inside an ordinary \texttt{picture} environment can also be
+used. 
+
+We can think of the \texttt{axopicture} environment as defining a
+drawing canvas for axodraw's graphical and text objects.
+There are possibilities for manipulating (separately) the units used
+to specify the canvas and the objects.  These can be useful for
+scaling a diagram or parts of it from an originally chosen design.
+See Secs.\ \ref{sec:units} and \ref{sec:settings} for details.
+
+
+\subsection{Graphics drawing commands}
+\label{sec:commands}
+
+In this section we present commands for drawing graphical objects,
+split up by category.  Later, we will give: details of options to the
+line-drawing commands, explanations of some details about specifying
+gluons and about specifying arrow parameters, and then commands for
+textual objects and for adjusting settings (e.g., separation in a
+double line).  Mostly, we present the commands by means of examples.
+Note that many of the arguments of the commands, notably arguments for
+$(x,y)$ coordinate values are delimited by parentheses and commas
+instead of the brace delimiters typically used in \LaTeX.
+
+It should also be noted that some commands provide different ways of
+performing the same task. For instance
+\begin{verbatim}
+   \BCirc(50,50){30}
+\end{verbatim}
+can also be represented by
+\begin{verbatim}
+   \CCirc(50,50){30}{Black}{White}
+\end{verbatim}
+when the current color is black. The presence of the BCirc command has been 
+maintained both for backward compatibility, and because it represents
+a convenient short hand for a common situation. This also holds for similar 
+commands involving boxes and triangles. For the new Polygon, FilledPolygon, 
+RotatedBox and FilledRotatedBox commands we have selected a more minimal 
+scheme.
+
+Similar remarks apply to the new feature of options for line drawing
+commands. Originally in v.\ 1, a line with an arrow would be coded as
+\begin{verbatim}
+   \ArrowLine(30,65)(60,25)
+\end{verbatim}
+It is now also possible to code using the general \verb+\Line+ macro,
+but with a keyword optional argument:
+\begin{verbatim}
+   \Line[arrow](30,65)(60,25)
+\end{verbatim}
+One advantage of the option method is a variety of other properties of
+an individual line may also be coded, as in
+\begin{verbatim}
+   \Line[arrow,arrowpos=1](30,65)(60,25)
+\end{verbatim}
+without the need to use separate global setting for the property, by
+the commands listed in Sec.\ \ref{sec:settings}, or by having a
+corresponding compulsory argument to the command.
+Which way to do things is a matter of user taste in particular
+situations.
+
+%--#[ AxoGrid :
+
+\subsubsection{Grid drawing}
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(90,140)(-10,0)}
+\AxoGrid(0,0)(10,10)(9,14){LightGray}{0.5}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{axogrid}
+\verb:\AxoGrid(0,0)(10,10)(9,14){LightGray}{0.5}: \hfill \\
+This command is used in our examples to allow the reader to compare the 
+coordinates in the commands with those of the actual picture. The arguments 
+are first the position of the left bottom corner, then two values that tell 
+the size of the divisions in the $x$ and $y$ direction. Next there are two 
+values that specify how many divisions there should be in the $x$ and $y$ 
+direction. Then the color of the lines is given and finally the width of 
+the lines. Note that if there are $(n_x,n_y)$ divisions there will be 
+$n_x+1$ vertical lines and $n_y+1$ horizontal lines. The temporary use of 
+this command can also be convenient when designing pictures manually.
+\end{minipage}\vspace{4mm}
+
+%--#] AxoGrid :
+%--#[ Line :
+
+\subsubsection{Ordinary straight lines}
+\label{sec:Line}
+
+
+All of the commands in this section can be given optional keyword
+arguments, which are defined in Secs.\ \ref{sec:options} and
+\ref{sec:arrows}.  These can be used to specify the type of line
+(dashed, double), to specify the use of an arrow, and its parameters, and
+to specify some of the line's parameters.
+
+The basic line drawing command is \verb+\Line+:\\[3mm]
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(90,40)(-10,0)}
+\AxoGrid(0,0)(10,10)(9,4){LightGray}{0.5}
+\Line(10,10)(80,30)
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{line}
+\verb:\Line(10,10)(80,30): \hfill \\
+In this command we have two coordinates. The (solid) line goes from the 
+first to the second.
+\end{minipage}\vspace{4mm}
+
+Examples of the use of optional arguments are:\\[3mm]
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(90,80)(-10,0)}
+\AxoGrid(0,0)(10,10)(9,8){LightGray}{0.5}
+\Line[color=Magenta,arrow](10,70)(80,70)
+\Line[dash](10,50)(80,50)
+\Line[arrow,double](10,30)(80,30)
+\Line[arrow,dash,double](10,10)(80,10)
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{line.options}
+\begin{verbatim}
+\Line[color=Magenta,arrow](10,70)(80,70)
+\Line[dash](10,50)(80,50)
+\Line[arrow,double](10,30)(80,30)
+\Line[arrow,dash,double](10,10)(80,10)
+\end{verbatim}
+\end{minipage}
+\\[4mm]
+Details of the specification of arrows, together with alternative
+commands for making lines with arrows are given in Sec.\
+\ref{sec:arrows}. 
+
+\vspace{4mm}
+%--#] Line :
+%--#[ DoubleLine :
+
+Alternative commands for dashed and/or double lines are:\\[3mm]
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(90,40)(-10,0)}
+\AxoGrid(0,0)(10,10)(9,4){LightGray}{0.5}
+\DoubleLine(10,25)(80,25){1}
+\DoubleLine[color=Red](10,15)(80,15){2}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{doubleline}
+\verb:\DoubleLine(10,25)(80,25){1}: \hfill \\
+\verb:\DoubleLine[color=Red](10,15)(80,15){2}: \hfill \\
+In this command we have two coordinates as in the Line command but two 
+lines are drawn. The extra parameter is the separation between the two 
+lines. Note however that everything between the lines is blanked out.
+\end{minipage}\vspace{4mm}
+
+%--#] DoubleLine :
+%--#[ DashLine :
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(90,40)(-10,0)}
+\AxoGrid(0,0)(10,10)(9,4){LightGray}{0.5}
+\DashLine(10,25)(80,25){2}
+\DashLine(10,15)(80,15){6}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{dashline}
+\verb:\DashLine(10,25)(80,25){2}: \hfill \\
+\verb:\DashLine(10,15)(80,15){6}: \hfill \\
+In this command we have two coordinates. The dashed line goes from the 
+first to the second. The extra parameter is the size of the dashes. The 
+space between the dashes is transparent.
+\end{minipage}\vspace{4mm}
+
+%--#] DashLine :
+%--#[ DashDoubleLine :
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(90,40)(-10,0)}
+\AxoGrid(0,0)(10,10)(9,4){LightGray}{0.5}
+\DashDoubleLine(10,25)(80,25){1.5}{2}
+\DashDoubleLine(10,15)(80,15){1.5}{6}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{dashdoubleline}
+\verb:\DashDoubleLine(10,25)(80,25){1.5}{2}: \hfill \\
+\verb:\DashDoubleLine(10,15)(80,15){1.5}{6}: \hfill \\
+In this command we have two coordinates. The dashed lines go from the 
+first to the second. The first extra parameter is the separation between 
+the lines and the second extra parameter is the size of the dashes.
+\end{minipage}\vspace{4mm}
+
+%--#] DashDoubleLine :
+%--#[ Arc :
+
+\subsubsection{Arcs}
+\label{sec:Arc}
+
+The commands in this section draw circular arcs in types corresponding
+to the straight lines of Sec.\ \ref{sec:Line}.  In v.\ 1, some of
+these commands had names containing ``Arc'' and some ``CArc''.  Some
+kinds had variant names containing ``Arcn'', whose the direction of
+drawing was clockwise instead of anticlockwise. In v.\ 2, we have
+tried to make the situation more consistent.  First, all the old names
+have been retained, for backward compatibility.  Second, a general
+purpose command \verb+\Arc+ has been introduced; in a single command,
+with the aid of optional arguments, it covers all the variants.  See
+Secs.\ \ref{sec:options} and \ref{sec:arrows} for full details.  The
+options can be used to specify the type of line (dashed, double,
+clockwise or anticlockwise), to specify the use of arrow, and its
+parameters, and to specify some of the line's parameters.  The other
+commands in this section can also be given optional keyword arguments.
+
+The basic \verb+\Arc+ command has the form\\[3mm]
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(90,50)(-10,0)}
+\AxoGrid(0,0)(10,10)(9,5){LightGray}{0.5}
+\Arc(45,0)(40,20,160)
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{carc}
+\verb:\Arc(45,0)(40,20,160):\hfill \\
+In this command we have one coordinate: the center of the circle. Then 
+follow the radius of the circle, the start angle and the finishing angle. 
+The arc will be drawn counterclockwise.
+\end{minipage}\vspace{4mm}
+
+An example of the use of the optional parameters is:\\[3mm]
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(80,80)(-10,0)}
+\AxoGrid(0,0)(10,10)(8,8){LightGray}{0.5}
+\Arc[arrow,dash,clockwise](40,40)(30,20,160)
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{carc.opt}
+\verb:\Arc[arrow,dash,clockwise](40,40)(30,20,160):
+\end{minipage}\vspace{4mm}
+
+Alternative commands for dashed and/or double arcs are as follows.
+\vspace*{4mm}
+
+%--#] Arc :
+%--#[ DoubleArc :
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(90,50)(-10,0)}
+\AxoGrid(0,0)(10,10)(9,5){LightGray}{0.5}
+\DoubleArc[color=Green](45,0)(40,20,160){2}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{doublearc}
+\verb:\DoubleArc[color=Green](45,0)(40,20,160){2}:\hfill \\
+In this command we have one coordinate: the center of the circle. Then 
+follow the radius of the circle, the start angle and the finishing angle. 
+The arc will be drawn counterclockwise. The last argument is the line 
+separation of the double line.
+\end{minipage}\vspace{4mm}
+
+%--#] DoubleArc :
+%--#[ DashArc :
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(90,50)(-10,0)}
+\AxoGrid(0,0)(10,10)(9,5){LightGray}{0.5}
+\DashArc(45,0)(40,20,160){4}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{dasharc}
+\verb:\DashArc(45,0)(40,20,160){4}:\hfill \\
+In this command we have one coordinate: the center of the circle. Then 
+follow the radius of the circle, the start angle and the finishing angle. 
+The arc will be drawn counterclockwise. The last argument is the size of 
+the dashes.
+\end{minipage}\vspace{4mm}
+
+%--#] DashArc :
+%--#[ DashDoubleArc :
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(90,50)(-10,0)}
+\AxoGrid(0,0)(10,10)(9,5){LightGray}{0.5}
+\DashDoubleArc(45,0)(40,20,160){2}{4}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{dashdoublearc}
+\verb:\DashDoubleArc(45,0)(40,20,160){2}{4}:\hfill \\
+In this command we have one coordinate: the center of the circle. Then 
+follow the radius of the circle, the start angle and the finishing angle. 
+The arc will be drawn counterclockwise. The last two arguments are the line 
+separation of the double line and the size of the dashes.
+\end{minipage}\vspace{4mm}
+
+%--#] DashDoubleArc :
+%--#[ Bezier :
+
+\subsubsection{B\'ezier lines}
+\label{sec:Bezier}
+
+The commands in this section draw B\'ezier curves, specified by 4
+points.  The variants are just as for straight lines, Sec.\
+\ref{sec:Line}.
+
+All of the commands in this section can be given optional keyword
+arguments, which are defined in Sec.\ \ref{sec:options}.  These can be
+used to specify the type of line (dashed, double), to specify the use
+of an arrow, and its parameters, and to specify some of the line's
+parameters.
+
+The basic general purpose command is \verb+\Bezier+:\\[3mm]
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(60,60)(-25,0)}
+\AxoGrid(0,0)(10,10)(6,6){LightGray}{0.5}
+\Bezier(10,10)(75,30)(65,40)(20,50)
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{bezier}
+\verb:\Bezier(10,10)(75,30)(65,40)(20,50): \hfill \\
+Draws a cubic B\'ezier curve based on the four given points. The first
+point is the starting point and the fourth the finishing point. The
+second and third points are the two control points.
+\end{minipage}\vspace{4mm}
+
+An example of the use of optional arguments is
+\\[3mm]
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(60,60)(-25,0)}
+\AxoGrid(0,0)(10,10)(6,6){LightGray}{0.5}
+\Bezier[color=Red,arrow,double,arrowpos=1](10,10)%
+    (75,30)(65,40)(20,50)
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{bezier.opt}
+\begin{verbatim}
+  \Bezier[color=Red,arrow,double,arrowpos=1](10,10)%
+    (75,30)(65,40)(20,50)
+\end{verbatim}
+\end{minipage}\vspace{4mm}
+
+%--#] Bezier :
+%--#[ DoubleBezier :
+Alternative ways of making dashed and/or double B\'ezier curves
+are:\\[3mm]
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(60,60)(-25,0)}
+\AxoGrid(0,0)(10,10)(6,6){LightGray}{0.5}
+\DoubleBezier(10,10)(75,30)(65,40)(20,50){1.5}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{doublebezier}
+\verb:\DoubleBezier(10,10)(75,30)(65,40)(20,50){1.5}: \hfill \\
+Draws a cubic B\'ezier curve based on the four given points. 
+The first four arguments are the same as for \verb+\Bezier+.
+The final argument is the line separation.
+\end{minipage}\vspace{4mm}
+
+%--#] DoubleBezier :
+%--#[ DashBezier :
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(60,60)(-25,0)}
+\AxoGrid(0,0)(10,10)(6,6){LightGray}{0.5}
+\DashBezier(10,10)(75,30)(65,40)(20,50){4}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{dashbezier}
+\verb:\DashBezier(10,10)(75,30)(65,40)(20,50){4}: \hfill \\
+Draws a cubic B\'ezier curve based on the four given points. 
+The first four arguments are the same as for \verb+\Bezier+.
+The final argument is the size of the dashes.
+\end{minipage}\vspace{4mm}
+
+%--#] DashBezier :
+%--#[ DashDoubleBezier :
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(60,60)(-25,0)}
+\AxoGrid(0,0)(10,10)(6,6){LightGray}{0.5}
+\DashDoubleBezier(10,10)(75,30)(65,40)(20,50){1.5}{4}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{dashdoublebezier}
+\verb:\DashDoubleBezier(10,10)(75,30)(65,40)(20,50){1.5}{4}:
+Draws a cubic B\'ezier curve based on the four given points. 
+The first four arguments are the same as for \verb+\Bezier+.
+The final two arguments are the line separation and the size of the
+dashes.
+\end{minipage}\vspace{4mm}
+
+%--#] DashDoubleBezier :
+%--#[ Curve :
+
+\subsubsection{Curves}
+
+The commands in this section draw curves through an arbitrary sequence
+of points.  They only exist in variants for continuous and dashed
+lines.  No optional arguments are allowed.
+\vspace{4mm}
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(60,60)(-25,0)}
+\AxoGrid(0,0)(10,10)(6,6){LightGray}{0.5}
+\Curve{(5,55)(10,32.5)(15,23)(20,18)(25,14.65)(30,12.3)(40,9.5)(55,7)}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{curve}
+\verb:\Curve{(5,55)(10,32.5)(15,23)(20,18): \hfill \\
+\verb:       (25,14.65)(30,12.3)(40,9.5)(55,7)}: \hfill \\
+Draws a smooth curve through the given points. The $x$ coordinates of the 
+points should be in ascending order. The curve is obtained by constructing 
+quadratic fits to each triplet of adjacent points and then in each interval 
+between two points interpolating between the two relevant parabolas.
+\end{minipage}\vspace{4mm}
+
+%--#] Curve :
+%--#[ DashCurve :
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(60,60)(-25,0)}
+\AxoGrid(0,0)(10,10)(6,6){LightGray}{0.5}
+\DashCurve{(5,55)(10,32.5)(15,23)(20,18)(25,14.65)(30,12.3)(40,9.5)(55,7)}{4}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{dashcurve}
+\verb:\DashCurve{(5,55)(10,32.5)(15,23)(20,18): \hfill \\
+\verb:       (25,14.65)(30,12.3)(40,9.5)(55,7)}{4}: \hfill \\
+Draws a smooth dashed curve through the given points. The $x$ coordinates of 
+the points should be in ascending order. The last argument is the size of 
+the dashes.
+\end{minipage}\vspace{4mm}
+
+%--#] DashCurve :
+%--#[ Gluon :
+
+\subsubsection{Gluon lines}
+\label{sec:Gluon}
+
+The basic gluon drawing commands are \verb+\Gluon+, \verb+\GluonArc+,
+\verb+\GluonCirc+.  There are also variants for dashed and double
+gluons. But arrows aren't possible.
+
+See Sec.\ \ref{sec:gluon.remarks} for additional information on the
+shape of gluon lines.
+
+All of the commands in this section can be given optional keyword
+arguments, which are defined in Sec.\ \ref{sec:options}.  These can be
+used to specify the type of line (dashed, double), and to specify some
+of the line's parameters.
+\vspace{3mm}
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(90,40)(-10,0)}
+\AxoGrid(0,0)(10,10)(9,4){LightGray}{0.5}
+\Gluon(10,20)(80,20){5}{7}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{gluon}
+\verb:\Gluon(10,20)(80,20){5}{7}: \hfill \\
+In this command we have coordinates for the start and end of the line,
+the amplitude of the windings and the number of windings.  A negative
+value for the amplitude reverses the orientation of the windings ---
+see Sec.\ \ref{sec:gluon.remarks} for details.
+\end{minipage}
+\\[4mm]
+Optional arguments can be used, e.g., \hfill \\[3mm]
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(90,40)(-10,0)}
+\AxoGrid(0,0)(10,10)(9,4){LightGray}{0.5}
+\Gluon[color=Blue,dash,dashsize=1,double](10,20)(80,20){4}{7}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{gluon.opt}
+\verb:\Gluon[color=Blue,dash,double](10,20)(80,20){4}{7}:
+\end{minipage}
+
+
+\vspace{4mm}
+
+%--#] Gluon :
+%--#[ DoubleGluon :
+\noindent
+Examples of the other commands for various types of gluon line are as
+follows. They can all take optional arguments.
+\\[3mm]
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(90,40)(-10,0)}
+\AxoGrid(0,0)(10,10)(9,4){LightGray}{0.5}
+\DoubleGluon(10,20)(80,20){5}{7}{1.3}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{doublegluon}
+\verb:\DoubleGluon(10,20)(80,20){5}{7}{1.3}:\hfill \\
+The first 6 arguments are as in the \verb+\Gluon+ command. The
+extra argument is the line separation.
+\end{minipage}\vspace{4mm}
+
+%--#] DoubleGluon :
+%--#[ DashGluon :
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(90,40)(-10,0)}
+\AxoGrid(0,0)(10,10)(9,4){LightGray}{0.5}
+\DashGluon(10,20)(80,20){5}{7}{1}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{dashgluon}
+\verb:\DashGluon(10,20)(80,20){5}{7}{1}:\hfill \\
+The first 6 arguments are as in the \verb+Gluon+ command. The 
+extra argument is the size of the dashes.
+\end{minipage}\vspace{4mm}
+
+%--#] DashGluon :
+%--#[ DashDoubleGluon :
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(90,40)(-10,0)}
+\AxoGrid(0,0)(10,10)(9,4){LightGray}{0.5}
+\DashDoubleGluon(10,20)(80,20){5}{7}{1.3}{1}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{dashdoublegluon}
+\verb:\DashDoubleGluon(10,20)(80,20){5}{7}{1.3}{1}:\hfill \\
+The first 7 arguments are as in the \verb+DoubleGluon+
+command.
+The last two arguments are the line 
+separation of the double line and the size of the dashes.
+\end{minipage}
+\vspace{8mm}
+
+%--#] DashDoubleGluon :
+%--#[ GluonArc :
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(90,50)(-10,0)}
+\AxoGrid(0,0)(10,10)(9,5){LightGray}{0.5}
+\GluonArc(45,0)(40,20,160){5}{8}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{gluonarc}
+\verb:\GluonArc(45,0)(40,20,160){5}{8}:\hfill \\
+In this command we have one coordinate: the center of the circle. Then 
+follow the radius of the circle, the start angle and the finishing angle. 
+The arc will be drawn counterclockwise. The final two parameters are the 
+amplitude of the windings and the number of windings.
+Like the other commands in this section, this command can take
+optional arguments, Sec.\ \ref{sec:options}.
+\end{minipage}
+\vspace{4mm}
+
+%--#] GluonArc :
+%--#[ DoubleGluonArc :
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(90,50)(-10,0)}
+\AxoGrid(0,0)(10,10)(9,5){LightGray}{0.5}
+   \DoubleGluonArc[color=Red](45,0)(40,20,160)%
+                             {5}{8}{1.3}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{doublegluonarc}
+\begin{verbatim}
+   \DoubleGluonArc[color=Red](45,0)(40,20,160)%
+                             {5}{8}{1.3}
+\end{verbatim}
+The first 7 arguments are as in the \verb+GluonArc+ command. The extra
+argument is the separation in the double line.
+\end{minipage}\vspace{4mm}
+
+%--#] DoubleGluonArc :
+%--#[ DashGluonArc :
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(90,50)(-10,0)}
+\AxoGrid(0,0)(10,10)(9,5){LightGray}{0.5}
+\DashGluonArc(45,0)(40,20,160){5}{8}{1.5}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{dashgluonarc}
+\verb:\DashGluonArc(45,0)(40,20,160){5}{8}{1.5}:\hfill \\
+The first 7 arguments are as in the \verb+GluonArc+ command. The extra
+argument is the size of the dash segments.
+\end{minipage}\vspace{4mm}
+
+%--#] DashGluonArc :
+%--#[ DashDoubleGluonArc :
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(90,50)(-10,0)}
+\AxoGrid(0,0)(10,10)(9,5){LightGray}{0.5}
+\DashDoubleGluonArc(45,0)(40,20,160){5}{8}{1.3}{1.5}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{dashdoublegluonarc}
+\verb:\DashDoubleGluonArc(45,0)(40,20,160){5}{8}{1.3}{1.5}:\hfill \\
+The first 7 arguments are as in the \verb+GluonArc+ command. The extra
+arguments are the separation of the lines and the size of the dash
+segments.
+\end{minipage}\vspace{10mm}
+
+%--#] DashDoubleGluonArc :
+%--#[ GluonCirc :
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(80,80)(-15,0)}
+\AxoGrid(0,0)(10,10)(8,8){LightGray}{0.5}
+\GluonCirc(40,40)(30,0){5}{16}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{gluoncirc}
+\verb:\GluonCirc(40,40)(30,0){5}{16}:\hfill \\
+The arguments are: Coordinates for the center of the circle, the
+radius and a phase, the 
+amplitude of the gluon windings and the number of windings.
+Like the other commands in this section, this command can take
+optional arguments, Sec.\ \ref{sec:options}.  The phase argument
+specifies a counterclockwise rotation of the line relative to a
+default starting point.
+\end{minipage}\vspace{4mm}
+
+%--#] GluonCirc :
+%--#[ DoubleGluonCirc :
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(80,80)(-15,0)}
+\AxoGrid(0,0)(10,10)(8,8){LightGray}{0.5}
+\DoubleGluonCirc[color=Red](40,40)(30,0){5}{16}{1.3}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{doublegluoncirc}
+\verb:\DoubleGluonCirc[color=Red](40,40)(30,0){5}{16}{1.3}:\hfill \\
+The first 6 arguments are as for the \verb+GluonCirc+ command.  The
+final argument is the line separation.
+\end{minipage}\vspace{4mm}
+
+%--#] DoubleGluonCirc :
+%--#[ DashGluonCirc :
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(80,80)(-15,0)}
+\AxoGrid(0,0)(10,10)(8,8){LightGray}{0.5}
+\DashGluonCirc(40,40)(30,0){5}{16}{1.5}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{dashgluoncirc}
+\verb:\DashGluonCirc(40,40)(30,0){5}{16}{1.5}:\hfill \\
+The first 6 arguments are as for the \verb+GluonCirc+ command.  
+The final argument is the size of the dashes.
+\end{minipage}\vspace{4mm}
+
+%--#] DashGluonCirc :
+%--#[ DashDoubleGluonCirc :
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(80,80)(-15,0)}
+\AxoGrid(0,0)(10,10)(8,8){LightGray}{0.5}
+\DashDoubleGluonCirc(40,40)(30,0){5}{16}{1.3}{1.5}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{dashdoublegluoncirc}
+\verb:\DashDoubleGluonCirc(40,40)(30,0){5}{16}{1.3}{1.5}:\hfill \\
+The first 6 arguments are as for the \verb+GluonCirc+ command.  
+The final 2 arguments are the line separation and the size of the
+dashes.
+\end{minipage}\vspace{4mm}
+
+%--#] DashDoubleGluonCirc :
+%--#[ Photon :
+
+\subsubsection{Photon lines}
+\label{sec:Photon}
+
+The basic drawing commands for drawing photon lines are \verb+\Photon+
+and \verb+\PhotonArc+.  There are also variants for dashed and double
+photons. But arrows aren't possible.
+
+All of the commands in this section can be given optional keyword
+arguments, which are defined in Sec.\ \ref{sec:options}.  These can be
+used to specify the type of line (dashed, double), and to specify some
+of the line's parameters.\vspace{3mm}
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(90,40)(-10,0)}
+\AxoGrid(0,0)(10,10)(9,4){LightGray}{0.5}
+\Photon(10,20)(80,20){5}{7}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{photon}
+\verb:\Photon(10,20)(80,20){5}{7}: \hfill \\
+In this command we have two coordinates, the amplitude of the wiggles and 
+the number of wiggles.
+A negative value for the amplitude will reverse the orientation of the
+wiggles.
+The line will be drawn with the number of wiggles rounded to the
+nearest half integer.
+Like the other commands in this section, this command can take
+optional arguments, Sec.\ \ref{sec:options}.
+\end{minipage}\vspace{4mm}
+
+%--#] Photon :
+%--#[ DoublePhoton :
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(90,40)(-10,0)}
+\AxoGrid(0,0)(10,10)(9,4){LightGray}{0.5}
+\DoublePhoton(10,20)(80,20){5}{7}{1.3}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{doublephoton}
+\verb:\DoublePhoton(10,20)(80,20){5}{7}{1.3}:\hfill \\
+The first 6 arguments are as in the \verb+Photon+ command. The 
+extra argument is the line separation.
+\end{minipage}\vspace{4mm}
+
+%--#] DoublePhoton :
+%--#[ DashPhoton :
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(90,40)(-10,0)}
+\AxoGrid(0,0)(10,10)(9,4){LightGray}{0.5}
+\DashPhoton[color=Red](10,20)(80,20){5}{7}{1}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{dashphoton}
+\verb:\DashPhoton[color=Red](10,20)(80,20){5}{7}{1}:\hfill \\
+The first 6 arguments are as in the \verb+Photon+ command. The 
+extra argument is the size of the dashes.
+\end{minipage}\vspace{4mm}
+
+%--#] DashPhoton :
+%--#[ DashDoublePhoton :
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(90,40)(-10,0)}
+\AxoGrid(0,0)(10,10)(9,4){LightGray}{0.5}
+\DashDoublePhoton(10,20)(80,20){5}{7}{1.3}{1}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{dashdoublephoton}
+\verb:\DashDoublePhoton(10,20)(80,20){5}{7}{1.3}{1}:\hfill \\
+The first 6 arguments are as in the \verb+Photon+ 
+command. 
+The final 2 arguments are the line separation and the size of the
+dashes.
+\end{minipage}\vspace{10mm}
+
+%--#] DashDoublePhoton :
+%--#[ PhotonArc :
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(90,50)(-10,0)}
+\AxoGrid(0,0)(10,10)(9,5){LightGray}{0.5}
+\PhotonArc(45,0)(40,20,160){5}{8}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{photonarc}
+\verb:\PhotonArc(45,0)(40,20,160){5}{8}:\hfill \\
+In this command we have one coordinate: the center of the circle. Then 
+follow the radius of the circle, the start angle and the finishing angle. 
+The arc will be drawn counterclockwise. The final two parameters are the 
+amplitude of the wiggles and the number of wiggles.
+Like the other commands in this section, this command can take
+optional arguments, Sec.\ \ref{sec:options}.
+\end{minipage}\vspace{4mm}
+
+%--#] PhotonArc :
+%--#[ DoublePhotonArc :
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(90,50)(-10,0)}
+\AxoGrid(0,0)(10,10)(9,5){LightGray}{0.5}
+\DoublePhotonArc[color=Red](45,0)(40,20,160)%
+                           {5}{8}{1.3}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{doublephotonarc}
+\begin{verbatim}
+\DoublePhotonArc[color=Red](45,0)(40,20,160)%
+                           {5}{8}{1.3}
+\end{verbatim}
+The first 7 arguments are as in the \verb+PhotonArc+ command. The extra
+argument is the separation of the double line.
+\end{minipage}\vspace{4mm}
+
+%--#] DoublePhotonArc :
+%--#[ DashPhotonArc :
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(90,50)(-10,0)}
+\AxoGrid(0,0)(10,10)(9,5){LightGray}{0.5}
+\DashPhotonArc(45,0)(40,20,160){5}{8}{1.5}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{dashphotonarc}
+\verb:\DashPhotonArc(45,0)(40,20,160){5}{8}{1.5}:\hfill \\
+The first 7 arguments are as in the \verb+PhotonArc+ command. The
+extra argument is the size of the dash segments.
+\end{minipage}\vspace{4mm}
+
+%--#] DashPhotonArc :
+%--#[ DashDoublePhotonArc :
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(90,50)(-10,0)}
+\AxoGrid(0,0)(10,10)(9,5){LightGray}{0.5}
+\DashDoublePhotonArc(45,0)(40,20,160){5}{8}{1.3}{1.5}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{dashdoublephotonarc}
+\verb:\DashDoublePhotonArc(45,0)(40,20,160){5}{8}{1.3}{1.5}:\hfill \\
+The first 7 arguments are as in the \verb+PhotonArc+ command. The
+extra arguments are the separation of the lines and the size of the
+dash segments.
+\end{minipage}\vspace{4mm}
+
+%--#] DashDoublePhotonArc :
+%--#[ ZigZag :
+
+\subsubsection{Zigzag lines}
+
+The basic drawing commands for drawing zigzag lines are \verb+\Zigzag+
+and \verb+\ZigzagArc+.  There are also variants for dashed and double
+lines. But arrows aren't possible.
+
+All of the commands in this section can be given optional keyword
+arguments, which are defined in Sec.\ \ref{sec:options}.  These can be
+used to specify the type of line (dashed, double), and to specify some
+of the line's parameters.
+\vspace{4mm}
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(90,40)(-10,0)}
+\AxoGrid(0,0)(10,10)(9,4){LightGray}{0.5}
+\ZigZag(10,20)(80,20){5}{7.5}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{zigzag}
+\verb:\ZigZag(10,20)(80,20){5}{7.5}: \hfill \\
+In this command we have two coordinates, the amplitude of the sawteeth and 
+the number of sawteeth.
+A negative value for the amplitude will reverse the orientation of the
+sawteeth.
+The line will be drawn with the number of sawteeth rounded to the
+nearest half integer.
+\end{minipage}
+\\[3mm]
+Like the other commands in this section, this command can take
+optional arguments, Sec.\ \ref{sec:options}, e.g.,\\[3mm]
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(90,40)(-10,0)}
+\AxoGrid(0,0)(10,10)(9,4){LightGray}{0.5}
+\ZigZag[color=Red,double,sep=1.5](10,20)(80,20){5}{7}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{zigzag.opt}
+\verb:\ZigZag[color=Red,double,sep=1.5](10,20)(80,20){5}{7}:
+\end{minipage}\vspace{6mm}
+
+%--#] ZigZag :
+%--#[ DoubleZigZag :
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(90,40)(-10,0)}
+\AxoGrid(0,0)(10,10)(9,4){LightGray}{0.5}
+\DoubleZigZag(10,20)(80,20){5}{7}{1.3}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{doublezigzag}
+\verb:\DoubleZigZag(10,20)(80,20){5}{7}{1.3}:\hfill \\
+The first 6 arguments are as in the \verb+ZigZag+ command. The 
+extra argument is the line separation.
+\end{minipage}\vspace{4mm}
+
+%--#] DoubleZigZag :
+%--#[ DashZigZag :
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(90,40)(-10,0)}
+\AxoGrid(0,0)(10,10)(9,4){LightGray}{0.5}
+\DashZigZag(10,20)(80,20){5}{7}{1}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{dashzigzag}
+\verb:\DashZigZag(10,20)(80,20){5}{7}{1}:\hfill \\
+The first 6 arguments are as in the \verb+ZigZag+ command. The 
+extra argument is the size of the dashes.
+\end{minipage}\vspace{4mm}
+
+%--#] DashZigZag :
+%--#[ DashDoubleZigZag :
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(90,40)(-10,0)}
+\AxoGrid(0,0)(10,10)(9,4){LightGray}{0.5}
+\DashDoubleZigZag(10,20)(80,20){5}{7}{1.3}{1}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{dashdoublezigzag}
+\verb:\DashDoubleZigZag(10,20)(80,20){5}{7}{1.3}{1}:\hfill \\
+The first 6 arguments are as in the \verb+ZigZag+ command. 
+The extra arguments are the separation of the lines and the size of
+the dash segments.
+\end{minipage}\vspace{6mm}
+
+%--#] DashDoubleZigZag :
+%--#[ ZigZagArc :
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(90,50)(-10,0)}
+\AxoGrid(0,0)(10,10)(9,5){LightGray}{0.5}
+\ZigZagArc(45,0)(40,20,160){5}{8}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{zigzagarc}
+\verb:\ZigZagArc(45,0)(40,20,160){5}{8}:\hfill \\
+In this command we have one coordinate: the center of the circle. Then
+follow the radius of the circle, the start angle and the finishing
+angle.  The arc will be drawn counterclockwise. The final two
+arguments are the amplitude of the sawteeth and the number of
+sawteeth.  Like the other commands in this section, this command can
+take optional arguments, Sec.\ \ref{sec:options}.
+\end{minipage}\vspace{4mm}
+
+%--#] ZigZagArc :
+%--#[ DoubleZigZagArc :
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(90,50)(-10,0)}
+\AxoGrid(0,0)(10,10)(9,5){LightGray}{0.5}
+\DoubleZigZagArc(45,0)(40,20,160){5}{8}{1.3}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{doublezigzagarc}
+\verb:\DoubleZigZagArc(45,0)(40,20,160){5}{8}{1.3}:\hfill \\
+The first 7 arguments are as for the \verb+ZigZagArc+ command. The
+extra argument is the separation in the double line.
+\end{minipage}\vspace{4mm}
+
+%--#] DoubleZigZagArc :
+%--#[ DashZigZagArc :
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(90,50)(-10,0)}
+\AxoGrid(0,0)(10,10)(9,5){LightGray}{0.5}
+\DashZigZagArc(45,0)(40,20,160){5}{8}{1.5}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{dashzigzagarc}
+\verb:\DashZigZagArc(45,0)(40,20,160){5}{8}{1.5}:\hfill \\
+The first 7 arguments are as for the \verb+ZigZagArc+ command. The
+extra argument is the size of the dash segments.
+\end{minipage}\vspace{4mm}
+
+%--#] DashZigZagArc :
+%--#[ DashDoubleZigZagArc :
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(90,50)(-10,0)}
+\AxoGrid(0,0)(10,10)(9,5){LightGray}{0.5}
+\DashDoubleZigZagArc(45,0)(40,20,160){5}{8}{1.3}{1.5}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{dashdoublezigzagarc}
+\verb:\DashDoubleZigZagArc(45,0)(40,20,160){5}{8}{1.3}{1.5}:\hfill \\
+The first 7 arguments are as for the \verb+ZigZagArc+ command. The
+final 2 arguments are the separation of the lines and the size of the
+dash segments.
+\end{minipage}\vspace{4mm}
+
+%--#] DashDoubleZigZagArc :
+%--#[ Vertex :
+
+\subsubsection{Vertices,  circles, ovals}
+\label{sec:other.graphics}
+
+The commands in this section are for graphical elements other
+than those that we conceived of as lines in Feynman graphs.  Many of
+these have standard uses as components of Feynman graphs\footnote{Of
+  course, none of the commands is restricted to its originally
+  envisaged use, or to being used to draw Feynman graphs.  But
+  especially the line-drawing commands have been designed from the
+  point-of-view of being suitable for the needs of drawing particular
+  elements of Feynman graphs.}.  The commands here are mostly shown
+in association with other objects, to indicate some of their
+properties.
+\vspace{4mm}
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(80,50)(-15,0)}
+\AxoGrid(0,0)(10,10)(8,5){LightGray}{0.5}
+\Line(10,10)(70,10)
+\Photon(40,10)(40,40){4}{3}
+\Vertex(40,10){1.5}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{vertex}
+\verb:\Line(10,10)(70,10): \hfill \\
+\verb:\Photon(40,10)(40,40){4}{3}: \hfill \\
+\verb:\Vertex(40,10){1.5}: \hfill \\
+\verb+\Vertex+ gives a vertex, as is often used for connecting lines
+in Feynman graphs. It gives a fat dot. The arguments are coordinates
+(between parentheses) for its center, and the radius of the dot.
+\end{minipage}\vspace{4mm}
+
+%--#] Vertex :
+%--#[ ECirc :
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(60,60)(-25,0)}
+\AxoGrid(0,0)(10,10)(6,6){LightGray}{0.5}
+\Red{\Line(0,0)(60,60)}
+\ECirc(30,30){20}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{ecirc}
+\verb:\Red{\Line(0,0)(60,60)}:\\
+\verb:\ECirc(30,30){20}:\\
+\verb+\ECirc+ draws a circle with its center at the specified
+coordinate (first two arguments) and the specified radius (third
+argument).  The interior is transparent, so that it does not erase
+previously drawn material.
+If you need a filled circle, use the \verb+\Vertex+ command (to which
+we have defined a synonym \verb+\FCirc+ to match similar commands for
+other shapes).
+\end{minipage}\vspace{4mm}
+
+%--#] ECirc :
+%--#[ BCirc :
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(60,60)(-25,0)}
+\AxoGrid(0,0)(10,10)(6,6){LightGray}{0.5}
+\Red{\Line(0,0)(60,60)}
+\BCirc(30,30){20}
+\Blue{\Line(60,0)(0,60)}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{bcirc}
+\verb:\Red{\Line(0,0)(60,60)}:\\
+\verb:\BCirc(30,30){20}:\\
+\verb:\Blue{\Line(60,0)(0,60)}:\\
+\verb+\BCirc+
+draws a circle with the center at the specified coordinate (first two 
+arguments) and the specified radius (third argument). The interior is
+white and opaque, so that it erases previously written objects, but not
+subsequently drawn objects.
+\end{minipage}\vspace{4mm}
+
+%--#] BCirc :
+%--#[ GCirc :
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(60,60)(-25,0)}
+\AxoGrid(0,0)(10,10)(6,6){LightGray}{0.5}
+\Red{\Line(0,0)(60,60)}
+\GCirc(30,30){20}{0.82}
+\Blue{\Line(60,0)(0,60)}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{gcirc}
+\verb:\Red{\Line(0,0)(60,60)}:\\
+\verb:\GCirc(30,30){20}{0.82}:\\
+\verb:\Blue{\Line(60,0)(0,60)}:\\
+\verb+\GCirc+ draws a circle with the center at the specified
+coordinate (first two arguments) and the specified radius (third
+argument).  Previously written contents are overwritten and made gray
+according to the grayscale specified by the fourth argument (0=black,
+1=white).
+\end{minipage}\vspace{4mm}
+
+%--#] GCirc :
+%--#[ CCirc :
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(60,60)(-25,0)}
+\AxoGrid(0,0)(10,10)(6,6){LightGray}{0.5}
+\Red{\Line(0,0)(60,60)}
+\CCirc(30,30){20}{Red}{Yellow}
+\Blue{\Line(60,0)(0,60)}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{ccirc}
+\verb:\Red{\Line(0,0)(60,60)}:\\
+\verb:\CCirc(30,30){20}{Red}{Yellow}:\\
+\verb:\Blue{\Line(60,0)(0,60)}:\\
+\verb+\CCirc+ draws a colored circle with the center at the specified
+coordinate (first two arguments) and the specified radius (third
+argument). The fourth argument is the name of the color for the circle
+itself. Its interior is overwritten and colored with the color
+specified by name in the fifth argument.
+\end{minipage}\vspace{4mm}
+
+%--#] CCirc :
+%--#[ Oval :
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(80,110)(-15,0)}
+\AxoGrid(0,0)(10,10)(8,11){LightGray}{0.5}
+\Oval(40,80)(20,30)(0)
+\Oval(40,30)(20,30)(30)
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{oval}
+\verb:\Oval(40,80)(20,30)(0):\\
+\verb:\Oval(40,30)(20,30)(30):\\
+\verb:\Oval: draws an oval.  The first pair of values is the center of
+the oval. The next pair forms the half-height and the half-width. The
+last argument is a (counterclockwise) rotation angle.  The interior is
+transparent, so that it does not erase previously drawn material.
+\end{minipage}\vspace{4mm}
+
+%--#] Oval :
+%--#[ FOval :
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(80,60)(-15,0)}
+\AxoGrid(0,0)(10,10)(8,6){LightGray}{0.5}
+\SetColor{Yellow}
+\FOval(40,30)(20,30)(30)
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{foval}
+\verb:\SetColor{Yellow}:\\
+\verb:\FOval(40,80)(20,30)(30):\\
+\verb:\FOval: draws an oval filled with the current color overwriting
+previously written material. Its arguments are the same as for the
+\verb:\Oval: command. 
+\end{minipage}\vspace{4mm}
+
+%--#] FOval :
+%--#[ GOval :
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(80,60)(-15,0)}
+\AxoGrid(0,0)(10,10)(8,6){LightGray}{0.5}
+\Red{\Line(0,0)(80,60)}
+\GOval(40,30)(20,30)(0){0.6}
+\Blue{\Line(80,0)(0,60)}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{goval}
+\verb:\Red{\Line(0,0)(80,60)}:\\
+\verb:\GOval(40,30)(20,30)(0){0.6}: \\
+\verb:\Blue{\Line(80,0)(0,60)}:\\
+\verb:\GOval: draws an oval with a gray interior.  
+The first 5 arguments are the same as for the \verb:\Oval: command. 
+The last argument indicates the
+grayscale with which the oval will be filled, overwriting previously
+written contents (0=black, 1=white).
+\end{minipage}\vspace{4mm}
+
+%--#] GOval :
+%--#[ COval :
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(80,60)(-15,0)}
+\AxoGrid(0,0)(10,10)(8,6){LightGray}{0.5}
+\SetWidth{1}
+\Green{\Line(0,0)(80,60)}
+\COval(40,30)(20,30)(20){Orange}{Blue}
+\Yellow{\Line(80,0)(0,60)}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{coval}
+\verb:\Green{\Line(0,0)(80,60)}:\\
+\verb:\COval(40,30)(20,30)(20){Orange}{Blue}:\\
+\verb:\Yellow{\Line(80,0)(0,60)}:\\
+\verb:\COval: draws a colored oval.  
+The first 5 arguments are the same as for the \verb:\Oval: command. 
+The last two arguments are the names of two colors. 
+The first is the color of the line that forms the oval and the second is 
+the color of the inside.
+\end{minipage}\vspace{4mm}
+
+%--#] COval :
+%--#[ EBox :
+
+Commands for drawing boxes are in two series.  For the first set, the
+box's position is specified by the coordinates of its bottom left
+corner and top right corner:\\[4mm]
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(60,50)(-25,0)}
+\AxoGrid(0,0)(10,10)(6,5){LightGray}{0.5}
+\EBox(10,10)(50,40)
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{ebox}
+\verb:\EBox(10,10)(50,40): \hfill \\
+Draws a box. The points specified are the bottom left corner and the top 
+right corner.
+The interior is transparent, so that it does not erase previously
+drawn material. 
+\end{minipage}\vspace{4mm}
+
+%--#] EBox :
+%--#[ FBox :
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(60,50)(-25,0)}
+\AxoGrid(0,0)(10,10)(6,5){LightGray}{0.5}
+\FBox(10,10)(50,40)
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{fbox}
+\verb:\FBox(10,10)(50,40): \hfill \\
+Draws a box filled with the current color overwriting
+previously written material. Its arguments are the same as for the
+\verb:\EBox: command. 
+\end{minipage}\vspace{4mm}
+
+%--#] FBox :
+%--#[ BBox :
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(60,50)(-25,0)}
+\AxoGrid(0,0)(10,10)(6,5){LightGray}{0.5}
+\BBox(10,10)(50,40)
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{bbox}
+\verb:\BBox(10,10)(50,40): \hfill \\
+Draws a blanked-out box. The points specified are the bottom left corner 
+and the top right corner.
+\end{minipage}\vspace{4mm}
+
+%--#] BBox :
+%--#[ GBox :
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(60,50)(-25,0)}
+\AxoGrid(0,0)(10,10)(6,5){LightGray}{0.5}
+\GBox(10,10)(50,40){0.9}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{gbox}
+\verb:\GBox(10,10)(50,40){0.9}: \hfill \\
+Draws a box filled with a grayscale given by the fifth argument (black=0, 
+white=1). The points specified are the bottom left corner and the top 
+right corner.
+\end{minipage}\vspace{4mm}
+
+%--#] GBox :
+%--#[ CBox :
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(60,50)(-25,0)}
+\AxoGrid(0,0)(10,10)(6,5){LightGray}{0.5}
+\SetWidth{1.5}
+\CBox(10,10)(50,40){Green}{LightRed}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{cbox}
+\verb:\CBox(10,10)(50,40){Green}{LightRed}: \hfill \\
+Draws a box in the color specified by name in the fifth argument. The
+contents are filled with the color specified by name in the sixth
+argument. The points specified are the bottom left corner and the top
+right corner.
+\end{minipage}\vspace{4mm}
+
+%--#] CBox :
+%--#[ EBoxc :
+
+For the other series of box-drawing commands, the box's position is
+specified by its center, and its width and height.  The command names
+end with a ``\texttt{c}'', for ``center'':\\[3mm]
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(60,50)(-25,0)}
+\AxoGrid(0,0)(10,10)(6,5){LightGray}{0.5}
+\EBoxc(30,25)(40,30)
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{eboxc}
+\label{boxc}
+\verb:\EBoxc(30,25)(40,30): \hfill \\
+Draws a box. The first two numbers give the center of the box. The next two 
+numbers are the width and the height of the box. Instead of \verb:\EBoxc: 
+one may also use \verb:\Boxc:.
+
+There is also the similar command \verb:\FBoxc: that draws a filled box.
+\end{minipage}\vspace{4mm}
+
+%--#] EBoxc :
+%--#[ BBoxc :
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(60,50)(-25,0)}
+\AxoGrid(0,0)(10,10)(6,5){LightGray}{0.5}
+\BBoxc(30,25)(40,30)
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{bboxc}
+\verb:\BBoxc(30,25)(40,30): \hfill \\
+Draws a box of which the contents are blanked out. The arguments are
+the same as for the \verb+\EBoxc+ command.
+\end{minipage}\vspace{4mm}
+
+%--#] BBoxc :
+%--#[ GBoxc :
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(60,50)(-25,0)}
+\AxoGrid(0,0)(10,10)(6,5){LightGray}{0.5}
+\GBoxc(30,25)(40,30){0.9}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{gboxc}
+\verb:\GBoxc(30,25)(40,30){0.9}: \hfill \\
+Draws a box filled with a grayscale given by the fifth argument (black=0, 
+white=1).
+The first 4 arguments are the same as for the \verb+\EBoxc+ command.
+\end{minipage}\vspace{4mm}
+
+%--#] GBoxc :
+%--#[ CBoxc :
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(60,50)(-25,0)}
+\AxoGrid(0,0)(10,10)(6,5){LightGray}{0.5}
+\SetWidth{1.5}
+\CBoxc(30,25)(40,30){Brown}{LightBlue}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{cboxc}
+\verb:\CBoxc(30,25)(40,30){Brown}{LightBlue}: \hfill \\
+Draws a box in the color specified by name in the fifth argument. The
+contents are filled with the color specified by name in the sixth
+argument.
+The first 4 arguments are the same as for the \verb+\EBoxc+ command.
+\end{minipage}\vspace{4mm}
+
+%--#] BBoxc :
+%--#] CBoxc :
+%--#[ RotatedBox :
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(60,50)(-25,0)}
+\AxoGrid(0,0)(10,10)(6,5){LightGray}{0.5}
+\RotatedBox(30,25)(40,30){30}{Red}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{rotatedbox}
+\verb:\RotatedBox(30,25)(40,30){30}{Red}: \hfill \\
+Draws a rotated box. The first two numbers give the center of the
+box. The next two numbers are the width and the height of the box. The
+fifth argument is the counterclockwise rotation angle and the sixth
+argument is the color of the box.  The interior of the box is
+transparent.
+\end{minipage}\vspace{4mm}
+
+%--#] RotatedBox :
+%--#[ FilledRotatedBox :
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(60,50)(-25,0)}
+\AxoGrid(0,0)(10,10)(6,5){LightGray}{0.5}
+\FilledRotatedBox(30,25)(40,30){30}{Blue}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{filledrotatedbox}
+\verb:\FilledRotatedBox(30,25)(40,30){30}{Blue}: \hfill \\
+Draws a rotated box.
+The first 4 arguments are the same as for the \verb+\RotatedBox+ command.
+The
+fifth argument is the counterclockwise rotation angle and the sixth
+argument is the color of the inside of the box. If a differently
+colored outline is needed, it should be written with the
+\verb+RotatedBox+ command.
+\end{minipage}\vspace{4mm}
+
+%--#] FilledRotatedBox :
+%--#[ ETri :
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(60,50)(-25,0)}
+\AxoGrid(0,0)(10,10)(6,5){LightGray}{0.5}
+\ETri(10,20)(50,10)(40,40)
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{etri}
+\verb:\ETri(10,20)(50,10)(40,40): \hfill \\
+Draws a triangle. The three points specified are the corners of the 
+triangle.
+The interior is transparent.
+
+There is also the similar command \verb:\FTri: that draws a filled triangle.
+\end{minipage}\vspace{4mm}
+
+%--#] ETri :
+%--#[ BTri :
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(60,50)(-25,0)}
+\AxoGrid(0,0)(10,10)(6,5){LightGray}{0.5}
+\BTri(10,20)(50,10)(40,40)
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{btri}
+\verb:\BTri(10,20)(50,10)(40,40): \hfill \\
+Draws a blanked-out triangle. The three points specified are the corners of 
+the triangle.
+\end{minipage}\vspace{4mm}
+
+%--#] BTri :
+%--#[ GTri :
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(60,50)(-25,0)}
+\AxoGrid(0,0)(10,10)(6,5){LightGray}{0.5}
+\GTri(10,20)(50,10)(40,40){0.9}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{gtri}
+\verb:\GTri(10,20)(50,10)(40,40){0.9}: \hfill \\
+Draws a triangle of which the content are filled with the grayscale 
+specified by the seventh argument (black=0, white=1). The three points 
+specified are the corners of the triangle.
+\end{minipage}\vspace{4mm}
+
+%--#] GTri :
+%--#[ CTri :
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(60,50)(-25,0)}
+\AxoGrid(0,0)(10,10)(6,5){LightGray}{0.5}
+\SetWidth{1}
+\CTri(10,20)(50,10)(40,40){Red}{Yellow}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{ctri}
+\verb:\CTri(10,20)(50,10)(40,40){Red}{Yellow}: \hfill \\
+Draws a triangle in the color named in the seventh argument. The
+contents are filled with the color named in the eightth argument. The
+three points specified are the corners of the triangle.
+\end{minipage}\vspace{4mm}
+
+%--#] CTri :
+%--#[ Polygon :
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(60,50)(-25,0)}
+\AxoGrid(0,0)(10,10)(6,5){LightGray}{0.5}
+\Polygon{(10,20)(20,10)(40,20)(50,10)(45,40)(15,30)}{Red}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{polygon}
+\verb:\Polygon{(10,20)(20,10)(40,20)(50,10): \hfill \\
+  \verb:         (45,40)(15,30)}{Red}: \hfill \\
+Draws a polygon. The first argument is a sequence of two dimensional
+points which form the corners of the polygon. The second argument is
+the name of the color of the polygon. The interior is transparent.
+\end{minipage}\vspace{4mm}
+
+%--#] Polygon :
+%--#[ FilledPolygon :
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(60,50)(-25,0)}
+\AxoGrid(0,0)(10,10)(6,5){LightGray}{0.5}
+\FilledPolygon{(10,20)(20,10)(40,20)(50,10)(45,40)(15,30)}{Apricot}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{filledpolygon}
+\verb:\FilledPolygon{(10,20)(20,10)(40,20)(50,10): \hfill \\
+  \verb:               (45,40)(15,30)}{Apricot}: \hfill \\
+Draws a polygon. The first argument is a sequence of two dimensional
+points which form the corners of the polygon. The second argument is
+the name of the color of the interior.
+\end{minipage}\vspace{4mm}
+
+%--#] FilledPolygon :
+%--#[ LinAxis :
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(100,50)(-5,0)}
+\AxoGrid(0,0)(10,10)(10,5){LightGray}{0.5}
+\LinAxis(10,30)(90,30)(4,5,5,0,1)
+\LinAxis(10,10)(90,10)(4,5,5,2,1)
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{linaxis}
+\verb:\LinAxis(10,30)(90,30)(4,5,5,0,1):\\
+\verb:\LinAxis(10,10)(100,10)(4,5,5,2,1): \\
+\verb+\LinAxis+($x_1$,$y_1$)($x_2$,$y_2$)($N_D$,$d$,hashsize,offset,width)
+    draws a line to be used as an axis in a graph. Along the axis 
+    are hash marks. Going from the first coordinate to the second, the 
+    hash marks are on the left side if `hashsize', which is the size of the 
+    hash marks, is positive and on the right side if it is negative. 
+    $N_D$ is the number of `decades', indicated by fat hash marks, and 
+    $d$ is the (integer) number of subdivisions inside each decade. The offset 
+    parameter tells to which subdivision the first coordinate 
+    corresponds. When it is zero, this coordinate corresponds to a fat 
+    mark of a decade. Because axes have their own width, this is 
+    indicated with the last parameter.
+%Draws a line with subdivisions that can be used as the axis on a histogram 
+%or other figure. The first four arguments are the endpoints of the axis. 
+%Then we have the number of decades, the number of divisions inside each 
+%decade, the size of the hash marks, the offset in divisions at which we 
+%start and the linewidth. The hashmarks will be on the left side when going 
+%from point 1 to point 2.
+\end{minipage}\vspace{4mm}
+
+%--#] LinAxis :
+%--#[ LogAxis :
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(100,40)(-5,0)}
+\AxoGrid(0,0)(10,10)(10,4){LightGray}{0.5}
+\LogAxis(0,30)(100,30)(4,3,0,1)
+\LogAxis(0,10)(100,10)(4,3,3,1)
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{logaxis}
+\verb:\LogAxis(0,30)(100,30)(4,3,0,1): \hfill \\
+\verb:\LogAxis(0,10)(100,10)(4,3,3,1): \hfill \\
+\verb+\LogAxis+($x_1$,$y_1$)($x_2$,$y_2$)($N_L$,hashsize
+    ,offset,width) \hfill \\
+    This draws a line to be used as a logarithmic axis in a graph. Along 
+    the axis are hash marks. Going from the first coordinate to the second, 
+    the hash marks are on the left side if `hashsize', which is the size of 
+    the hash marks, is positive and on the right side if it is negative. 
+    $N_L$ is the number of orders of magnitude, indicated by fat hash 
+    marks. The offset parameter tells to which integer subdivision the 
+    first coordinate corresponds. When it is zero, this coordinate 
+    corresponds to a fat mark, which is identical to when the value would 
+    have been 1. Because axes have their own width, this is indicated with 
+    the last parameter.
+%Draws a line with subdivisions that can be used as the axis on a histogram 
+%or other figure. The first four arguments are the endpoints of the axis. 
+%Then we have the number of orders of magnitude, 
+%the size of the hash marks, the offset inside a logarithm at which we 
+%start and the linewidth. The hashmarks will be on the left side when going 
+%from point 1 to point 2.
+\end{minipage}\vspace{4mm}
+
+%--#] LogAxis :
+%>>#] The Commands :
+%>>#[ Text :
+
+\subsection{Text}
+\label{sec:text}
+
+%--#[ Implementation :
+
+Axodraw2 provides several commands for inserting text into diagrams.
+Some are for plain text, with a chosen placement and angle.  Some
+allow placement of text inside boxes.  There are two sets of commands.
+Some we call \TeX-text commands; these use the standard \LaTeX{} fonts
+as used in the rest of the document.  The others we call
+postscript-text commands; these use a user-specified standard
+postscript font or, if the user wishes, the usual document font, at a
+user-chosen size.
+
+[\emph{Side issue:} In version 1 of axodraw, the difference between
+the classes of text command was caused by a serious implementation
+difficulty.  With the then-available \LaTeX{} technology, certain
+graphic effects, could not be achieved within \LaTeX, at least not
+easily.  So direct programming in postscript was resorted to, with the
+result that normal \LaTeX{} commands, including mathematics, were not
+available in the postscript-text commands.  With the greatly improved
+methods now available, this has all changed, and the restrictions have
+gone.  But since the commands and their basic behavior is already
+defined, we have retained the distinction between \TeX{}-text commands
+and postscript-text commands.]
+
+In the original version of Axodraw the commands for two lines inside a
+box were \verb:B2Text:, \verb:G2Text: and \verb:C2Text:. This causes
+some problems explained in Sec.\ \ref{sec:changes.wrt.1}.  If you need to
+retain compatibility with v.\ 1 on this issue, e.g., with old files or
+old diagrams or for personal preference, you can use the
+\texttt{v1compatible} option when loading axodraw2 --- see Sec.\
+\ref{sec:invoke}.
+
+\vspace{4mm}
+
+%--#] Implementation :
+%--#[ Text :
+
+\subsubsection{\TeX-type text}
+
+Illustrated by examples, the commands to insert text are as follows:
+
+\medskip
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(90,90)(-10,0)}
+\AxoGrid(0,0)(10,10)(9,9){LightGray}{0.5}
+\Text(10,10)[l]{left}
+\Text(45,45){centered}
+\Text(80,80)[rt]{right-top}
+\Text(20,60)(45){$e^{i\pi/4}$}
+\SetColor{Red}
+\Vertex(10,10){1.5}
+\Vertex(45,45){1.5}
+\Vertex(80,80){1.5}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{text}
+\verb:\Text(10,10)[l]{left}: \hfill \\
+\verb:\Text(45,45){centered}: \hfill \\
+\verb:\Text(80,80)[rt]{right-top}: \hfill \\
+\verb:\Text(20,60)(45){$e^{i\pi/4}$}: \hfill \\
+\verb:\SetColor{Red}: \hfill \\
+\verb:\Vertex(10,10){1.5}: \hfill \\
+\verb:\Vertex(45,45){1.5}: \hfill \\
+\verb:\Vertex(80,80){1.5}: \hfill \\
+\verb+\Text+ writes text in the current \LaTeX{} font.  The most
+general form is \verb+\Text(x,y)(theta)[pos]{text}+; but either or
+both of the theta and pos arguments (and their delimiters) can be omitted.
+It puts the text
+at focal point $(x,y)$, with a rotation by anticlockwise angle theta.
+The default angle is zero, and the default position is to 
+center the text horizontally and vertically at the focal point.  The
+position letters are any relevant combination of `l', `r', `t', and
+`b', as in the various 
+\TeX/\LaTeX{} box commands to indicate left, right, top or bottom 
+adjustment with respect to the focal point. No indication means
+centered.
+\end{minipage}\vspace{4mm}
+
+%--#] Text :
+%--#[ rText :
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(90,90)(-10,0)}
+\AxoGrid(0,0)(10,10)(9,9){LightGray}{0.5}
+\rText(10,10)[l][l]{left-left}
+\rText(45,45)[][u]{upside}
+\rText(80,10)[r][r]{right-right}
+\rText(20,60)[][r]{$e^{i\pi}$}
+\SetColor{Red}
+\Vertex(10,10){1.5}
+\Vertex(45,45){1.5}
+\Vertex(80,10){1.5}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{rtext}
+\verb:\rText(10,10)[l][l]{left-left}: \hfill \\
+\verb:\rText(45,45)[][u]{upside}: \hfill \\
+\verb:\rText(80,10)[r][r]{right-right}: \hfill \\
+\verb:\rText(20,60)[][r]{$e^{i\pi}$}: \hfill \\
+\verb:\SetColor{Red}: \hfill \\
+\verb:\Vertex(10,10){1.5}: \hfill \\
+\verb:\Vertex(45,45){1.5}: \hfill \\
+\verb:\Vertex(80,10){1.5}: \hfill \\
+The \verb:\rText: command gives a subset of the functionality of the
+\verb+\Text+ command.  It is used for backward compatibility with
+Axodraw v.\ 1. The general form of the command is
+\verb:\rText(x,y)[mode][rotation]{text}:. 
+Unlike the case with the \verb:\Text: command and typical standard
+\LaTeX{} commands, if the option letters are omitted, the square
+brackets must be retained.  
+The coordinates $(x,y)$ are
+the focal point of the text.  The third argument is \verb+l+,
+\verb+r+, or empty to indicate the justification of the text.  The
+fourth argument is \verb+l+, \verb+r+, \verb+u+, or empty to indicate
+respectively whether the text is rotated left (anticlockwise) by 90
+degrees, is rotated right (clockwise) by 90 degrees, is upside-down,
+or is not rotated.  The fifth argument is the text.  
+This command is retained only for backward compatibility;
+for new diagrams it is probably better to use the the \verb:\Text:.
+\end{minipage}\vspace{4mm}
+
+%--#] rText :
+%--#[ SetPFont :
+
+\subsubsection{Postscript-type text}
+\label{sec:PSText}
+
+The remaining text-drawing commands can use postscript fonts with an
+adjustable size.
+
+To set the font for later text-drawing commands in this class, the
+\verb:\SetPFont: command sets the `Postscript'
+font, e.g.,
+\begin{verbatim}
+   \SetPFont{Helvetica}{20}
+\end{verbatim}
+(This font is initialized by axodraw2 to Times-Roman at 10pt.)
+The font set in this way is used in the \verb:PText:, \verb:BText:,
+\verb:GText:, \verb:CText:, \verb:BTwoText:, \verb:GTwoText: and
+\verb:CTwoText: commands. The fonts that can be used are the 35 fonts
+that are made available by Adobe and that are normally available in
+all postscript interpreters, including printers.  The fonts, together
+with the names used to specify them in the normal font-setting
+commands of \TeX{} and \LaTeX{}, are shown in Table \ref{tab:Pfont}.
+
+\begin{table}
+\begin{tabular}{|l|l|l|l|}
+\hline
+Font name                   & \LaTeX{} & Font name                & \LaTeX{} \\
+\hline
+AvantGarde-Book             & pagk  & Helvetica-Narrow            & phvrrn\\
+AvantGarde-BookOblique      & pagko & Helvetica-NarrowOblique     & phvron\\
+AvantGarde-Demi             & pagd  & NewCenturySchlbk-Bold       & pncb  \\
+AvantGarde-DemiOblique      & pagdo & NewCenturySchlbk-BoldItalic & pncbi \\
+Bookman-Demi                & pbkd  & NewCenturySchlbk-Italic     & pncri \\
+Bookman-DemiItalic          & pbkdi & NewCenturySchlbk-Roman      & pncr  \\
+Bookman-Light               & pbkl  & Palatino-Bold               & pplb  \\
+Bookman-LightItalic         & pbkli & Palatino-BoldItalic         & pplbi \\
+Courier-Bold                & pcrb  & Palatino-Italic             & pplri \\
+Courier-BoldOblique         & pcrbo & Palatino-Roman              & pplr  \\
+Courier                     & pcrr  & Symbol                      & psyr  \\
+Courier-Oblique             & pcrro & Times-Bold                  & ptmb  \\
+Helvetica-Bold              & phvb  & Times-BoldItalic            & ptmbi \\
+Helvetica-BoldOblique       & phvbo & Times-Italic                & ptmri \\
+Helvetica-NarrowBold        & phvbrn& Times-Roman                 & ptmr  \\
+Helvetica-NarrowBoldOblique & phvbon& ZapfChancery-MediumItalic   & pzcmi \\
+Helvetica                   & phvr  & ZapfDingbats                & pzdr  \\
+Helvetica-Oblique           & phvro &                             &       \\
+\hline
+\end{tabular}
+\caption{Available postscript fonts and their corresponding names in
+  \LaTeX.}
+\label{tab:Pfont}
+\end{table}
+If you prefer to use the normal document font (which would normally be
+Computer Modern in the common document classes), you simply leave the
+fontname empty, e.g,.
+\begin{verbatim}
+   \SetPFont{}{20}
+\end{verbatim}
+As for the second, fontsize argument, leaving it empty uses the size
+that \LaTeX{} is using at the moment the text-drawing command starts,
+e.g.,
+\begin{verbatim}
+   \SetPFont{Helvetica-Bold}{}
+\end{verbatim}
+\vspace{3mm}
+
+%--#] SetPFont :
+%--#[ PText :
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(90,90)(-10,0)}
+\AxoGrid(0,0)(10,10)(9,9){LightGray}{0.5}
+\SetPFont{Helvetica}{13}
+\PText(10,10)(0)[l]{left}
+\PText(45,45)(30)[]{centered}
+\PText(80,80)(20)[rt]{right-top}
+%\PText(20,60)(140)[]{$e^{i\pi}$}
+\SetColor{Red}
+\Vertex(10,10){1.5}
+\Vertex(45,45){1.5}
+\Vertex(80,80){1.5}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{ptext}
+\verb:\SetPFont{Helvetica}{13}: \hfill \\
+\verb:\PText(10,10)(0)[l]{left}: \hfill \\
+\verb:\PText(45,45)(30)[]{centered}: \hfill \\
+\verb:\PText(80,80)(20)[rt]{right-top}: \hfill \\
+%\verb:\PText(20,60)(90)[]{$e^{i\pi}$}: \hfill \\
+\verb:\SetColor{Red}: \hfill \\
+\verb:\Vertex(10,10){1.5}: \hfill \\
+\verb:\Vertex(45,45){1.5}: \hfill \\
+\verb:\Vertex(80,80){1.5}: \hfill \\
+The \verb:\PText: command writes %text 
+in Axodraw's current Postscript font. 
+The first two arguments give the focal point, the third argument is a 
+rotation angle and the fourth argument is as in the various \TeX/\LaTeX{} 
+box commands to indicate left, right, top or bottom adjustment with respect 
+to the focal point. No indication means centered.
+
+Note that use of normal \LaTeX{} font setting commands or of math-mode
+will not normally have the desired effect.
+\end{minipage}\vspace{4mm}
+
+%--#] PText :
+%--#[ BText :
+
+\noindent
+\begin{minipage}{4.53cm}
+\begin{axopicture}{(110,110)(-10,0)}
+\AxoGrid(0,0)(10,10)(10,9){LightGray}{0.5}
+\ArrowLine(30,65)(60,25)
+\SetPFont{Bookman-Demi}{14}
+\BText(30,65){Who?}
+\SetPFont{AvantGarde-Book}{16}
+\BText(60,25){Me?}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{10.8cm}
+\label{btext}
+\verb:\ArrowLine(30,65)(60,25): \hfill \\
+\verb:\SetPFont{Bookman-Demi}{14}: \hfill \\
+\verb:\BText(30,65){Who?}: \hfill \\
+\verb:\SetPFont{AvantGarde-Book}{16}: \hfill \\
+\verb:\BText(60,25){Me?}: \hfill \\
+The \verb:\BText: command writes a centered box with text in it. It uses 
+Axodraw's current Postscript font.
+\end{minipage}\vspace{4mm}
+
+%--#] BText :
+%--#[ GText :
+
+\noindent
+\begin{minipage}{4.53cm}
+\begin{axopicture}{(110,110)(-10,0)}
+\AxoGrid(0,0)(10,10)(10,9){LightGray}{0.5}
+\ArrowLine(30,65)(60,25)
+\SetPFont{Bookman-Demi}{12}
+\GText(30,65){0.9}{Why?}
+\SetPFont{Courier-Bold}{5}
+\GText(60,25){0.75}{We wanted it that way!}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{10.8cm}
+\label{gtext}
+\verb:\ArrowLine(30,65)(60,25): \hfill \\
+\verb:\SetPFont{Bookman-Demi}{12}: \hfill \\
+\verb:\GText(30,65){0.9}{Why?}: \hfill \\
+\verb:\SetPFont{Courier-Bold}{5}: \hfill \\
+\verb:\GText(60,25){0.75}{We wanted it that way!}: \hfill \\
+The \verb:\GText: command writes a centered box with text in it. It uses 
+Axodraw's current Postscript font. The third argument is the grayscale
+with which
+the box will be filled. 0 is black and 1 is white.
+\end{minipage}\vspace{4mm}
+
+%--#] GText :
+%--#[ CText :
+ 
+\noindent
+\begin{minipage}{4.53cm}
+\begin{axopicture}{(110,110)(-10,0)}
+\AxoGrid(0,0)(10,10)(9,9){LightGray}{0.5}
+\ArrowLine(30,65)(60,25)
+\SetPFont{Times-Bold}{15}
+\CText(30,65){LightYellow}{LightBlue}{Who?}
+\SetPFont{Courier-Bold}{14}
+\CText(60,25){Red}{Yellow}{You!}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{10.8cm}
+\label{ctext}
+\verb:\ArrowLine(30,65)(60,25): \hfill \\
+\verb:\SetPFont{Times-Bold}{15}: \hfill \\
+\verb:\CText(30,65){LightYellow}{LightBlue}{Who?}: \hfill \\
+\verb:\SetPFont{Courier-Bold}{14}: \hfill \\
+\verb:\CText(60,25){Red}{Yellow}{You!}: \hfill \\
+The \verb:\CText: command writes a centered box with text in it. It uses 
+Axodraw's current Postscript font. The third argument is the color of
+the box and
+the text. The fourth argument is the color with which the box will be 
+filled.
+\end{minipage}\vspace{4mm}
+
+%--#] CText :
+%--#[ BTwoText :
+\noindent
+\begin{minipage}{4.53cm}
+\begin{axopicture}{(110,110)(-10,0)}
+\AxoGrid(0,0)(10,10)(9,9){LightGray}{0.5}
+\ArrowLine(30,65)(60,25)
+\SetPFont{Bookman-Demi}{14}
+\BTwoText(30,65){Why}{Me?}
+\SetPFont{AvantGarde-Book}{16}
+\BTwoText(60,25){You}{did it}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{10.8cm}
+\label{btwotext}
+\verb:\ArrowLine(30,65)(60,25): \hfill \\
+\verb:\SetPFont{Bookman-Demi}{14}: \hfill \\
+\verb:\BTwoText(30,65){Why}{Me?}: \hfill \\
+\verb:\SetPFont{AvantGarde-Book}{16}: \hfill \\
+\verb:\BTwoText(60,25){You}{did it}: \hfill \\
+The \verb:\BTwoText: command writes a centered box with two lines of text in 
+it. It uses Axodraw's current Postscript font.
+\end{minipage}\vspace{4mm}
+
+%--#] BTwoText :
+%--#[ GTwoText :
+
+\noindent
+\begin{minipage}{4.53cm}
+\begin{axopicture}{(110,110)(-10,0)}
+\AxoGrid(0,0)(10,10)(10,9){LightGray}{0.5}
+\ArrowLine(30,65)(60,25)
+\SetPFont{Bookman-Demi}{12}
+\GTwoText(30,65){0.9}{Prove}{it!}
+\SetPFont{Courier-Bold}{11}
+\GTwoText(60,25){0.75}{Sherlock}{says so}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{10.8cm}
+\label{gtwotext}
+\verb:\ArrowLine(30,65)(60,25): \hfill \\
+\verb:\SetPFont{Bookman-Demi}{12}: \hfill \\
+\verb:\GTwoText(30,65){0.9}{Prove}{it!}: \hfill \\
+\verb:\SetPFont{Courier-Bold}{11}: \hfill \\
+\verb:\GTwoText(60,25){0.75}{Sherlock}{says so}: \hfill \\
+The \verb:\GTwoText: command writes a centered box with two lines of text in 
+it. It uses Axodraw's current Postscript font. The third argument is the 
+grayscale with which the box will be filled. 0 is black and 1 is white.
+\end{minipage}\vspace{4mm}
+
+%--#] GTwoText :
+%--#[ CTwoText :
+ 
+\noindent
+\begin{minipage}{4.53cm}
+\begin{axopicture}{(110,110)(-10,0)}
+\AxoGrid(0,0)(10,10)(9,9){LightGray}{0.5}
+\ArrowLine(30,65)(60,25)
+\SetPFont{Times-Bold}{10}
+\CTwoText(30,65){LightYellow}{Blue}{That is}{no proof!}
+\SetPFont{Courier-Bold}{14}
+\CTwoText(60,25){Red}{Yellow}{Yes}{it is}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{10.8cm}
+\label{ctwotext}
+\verb:\ArrowLine(30,65)(60,25): \hfill \\
+\verb:\SetPFont{Times-Bold}{10}: \hfill \\
+\verb:\CTwoText(30,65){LightYellow}{Blue}: \\
+    \verb:{That is}{no proof!}: \hfill \\
+\verb:\SetPFont{Courier-Bold}{14}: \hfill \\
+\verb:\CTwoText(60,25){Red}{Yellow}{Yes}{it is}: \hfill \\
+The \verb:\CTwoText: command writes a centered box with two lines of text in 
+it. It uses Axodraw's current Postscript font. The third argument is
+the color of both
+the box and the text. The fourth argument is the color with which the box 
+will be filled.
+\end{minipage}\vspace{4mm}
+ 
+%--#] CTwoText :
+%--#[ Features :
+
+Note that because you can now use \LaTeX{} commands for the text
+arguments of the commands described in this section, the effects of
+the \verb+\BTwoText+, \verb+\GTwoText+, and \verb+\CTwoText+ can be
+achieved also by the use of regular \verb:\BText: etc commands.
+Mathematics can also be used.  (None of these was possible in v.\ 1 of
+axodraw.)  Here are some examples: \vspace{4mm}
+
+\noindent
+\begin{minipage}{5.5cm}
+\begin{axopicture}{(150,90)(-10,0)}
+\AxoGrid(0,0)(10,10)(12,9){LightGray}{0.5}
+\SetPFont{Helvetica}{15}
+\BText(60,45){%
+    \begin{minipage}{4.5cm}
+      Here is boxed text in a larger size, including
+      mathematics: $\alpha^2$.
+    \end{minipage}%
+}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{8.5cm}
+\label{btext2}
+\begin{verbatim}
+\SetPFont{Helvetica}{15}
+\BText(70,45){%
+    \begin{minipage}{4.5cm}
+      Here is boxed text in a
+      larger size, including
+      mathematics: $\alpha^2$.
+    \end{minipage}%
+}
+\end{verbatim}
+This example shows that the \verb:\BText: command can also be used
+with minipages and other \LaTeX{} methods to make more complicated
+boxed texts.
+\end{minipage}
+\vspace{4mm}
+
+\noindent
+\begin{minipage}{5.5cm}
+\begin{axopicture}{(150,90)(-10,0)}
+\AxoGrid(0,0)(10,10)(13,9){LightGray}{0.5}
+\SetPFont{}{15}
+\BText(65,45){%
+    \begin{minipage}{4cm}
+      \sffamily Here is boxed text in a
+      large size, including
+      mathematics: $\alpha^2$.
+    \end{minipage}%
+}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{8.5cm}
+\label{btext2.mod}
+\begin{verbatim}
+\SetPFont{}{15}
+\BText(65,45){%
+    \begin{minipage}{4cm}
+      \sffamily Here is boxed text in a 
+      large size, including
+      mathematics: $\alpha^2$.
+    \end{minipage}%
+}
+\end{verbatim}
+But if you use mathematics, the text may be more elegant if you use
+the document font, which has matching fonts for text and mathematics.
+Use of a sans-serif font (by \verb:\sffamily:) may be better in a diagram.
+\end{minipage}
+\vspace{4mm}
+
+%--#] Features :
+%>>#] Text :
+%>>#[ Options :
+
+\subsection{Options}
+\label{sec:options}
+
+Almost all of axodraw2's line-drawing commands take optional
+arguments.  The form here is familiar from many standard \LaTeX{}
+commands.  The optional arguments are placed in square brackets after
+the command name, and are made of a comma-separated list of items of
+the form: \texttt{keyword} or \texttt{keyword=value}.  The required
+arguments are placed afterwards.
+
+Optional arguments can be used to set particular characteristics of a
+line, e.g., whether it is dashed or has an arrow.  They can also be
+used to set some of the line's parameters, to be used instead of
+default values.  (The default values can be adjusted by commands
+listed in Sec.\ \ref{sec:settings}.  Those commands are useful for
+adjusting parameters that apply to multiple lines, while the optional
+arguments are useful for setting parameters for individual lines.)
+
+The original axodraw only had different command names to determine
+whether lines were dashed, or had arrows, etc.  The new version
+retains these commands,
+but now the basic commands
+(\verb:\Line:, \verb:\Arc:, \verb:\Gluon:, etc) can also be treated as
+generic commands, with the different varieties (dashed, double, and/or
+with an arrow) being set by options.  
+
+The same set of options are available for all types of line.  However,
+not all apply or are implemented for particular types of line.  Thus,
+\texttt{clockwise} is irrelevant for a straight line, while
+\texttt{arrow} is not implemented for gluons, photons and zigzag
+lines.  Warnings are given for unimplemented features, while
+inapplicable arguments are ignored.
+
+The full set of options.
+\begin{center}
+\begin{tabular}{ll}
+ color=\colorname    & Set the line in this color. \\
+ colour=\colorname   & Same as color=\colorname. \\
+ dash                & Use a dashed line. \\
+ dsize=\num          & Set the dash size (when a line is dashed). \\
+ dashsize=\num       & Same as dsize=\num. \\
+ double              & Use a double line. \\
+ sep=\num            & Sets the separation for a double line. \\
+ linesep=\num        & Same as sep=\num. \\
+ width=\num          & Sets line width for this line only.\\[2mm]
+ clock               & For arcs, makes the arc run clockwise. \\
+ clockwise           & For arcs, makes the arc run clockwise. \\[2mm]
+ arrow               & Use an arrow.\\
+ flip                & If there is an arrow, its direction is flipped. \\
+
+ arrowpos=\num     & The number should be between zero and one and\\
+                   & indicates where along the line the arrow should be. \\
+                   & 1 is at the end. 0.5 is halfway (the initial default).\\ 
+ arrowaspect=\num  & See Sec.\ \ref{sec:arrows}. \\
+ arrowlength=\num  & See Sec.\ \ref{sec:arrows}. \\
+ arrowheight=\num  & See Sec.\ \ref{sec:arrows}. \\
+ arrowinset=\num   & See Sec.\ \ref{sec:arrows}. \\
+ arrowscale=\num   & See Sec.\ \ref{sec:arrows}. \\
+ arrowstroke=\num  & See Sec.\ \ref{sec:arrows}. \\
+ arrowwidth=\num   & See Sec.\ \ref{sec:arrows}. \\
+ inset=\num        & Same as arrowinset.\\
+\end{tabular}
+\end{center}
+The options without an extra argument, e.g., \texttt{arrow}, are
+actually of a boolean type.  That is, they can also be used with a
+suffix ``\texttt{=true}'' or ``\texttt{=false}'', e.g.,
+\texttt{arrow=true} or \texttt{arrow=false}.
+
+If an option is not provided, its default value is used. Defaults are
+no dashes, no double lines, anticlockwise arcs, no arrow and if an
+arrow is asked for, its position is halfway along the line. Other
+arrow settings are explained in Sec.\ \ref{sec:arrows}.  There are
+also default values for dash size (3) and the separation of double
+lines (2).
+
+The full set of the generic line commands with their syntax is
+\begin{center}
+  \begin{tabular}{l}
+     \verb+\Line[options](x1,y1)(x2,y2)+  \\
+     \verb+\Arc[options](x,y)(r,theta1,theta2)+  \\
+     \verb+\Bezier[options](x1,y1)(x2,y2)(x3,y3)(x4,y4)+  \\
+     \verb+\Gluon[options](x1,y1)(x2,y2){amplitude}{windings}+  \\
+     \verb+\GluonArc[options](x,y)(r,theta1,theta2){amplitude}{windings}+  \\
+     \verb+\GluonCirc[options](x,y)(r,phase){amplitude}{windings}+   \\
+     \verb+\Photon[options](x1,y1)(x2,y2){amplitude}{windings}+  \\
+     \verb+\PhotonArc[options](x,y)(r,theta1,theta2){amplitude}{windings}+  \\
+     \verb+\ZigZag[options](x1,y1)(x2,y2){amplitude}{windings}+  \\
+     \verb+\ZigZagArc[options](x,y)(r,theta1,theta2){amplitude}{windings}+  \\
+  \end{tabular}
+\end{center}
+The applicability of the options is as follows
+\begin{center}
+  \begin{tabular}{lcc}
+                        & Arrow, etc & Clockwise \\
+     \verb+\Line+       &    Y       &     N     \\
+     \verb+\Arc+        &    Y       &     Y     \\
+     \verb+\Bezier+     &    Y       &     N     \\
+     \verb+\Gluon+      &    N       &     N     \\
+     \verb+\GluonArc+   &    N       &     Y     \\
+     \verb+\GluonCirc+  &    N       &     N     \\
+     \verb+\Photon+     &    N       &     N     \\
+     \verb+\PhotonArc+  &    N       &     Y     \\
+     \verb+\ZigZag+     &    N       &     N     \\
+     \verb+\ZigZagArc+  &    N       &     Y     \\
+  \end{tabular}
+\end{center}
+The arrow options include those for setting the arrow dimensions.
+Options not indicated in the last table apply to all cases.
+
+%{\sc The next options still have to be implemented, but it seems the most 
+%sensible thing to do.}\vspace{3mm}
+%
+%The third family is the one of the shapes:
+%
+%\begin{center}
+%\begin{minipage}{14cm}
+%\begin{verbatim}
+%\Box[options](x1,y1)(x2,y2)
+%\Tri[options](x1,y1)(x2,y2)(x3,y3)
+%\Polygon[options]{(x1,y1)(x2,y2)...(xn,yn)}
+%\Circ[options](x1,y1){radius}
+%\Oval[options](x1,y1)(height,width)(rotation)
+%\end{verbatim}
+%\end{minipage}
+%\end{center}
+%
+%\noindent The options here are:
+%\begin{center}
+%\begin{tabular}{ll}
+% centered            & For boxes: x1,y1 is the center. x2,y2 is width,
+%                       height \\
+% blanked             & Inside is blanked out. \\
+% inside              & (Over)write only the inside. \\
+% color,line=$<$color$>$  & Main color. \\
+% filled,fill=$<$color$>$ & When both the outline and the inside are written. \\
+% gray,grayscale=\num & Inside is in gray. Filled overwrites this. \\
+% rotation=\num       & Only for centered boxes: rotation angle.
+%\end{tabular}
+%\end{center}
+%The options gray and filled imply blanked. Hence it is not needed to use 
+%blanked when either of those options is used. The default values are that 
+%none of these options are used.
+
+Some examples are:
+\begin{verbatim}
+   \Line[double,sep=1.5,dash,dsize=4](10,10)(70,30)
+   \Line[double,sep=1.5,arrow,arrowpos=0.6](10,10)(70,30)
+\end{verbatim}
+ 
+The options can also be used on the more explicit commands as extra 
+options. Hence it is possible to use
+\begin{verbatim}
+   \DoubleLine[dash,dsize=4](10,10)(70,30){1.5}
+\end{verbatim}
+instead of the first line in the previous example.
+
+One may notice that some of the options are not accessible with the more 
+explicit commands. For example, it is possible to put arrows on B\'ezier 
+curves only by using the option `arrow' for the B\'ezier command.
+
+%>>#] Options :
+%>>#[ Remarks about Gluons :
+%
+\subsection{Remarks about Gluons}
+\label{sec:gluon.remarks}
+
+There are 12 commands that concern gluons. This allows much freedom in 
+developing one's own style. Gluons can be drawn as single solid lines, as 
+double lines, as dashed lines and as dashed double lines.
+
+Gluons have an amplitude and a number of windings. By varying these 
+quantities one may obtain completely different gluons as in:
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(90,90)(-10,0)}
+\AxoGrid(0,0)(10,10)(9,8){LightGray}{0.5}
+\Gluon(10,70)(80,70){3}{5}
+\Gluon(10,50)(80,50){3}{9}
+\Gluon(10,30)(80,30){5}{7}
+\Gluon(10,10)(80,10){8}{9}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{gluons}
+\verb:\Gluon(10,70)(80,70){3}{5}: \hfill \\
+\verb:\Gluon(10,50)(80,50){3}{9}: \hfill \\
+\verb:\Gluon(10,30)(80,30){5}{7}: \hfill \\
+\verb:\Gluon(10,10)(80,10){8}{9}:
+\end{minipage}\vspace{4mm}
+
+One may change the orientation of the windings by reversing the
+direction in which the gluon is drawn and/or changing the sign of the
+amplitude:
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(90,90)(-10,0)}
+\AxoGrid(0,0)(10,10)(9,8){LightGray}{0.5}
+\DoubleGluon(10,70)(80,70){5}{7}{1.2}
+\DoubleGluon(80,50)(10,50){5}{7}{1.2}
+\DoubleGluon(10,30)(80,30){-5}{7}{1.2}
+\DoubleGluon(80,10)(10,10){-5}{7}{1.2}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{gluonss}
+\verb:\DoubleGluon(10,70)(80,70){5}{7}{1.2}: \hfill \\
+\verb:\DoubleGluon(80,50)(10,50){5}{7}{1.2}: \hfill \\
+\verb:\DoubleGluon(10,30)(80,30){-5}{7}{1.2}: \hfill \\
+\verb:\DoubleGluon(80,10)(10,10){-5}{7}{1.2}:
+\end{minipage}\vspace{4mm}
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(90,70)(-10,0)}
+\AxoGrid(0,0)(10,10)(9,7){LightGray}{0.5}
+\GluonArc(45,20)(40,20,160){5}{8}
+\GluonArc(45,0)(40,20,160){-5}{8}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{gluonarcA}
+\verb:\GluonArc(45,20)(40,20,160){5}{8}:\hfill \\
+\verb:\GluonArc(45,0)(40,20,160){-5}{8}:\hfill \\
+Here one can see that the sign of the amplitude gives a completely 
+different aspect to a gluon on an arc segment.
+\end{minipage}\vspace{4mm}
+
+There are two ways of drawing a gluon circle. One is with the command 
+GluonCirc and the other is an arc of 360 degrees with the GluonArc command. 
+The second way has a natural attachment point, because the GluonArc 
+command makes gluons with a begin- and endpoint. \vspace{4mm}
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(80,80)(-15,0)}
+\AxoGrid(0,0)(10,10)(8,8){LightGray}{0.5}
+\GluonCirc(40,40)(30,0){5}{16}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+%\label{gluoncirc}
+\verb:\GluonCirc(40,40)(30,0){5}{16}:\hfill \\
+This is the `complete circle'. If one likes to attach one or more lines to 
+it one should take into account that the best places for this are at a 
+distance radius+amplitude from the center of the circle. One can rotate the 
+circle by using the phase argument.
+\end{minipage}\vspace{4mm}
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(80,80)(-15,0)}
+\AxoGrid(0,0)(10,10)(8,8){LightGray}{0.5}
+\GluonArc(40,40)(30,0,360){5}{16}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{gluonarc360}
+\verb:\GluonArc(40,40)(30,0,360){5}{16}:\hfill \\
+In the 360 degree arc there is a natural point of attachment. Of course 
+there is only one such point. If one needs more than one such point one 
+should use more than one arc segment.
+\end{minipage}\vspace{4mm}
+
+Some examples are:
+
+\begin{center} \begin{axopicture}{(460,60)(0,0)}
+\Gluon(7,30)(27,30){3}{3}
+\GluonCirc(50,30)(20,0){3}{16}
+\Gluon(73,30)(93,30){3}{3}
+\Vertex(27,30){1.5}
+\Vertex(73,30){1.5}
+%
+\Gluon(110,30)(130,30){3}{3}
+\GluonArc(150,30)(20,0,180){3}{8}
+\GluonArc(150,30)(20,180,360){3}{8}
+\Gluon(170,30)(190,30){3}{3}
+\Vertex(130,30){1.5}
+\Vertex(170,30){1.5}
+%
+\Gluon(210,30)(230,30){3}{3}
+\GluonArc(250,30)(20,0,180){-3}{8}
+\GluonArc(250,30)(20,180,360){-3}{8}
+\Gluon(270,30)(290,30){3}{3}
+\Vertex(230,30){1.5}
+\Vertex(270,30){1.5}
+%
+\DashLine(310,30)(330,30){3}
+\GluonArc(350,30)(20,-180,180){3}{16}
+\Vertex(330,30){1.5}
+%
+\DashLine(387,30)(407,30){3}
+\GluonCirc(430,30)(20,0){3}{16}
+\Vertex(407,30){1.5}
+%
+\end{axopicture} \end{center}
+This picture was generated with the code:
+\begin{verbatim}
+\begin{center} \begin{axopicture}{(460,60)(0,0)}
+   \Gluon(7,30)(27,30){3}{3}
+   \GluonCirc(50,30)(20,0){3}{16}
+   \Gluon(73,30)(93,30){3}{3}
+   \Vertex(27,30){1.5}
+   \Vertex(73,30){1.5}
+   \Gluon(110,30)(130,30){3}{3}
+   \GluonArc(150,30)(20,0,180){3}{8}
+   \GluonArc(150,30)(20,180,360){3}{8}
+   \Gluon(170,30)(190,30){3}{3}
+   \Vertex(130,30){1.5}
+   \Vertex(170,30){1.5}
+   \Gluon(210,30)(230,30){3}{3}
+   \GluonArc(250,30)(20,0,180){-3}{8}
+   \GluonArc(250,30)(20,180,360){-3}{8}
+   \Gluon(270,30)(290,30){3}{3}
+   \Vertex(230,30){1.5}
+   \Vertex(270,30){1.5}
+   \DashLine(310,30)(330,30){3}
+   \GluonArc(350,30)(20,-180,180){3}{16}
+   \Vertex(330,30){1.5}
+   \DashLine(387,30)(407,30){3}
+   \GluonCirc(430,30)(20,0){3}{16}
+   \Vertex(407,30){1.5}
+\end{axopicture} \end{center}
+\end{verbatim}
+
+%>>#] Remarks about Gluons :
+%>>#[ Arrows :
+
+\subsection{Remarks about arrows}
+\label{sec:arrows}
+
+%--#[ General :
+
+The old Axodraw arrows were rather primitive little triangles. The JaxoDraw 
+program has introduced fancier arrows which the user can also customize. 
+There are parameters connected to this as shown in the figure:
+\begin{center}
+\begin{axopicture}{(150,100)(0,0)}
+\AxoGrid(0,0)(10,10)(15,10){LightGray}{0.5}
+\SetWidth{3}
+%\Line(10,50)(130,50)
+%\FilledPolygon{(140,50)(90,90)(105,50)(90,10)}{White}
+%\Polygon{(140,50)(90,90)(105,50)(90,10)}{Black}
+%\SetWidth{0.5}
+%\LongArrow(85,50)(85,90)
+%\LongArrow(90,5)(105,5)
+%\LongArrow(90,95)(140,95)
+%\SetPFont{Helvetica}{9}
+%\PText(110,85)(0)[l]{Length}
+%\PText(76,71)(90)[c]{Width}
+%\PText(110,5)(0)[l]{Inset}
+\Line[arrow,arrowinset=0.3,arrowaspect=1,arrowwidth=40,arrowpos=1,
+       arrowstroke=3](10,50)(100,50)
+\SetWidth{0.5}
+\LongArrow(55,50)(55,90)
+\LongArrow(60,5)(84,5)
+\LongArrow(60,95)(140,95)
+\SetPFont{Helvetica}{9}
+\PText(100,85)(0)[l]{Length}
+\PText(46,71)(90)[c]{Width}
+\PText(90,5)(0)[l]{Inset}
+\end{axopicture}\vspace{2mm} \\
+\verb:\Line[arrow,arrowinset=0.3,arrowaspect=1,arrowwidth=40,arrowpos=1,:\\
+\verb:arrowstroke=3](10,50)(100,50):
+\end{center}
+The full set of parameters is:
+\begin{description}
+\item[aspect]   A multiplicative parameter when the length is calculated 
+from the width. The normal formula is: 
+$\mbox{length}=2\times \mbox{width}\times \mbox{aspect}$.
+\item[inset] The fraction of the length that is taken inward.
+\item[length] The full length of the arrowhead.
+\item[position] The position of the arrow in the line as a fraction of the 
+length of the line.
+\item[scale]    A scale parameter for the complete arrowhead.
+\item[stroke]   The width of the line that makes up the arrowhead. If the 
+value is not set (default value is zero) the arrow is filled and overwrites 
+whatever was there. In the case of a stroke value the contents are 
+overwritten in the background color.
+\item[width] The half width of the arrowhead.
+\end{description}
+The parameters can be set in two ways. One is with one of the commands
+\begin{center}
+\begin{tabular}{ll}
+\verb:\SetArrowScale{number}: & Initial value is 1. \\
+\verb:\SetArrowInset{number}: & Initial value is 0.2 \\
+\verb:\SetArrowAspect{number}: & Initial value is 1.25 \\
+\verb:\SetArrowPosition{number}: & Initial value is 0.5 \\
+\verb:\SetArrowStroke{number}: & Initial value is 0 \\
+\end{tabular} \vspace{2mm} \\
+\end{center}
+(A complete list of commands for setting defaults is in
+Sec.\ \ref{sec:settings}.)
+These commands determine settings that will hold for all following
+commands, up to the end of whatever \LaTeX{} or \TeX{} grouping the
+default setting is given in.  E.g., setting a default value inside an
+\texttt{axopicture} environment sets it until the end of the
+environment only.  (Thus the settings obey the normal rules of
+\LaTeX{} for scoping.)
+
+The other way is to use one or more of these parameters as options in a 
+command that uses an arrow. The general use of options is in Sec.\
+\ref{sec:options}. The options that are available are 
+\begin{center}
+\begin{tabular}{ll}
+   arrow              & initial default=false \\
+   arrowscale=\num    & initial default=1 \\
+   arrowwidth=\num    & initial default=0 \\
+   arrowlength=\num   & initial default=0 \\
+   arrowpos=\num      & initial default=0.5 \\
+   arrowinset=\num    & initial default=0.2 \\
+   arrowstroke=\num   & initial default=0 \\
+   arrowaspect=\num   & initial default=1.25 \\
+   flip               & initial default=false
+\end{tabular}
+\end{center}
+The arrow option tells the program to draw an arrow. Without it no
+arrow will be drawn. The flip option indicates that the direction of
+the arrow should be reversed from the `natural' direction. 
+
+When
+neither the width nor the length are specified, but instead both are
+given as zero, they are computed from the line width (and the line
+separation when there is a double line). The formula is:
+\begin{eqnarray}
+   \mbox{Arrowwidth} & = & 
+   1.2 \times \left( \mbox{linewidth} 
+              + 0.7 \times \mbox{separation}
+              + 1
+         \right) 
+     \times \mbox{arrowscale},
+\\
+\label{arrowlength}
+   \mbox{Length} & = &
+   2 \times \mbox{arrowwidth} \times  \mbox{arrowaspect}. 
+\end{eqnarray}
+%If however $\mbox{linewidth} + \frac{1}{4} \times \mbox{separation} <
+%0.5$ the formula for the arrow width becomes $\mbox{arrowwidth} = 2.5
+%\times \mbox{arrowscale}$.
+If, however, $1.2 \times(\mbox{linewidth}+0.7\times\mbox{separation}+1)$ is less
+than 2.5, the formula for the arrow width becomes
+$\mbox{arrowwidth}=2.5\times\mbox{arrowscale}$.
+
+If only one of the arrowwidth or the arrowlength parameters is zero,
+it is computed from the other non-zero parameter using formula
+(\ref{arrowlength}). When both are non-zero, those are the values that
+are used.
+
+The position of the arrowhead is a bit tricky. The arrowpos parameter is a 
+fraction of the length of the line and indicates the position of the center 
+of the arrowhead. This means that when arrowpos is one, the arrowhead 
+sticks out beyond the end of the line by half the arrowlength. When for 
+instance the line width is 0.5, the default length of the arrowhead 
+defaults to 6.25. Hence if one would like to compensate for this one should 
+make the line 3.125 points shorter. Usually 3 pt will be sufficient.
+
+Because of backward compatibility axodraw2 has many individual commands for 
+lines with arrows. We present them here, together with some `options' 
+varieties.\vspace{4mm}
+
+%--#] General :
+%--#[ ArrowLine :
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(90,80)(-10,0)}
+\AxoGrid(0,0)(10,10)(9,8){LightGray}{0.5}
+\Line[arrow,arrowscale=2](10,70)(80,70)
+\Line[arrow,arrowpos=0.8,flip](10,50)(80,50)
+\Line[arrow](10,30)(80,30)
+\ArrowLine(10,10)(80,10)
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{arrowline}
+\verb:\Line[arrow,arrowscale=2](10,70)(80,70): \hfill \\
+\verb:\Line[arrow,arrowpos=0.8,flip](10,50)(80,50): \hfill \\
+\verb:\Line[arrow](10,30)(80,30): \hfill \\
+\verb:\ArrowLine(10,10)(80,10): \hfill \\
+The default position for the arrow is halfway (arrowpos=0.5). With the line 
+command and the options we can put the arrow in any position.
+\end{minipage}\vspace{4mm}
+
+%--#] ArrowLine :
+%--#[ LongArrow :
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(90,60)(-10,0)}
+\AxoGrid(0,0)(10,10)(9,6){LightGray}{0.5}
+\Line[arrow,arrowpos=1](10,30)(80,30)
+\LongArrow(10,10)(80,10)
+\SetWidth{4}
+\LongArrow[arrowscale=0.8](10,50)(70,50)
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{longarrow}
+\verb:\Line[arrow,arrowpos=1](10,30)(80,30): \hfill \\
+\verb:\LongArrow(10,10)(80,10): \hfill \\
+\verb:\SetWidth{4}: \hfill \\
+\verb:\LongArrow[arrowscale=0.8](10,50)(70,50): \hfill \\
+The \verb:\LongArrow: command just places the arrowhead at the end of the 
+line. The size of the arrowhead is a function of the linewidth.
+\end{minipage}\vspace{4mm}
+
+%--#] LongArrow :
+%--#[ ArrowDoubleLine :
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(90,100)(-10,0)}
+\AxoGrid(0,0)(10,10)(9,10){LightGray}{0.5}
+\SetArrowStroke{1}
+\Line[arrow,arrowpos=1,double,sep=5,arrowscale=1.3](10,90)(75,90)
+\Line[arrow,arrowpos=1,double,sep=2,arrowscale=1.5](10,70)(80,70)
+\Line[arrow,arrowpos=1,double,sep=2](10,50)(80,50)
+\Line[arrow,double,sep=2](10,30)(80,30)
+\ArrowDoubleLine(10,10)(80,10){2}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{arrowdoubleline}
+\verb:\SetArrowStroke{1}: \hfill \\
+\verb:\Line[arrow,arrowpos=1,double,sep=5,arrowscale=1.3]: \hfill \\
+     \verb:    (10,90)(75,90): \hfill \\
+\verb:\Line[arrow,arrowpos=1,double,sep=2,arrowscale=1.5]: \hfill \\
+     \verb:    (10,70)(80,70): \hfill \\
+\verb:\Line[arrow,arrowpos=1,double,sep=2](10,50)(80,50): \hfill \\
+\verb:\Line[arrow,double,sep=2](10,30)(80,30): \hfill \\
+\verb:\ArrowDoubleLine(10,10)(80,10){2}: \hfill \\
+As one can see, the arrows also work with double lines.
+\end{minipage}\vspace{4mm}
+
+%--#] ArrowDoubleLine :
+%--#[ ArrowDashLine :
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(90,80)(-10,0)}
+\AxoGrid(0,0)(10,10)(9,8){LightGray}{0.5}
+\Line[arrow,arrowpos=0.3,dash,dsize=3,arrowscale=1.5](10,70)(80,70)
+\DashArrowLine(10,50)(80,50){3}
+\Line[arrow,dash,dsize=3](10,30)(80,30)
+\ArrowDashLine(10,10)(80,10){3}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{arrowdashline}
+\verb:\Line[arrow,arrowpos=0.3,dash,dsize=3,arrowscale=1.5]: \\
+       \verb:(10,70)(80,70): \\
+\verb:\DashArrowLine(10,50)(80,50){3}: \\
+\verb:\Line[arrow,dash,dsize=3](10,30)(80,30): \\
+\verb:\ArrowDashLine(10,10)(80,10){3}: \\
+We have not taken provisions for the dashes to be centered in the 
+arrowhead, because at times that is nearly impossible. The commands 
+\verb:\ArrowDashLine: and \verb:\DashArrowLine: are identical.
+\end{minipage}\vspace{4mm}
+
+%--#] ArrowDashLine :
+%--#[ ArrowDashDoubleLine :
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(90,80)(-10,0)}
+\AxoGrid(0,0)(10,10)(9,8){LightGray}{0.5}
+\SetArrowStroke{0.5}
+\Line[arrow,arrowpos=1,dash,dsize=3,double,sep=1.5,arrowscale=1.5](10,70)(80,70)
+\DashArrowDoubleLine(10,50)(80,50){1.5}{3}
+\Line[arrow,dash,dsize=3,double,sep=1.5](10,30)(80,30)
+\ArrowDashDoubleLine(10,10)(80,10){1.5}{3}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{arrowdashdoubleline}
+\verb:\SetArrowStroke{0.5}: \\
+\verb:\Line[arrow,arrowpos=1,dash,dsize=3,double: \\
+       \verb:,sep=1.5,arrowscale=1.5](10,70)(80,70): \\
+\verb:\DashArrowDoubleLine(10,50)(80,50){1.5}{3}: \\
+\verb:\Line[arrow,dash,dsize=3](10,30)(80,30): \\
+\verb:\ArrowDashDoubleLine(10,10)(80,10){1.5}{3}: \\
+The \verb:\ArrowDashDoubleLine: and \verb:\DashArrowDoubleLine: 
+commands are identical.
+\end{minipage}\vspace{4mm}
+
+%--#] ArrowDashDoubleLine :
+%--#[ LongArrowDashLine :
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(90,80)(-10,0)}
+\AxoGrid(0,0)(10,10)(9,8){LightGray}{0.5}
+\Line[arrow,arrowpos=0,dash,dsize=3,arrowscale=1.5,flip](10,70)(80,70)
+\DashLongArrowLine(10,50)(80,50){3}
+\Line[arrow,arrowpos=1,dash,dsize=3](10,30)(80,30)
+\LongArrowDashLine(10,10)(80,10){3}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{longarrowdashline}
+\verb:\Line[arrow,arrowpos=0,dash,dsize=3,arrowscale=1.5: \\
+       \verb:,flip](10,70)(80,70): \\
+\verb:\DashLongArrowLine(10,50)(80,50){3}: \\
+\verb:\Line[arrow,arrowpos=1,dash,dsize=3](10,30)(80,30): \\
+\verb:\LongArrowDashLine(10,10)(80,10){3}: \\
+The commands 
+\verb:\LongArrowDashLine:, \verb:\DashLongArrowLine:, 
+\verb:\LongArrowDash: and \verb:\DashLongArrow: are identical.
+\end{minipage}\vspace{4mm}
+
+%--#] LongArrowDashLine :
+%--#[ ArrowArc :
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(90,140)(-10,0)}
+\AxoGrid(0,0)(10,10)(9,14){LightGray}{0.5}
+\Arc[arrow,arrowpos=1,clock](45,95)(40,160,20)
+\LongArrowArcn(45,80)(40,160,20)
+\Arc[arrow,arrowpos=0.5,clock](45,65)(40,160,20)
+\ArrowArcn(45,50)(40,160,20)
+\Arc[arrow,arrowpos=1](45,35)(40,20,160)
+\LongArrowArc(45,20)(40,20,160)
+\Arc[arrow,arrowpos=0.5](45,5)(40,20,160)
+\ArrowArc(45,-10)(40,20,160)
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{arrowarc}
+\verb:\Arc[arrow,arrowpos=0,flip](45,95)(40,20,160): \\
+\verb:\LongArrowArcn(45,80)(40,20,160): \\
+\verb:\Arc[arrow,arrowpos=0.5](45,65)(40,20,160): \\
+\verb:\ArrowArcn(45,50)(40,20,160): \\
+\verb:\Arc[arrow,arrowpos=1](45,35)(40,20,160): \\
+\verb:\LongArrowArc(45,20)(40,20,160): \\
+\verb:\Arc[arrow,arrowpos=0.5](45,5)(40,20,160): \\
+\verb:\ArrowArc(45,-10)(40,20,160): \\
+The \verb:Arc: and the \verb:CArc: commands are identical.
+\end{minipage}\vspace{4mm}
+
+%--#] ArrowArc :
+%--#[ ArrowDashArc :
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(90,110)(-10,0)}
+\AxoGrid(0,0)(10,10)(9,11){LightGray}{0.5}
+\Arc[arrow,dash,dsize=3,arrowpos=0.5,clock](45,65)(40,160,20)
+\ArrowDashArcn(45,50)(40,160,20){3}
+\Arc[arrow,dash,dsize=3,arrowpos=1](45,35)(40,20,160)
+\LongArrowDashArc(45,20)(40,20,160){3}
+\Arc[arrow,dash,dsize=3,arrowpos=0.5](45,5)(40,20,160)
+\ArrowDashArc(45,-10)(40,20,160){3}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{arrowdasharc}
+\verb:\Arc[arrow,dash,dsize=3,arrowpos=0.5]: \\
+       \verb:(45,65)(40,20,160): \\
+\verb:\ArrowDashArcn(45,50)(40,20,160){3}: \\
+\verb:\Arc[arrow,dash,dsize=3,arrowpos=1]: \\
+       \verb:(45,35)(40,20,160): \\
+\verb:\LongArrowDashArc(45,20)(40,20,160){3}: \\
+\verb:\Arc[arrow,dash,dsize=3,arrowpos=0.5]: \\
+       \verb:(45,5)(40,20,160): \\
+\verb:\ArrowDashArc(45,-10)(40,20,160){3}: \\
+The \verb:DashArrowArc: and the \verb:ArrowDashArc: commands are identical.
+So are the commands \verb:DashArrowArcn: and \verb:ArrowDashArcn:.
+\end{minipage}\vspace{4mm}
+
+%--#] ArrowDashArc :
+%--#[ ArrowDashDoubleArc :
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(90,80)(-10,0)}
+\AxoGrid(0,0)(10,10)(9,8){LightGray}{0.5}
+\Arc[arrow,dash,dsize=3,double,sep=1.5,arrowpos=0.5](45,35)(40,20,160)
+\ArrowDashDoubleArc(45,20)(40,20,160){1.5}{3}
+\Arc[arrow,double,sep=1.5,arrowpos=0.5](45,5)(40,20,160)
+\ArrowDoubleArc(45,-10)(40,20,160){1.5}
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{arrowdashdoublearc}
+\verb:\Arc[arrow,dash,dsize=3,double,sep=1.5: \\
+      \verb:,arrowpos=0.5](45,35)(40,20,160): \\
+\verb:\ArrowDashDoubleArc(45,20)(40,160,20){1.5}{3}: \\
+\verb:\Arc[arrow,double,sep=1.5,arrowpos=0.5]: \\
+      \verb:(45,5)(40,20,160): \\
+\verb:\ArrowDoubleArc(45,-10)(40,20,160){1.5}: \\
+Other commands involving Long do not exist. The options can take care of 
+their functionality.
+\end{minipage}\vspace{4mm}
+
+%--#] ArrowDashDoubleArc :
+%--#[ Bezier :
+ 
+Computing the position of the arrow in a B\'ezier curve is a bit complicated. 
+Let us recall the definition of a cubic B\'ezier curve:
+\begin{eqnarray}
+ x & = & x_0 (1-t)^3 + 3 x_1 t (1-t)^2 + 3 x_2 t^2 (1-t) + x_3 t^3 
+            \nonumber \\
+ y & = & y_0 (1-t)^3 + 3 y_1 t (1-t)^2 + 3 y_2 t^2 (1-t) + y_3 t^3
+\end{eqnarray}
+Computing the length of the curve is done with the integral
+\begin{eqnarray}
+   L & = & \int_0^1 dt
+   \sqrt{ \left( \frac{dx}{dt} \right)^2 + \left( \frac{dy}{dt} \right )^2 },
+\end{eqnarray}
+which is an integral over the square root of a quartic polynomial. This we 
+do with a 16 point Gaussian quadrature and it gives us more than enough 
+accuracy\footnote{We need to compute the length of the B\'ezier curve also 
+when we want to put a dash pattern on it. The exact dash size is determined 
+such that an integer number of patterns fits in the line.}. Let us assume 
+now that we want the arrow at 0.6 of the length. To find the exact fraction 
+of the length involves finding the upper limit of the integral for which 
+the length is $0.6 L$. This requires an iteration procedure till we have a 
+reasonable accuracy for the position $(x,y)$. After that we have to calculate 
+the derivative in this point as well.
+
+Because the B\'ezier curves are new commands in axodraw2 there is no need for 
+backwards compatibility in the use of arrows. Hence all arrow commands are 
+done by means of the options. Some examples are:
+\vspace{4mm}
+
+\noindent
+\begin{minipage}{3.83cm}
+\begin{axopicture}{(80,80)(-15,0)}
+\AxoGrid(0,0)(10,10)(8,8){LightGray}{0.5}
+\Bezier[arrow](10,10)(30,30)(10,50)(30,70)
+\Bezier[arrow,dash,dsize=3](30,10)(50,30)(30,50)(50,70)
+\Bezier[arrow,arrowpos=1,double,sep=1,arrowstroke=0.5](50,10)(70,30)(50,50)(70,70)
+\end{axopicture}
+\end{minipage}
+\begin{minipage}{11.5cm}
+\label{arrowbezier}
+\verb:\Bezier[arrow](10,10)(30,30)(10,50)(30,70): \\
+\verb:\Bezier[arrow,dash,dsize=3](30,10)(50,30): \\
+       \verb:(30,50)(50,70): \\
+\verb:\Bezier[arrow,arrowpos=1,double,sep=1,arrowstroke: \\
+       \verb:=0.5](50,10)(70,30)(50,50)(70,70):
+\end{minipage}\vspace{4mm}
+
+%--#] Bezier :
+%>>#] Arrows :
+%>>#[ Settings :
+
+\subsection{Units and scaling}
+\label{sec:units}
+
+When you have constructed a diagram, you may need to change its scale,
+to make it larger or smaller.  Axodraw2 provides ways of doing this,
+for scaling diagrams without recoding all the individual coordinates.
+However the requirements for the nature of the scaling change between
+different cases. For example, suppose a diagram is designed for use in
+a journal article and you wish to use it in the slides for a seminar.
+Then you will want to enlarge both the geometric size of the diagram's
+objects and the text labels it contains.  But if you wish to use a
+scaled diagram in another place in a journal article, you will wish to
+scale its lines etc, but will probably not wish to scale the text (to
+preserve its legibility).
+
+Axodraw2 therefore provides tools for the different situations, so we
+will now explain what to do.  The commands to achieve this all appear
+in the list of parameter-setting commands in Sec.\ \ref{sec:settings}.
+
+
+\subsubsection{Scaling for slides}
+
+Suppose the original diagram is
+\begin{center}
+\begin{minipage}{10cm}
+\begin{verbatim}
+   \SetPFont{Helvetica-Oblique}{12}
+   Document text.  Then diagram:
+   \begin{axopicture}(60,43)
+      \Arc[arrow](30,0)(30,0,180)
+      \Text(30,33)[b]{$\alpha P_1$}
+      \CText(30,10){Red}{Yellow}{Arc}
+   \end{axopicture}
+\end{verbatim}
+\end{minipage}
+\end{center}
+to give
+\begin{center}
+   \SetPFont{Helvetica-Oblique}{12}
+   Document text.  Then diagram:
+   \begin{axopicture}(60,43)
+      \Arc[arrow](30,0)(30,0,180)
+      \Text(30,33)[b]{$\alpha P_1$}
+      \CText(30,10){Red}{Yellow}{Arc}
+   \end{axopicture}
+\end{center}
+Then you could double the scale of the diagram by
+\begin{center}
+\begin{minipage}{10cm}
+\begin{verbatim}
+   \SetScale{2}
+   \fontsize{24}{26}\selectfont
+   \SetPFont{Helvetica-Oblique}{12}
+   Document text.  Then diagram:
+   \begin{axopicture}(60,43)
+      \Arc[arrow](30,0)(30,0,180)
+      \Text(30,33)[b]{$\alpha P_1$}
+      \CText(30,10){Red}{Yellow}{Arc}
+   \end{axopicture}
+\end{verbatim}
+\end{minipage}
+\end{center}
+to get
+\begin{center}
+   \SetScale{2}
+   \fontsize{24}{26}\selectfont
+   \SetPFont{Helvetica-Oblique}{12}
+   Document text.  Then diagram:
+   \begin{axopicture}(60,43)
+      \Arc[arrow](30,0)(30,0,180)
+      \Text(30,33)[b]{$\alpha P_1$}
+      \CText(30,10){Red}{Yellow}{Arc}
+   \end{axopicture}
+\end{center}
+We have changed the size of the document font, as would be appropriate
+for a make slides for a presentation; this we did by the
+\verb+\fontsize+ command.  The arc and the space inserted
+in the document for the diagram have scaled up.  The label inserted by
+the \verb:\Text: command has changed to match the document font.  The
+postscript text in the \verb:\CText: was specified to be at
+$\unit[12]{pt}$, but is now scaled up also.  
+
+The above behavior is what axodraw2 does by default, and is what v.\ 1
+did. 
+
+
+\subsubsection{Scaling within article}
+
+If you wanted to make an enlarged figure in a journal article, you
+would not change the document font.  But the obvious modification to
+the previous example is
+\begin{center}
+\begin{minipage}{10cm}
+\begin{verbatim}
+   \SetScale{2}
+   \SetPFont{Helvetica-Oblique}{12}
+   Document text.  Then diagram:
+   \begin{axopicture}(60,43)
+      \Arc[arrow](30,0)(30,0,180)
+      \Text(30,33)[b]{$\alpha P_1$}
+      \CText(30,10){Red}{Yellow}{Arc}
+   \end{axopicture}
+\end{verbatim}
+\end{minipage}
+\end{center}
+which gives
+\begin{center}
+   \SetScale{2}
+   \SetPFont{Helvetica-Oblique}{12}
+   Document text.  Then diagram:
+   \begin{axopicture}(60,43)
+      \Arc[arrow](30,0)(30,0,180)
+      \Text(30,33)[b]{$\alpha P_1$}
+      \CText(30,10){Red}{Yellow}{Arc}
+   \end{axopicture}
+\end{center}
+The label $\alpha P_1$ is now not enlarged, since it copies the
+behavior of the document font.  But the postscript text is enlarged,
+which is probably undesirable.  If you were scaling down the diagram
+instead of scaling it up, the situation would be worse, because the
+postscript font would be difficult to read.
+
+So in this situation, of scaling the diagram while keeping the
+document font intact, you probably also want to leave unchanged the
+size of the postscript font.  You can achieve this by the
+\verb:\PSTextScalesLikeGraphicsfalse: command:
+\begin{center}
+\begin{minipage}{10cm}
+\begin{verbatim}
+   \SetScale{2}
+   \PSTextScalesLikeGraphicsfalse
+   \SetPFont{Helvetica-Oblique}{12}
+   Document text.  Then diagram:
+   \begin{axopicture}(60,43)
+      \Arc[arrow](30,0)(30,0,180)
+      \Text(30,33)[b]{$\alpha P_1$}
+      \CText(30,10){Red}{Yellow}{Arc}
+   \end{axopicture}
+\end{verbatim}
+\end{minipage}
+\end{center}
+\begin{center}
+   \SetScale{2}
+   \PSTextScalesLikeGraphicsfalse
+   \SetPFont{Helvetica-Oblique}{12}
+   Document text.  Then diagram:
+   \begin{axopicture}(60,43)
+      \Arc[arrow](30,0)(30,0,180)
+      \Text(30,33)[b]{$\alpha P_1$}
+      \CText(30,10){Red}{Yellow}{Arc}
+   \end{axopicture}
+\end{center}
+
+To achieve this on a document-wide basis, which is probably what you
+want, you can use the \texttt{PStextScalesIndependently} option when you
+load axodraw2 --- see Sec.\ \ref{sec:invoke}.
+
+Nevertheless, if you turn off the default scaling of postscript text,
+%you may still want to scale text.  To do this you can use the
+you may still want to scale text.  For this you can use the
+\verb:\SetTextScale: command, as in \verb:\SetTextScale{1.2}:.  This
+only has an effect when you have turned off the scaling of postscript
+text with graphics objects; but then it applies to \TeX{} text
+inserted by axodraw2's \verb:\Text: and \verb:\rText: commands, as
+well text inserted by axodraw2's ``postscript-text'' commands.
+
+If you are confused by the above, we recommend experimentation to
+understand how to achieve the effects that you specifically need.  We
+could have made the set of commands and options simpler, but only at
+the expense of not being able to meet the demands of the different
+plausible situations that we could imagine and have to deal with
+ourselves.
+
+\subsubsection{Canvas and object scales}
+
+When you use \verb:\SetScale: outside an \verb:axopicture:
+environment, as above, the scaling applies to both the axodraw2
+objects and the space inserted for the \texttt{axopicture} environment
+in the document, as is natural.  But you may find you need to scale a
+subset of objects inside the diagram, e.g.,
+\begin{center}
+  \begin{minipage}{10cm}
+    \verb:\begin{axopicture}:(\dots)\\
+    \hspace*{1cm} (First block)\\
+    \verb:\SetScale{0.5}:\\
+    \hspace*{1cm} (Second block)\\
+    \verb:\end{axopicture}:
+  \end{minipage}
+\end{center}
+In this case, the units for specifying the objects in the second block
+are different from those for specifying the \verb:axopicture:
+environment's size (as well as the first block of objects).  We thus
+distinguish object units from canvas units, where ``canvas'' refers to
+the \verb:axopicture: environment as a whole.  
+
+Another complication is that the \LaTeX{} \verb+picture+ environment
+has is own \verb:\unitlength: parameter.  In v.\ 1 of axodraw, the
+canvas scale was determined by \LaTeX's \verb:\unitlength:.  But there
+was an independent unit for the object scale; this was the one
+determined by axodraw's \verb:\SetScale: command. Also, not all
+objects used the object scale.  The situation therefore got quite
+confusing. In v.\ 1, if, as is often natural, you wished to scale the
+canvas as well as the objects, you would have needed to set \LaTeX's
+\verb:\unitlength: parameter as well as using axodraw's
+\verb:\SetScale: command.
+
+So now we have arranged things so that the canvas and object scales
+are tied by default, provided that you use axodraw2's \verb:\SetScale:
+command, and that axodraw diagrams are inside \verb+axopicture+
+environments (in contrast to the \verb+picture+ environment used in
+the original axodraw).
+However, it may be necessary to keep backward compatibility in some
+cases, and we weren't certain that the new behavior is exactly what is
+always desired.  So in axodraw2, we have provided three choices, given
+by the \texttt{canvasScaleIs1pt}, \texttt{canvasScaleIsObjectScale},
+and \texttt{canvasScaleIsUnitLength} options when loading axodraw2 ---
+see Sec.\ \ref{sec:invoke}.  Naturally,
+\texttt{canvasScaleIsObjectScale} is the default.  If you wish to
+change the setting mid-document, there are corresponding commands ---
+Sec.\ \ref{sec:settings}.
+
+
+
+\subsection{Settings}
+\label{sec:settings}
+
+Axodraw2 has a number of parameters that can be set by the user.  The
+parameters include defaults for line types, dimensions, etc.  The
+parameters can be set either inside the axopicture environment or
+outside.  If they are set outside they modify the default value for
+subsequent pictures. If set inside they only affect the current
+picture.  (In general, the parameters obey the usual rules for the
+scope of \LaTeX{} variables.)  In many cases, the parameters provide
+default values for a command to draw an object and can be overridden
+for a single object by using an optional parameter in invoking the
+command for the object.
+
+The unit for lengths is the current object scale, as set by the
+\verb+\SetScale+ command.
+
+\break 
+
+The parameter-setting commands are:
+%\begin{center}
+%\def\arraystretch{1.4}
+%%
+%% See preamble for definition of \name
+%\def\descr#1#2{%
+%  % #1 = command-syntax, #2 = description
+%  \name{#1} & #2\\
+%  \hline
+%}
+%\def\descrL#1#2{%
+%  % #1 = command-syntax, #2 = description
+%  % Set #1 on separate line
+%  \multicolumn{2}{|l|}{\name{#1}}   \\
+%                & #2\\
+%  \hline
+%}
+%\catcode`\#=13
+%\def#{\#}
+%%
+%\begin{longtable}{|p{5cm}|p{10.2cm}|}
+%\hline
+%   Command & Commentary 
+%\\
+%\hline
+%%
+%\descr{SetLineSep\{\#1\}}{
+%  This sets the default separation of double lines. Its initial value
+%  is 2.
+%}
+%%
+%\descr{SetDashSize\{\#1\}}{
+%  This sets the default size for the size of the dashes of dashed
+%  lines. Its initial value is 3.
+%}
+%%
+%\descr{SetWidth\{\#1\}}{
+%  This sets the default width of lines.  Its initial value is 1.
+%}
+%%
+%\descr{SetScale\{\#1\}}{
+%    This sets a scale factor. 
+%    This factor applies a magnification factor to all 
+%    axodraw2 graphics objects.  When the setting that
+%    postscript-text-scales-like-graphics is set (as is true by
+%    default), it also applies to axodraw2's ``postscript-text''
+%    writing commands (\name{PText}, \name{BText}, etc), but not to
+%    its \TeX{}-text commands (\name{Text} etc).  The initial scale
+%    factor is unity.
+%}
+%%
+%\descr{SetTextScale\{\#1\}}{
+%    This factor applies a magnification factor to all 
+%    axodraw2 text objects, but \emph{only when} the setting that
+%    postscript-text-scales-like-graphics is turned off.
+%}
+%%
+%\descr{SetOffset(\#1,\#2)}{
+%  Sets an offset value 
+%  for all commands of 
+%  axodraw2. Its value is not affected by the scale variable.
+%}
+%%
+%\descr{SetScaledOffset(\#1,\#2)}{
+%  Sets an offset for 
+%  all commands of axodraw2. This 
+%  offset is affected by the scale factor.
+%}
+%%
+%\descr{SetColor\{\#1\}}{
+%    Sets the named color,
+%    for both axodraw2 objects and regular text.  See Sec.\
+%    \ref{sec:colors} for details on using color with axodraw2.
+%}
+%%
+%\descr{textRed}{
+%    Alternative command for setting named a color
+%    for both axodraw2 objects and regular text.  See Sec.\
+%    \ref{sec:colors} for details on using color with axodraw2.
+%    There is one such command for each axodraw2 named color.
+%}
+%%
+%\descr{SetPFont\{\#1\}\{\#2\}}{
+%    Sets the Postscript 
+%    font, and its size in units of points.  See Sec.\ \ref{sec:PSText}
+%    for the commands that use this font, for a table of the names of
+%    the fonts.  An empty first argument, instead of a font name,  (as in
+%    \name{SetPFont\{\}\{20\}} indicates that the normal document font is
+%    to be used at the indicated size.  An empty second argument,
+%    instead of the font size, (as in \name{SetPFont\{Helvetica\}\{\}} or
+%    \name{SetPFont\{\}\{\}}) indicates that the font size is to be
+%    \LaTeX's document font size at the time the text-making command is
+%    executed. 
+%}
+%%
+%\descr{SetArrowScale\{\#1\}}{
+%   A scale parameter for the 
+%   entire head of an arrow.
+%}
+%%
+%\descr{SetArrowInset\{\#1\}}{
+%   See Sec.\ \ref{sec:arrows}.
+%}
+%%
+%\descr{SetArrowAspect\{\#1\}}{
+%   See Sec.\ \ref{sec:arrows}.
+%}
+%%
+%\descr{SetArrowPosition\{\#1\}}{
+%  Determines where the 
+%arrowhead is on a line. The position is the fraction of the length of the 
+%line. 
+%}
+%%
+%\descr{SetArrowStroke\{\#1\}}{
+%    This parameter determines the linewidth of the arrowhead if it is just 
+%    outlined. Its initial value is zero (filled arrowhead).
+%}
+%%
+%\descr{canvasScaleOnept}{
+%      Sets canvas scale to $\unit[1]{pt}$. 
+%}
+%%
+%\descr{canvasScaleObjectScale}{
+%      Sets canvas scale to equal the value set by \name{SetScale} in
+%      units of points.  This is the initial default of axodraw2,
+%      unless overridden. 
+%}
+%%
+%\descr{canvasScaleUnitLength}{
+%      The canvas scale is the same as \LaTeX's length parameter
+%      \name{unitlength}. 
+%}
+%%
+%\descrL{PSTextScalesLikeGraphicsfalse}{
+%      Text drawn by all of Axodraws's text commands scales with the
+%      factor set by \name{SetTextScale}.
+%      See Sec.\ \ref{sec:text}. 
+%}
+%%
+%\descrL{PSTextScalesLikeGraphicstrue}{
+%      (Default setting.)  Text drawn by Axodraw's postscript-text
+%      commands scales with the same factor as graphics objects, as set
+%      by \name{SetScale}.   Text drawn by Axodraw's \TeX{}-text
+%      commands is unscaled.
+%      See Sec.\ \ref{sec:text}.  
+%}
+%\end{longtable}
+%\end{center}
+\begin{center}
+\def\arraystretch{1.4}
+%
+% See preamble for definition of \name
+\def\descr#1#2{%
+  % #1 = command-syntax, #2 = description
+  \name{#1} & #2\\
+  \hline
+}
+\def\descrL#1#2{%
+  % #1 = command-syntax, #2 = description
+  % Set #1 on separate line
+  \multicolumn{2}{|l|}{\name{#1}}   \\
+                & #2\\
+  \hline
+}
+\def\category#1{%
+  % #1 = name of category
+  \multicolumn{2}{l}{#1:}
+  \\
+  \hline
+}
+\catcode`\#=13
+\def#{\#}
+%
+\begin{longtable}{|p{5cm}|p{10.2cm}|}
+\hline
+\endfirsthead
+   Command & Commentary 
+\\
+\hline
+%====================
+\category{Lines}
+%
+\descr{SetDashSize\{\#1\}}{
+  This sets the default size for the size of the dashes of dashed
+  lines. Its initial value is 3.
+}
+%
+\descr{SetLineSep\{\#1\}}{
+  This sets the default separation of double lines. Its initial value
+  is 2.
+}
+%
+\descr{SetWidth\{\#1\}}{
+  This sets the default width of lines.  Its initial value is 0.5.
+}
+%====================
+\category{Arrows}
+%
+\descr{SetArrowAspect\{\#1\}}{
+   See Sec.\ \ref{sec:arrows}.
+}
+%
+\descr{SetArrowInset\{\#1\}}{
+   See Sec.\ \ref{sec:arrows}.
+}
+%
+\descr{SetArrowPosition\{\#1\}}{
+  Determines where the 
+arrowhead is on a line. The position is the fraction of the length of the 
+line. 
+}
+%
+\descr{SetArrowScale\{\#1\}}{
+   A scale parameter for the 
+   entire head of an arrow.
+}
+%
+\descr{SetArrowStroke\{\#1\}}{
+    This parameter determines the linewidth of the arrowhead if it is just 
+    outlined. Its initial value is zero (filled arrowhead).
+}
+%====================
+\category{Scaling}
+%
+\descr{canvasScaleOnept}{
+      Sets canvas scale to $\unit[1]{pt}$. 
+}
+%
+\descr{canvasScaleObjectScale}{
+      Sets canvas scale to equal the value set by \name{SetScale} in
+      units of points.  This is the initial default of axodraw2,
+      unless overridden. 
+}
+%
+\descr{canvasScaleUnitLength}{
+      The canvas scale is the same as \LaTeX's length parameter
+      \name{unitlength}. 
+}
+%
+\descr{SetScale\{\#1\}}{
+    This sets a scale factor. 
+    This factor applies a magnification factor to all 
+    axodraw2 graphics objects.  When the setting that
+    postscript-text-scales-like-graphics is set (as is true by
+    default), it also applies to axodraw2's ``postscript-text''
+    writing commands (\name{PText}, \name{BText}, etc), but not to
+    its \TeX{}-text commands (\name{Text} etc).  The initial scale
+    factor is unity.
+}
+%
+\descr{SetTextScale\{\#1\}}{
+    This factor applies a magnification factor to all 
+    axodraw2 text objects, but \emph{only when} the setting that
+    postscript-text-scales-like-graphics is turned off.
+}
+%
+\descrL{PSTextScalesLikeGraphicsfalse}{
+      Text drawn by all of Axodraws's text commands scales with the
+      factor set by \name{SetTextScale}.
+      See Sec.\ \ref{sec:text}. 
+}
+%
+\descrL{PSTextScalesLikeGraphicstrue}{
+      (Default setting.)  Text drawn by Axodraw's postscript-text
+      commands scales with the same factor as graphics objects, as set
+      by \name{SetScale}.   Text drawn by Axodraw's \TeX{}-text
+      commands is unscaled.
+      See Sec.\ \ref{sec:text}.
+}
+%
+%====================
+\category{Offsets}
+%
+\descr{SetOffset(\#1,\#2)}{
+  Sets an offset value 
+  for all commands of 
+  axodraw2. Its value is not affected by the scale variable.
+}
+%
+\descr{SetScaledOffset(\#1,\#2)}{
+  Sets an offset for 
+  all commands of axodraw2. This 
+  offset is affected by the scale factor.
+}
+%
+%====================
+\category{Color}
+%
+\descr{SetColor\{\#1\}}{
+    Sets the named color,
+    for both axodraw2 objects and regular text.  See Sec.\
+    \ref{sec:colors} for details on using color with axodraw2.
+}
+%
+\descr{textRed}{
+    Alternative command for setting named a color
+    for both axodraw2 objects and regular text.  See Sec.\
+    \ref{sec:colors} for details on using color with axodraw2.
+    There is one such command for each axodraw2 named color.
+}
+%====================
+\category{Font}
+%
+\descr{SetPFont\{\#1\}\{\#2\}}{
+    Sets the Postscript 
+    font, and its size in units of points.  See Sec.\ \ref{sec:PSText}
+    for the commands that use this font, for a table of the names of
+    the fonts.  An empty first argument, instead of a font name,  (as in
+    \name{SetPFont\{\}\{20\}} indicates that the normal document font is
+    to be used at the indicated size.  An empty second argument,
+    instead of the font size, (as in \name{SetPFont\{Helvetica\}\{\}} or
+    \name{SetPFont\{\}\{\}}) indicates that the font size is to be
+    \LaTeX's document font size at the time the text-making command is
+    executed. 
+}
+%
+\end{longtable}
+\end{center}
+
+
+%>>#] Settings :
+%>>#[ Colors :
+
+\subsection{Colors}
+\label{sec:colors}
+
+\TeX{} and \LaTeX{} by themselves do not provide any means to set
+colors in a document.  Instead, one must use a suitable package to
+achieve the effect; the current standard one is \file{color.sty}.
+Such a package performs its work by passing graphics commands to the
+viewable output file.  Since axodraw also works in a similar fashion,
+there is a potentiality for conflicts.  
+
+Axodraw version 1, released in 1994, used the package
+\file{colordvi.sty} for applying color to normal textual material,
+and its own separate methods for applying color to its graphical
+objects.  They both defined the same convenient set of named colors
+that could be used, but they had to be set separately for text and
+graphics\footnote{The named colors corresponded to ones defined by the
+  \program{dvips} program.}. The \file{colordvi.sty} package also had
+an important disadvantage that its color settings did not respect
+\TeX{} grouping and \LaTeX{} environments, so that a color setting
+made for text in an environment continued to apply after the end of
+the environment.
+
+Since then, the available tools, notably in the powerful
+\file{color.sty}, have greatly improved.  But this has introduced
+both real and potential incompatibilities with the older methods.
+Note that \file{color.sty} is currently the most standard way for
+implementing color, and is a required part of \LaTeX{} distributions,
+as part of the graphics bundle.
+
+In the new version of axodraw, we have arranged to have compatibility
+with \file{color.sty}, while allowing as much backward compatibility
+as we could with the user interface from v.\ 1.  We fully rely on
+\file{color.sty} for setting color\footnote{Except for certain hard
+  wired settings in double lines and stroked arrows.}.  But to keep
+the best of the old methods, we have defined all the named colors that
+were defined in the old version, together with a few extra ones. We
+have also defined color-setting commands in the style of
+\file{colordvi.sty}, but they now apply uniformly to both text and
+axodraw graphical objects, and they respect \TeX{} and \LaTeX{}
+grouping and environments.
+
+This results in some changes in behavior in certain situations.  We
+think the new behavior is more natural from the user's point of view;
+but it is a change.  
+
+There are two classes of graphics-drawing command in axodraw.  One
+class has no explicit color argument, and uses the currently set
+color; the line-drawing commands are typical of these.  Other commands
+have explicit color arguments, and these arguments are named colors.
+The named colors are a union of those axodraw defines, with those
+defined by \file{color.sty} together with any further ones defined
+by the user.
+
+\subsubsection{How to use colors}
+
+Axodraw works with named colors --- see Sec.\ \ref{sec:defined.colors}
+--- which are a standard set of 68 originally defined by the \program{dvips}
+program and the \file{colordvi.sty}, plus 5 extra colors defined in
+axodraw2.  (In addition there are several named colors that are
+normally defined by default by \file{color.sty}, and that can also
+be used.)
+
+To use them we have several possibilities to specify colors.  Which to
+use is mostly a matter of user preference or convenience.
+\begin{itemize}
+
+\item The axodraw command \verb+\SetColor{colorname}+: sets the color
+  to be the named color for everything until the end of the current
+  environment (or \TeX{} group, as relevant.)  The initial default
+  color is Black, of course.  An example:
+  \begin{center}
+    \begin{minipage}{4cm}
+        \SetColor{Red}
+        Now red is used:\\
+        \begin{axopicture}(0,40)
+            \Line(0,10)(40,30)
+        \end{axopicture}
+    \end{minipage}
+    \begin{minipage}{7cm}
+    \label{SetColor}
+    \begin{verbatim}
+    \SetColor{Red}
+    Now red is used:\\
+    \begin{axopicture}(0,40)
+        \Line(0,10)(40,30)
+    \end{axopicture}
+    \end{verbatim}
+    \end{minipage}
+  \end{center}
+
+\item Completely equivalently, one can use the command
+  \verb+\color{colorname}+ defined by the standard \file{color.sty}
+  package, with any of its options, e.g., \verb+\color{Red}+ or
+  \verb+\color[rgb]{1,0,0}+.  In fact \verb+\SetColor+ is now a
+  synonym for \verb+\color+, retained for backward compatibility.
+
+\item The named colors defined by axodraw2 are listed in Sec.\
+  \ref{sec:defined.colors}.  Extra ones can be defined by axodraw2's
+  \verb+\newcolor+ command.
+
+\item For each of the named colors defined by axodraw2 (and others
+  defined by the use of the \verb+\newcolor+ command), there is a
+  macro whose name is ``text'' followed by the color name, e.g.,
+  \verb+\textMagenta+.  This behaves just like the corresponding call
+  to \verb+\SetColor+ or \verb+\color+.  Thus we have
+  \begin{center}
+    \begin{minipage}{4cm}
+        \textMagenta
+        Now magenta is used: \hfill \\
+        \begin{axopicture}(0,40)
+            \Line(0,10)(40,30)
+        \end{axopicture}
+    \end{minipage}
+    \begin{minipage}{7cm}
+    \label{textName}
+    \begin{verbatim}
+    \textMagenta
+    Now magenta is used:\\
+    \begin{axopicture}(0,40)
+        \Line(0,10)(40,30)
+    \end{axopicture}
+    \end{verbatim}
+    \end{minipage}
+  \end{center}
+  These macros correspond to macros defined by the venerable
+  \file{colordvi.sty} package, but now have what is normally an advantage
+  that their scope is delimited by the enclosing environment.  
+  \begin{center}
+    \begin{minipage}{5cm}
+        Normal text, then
+        \begin{center}
+          \Large \bf \color{Blue}
+          Large, bold blue\\
+          \begin{axopicture}(40,20)
+              \Gluon(0,10)(40,10){4}{4}
+          \end{axopicture}\\
+        \end{center}
+        And normal text afterward.
+    \end{minipage}
+    \begin{minipage}{7.7cm}
+    \label{scope}
+    \begin{verbatim}
+    Normal text, then
+    \begin{center}
+        \Large \bf \color{Blue}
+        Large, bold blue
+        \begin{axopicture}(40,20)
+          \Gluon(0,10)(40,10){4}{4}
+        \end{axopicture}\\
+    \end{center}
+    And normal text afterward.
+    \end{verbatim}
+    \end{minipage}
+  \end{center}
+
+\item A delimited section of text can be set in a color by using a
+  macro named by the color (e.g., $\verb+\Red+$):
+  \begin{center}
+    \begin{minipage}{6cm}
+        In the middle of black text,
+        \textcolor{Red}{red text and
+          \begin{axopicture}(30,10)
+          \Gluon(0,5)(30,5){3}{4}
+          \end{axopicture}\ 
+          gluon%
+        }.
+        Then continue \dots
+    \end{minipage}
+    \begin{minipage}{7.3cm}
+    \label{Red}
+    \begin{verbatim}
+    In the middle of black text,
+    \Red{red text and
+      \begin{axopicture}(30,10)
+          \Gluon(0,5)(30,5){3}{4}
+      \end{axopicture}\ 
+      gluon%
+    }.
+    Then continue \dots
+    \end{verbatim}
+    \end{minipage}
+  \end{center}
+  These macros correspond to macros defined by the \file{colordvi.sty}
+  package, but they now apply to axodraw objects as well.
+
+\item The same effect, for named colors, can be achieved by
+  \file{color.sty}'s \verb+\textcolor+ macro.  Thus
+  \verb+\textcolor{Red}{...}+ is equivalent to \verb+\Red{...}+.
+
+\end{itemize}
+
+It is also possible to define new named colors, in the CMYK
+system. This means that each color is defined by four numbers. New
+colors can be introduced with the \verb:\newcolor{#1}{#2}: command as
+in \verb:\newcolor{LightRed}{0 0.75 0.7 0}:. This use of this command
+defines a named color for use in axodraw, with corresponding macros
+\verb:\LightRed: and \verb:\textLightRed{#1}:, and also makes the name
+known to \file{color.sty}.  (Use of \file{color.sty}'s
+\verb:\definecolor: macro is not supported here: it will affect only
+normal \LaTeX{} text, but not axodraw objects, and it will fail to
+define the extra macros.)
+
+We define the CMYK values for the named colors in the
+\file{axodraw2.sty} file.  These override the definitions provided
+by \file{color.sty} (in its file dvipsnam.def), which are the same
+(at least currently).
+
+There can be differences in how colors render on different devices.
+In principle, there should be compensations made by the driver to
+compensate for individual device properties. Our experience is however
+that such compensations are not always implemented well enough. Most
+notorious are differences between the shades of green on the screen,
+on projectors, and on output from a printer.  These colors are usually
+much too light on a projector and one way to correct this is to
+redefine those colors when the output is prepared for a projector,
+e.g., by use of axodraw's \verb:\newcolor{#1}{#2}: macro.  An example
+is illustrated by
+\begin{center}
+  \color{green} 
+  \begin{axopicture}(100,20)
+  \Text(25,15){color.sty's green}
+  \Line[width=2](0,0)(50,0)
+  \end{axopicture}
+%
+  \color{Green} 
+  \begin{axopicture}(100,20)
+  \Text(25,15){axodraw's Green}
+  \Line[width=2](0,0)(50,0)
+  \end{axopicture}
+\end{center}
+coded by
+\begin{verbatim}
+  \color{green} 
+  \begin{axopicture}(100,20)
+  \Text(25,15){color.sty's green}
+  \Line[width=2](0,0)(50,0)
+  \end{axopicture}
+%
+  \color{Green} 
+  \begin{axopicture}(100,20)
+  \Text(25,15){axodraw's Green}
+  \Line[width=2](0,0)(50,0)
+  \end{axopicture}
+\end{verbatim}
+On a typical screen or projector, we find that the two greens are
+quite distinct, the ``green'' being much lighter than the
+``Green''\footnote{The ``green'' is defined in the RGB scheme from the
+  values $(0,1,0)$, while ``Green'' is defined in the CMYK scheme from
+  the values $(1,0,1,0)$.}.  But on the paper output from our
+printers, they give close results.
+
+
+
+\subsubsection{Defined named colors}
+\label{sec:defined.colors}
+
+The first set of predefined colors are those defined by dvips (and
+defined in \file{colordvi.sty}, or in \file{color.sty} with the
+use of both of its usenames and dvipsnames options).  They are
+\begin{quote}
+\sloppy
+\GreenYellow{GreenYellow},
+\Yellow{Yellow},
+\Goldenrod{Goldenrod},
+\Dandelion{Dandelion},
+\Apricot{Apricot},
+\Peach{Peach},
+\Melon{Melon},
+\YellowOrange{YellowOrange},
+\Orange{Orange},
+\BurntOrange{BurntOrange},
+\Bittersweet{Bittersweet},
+\RedOrange{RedOrange},
+\Mahogany{Mahogany},
+\Maroon{Maroon},
+\BrickRed{BrickRed},
+\Red{Red},
+\OrangeRed{OrangeRed},
+\RubineRed{RubineRed},
+\WildStrawberry{WildStrawberry},
+\Salmon{Salmon},
+\CarnationPink{CarnationPink},
+\Magenta{Magenta},
+\VioletRed{VioletRed},
+\Rhodamine{Rhodamine},
+\Mulberry{Mulberry},
+\RedViolet{RedViolet},
+\Fuchsia{Fuchsia},
+\Lavender{Lavender},
+\Thistle{Thistle},
+\Orchid{Orchid},
+\DarkOrchid{DarkOrchid},
+\Purple{Purple},
+\Plum{Plum},
+\Violet{Violet},
+\RoyalPurple{RoyalPurple},
+\BlueViolet{BlueViolet},
+\Periwinkle{Periwinkle},
+\CadetBlue{CadetBlue},
+\CornflowerBlue{CornflowerBlue},
+\MidnightBlue{MidnightBlue},
+\NavyBlue{NavyBlue},
+\RoyalBlue{RoyalBlue},
+\Blue{Blue},
+\Cerulean{Cerulean},
+\Cyan{Cyan},
+\ProcessBlue{ProcessBlue},
+\SkyBlue{SkyBlue},
+\Turquoise{Turquoise},
+\TealBlue{TealBlue},
+\Aquamarine{Aquamarine},
+\BlueGreen{BlueGreen},
+\Emerald{Emerald},
+\JungleGreen{JungleGreen},
+\SeaGreen{SeaGreen},
+\Green{Green},
+\ForestGreen{ForestGreen},
+\PineGreen{PineGreen},
+\LimeGreen{LimeGreen},
+\YellowGreen{YellowGreen},
+\SpringGreen{SpringGreen},
+\OliveGreen{OliveGreen},
+\RawSienna{RawSienna},
+\Sepia{Sepia},
+\Brown{Brown},
+\Tan{Tan},
+\Gray{Gray},
+\Black{Black},
+White.
+\end{quote}
+In addition \file{axodraw2.sty} defines the following extra colors:
+\begin{quote}
+\LightYellow{LightYellow},
+\LightRed{LightRed},
+\LightBlue{LightBlue}, 
+\LightGray{LightGray},
+\VeryLightBlue{VeryLightBlue}.
+\end{quote}
+
+Note that \file{color.sty} by default also defines a set of other
+named colors: black, white, red, green, blue, cyan, magenta, and
+yellow (with purely lower-case names).  Depending on properties of
+your screen, projector or printer, these may or may not agree with the
+similarly named axodraw colors (which have capitalized names).  These
+names can also be used in the \verb+\SetColor+ and \verb+\color+
+commands and for color names to those axodraw commands that take named
+colors for arguments.
+
+
+%\subsection{Background issues on color}
+%\label{sec:color.issues}
+
+
+
+
+%>>#] Colors :
+%>>#[ Some examples :
+
+\section{Some examples}
+\label{sec:examples}
+
+\subsection{A Feynman diagram}
+
+When computing the singlet part of structure functions in polarized Deep 
+Inelastic Scattering one approach is to use spin two currents to determine 
+all anomalous dimensions. At the three loop level this can give diagrams 
+like the following:
+\begin{center}
+\begin{axopicture}{(200,140)(0,0)}
+\SetArrowStroke{0.5}
+\SetArrowScale{0.8}
+\Photon(7,70)(37,70){4}{3}
+\Photon(7,70)(37,70){-4}{3}
+\GluonArc(70,70)(30,90,270){3}{10}
+\Line[arrow](100,100)(70,100)
+\Line[arrow](130,100)(100,100)
+\Line[arrow,arrowpos=0.25](70,100)(130,40)
+\Line[arrow](100,40)(70,40)
+\Line[arrow](130,40)(100,40)
+\Line[arrow,arrowpos=0.75](70,40)(130,100)
+\GluonArc(130,70)(30,270,450){3}{10}
+\Photon(163,70)(193,70){4}{3}
+\Photon(163,70)(193,70){-4}{3}
+\Gluon(100,100)(100,130){3}{4}
+\Gluon(100,40)(100,10){3}{4}
+\Vertex(37,70){2}
+\Vertex(163,70){2}
+\Vertex(70,100){2}
+\Vertex(70,40){2}
+\Vertex(130,100){2}
+\Vertex(130,40){2}
+\Vertex(100,100){2}
+\Vertex(100,40){2}
+\end{axopicture}
+\end{center}
+for which the code is:
+\begin{verbatim}
+  \begin{center} \begin{axopicture}{(200,140)(0,0)}
+  \SetArrowStroke{0.5} \SetArrowScale{0.8}
+  \Photon(7,70)(37,70){4}{3}
+  \Photon(7,70)(37,70){-4}{3}
+  \GluonArc(70,70)(30,90,270){3}{10}
+  \Line[arrow](100,100)(70,100) \Line[arrow](130,100)(100,100)
+  \Line[arrow,arrowpos=0.25](70,100)(130,40)
+  \Line[arrow](100,40)(70,40) \Line[arrow](130,40)(100,40)
+  \Line[arrow,arrowpos=0.75](70,40)(130,100)
+  \GluonArc(130,70)(30,270,450){3}{10}
+  \Photon(163,70)(193,70){4}{3}
+  \Photon(163,70)(193,70){-4}{3}
+  \Gluon(100,100)(100,130){3}{4}
+  \Gluon(100,40)(100,10){3}{4}
+  \Vertex(37,70){2} \Vertex(163,70){2} \Vertex(70,100){2}
+  \Vertex(70,40){2} \Vertex(130,100){2} \Vertex(130,40){2}
+  \Vertex(100,100){2} \Vertex(100,40){2}
+  \end{axopicture} \end{center}
+\end{verbatim}
+The diagrams can become a bit more complicated when more lines meet in a 
+single vertex. One could compose some lines from straight lines and arcs, 
+but in this case we selected some B\'ezier curves. The result is
+\begin{center}
+\begin{axopicture}{(200,140)(0,0)}
+\SetArrowStroke{0.5}
+\SetArrowScale{0.8}
+\Photon(7,70)(40,70){4}{3}
+\Photon(7,70)(40,70){-4}{3}
+\GluonArc(70,70)(30,180,270){3}{5}
+\Bezier[arrow](100,100)(55,100)(40,95)(40,70)
+\Line[arrow](130,100)(100,100)
+\Bezier[arrow,arrowpos=0.37](40,70)(110,70)(130,70)(130,40)
+\Line[arrow](100,40)(70,40)
+\Line[arrow](130,40)(100,40)
+\Line[arrow,arrowpos=0.75](70,40)(130,100)
+\GluonArc(130,70)(30,270,450){3}{10}
+\Photon(163,70)(193,70){4}{3}
+\Photon(163,70)(193,70){-4}{3}
+\Gluon(100,100)(100,130){3}{4}
+\Gluon(100,40)(100,10){3}{4}
+\Vertex(40,70){2}
+\Vertex(163,70){2}
+\Vertex(70,40){2}
+\Vertex(130,100){2}
+\Vertex(130,40){2}
+\Vertex(100,100){2}
+\Vertex(100,40){2}
+\end{axopicture}
+\end{center}
+for which the code is:
+\begin{verbatim}
+  \begin{center}
+  \begin{axopicture}{(200,140)(0,0)}
+  \SetArrowStroke{0.5} \SetArrowScale{0.8}
+  \Photon(7,70)(40,70){4}{3}
+  \Photon(7,70)(40,70){-4}{3}
+  \GluonArc(70,70)(30,180,270){3}{5}
+  \Bezier[arrow](100,100)(55,100)(40,95)(40,70)
+  \Line[arrow](130,100)(100,100)
+  \Bezier[arrow,arrowpos=0.37](40,70)(100,70)(130,70)(130,40)
+  \Line[arrow](100,40)(70,40) \Line[arrow](130,40)(100,40)
+  \Line[arrow,arrowpos=0.75](70,40)(130,100)
+  \GluonArc(130,70)(30,270,450){3}{10}
+  \Photon(163,70)(193,70){4}{3}
+  \Photon(163,70)(193,70){-4}{3}
+  \Gluon(100,100)(100,130){3}{4} \Gluon(100,40)(100,10){3}{4}
+  \Vertex(40,70){2} \Vertex(163,70){2} \Vertex(70,40){2}
+  \Vertex(130,100){2} \Vertex(130,40){2} \Vertex(100,100){2}
+  \Vertex(100,40){2}
+  \end{axopicture}
+  \end{center}
+\end{verbatim}
+
+%\subsection{A flowchart}
+
+%\subsection{A histogram}
+ 
+\subsection{A diagrammatic equation}
+
+This example is from ref~\cite{twopap}. The equations in that paper were 
+rather untransparent, because each Feynman diagram represents a complicated 
+two loop integral and to solve these integrals one needed many different 
+recursion relations in terms of the powers of the propagators. We defined a 
+number of macro's for the diagrams, each containing one picture. Here are 
+three of them:
+
+\begin{verbatim}
+  \def\TAA(#1,#2,#3,#4,#5,#6){
+    \raisebox{-19.1pt}{ \hspace{-12pt}
+      \begin{axopicture}{(50,39)(0,-4)}
+      \SetScale{0.5}\SetColor{Blue}%
+      \CArc(40,35)(25,90,270) \CArc(60,35)(25,270,90)
+      \Line(40,60)(60,60) \Line(40,10)(60,10) \Line(50,10)(50,60)
+      \Line(0,35)(15,35) \Line(85,35)(100,35)
+      \SetColor{Black}\SetPFont{Helvetica}{14}%
+      \PText(55,39)(0)[lb]{#5} \PText(55,36)(0)[lt]{#6}
+      \PText(35,62)(0)[rb]{#1} \PText(65,62)(0)[lb]{#2}
+      \PText(65,8)(0)[lt]{#3} \PText(35,8)(0)[rt]{#4}
+      \SetColor{Red} \SetWidth{3}
+      \Line(50,35)(50,60) \Line(40,60)(50,60)
+      \CArc(40,35)(25,90,180) \Vertex(50,60){1.3}
+      \end{axopicture}
+      \hspace{-12pt}
+    }
+  }
+\end{verbatim}
+\def\TAA(#1,#2,#3,#4,#5,#6){
+  \raisebox{-18.1pt}{ \hspace{-12pt}
+    \begin{axopicture}{(50,39)(0,-4)}
+    \SetScale{0.5}\SetColor{Blue}%
+    \CArc(40,35)(25,90,270) \CArc(60,35)(25,270,90)
+    \Line(40,60)(60,60) \Line(40,10)(60,10) \Line(50,10)(50,60)
+    \Line(0,35)(15,35) \Line(85,35)(100,35)
+    \SetColor{Black}\SetPFont{Helvetica}{14}%
+    \PText(55,39)(0)[lb]{#5} \PText(55,36)(0)[lt]{#6}
+    \PText(35,62)(0)[rb]{#1} \PText(65,62)(0)[lb]{#2}
+    \PText(65,8)(0)[lt]{#3} \PText(35,8)(0)[rt]{#4}
+    \SetColor{Red} \SetWidth{3}
+    \Line(50,35)(50,60) \Line(40,60)(50,60)
+    \CArc(40,35)(25,90,180) \Vertex(50,60){1.3}
+    \end{axopicture}
+    \hspace{-12pt}
+  }
+}
+\begin{verbatim}
+  \def\TABs(#1,#2,#3,#4,#5){
+    \raisebox{-18.1pt}{ \hspace{-12pt}
+      \begin{axopicture}{(50,39)(0,-4)}
+      \SetScale{0.5}\SetColor{Blue}%
+      \CArc(40,35)(25,90,270) \CArc(60,35)(25,270,90)
+      \Line(40,60)(60,60) \Line(40,10)(60,10) \Line(50,10)(50,60)
+      \Line(0,35)(15,35) \Line(85,35)(100,35)
+      \SetColor{Black}\SetPFont{Helvetica}{14}%
+      \PText(55,38)(0)[l]{#5}
+      \PText(35,62)(0)[rb]{#1} \PText(65,62)(0)[lb]{#2}
+      \PText(65,8)(0)[lt]{#3} \PText(35,8)(0)[rt]{#4}
+      \SetColor{Red} \SetWidth{3}
+      \Line(50,10)(50,60) \Vertex(50,60){1.3}
+      \Line(40,60)(50,60) \CArc(40,35)(25,90,180)
+      \end{axopicture}
+      \hspace{-12pt}
+    }
+  }
+\end{verbatim}
+\def\TABs(#1,#2,#3,#4,#5){
+  \raisebox{-18.1pt}{ \hspace{-12pt}
+    \begin{axopicture}{(50,39)(0,-4)}
+    \SetScale{0.5}\SetColor{Blue}%
+    \CArc(40,35)(25,90,270) \CArc(60,35)(25,270,90)
+    \Line(40,60)(60,60) \Line(40,10)(60,10) \Line(50,10)(50,60)
+    \Line(0,35)(15,35) \Line(85,35)(100,35)
+    \SetColor{Black}\SetPFont{Helvetica}{14}%
+    \PText(55,38)(0)[l]{#5}
+    \PText(35,62)(0)[rb]{#1} \PText(65,62)(0)[lb]{#2}
+    \PText(65,8)(0)[lt]{#3} \PText(35,8)(0)[rt]{#4}
+    \SetColor{Red} \SetWidth{3}
+    \Line(50,10)(50,60) \Vertex(50,60){1.3}
+    \Line(40,60)(50,60) \CArc(40,35)(25,90,180)
+    \end{axopicture}
+    \hspace{-12pt}
+  }
+}
+\begin{verbatim}
+  \def\TACs(#1,#2,#3,#4,#5){
+    \raisebox{-19.1pt}{ \hspace{-12pt}
+      \begin{axopicture}{(50,39)(0,-4)}
+      \SetScale{0.5}\SetColor{Blue}%
+      \CArc(40,35)(25,90,270) \CArc(60,35)(25,270,90)
+      \Line(40,60)(60,60) \Line(40,10)(60,10) \Line(50,10)(50,60)
+      \Line(0,35)(15,35) \Line(85,35)(100,35)
+      \SetColor{Black}\SetPFont{Helvetica}{14}%
+      \PText(53,38)(0)[l]{#5}
+      \PText(35,62)(0)[rb]{#1} \PText(65,62)(0)[lb]{#2}
+      \PText(65,8)(0)[lt]{#3} \PText(35,8)(0)[rt]{#4}
+      \SetColor{Red} \SetWidth{3}
+      \Line(40,60)(50,60) \CArc(40,35)(25,90,180)
+      \end{axopicture}
+      \hspace{-12pt}
+    }
+  }
+\end{verbatim}
+\def\TACs(#1,#2,#3,#4,#5){
+  \raisebox{-19.1pt}{ \hspace{-12pt}
+    \begin{axopicture}{(50,39)(0,-4)}
+    \SetScale{0.5}\SetColor{Blue}%
+    \CArc(40,35)(25,90,270) \CArc(60,35)(25,270,90)
+    \Line(40,60)(60,60) \Line(40,10)(60,10) \Line(50,10)(50,60)
+    \Line(0,35)(15,35) \Line(85,35)(100,35)
+    \SetColor{Black}\SetPFont{Helvetica}{14}%
+    \PText(53,38)(0)[l]{#5}
+    \PText(35,62)(0)[rb]{#1} \PText(65,62)(0)[lb]{#2}
+    \PText(65,8)(0)[lt]{#3} \PText(35,8)(0)[rt]{#4}
+    \SetColor{Red} \SetWidth{3}
+    \Line(40,60)(50,60) \CArc(40,35)(25,90,180)
+    \end{axopicture}
+    \hspace{-12pt}
+  }
+}
+and together with two extra little macro's
+\begin{verbatim}
+\def\plus{\!+\!}
+\def\minus{\!-\!}
+\end{verbatim}
+\def\plus{\!+\!}
+\def\minus{\!-\!}
+the equations became rather transparent and easy to program. This is the 
+code
+\begin{verbatim}
+   \begin{eqnarray}
+     \TAA({n,m},1,1,1,1,1) & = & \frac{1}{\tilde{N}\plus 5\plus n\minus
+     m\minus D}\ (\ n\ \ \TAA({n+1,m},0,1,1,1,1)
+       \ \ -n\ \ \TACs({n+1,m},1,1,1,1)  \\ & &
+       +\ \ \TAA({n,m},1,0,2,1,1)
+       \ \ -\ \ \TABs({n,m},1,1,2,1)
+       \ \ +m\ \ \TACs({n,m-1},1,1,1,1) 
+       \ \ -m\ \ \TABs({n,m-1},1,1,1,1)\ \ \ ) \, .\nonumber
+   \end{eqnarray}
+\end{verbatim}
+and the equation becomes
+\begin{eqnarray}
+     \TAA({n,m},1,1,1,1,1) & = & \frac{1}{\tilde{N}\plus 5\plus n\minus
+     m\minus D}\ (\ n\ \ \TAA({n+1,m},0,1,1,1,1)
+       \ \ -n\ \ \TACs({n+1,m},1,1,1,1)  \\ & &
+       +\ \ \TAA({n,m},1,0,2,1,1)
+       \ \ -\ \ \TABs({n,m},1,1,2,1)
+       \ \ +m\ \ \TACs({n,m-1},1,1,1,1) 
+       \ \ -m\ \ \TABs({n,m-1},1,1,1,1)\ \ \ ) \, .\nonumber
+\end{eqnarray}
+The diagrams are actually four-point diagrams. A momentum $P$ flows through 
+the diagram (the fat red line), but because the method of computation 
+involves an expansion in terms of this momentum the remaining diagrams are 
+like two-point functions. Details are in the paper.
+
+%>>#] Some examples :
+%>>#[ Acknowledgements :
+
+\section*{Acknowledgements}
+
+JAMV's work is part of the research program of the ``Stichting voor 
+Fundamenteel Onderzoek der Materie (FOM)'', which is financially supported 
+by the ``Nederlandse organisatie voor Wetenschappelijke Onderzoek (NWO)'' and 
+is also supported by the ERC Advanced Grant no.~320651, HEPGAME.
+JCC is supported in part by the U.S. Department of Energy under Grant
+No.\ DE-SC0008745.  
+
+We like to thank Lucas Theussl for discussions during the development of 
+axodraw2.
+
+%>>#] Acknowledgements :
+%--#[ Appendix :
+
+\appendix
+
+\section{The axohelp program: Information for developers}
+\label{sec:axohelp.devel}
+
+This appendix provides some details on how the axohelp program works.
+Most of the information is only relevant to people who wish to modify
+or extend axodraw2 and therefore may need to modify axohelp as well.
+
+The reason for axohelp's existence is that axodraw needs to perform
+substantial geometric calculations.  When axodraw is used with
+pdflatex to produce pdf output directly, suitable calculational
+facilities are not available, neither within the PDF language nor
+within \LaTeX{} itself.  Therefore when axodraw is used under
+pdflatex, we use our program axohelp to perform the calculations.
+
+The mode of operation is as follows.  Let us assume that the .tex file
+being compiled by the pdflatex program is called paper.tex.  When one
+issues the command
+\begin{verbatim}
+  pdflatex paper
+\end{verbatim}
+the reaction of the system is of course to translate all \TeX{}
+related objects into a PDF file. Most (but not all) axodraw objects
+need non-trivial calculations and hence their
+specifications are placed inside a file called paper.ax1. At the end
+of the processing \program{pdflatex} will place a message on the screen
+that mentions that the user should run the command
+\begin{verbatim}
+  axohelp paper
+\end{verbatim}
+for the processing of this graphical information. In principle it is
+possible to arrange for axohelp to be invoked automatically from
+within pdflatex.  But for this to be done, the running of general
+external commands from pdflatex would have to be enabled.  That is a
+security risk, and is therefore normally disabled by default for
+pdflatex.
+
+When run, axohelp reads the file paper.ax1, processes the contents,
+and produces a file paper.ax2. For each axodraw object, it contains
+both the code to be placed in the pdf file, and a copy of the
+corresponding specification that was in paper.ax1.
+
+When pdflatex is run again, it sees that the file paper.ax2 is present
+and reads it in to give essentially an array of objects, one for each
+processed axodraw object.  Then during the processing of the document,
+whenever axodraw runs into an axodraw object in need of external
+calculation, it determines whether an exactly corresponding
+specification was present in the file paper.ax2. If not, it means that
+the graphical information in the file paper.tex has changed since the
+last run of axohelp and the graphics information is invalidated. In
+that case, at the end of the program the message to run axohelp will
+be printed again. But if instead there is an exact match between an
+axodraw object in the current paper.tex and its specification in
+paper.ax2, then the corresponding pdf code will be placed in the PDF
+file. If all axodraw commands have a proper match in the paper.ax2
+file, there will be no message in the paper.log file and on the screen
+about rerunning axohelp; then the PDF file should contain the correct
+information for drawing the axodraw objects (at least if there are no
+\TeX{} errors).
+
+In a sense the situation with axohelp is no different from the use of
+makeindex when one prepares a document that contains an index. In that
+case one also has to run \LaTeX{} once to prepare a file for the
+makeindex program, then run this program which prepares another file
+and finally run \LaTeX{} again. Note that if you submit a paper to
+arXiv.org, it is likely that their automated system for processing the
+file will not run axohelp. So together with paper.tex, you one should
+also submit the .ax2 file.
+
+The complete source of the axohelp program can be found in the file 
+axohelp.c. This file contains a bit less than 4000 lines of C code but
+should translate
+without problems with any C compiler --- see Sec.\ \ref{sec:axohelp}
+for an appropriate command line on typical Unix-like systems.
+
+The axohelp program functions as follows:
+\begin{enumerate}
+\item The .ax1 file is located, space is allocated for it and the complete 
+file is read and closed again.
+\item The input is analysed and split in individual object
+  specifications, of which a list is made.
+\item The list of object specifications is processed one by
+  one. Before the processing of each object specification, the system
+  is brought to a default state to avoid that there is a memory of the
+  previous object. 
+\item In the .ax2 file, for each object is written both the
+  corresponding pdf code and a copy of the specification of the object
+  as was earlier read from the .ax1 file.  Before the output for an
+  object is written to the .ax2 file it is optimized a bit to avoid
+  superfluous spaces and linefeeds.
+\end{enumerate}
+
+Processing an object from the input involves finding the proper routine for 
+it and testing that the number of parameters is correct. Some objects have 
+a special input (like the Curve, DashCurve, Polygon and FilledPolygon 
+commands). All relevant information is stored in an array of double 
+precision numbers. Then some generic action is taken (like setting the 
+linewidth and the color) and the right routine is 
+called. The output is written to an array of fixed (rather large) length. 
+Finally the array is optimized and written to file.
+
+A user who would like to extend the system with new objects should
+take the above structure into account. There is an array that gives
+the correspondence between axodraw object names and the corresponding
+routine in axohelp.  For each object, this array also gives the number
+of parameters and whether the stroking or non-stroking color space
+should be used. 
+
+Naturally, when adding new kinds of object, it is necessary to add new
+items to the just-mentioned array, and to add a corresponding
+subroutine.  One should also try to do all the writing of PDF code by
+means of some routines like the ones sitting in the file in the
+section named ``PDF utilities''. This is important from the viewpoint
+of future action. When new graphical languages will be introduced and
+it will be needed to modify axodraw2 such that it can produce code for
+those languages, it should be much easier if code in the supporting
+axohelp program needs to be changed in as few places as possible.
+They form a set of graphics primitives used by other subroutines.
+Some of these subroutines in the ``PDF utilities'' section of
+axohelp.c have names similar to operators in the postscript language
+that perform the same function.
+
+%--#] Appendix :
+%>>#[ bibliography :
+
+\begin{thebibliography}{9}
+
+\bibitem{axodraw1} J.A.M. Vermaseren,
+  Comput.\ Phys.\ Commun.\ {\bf 83} (1994) 45--58
+
+\bibitem{jaxodraw1} D. Binosi and L. Theussl,
+  Comput.\ Phys.\ Commun.\ {\bf 161} (2004) 76--86.
+
+\bibitem{jaxodraw2}
+D. Binosi, J. Collins, C. Kaufhold, L. Theussl, 
+  Comput.\ Phys.\ Commun.\ {\bf 180} (2009) 1709--1715
+
+\bibitem{GPL} GNU General Public
+  License. \url{http://www.gnu.org/copyleft/gpl.html}. 
+  
+\bibitem{qcdbook}
+J.C. Collins, ``Foundations of Perturbative QCD'' (Cambridge
+  University Press, 2011).
+
+\bibitem{twopap} S. Moch and J.A.M. Vermaseren,
+  Nucl.\ Phys.\ {\bf B573} (2000) 853.
+  %%CITATION = NUPHA,B573,853;%%.
+
+\end{thebibliography}
+
+%>>#] bibliography :
+\end{document}
+


Property changes on: trunk/Master/texmf-dist/doc/latex/axodraw2/axodraw2-man.tex
___________________________________________________________________
Added: svn:eol-style
## -0,0 +1 ##
+native
\ No newline at end of property
Added: trunk/Master/texmf-dist/doc/latex/axodraw2/example.tex
===================================================================
--- trunk/Master/texmf-dist/doc/latex/axodraw2/example.tex	                        (rev 0)
+++ trunk/Master/texmf-dist/doc/latex/axodraw2/example.tex	2017-05-17 21:57:11 UTC (rev 44396)
@@ -0,0 +1,19 @@
+\documentclass{article}
+\usepackage{axodraw2}
+\begin{document}
+Example of Feynman graph made by axodraw2:
+\begin{center}
+  \begin{axopicture}(200,110)
+    \SetColor{Red}
+    \Arc[arrow](100,50)(40,0,180)
+    \Text(100,100)[]{$\alpha P_1 + \beta P_2 + k_\perp$}
+    \SetColor{Green}
+    \Arc[arrow](100,50)(40,180,360)
+    \SetColor{Blue}
+    \Gluon(0,50)(60,50){5}{4}
+    \Vertex(60,50){2} 
+    \Gluon(140,50)(200,50){5}{4}
+    \Vertex(140,50){2}
+  \end{axopicture}
+\end{center}
+\end{document}


Property changes on: trunk/Master/texmf-dist/doc/latex/axodraw2/example.tex
___________________________________________________________________
Added: svn:eol-style
## -0,0 +1 ##
+native
\ No newline at end of property
Added: trunk/Master/texmf-dist/source/latex/axodraw2/axohelp.c
===================================================================
--- trunk/Master/texmf-dist/source/latex/axodraw2/axohelp.c	                        (rev 0)
+++ trunk/Master/texmf-dist/source/latex/axodraw2/axohelp.c	2017-05-17 21:57:11 UTC (rev 44396)
@@ -0,0 +1,3699 @@
+/*
+  	#[ License :
+
+    (C) 2016 by authors:
+            John Collins (jcc8 at psu dot edu)
+            Jos Vermaseren (t68 at nikhef dot nl) 
+
+    axohelp is free software: you can redistribute it and/or modify it under 
+    the terms of the GNU General Public License as published by the Free 
+    Software Foundation, either version 3 of the License, or (at your option) 
+    any later version.
+
+    axohelp is distributed in the hope that it will be useful, but WITHOUT ANY
+    WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+    FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
+    details.
+
+    For the GNU General Public License see <http://www.gnu.org/licenses/>.
+
+  	#] License : 
+  	#[ Commentary + Modifications :
+
+    This file contains the source code of the axohelp program that is used
+    together with axopdf.sty and pdflatex. It is a conversion of the postscript
+    code of axodraw.sty.
+
+    input file contains objects of the type
+    [number] axohelp input
+    the output contains objects:
+      \axo at setObject{label}%
+        {input data}%
+        {output}
+    There may be blank lines and commentary.
+
+ 		#[ About folds : (this line starts with one blank and two tabs)
+
+    The internals of the file have been organized in folds.
+    These are defined as a range of lines if which the first and last
+    lines have a special format. Each starts with any three characters
+    (may include tabs), then #[ for the start line and #] for the closing
+    line, then both lines need identical name fields, closed by a colon.
+    After the colon can be anything. When a fold is closed one should see
+    only the first line but with the #[ replaced by ## as in
+ 		## About folds : (this line starts with one blank and two tabs)
+    Folds can be nested.
+    This fold concept comes originally from the occam compiler for the
+    transputer in the second half of the 1980's although there it was
+    implemented differently. It was taken over by the STedi editor in its
+    current form. The sources of this editor are available from the form
+    home site: http://www.nikhef.nl/~form
+    Some people have managed to emulate these folds in editors like emacs
+    and vim.
+
+ 		#] About folds : 
+  	#] Commentary + Modifications :
+  	#[ Includes :
+*/
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <math.h>
+#include <string.h>
+
+/*
+  	#] Includes : 
+  	#[ Defines :
+*/
+
+#define NAME "axohelp"
+#define VERSIONDATE "2016 May 23"
+#define VERSION 1
+#define SUBVERSION 0
+
+#define COMMENTCHAR '%'
+#define TERMCHAR ';'
+ 
+#define STROKING 0
+#define NONSTROKING 1
+ 
+char **inputs;
+long *inputsizes;
+double **inargs;
+long numinputs = 0;
+long inputallocations = 0;
+char *axohelp;
+FILE *outfile;
+char *inname, *outname;
+int VerboseFlag = 0;
+char outputbuffer[1000000];
+char *outpos;
+long numobject;
+char *nameobject;
+int witharrow = 0;
+int identification = 0;
+
+static int lastlinefeed = 1;
+static double axolinewidth = 0.5;
+static struct aRRow {
+    double stroke;
+    double width;
+    double length;
+    double inset;
+    double where;
+    double scale;
+    double aspect;
+    int    type;     /* 0: old style arrow; 1: Jaxodraw style arrow */
+    int    adjust;   /* whether the line length should be adjusted */
+} arrow;
+double linesep = 0;
+int flip = 0;
+int clockwise = 0;
+ 
+void OutputString(char *);
+void ArrowHead();
+void GetArrow(double *);
+void BezierArrow(double *);
+void ArcSegment(double,double,double);
+double *ReadArray(char *,int *,int *);
+double *ReadTail(char *,int *);
+double LengthBezier(double,double,double,double,double,double,double);
+
+double M_pi;
+double torad;
+#define COS(x) cos((x)*torad)
+#define SIN(x) sin((x)*torad)
+#define TAN(x) tan((x)*torad)
+ 
+typedef void (*TFUN)(double *);
+
+typedef struct {
+    char *name;
+    TFUN func;
+    int numargs;
+    int colortype;
+} KEYWORD;
+
+void GluonHelp(double *,double);
+void DoubleGluonHelp(double *,double,double,double,double);
+void GluonCircHelp(double *);
+void GluonArcHelp(double *,double,double);
+void PhotonHelp(double *,double);
+void PhotonArcHelp(double *,double,int);
+void ZigZagHelp(double *,double);
+void ZigZagArcHelp(double *);
+double ComputeDash(double *,double,double);
+double ComputeDashCirc(double *,double);
+
+void ArrowArc(double *);
+void ArrowArcn(double *);
+void ArrowDoubleArc(double *);
+void ArrowLine(double *);
+void ArrowDoubleLine(double *);
+void AxoArc(double *);
+void AxoBezier(double *);
+void AxoGluon(double *);
+void AxoGluonArc(double *);
+void AxoGluonCirc(double *);
+void AxoLine(double *);
+void AxoPhoton(double *);
+void AxoPhotonArc(double *);
+void AxoZigZag(double *);
+void AxoZigZagArc(double *);
+void BezierCurve(double *);
+void Boxc(double *);
+void CArc(double *);
+void DashArrowArc(double *);
+void DashArrowArcn(double *);
+void DashArrowLine(double *);
+void DashArrowDoubleArc(double *);
+void DashArrowDoubleLine(double *);
+void DashBezier(double *);
+void DashCArc(double *);
+void DashDoubleArc(double *);
+void DashDoubleBezier(double *);
+void DashDoubleLine(double *);
+void DashDoublePhoton(double *);
+void DashDoublePhotonArc(double *);
+void DashDoubleZigZag(double *);
+void DashDoubleZigZagArc(double *);
+void DashGluon(double *);
+void DashGluonArc(double *);
+void DashGluonCirc(double *);
+void DashPhoton(double *);
+void DashPhotonArc(double *);
+void DashZigZag(double *);
+void DashZigZagArc(double *);
+void DashLine(double *);
+void DoubleArc(double *);
+void DoubleBezier(double *);
+void DoubleLine(double *);
+void DoublePhoton(double *);
+void DoublePhotonArc(double *);
+void DoubleZigZag(double *);
+void DoubleZigZagArc(double *);
+void EBox(double *);
+void EBoxc(double *);
+void ECirc(double *);
+void ETri(double *);
+void FBox(double *);
+void FBoxc(double *);
+void FOval(double *);
+void FTri(double *);
+void GluonArc(double *);
+void GluonCirc(double *);
+void Gluon(double *);
+void Grid(double *);
+void LinAxis(double *);
+void Line(double *);
+void LogAxis(double *);
+void Oval(double *);
+void Photon(double *);
+void PhotonArc(double *);
+void Rotate(double *);
+void Vertex(double *);
+void ZigZag(double *);
+void ZigZagArc(double *);
+
+void Curve(double *,int);
+void DashCurve(double *,int);
+void Polygon(double *,int,int);
+
+void Inivars(void);
+
+KEYWORD commands[] = {
+     { "Line",               Line,               4,    STROKING }
+    ,{ "ArrowArc",           ArrowArc,           7,    STROKING }
+    ,{ "ArrowArcn",          ArrowArcn,          7,    STROKING }
+    ,{ "ArrowDoubleArc",     ArrowDoubleArc,     8,    STROKING }
+    ,{ "ArrowLine",          ArrowLine,          6,    STROKING }
+    ,{ "ArrowDoubleLine",    ArrowDoubleLine,    7,    STROKING }
+    ,{ "AxoArc",             AxoArc,             17,   STROKING }
+    ,{ "AxoBezier",          AxoBezier,          19,   STROKING }
+    ,{ "AxoGluon",           AxoGluon,           8,    STROKING }
+    ,{ "AxoGluonArc",        AxoGluonArc,        10,   STROKING }
+    ,{ "AxoGluonCirc",       AxoGluonCirc,       8,    STROKING }
+    ,{ "AxoLine",            AxoLine,            15,   STROKING }
+    ,{ "AxoPhoton",          AxoPhoton,          8,    STROKING }
+    ,{ "AxoPhotonArc",       AxoPhotonArc,       10,   STROKING }
+    ,{ "AxoZigZag",          AxoZigZag,          8,    STROKING }
+    ,{ "AxoZigZagArc",       AxoZigZagArc,       10,   STROKING }
+    ,{ "Bezier",             BezierCurve,        8,    STROKING }
+    ,{ "Boxc",               Boxc,               4,    STROKING }
+    ,{ "CArc",               CArc,               5,    STROKING }
+    ,{ "DashArrowArc",       DashArrowArc,       8,    STROKING }
+    ,{ "DashArrowArcn",      DashArrowArcn,      8,    STROKING }
+    ,{ "DashArrowDoubleArc", DashArrowDoubleArc, 9,    STROKING }
+    ,{ "DashArrowDoubleLine",DashArrowDoubleLine,8,    STROKING }
+    ,{ "DashArrowLine",      DashArrowLine,      7,    STROKING }
+    ,{ "DashBezier",         DashBezier,         9,    STROKING }
+    ,{ "DashCArc",           DashCArc,           6,    STROKING }
+    ,{ "DashDoubleArc",      DashDoubleArc,      7,    STROKING }
+    ,{ "DashDoubleBezier",   DashDoubleBezier,   10,   STROKING }
+    ,{ "DashDoubleLine",     DashDoubleLine,     6,    STROKING }
+    ,{ "DashDoublePhoton",   DashDoublePhoton,   8,    STROKING }
+    ,{ "DashDoublePhotonArc",DashDoublePhotonArc,10,   STROKING }
+    ,{ "DashDoubleZigZag",   DashDoubleZigZag,   8,    STROKING }
+    ,{ "DashDoubleZigZagArc",DashDoubleZigZagArc,10,   STROKING }
+    ,{ "DashGluon",          DashGluon,          7,    STROKING }
+    ,{ "DashGluonArc",       DashGluonArc,       10,   STROKING }
+    ,{ "DashGluonCirc",      DashGluonCirc,      7,    STROKING }
+    ,{ "DashLine",           DashLine,           5,    STROKING }
+    ,{ "DashPhoton",         DashPhoton,         7,    STROKING }
+    ,{ "DashPhotonArc",      DashPhotonArc,      10,   STROKING }
+    ,{ "DashZigZag",         DashZigZag,         7,    STROKING }
+    ,{ "DashZigZagArc",      DashZigZagArc,      10,   STROKING }
+    ,{ "DoubleArc",          DoubleArc,          6,    STROKING }
+    ,{ "DoubleBezier",       DoubleBezier,       9,    STROKING }
+    ,{ "DoubleLine",         DoubleLine,         5,    STROKING }
+    ,{ "DoublePhoton",       DoublePhoton,       7,    STROKING }
+    ,{ "DoublePhotonArc",    DoublePhotonArc,    8,    STROKING }
+    ,{ "DoubleZigZag",       DoubleZigZag,       7,    STROKING }
+    ,{ "DoubleZigZagArc",    DoubleZigZagArc,    8,    STROKING }
+    ,{ "EBox",               EBox,               4,    STROKING }
+    ,{ "FBox",               FBox,               4,    STROKING }
+    ,{ "FBoxc",              FBoxc,              4,    STROKING }
+    ,{ "ECirc",              ECirc,              3,    STROKING }
+    ,{ "ETri",               ETri,               6,    STROKING }
+    ,{ "FOval",              FOval,              5,    NONSTROKING }
+    ,{ "FTri",               FTri,               6,    NONSTROKING }
+    ,{ "GluonArc",           GluonArc,           7,    STROKING }
+    ,{ "GluonCirc",          GluonCirc,          6,    STROKING }
+    ,{ "Gluon",              Gluon,              6,    STROKING }
+    ,{ "Grid",               Grid,               6,    STROKING }
+    ,{ "LinAxis",            LinAxis,            8,    STROKING }
+    ,{ "LogAxis",            LogAxis,            7,    STROKING }
+    ,{ "Oval",               Oval,               5,    STROKING }
+    ,{ "Photon",             Photon,             6,    STROKING }
+    ,{ "PhotonArc",          PhotonArc,          7,    STROKING }
+    ,{ "Rotate",             Rotate,             7,    NONSTROKING }
+    ,{ "Vertex",             Vertex,             3,    NONSTROKING }
+    ,{ "ZigZag",             ZigZag,             6,    STROKING }
+    ,{ "ZigZagArc",          ZigZagArc,          7,    STROKING }
+};
+
+/*
+  	#] Defines : 
+  	#[ SetDefaults :
+*/
+
+void SetDefaults()
+{
+    lastlinefeed = 1;
+    axolinewidth = 0.5;
+    linesep = 0;
+    flip = 0;
+    clockwise = 0;
+    witharrow = 0;
+}
+
+/*
+  	#] SetDefaults : 
+  	#[ PDF utilities :
+
+    These routines are included to make the program more readable and easier
+    to write. It also allows the easy use of the OutputString routine that
+    compactifies the output.
+*/
+
+#define Stroke outpos += sprintf(outpos," S")
+#define CloseAndStroke outpos += sprintf(outpos," h S")
+#define Fill outpos += sprintf(outpos," f")
+#define CloseAndFill outpos += sprintf(outpos," h f")
+#define SaveGraphicsState outpos += sprintf(outpos," q")
+#define RestoreGraphicsState outpos += sprintf(outpos," Q")
+
+void Bezier(double x1,double y1,double x2,double y2,double x3,double y3) {
+    outpos +=
+    sprintf(outpos,"\n %12.3f %12.3f %12.3f %12.3f %12.3f %12.3f c",x1,y1,x2,y2,x3,y3);
+}
+
+void LineTo(double x1,double y1) {
+    outpos +=
+    sprintf(outpos,"\n %12.3f %12.3f l",x1,y1);
+}
+
+void MoveTo(double x1,double y1) {
+    outpos +=
+    sprintf(outpos,"\n %12.3f %12.3f m",x1,y1);
+}
+
+void SetLineWidth(double w) {
+    outpos +=
+    sprintf(outpos," %12.3f w",w);
+}
+
+void SetDashSize(double dashsize,double phase) {
+    if ( dashsize ) outpos += sprintf(outpos," [%12.3f] %12.3f d",dashsize,phase);
+    else outpos += sprintf(outpos," [] 0 d");
+}
+
+void SetTransferMatrix(double x11,double x12,double x21,double x22,double x,double y)
+{
+    if ( ( fabs(x11-1.) > 0.001 ) || ( fabs(x22-1.) > 0.001 )
+         || ( fabs(x12) > 0.001 ) || ( fabs(x21) > 0.001 )
+         || ( fabs(x) > 0.001 ) || ( fabs(y) > 0.001 ) ) {
+        outpos +=
+        sprintf(outpos,"%12.3f %12.3f %12.3f %12.3f %12.3f %12.3f cm\n",x11,x12,x21,x22,x,y);
+    }
+}
+
+static double BzK;
+
+void BezierCircle(double r,char *action)
+{
+    outpos +=
+    sprintf(outpos," %12.3f 0 m %12.3f %12.3f %12.3f %12.3f 0 %12.3f c\n",-r,-r,r*BzK,-r*BzK,r,r);
+    outpos +=
+    sprintf(outpos," %12.3f %12.3f %12.3f %12.3f %12.3f 0 c\n",r*BzK,r,r,r*BzK,r);
+    outpos +=
+    sprintf(outpos," %12.3f %12.3f %12.3f %12.3f 0 %12.3f c\n",r,-r*BzK,r*BzK,-r,-r);
+    outpos +=
+    sprintf(outpos," %12.3f %12.3f %12.3f %12.3f %12.3f 0 c %s\n",-r*BzK,-r,-r,-r*BzK,-r,action);
+}
+
+void BezierOval(double w, double h, char *action)
+{
+    outpos +=
+    sprintf(outpos," %12.3f 0 m %12.3f %12.3f %12.3f %12.3f 0 %12.3f c\n",-w,-w,h*BzK,-w*BzK,h,h);
+    outpos +=
+    sprintf(outpos," %12.3f %12.3f %12.3f %12.3f %12.3f 0 c\n",w*BzK,h,w,h*BzK,w);
+    outpos +=
+    sprintf(outpos," %12.3f %12.3f %12.3f %12.3f 0 %12.3f c\n",w,-h*BzK,w*BzK,-h,-h);
+    outpos +=
+    sprintf(outpos," %12.3f %12.3f %12.3f %12.3f %12.3f 0 c %s\n",-w*BzK,-h,-w,-h*BzK,-w,action);
+}
+
+void SetGray(double grayscale,int par)
+{
+    if ( par == STROKING ) {
+        outpos += sprintf(outpos," %12.3f G",grayscale);
+    }
+    else {
+        outpos += sprintf(outpos," %12.3f g",grayscale);
+    }
+}
+
+void SetColor(double c, double m, double y, double k,int par)
+{
+    if ( par == STROKING ) {
+        outpos += sprintf(outpos," %12.3f %12.3f %12.3f %12.3f K",c,m,y,k);
+    }
+    else {
+        outpos += sprintf(outpos," %12.3f %12.3f %12.3f %12.3f k",c,m,y,k);
+    }
+}
+
+void SetBackgroundColor(int par)
+{
+    if ( par == STROKING ) { outpos += sprintf(outpos," 0 0 0 0 K"); }
+    else                   { outpos += sprintf(outpos," 0 0 0 0 k"); }
+}
+
+void Rectangle(double x,double y,double w,double h) {
+    outpos += sprintf(outpos,"\n %12.3f %12.3f %12.3f %12.3f re",x,y,w,h);
+}
+
+void Triangle(double x1,double y1,double x2,double y2,double x3,double y3) {
+    outpos +=
+    sprintf(outpos,"\n %12.3f %12.3f m %12.3f %12.3f l %12.3f %12.3f l h",x1,y1,x2,y2,x3,y3);
+}
+
+/*
+  	#] PDF utilities : 
+  	#[ Service routines :
+ 		#[ GetArrow :
+*/
+
+void GetArrow(double *args)
+{
+    witharrow = args[7];
+    arrow.stroke = args[0];
+    arrow.width  = args[1];
+    arrow.length = args[2];
+    arrow.inset  = args[3];
+    arrow.scale  = args[4];
+    arrow.aspect = args[5];
+    arrow.where  = args[6];
+    arrow.type   = 1;
+    arrow.adjust  = 0;
+    if ( args[8] ) flip = 1;
+    if ( witharrow ) {
+        if ( arrow.length == 0 && arrow.width == 0 ) {
+                arrow.width = (axolinewidth + 0.7*linesep + 1 ) * 1.2;
+            if (arrow.width < 2.5) arrow.width = 2.5;
+            arrow.length = 2*arrow.width*arrow.aspect;
+        }
+        else if ( arrow.width == 0 ) {
+            arrow.width = arrow.length/(2*arrow.aspect);
+        }
+        else if ( arrow.length == 0 ) {
+            arrow.length = 2*arrow.width*arrow.aspect;
+        }
+        arrow.width *= arrow.scale;
+        arrow.length *= arrow.scale;
+        if ( arrow.where > 1 ) { arrow.where = 1; arrow.adjust = 1; }
+        if ( arrow.where < 0 ) { arrow.where = 0; arrow.adjust = 1; }
+    }
+}
+
+/*
+ 		#] GetArrow : 
+ 		#[ ArrowHead :
+
+    Places an arrowhead of a given size at 0 in the +x direction
+    The size: Full width is 2*size and full length is also 2*size.
+*/
+
+void ArrowHead()
+/*
+    Jaxodraw style arrows
+*/
+{
+    int k;
+    double length;
+    SaveGraphicsState;
+    if ( flip ) length = -arrow.length;
+    else        length =  arrow.length;
+    SetDashSize(0,0);
+    if ( arrow.stroke ) {
+        SetLineWidth(arrow.stroke);
+        for (k = 1; k <= 2; k++ ) {
+            SaveGraphicsState;
+            MoveTo(length*0.5,0);
+            LineTo(-length*0.5,arrow.width);
+            LineTo(-length*0.5+length*arrow.inset,0);
+            LineTo(-length*0.5,-arrow.width);
+            if (k == 1) {
+                SetBackgroundColor(NONSTROKING);
+                outpos += sprintf(outpos," h f");
+            }
+            else {
+                outpos += sprintf(outpos," s");
+            }
+            RestoreGraphicsState;
+        }
+    }
+    else {
+        MoveTo(length*0.5,0);
+        LineTo(-length*0.5,arrow.width);
+        LineTo(-length*0.5+length*arrow.inset,0);
+        LineTo(-length*0.5,-arrow.width);
+        outpos += sprintf(outpos," h f");
+    }
+    RestoreGraphicsState;
+}
+
+/*
+ 		#] ArrowHead : 
+ 		#[ BezierArrow :
+
+        We compute the length of the curve.
+        Then we try to find the t value for which holds:
+            Length(t)/Length(1) = arrow.where
+*/
+
+void BezierArrow(double *args)
+{
+    double t,u,x,y,dx,dy,dr,len,tlen,tmin=0,tmax=1.0;
+    double x1=args[2]-args[0],x2=args[4]-args[0],x3=args[6]-args[0];
+    double y1=args[3]-args[1],y2=args[5]-args[1],y3=args[7]-args[1];
+    len = LengthBezier(x1,y1,x2,y2,x3,y3,1.0);
+    t = arrow.where;
+    tlen = LengthBezier(x1,y1,x2,y2,x3,y3,t);
+    while ( fabs(tlen/len-arrow.where) > 0.0001 ) {
+        if ( tlen/len > arrow.where ) {
+            tmax = t;
+            t = 0.5*(tmin+t);
+        }
+        else {
+            tmin = t;
+            t = 0.5*(tmax+t);
+        }
+        tlen = LengthBezier(x1,y1,x2,y2,x3,y3,t);
+    }
+    u = 1-t;
+    x = args[0]*u*u*u+(3*args[2]*u*u+(3*args[4]*u+args[6]*t)*t)*t;
+    y = args[1]*u*u*u+(3*args[3]*u*u+(3*args[5]*u+args[7]*t)*t)*t;
+    dx = 3*(-args[0]*u*u+args[2]*u*(1-3*t)+args[4]*t*(2-3*t)+args[6]*t*t);
+    dy = 3*(-args[1]*u*u+args[3]*u*(1-3*t)+args[5]*t*(2-3*t)+args[7]*t*t);
+    dr = sqrt(dx*dx+dy*dy);
+    SetTransferMatrix(1,0,0,1,x,y);
+    SetTransferMatrix(dx/dr,dy/dr,-dy/dr,dx/dr,0,0);
+    ArrowHead();
+}
+
+/*
+ 		#] BezierArrow : 
+ 		#[ ArcSegment :
+*/
+
+void ArcSegment(double r, double phi1, double dphi)
+{
+    double xphi, d, x, y, phia, phib, x1,y1,x2,y2,x3,y3;
+    int num, i;
+
+    num = dphi/90.0001+1.;  /* number of segments we should use. */
+    xphi = dphi/num;        /* arc size of each segment */
+    d = 4.*TAN(xphi/4.)/3.; /* the magic distance for the control points */
+
+    x = r*COS(phi1); y = r*SIN(phi1);
+    MoveTo(x,y);
+    for ( i = 0; i < num; i++ ) {
+        phia = phi1+i*xphi; /* Start of segment */
+        phib = phia+xphi;   /* End of segment */
+        x3 = r*COS(phib); y3 = r*SIN(phib);
+        x1 = x - y*d;     y1 = y + x*d;
+        x2 = x3+y3*d;     y2 = y3-x3*d;
+
+        Bezier(x1,y1,x2,y2,x3,y3);
+
+        x = x3; y = y3;
+    }
+}
+
+/*
+ 		#] ArcSegment : 
+ 		#[ ReadNumber :
+*/
+
+char *ReadNumber(char *s,double *num)
+{
+    double x3,minus = 1;
+    int x1,x2;
+    while ( *s == '+' || *s == '-' ) {
+        if ( *s == '-' ) minus = -minus;
+        s++;
+    }
+    x1 = x2 = 0; x3 = 1;
+    while ( *s <= '9' && *s >= '0' ) { x1 = 10*x1 + *s++ - '0'; }
+    if ( *s == 0 ) { *num = x1*minus; return(s); }
+    if ( *s == '.' ) {
+        s++;
+        while ( *s >= '0' && *s <= '9' ) { x2 = 10*x2 + *s++ - '0'; x3 *= 10; }
+    }
+    *num = minus*((double)x1 + x2/x3);
+    return(s);
+}
+
+/*
+ 		#] ReadNumber : 
+ 		#[ ReadArray :
+
+    Reads a tail of floats of the type (x1,y1)(x2,y2),...,(xn,yn) or
+    (x1,y1)(x2,y2),...,(xn,yn) f1 ... fm
+    The floats may be written as integers.
+    Normally they are in the format ####.###
+    In num1 we return the number of coordinates encountered.
+    In num2 we return the number of extra floats encountered.
+    The array of the return value should be freed after it has been used.
+*/
+
+double *ReadArray(char *inbuf, int *num1, int *num2)
+{
+    int argsize = 0, newsize, num = 0, i;
+    double *args = 0, *newargs = 0, *extraargs, x, y;
+    char *s;
+    *num2 = 0;
+    s = inbuf;
+    while ( *s == ' ' || *s == '\t' || *s == '\n' ) s++;
+    if ( *s == '"' ) {
+        s++;
+        while ( *s == ' ' || *s == '\t' || *s == '\n' ) s++;
+    }
+    while ( *s == '(' ) { /* We need to read (x,y) */
+        s++;
+        while ( *s == ' ' || *s == '\n' || *s == '\t' ) s++;
+        s = ReadNumber(s,&x);
+        while ( *s == ' ' ) s++;
+        if ( *s != ',' ) {
+            fprintf(stderr,"%s: Illegal format for array of numbers in object %ld of type %s in file %s\n"
+                ,axohelp,numobject,nameobject,inname);
+            free(args);
+            return(0);
+        }
+        s++;
+        while ( *s == ' ' || *s == '\n' || *s == '\t' ) s++;
+        s = ReadNumber(s,&y);
+        while ( *s == ' ' || *s == '\n' || *s == '\t' ) s++;
+        if ( *s != ')' ) {
+            fprintf(stderr,"%s: Illegal format for array of numbers in object %ld of type %s in file %s\n"
+                ,axohelp,numobject,nameobject,inname);
+            free(args);
+            return(0);
+        }
+        s++;
+        while ( *s == ' ' ) s++;
+        num += 2;
+        if ( num >= argsize ) {
+            if ( argsize == 0 ) newsize = 20;
+            else newsize = 2*argsize;
+            newargs = (double *)malloc(sizeof(double)*newsize);
+            if ( args == 0 ) { args = newargs; argsize = newsize; }
+            else {
+                for ( i = 0; i < argsize; i++ ) newargs[i] = args[i];
+                free(args);
+                args = newargs; argsize = newsize;
+            }
+        }
+        args[num-2] = x; args[num-1] = y;
+    }
+    if ( *s == '"' ) s++;
+    while ( *s == ' ' || *s == '\t' || *s == '\n' ) s++;
+    *num1 = num/2;
+
+    if ( *s ) {
+        if ( ( extraargs = ReadTail(s,num2) ) == 0 ) {
+            return(0);
+        }
+        if ( num+*num2 > argsize ) {
+            newargs = (double *)malloc(sizeof(double)*(num+*num2));
+            for ( i = 0; i < num; i++ ) newargs[i] = args[i];
+            free(args);
+            args = newargs;
+            argsize = num+*num2;
+        }
+        for ( i = 0; i < *num2; i++ ) args[num+i] = extraargs[i];
+        free(extraargs);
+    }
+    return(args);
+}
+
+/*
+ 		#] ReadArray : 
+ 		#[ ReadTail :
+
+    Reads a command tail that consists of floating point numbers in the
+    notation xxx.yyy or just as integers without even the decimal point.
+    The output array is allocated and should be returned in a well behaved
+    program.
+*/
+
+double *ReadTail(char *buff,int *number)
+{
+    char *s;
+    int num = 1, i;
+    double *outargs;
+    s = buff;
+    while ( *s ) {
+        if ( *s == ' ' || *s == '\t' || *s == '\n' ) {
+            num++; *s++ = 0;
+            while ( *s == ' ' || *s == '\t' || *s == '\n' ) *s++ = 0;
+        }
+        else s++;
+    }
+    outargs = (double *)malloc(num*sizeof(double));
+    s = buff;
+    for ( i = 0; i < num; i++ ) {
+        while ( *s == 0 ) s++;
+        s = ReadNumber(s,outargs+i);
+        if ( *s == 'p' && s[1] == 't' ) s += 2;
+        if ( *s != 0 ) {
+            fprintf(stderr,"%s: Illegal format for number in command %ld (%s) in file %s.\n"
+                ,axohelp,numobject,nameobject,inname);
+            free(outargs);
+            return(0);
+        }
+    }
+    *number = num;
+    return(outargs);
+}
+
+/*
+ 		#] ReadTail : 
+ 		#[ DoCurve :
+
+        Interpolation curve expressed as a Bezier curve.
+*/
+
+void DoCurve(double x0, double y0, double x1, double y1,
+             double x2, double y2, double x3, double y3)
+{
+    double xx1, yy1, xx2, yy2;
+    xx1 = (2*x1+x2)/3;
+    yy1 = ((y1-y0)/(x1-x0)*(x2-x0)+(y2-y0)/(x2-x0)*(x1-x0)+y1+2*y0)/3;
+    xx2 = (x1+2*x2)/3;
+    yy2 = ((y2-y3)/(x2-x3)*(x1-x3)+(y1-y3)/(x1-x3)*(x2-x3)+y2+2*y3)/3;
+
+    Bezier(xx1,yy1,xx2,yy2,x2,y2);
+}
+
+/*
+ 		#] DoCurve : 
+ 		#[ LengthBezier :
+
+        Routine computes the length of a Bezier curve.
+        Method:
+            x = x0*(1-t)^3+3*x1*t*(1-t)^2+3*x2*t^2*(1-t)+x3*t^3
+            y = y0*(1-t)^3+3*y1*t*(1-t)^2+3*y2*t^2*(1-t)+y3*t^3
+            We assume that x0=y0=0. (Hence call with x1-x0 etc)
+        --> dx/dt = 3*x1*(1-t)*(1-3*t)+3*x2*t*(2-3*t)+3*x3*t^2
+                  = 3*(x1+2*t*(x2-2*x1)+t^2*(x3-3*x2+3*x1))
+        --> L = int_0^1 dt * sqrt(dx^2+dy^2)
+        We use ordinary Gaussian quadratures over the domain -1,...,+1
+
+        We have here quadratures for 8, 16 or 32 points.
+        For the moment we use the 16 point quadrature. It seems to work well.
+        The numbers were taken from Abramowitz and Stegun.
+*/
+
+typedef struct quad {
+    double x;
+    double w;
+} QUAD;
+
+QUAD g8[4] = {
+     { 0.183434642495650, 0.362683783378362 }
+    ,{ 0.525532409916329, 0.313706645877887 }
+    ,{ 0.796666477413627, 0.222381034453374 }
+    ,{ 0.960289856497536, 0.101228536290376 }
+    };
+QUAD g16[8] = {
+     { 0.095012509837637440185, 0.189450610455068496285 }
+    ,{ 0.281603550779258913230, 0.182603415044923588867 }
+    ,{ 0.458016777657227386342, 0.169156519395002538189 }
+    ,{ 0.617876244402643748447, 0.149595988816576732081 }
+    ,{ 0.755404408355003033895, 0.124628971255533872052 }
+    ,{ 0.865631202387831743880, 0.095158511682492784810 }
+    ,{ 0.944575023073232576078, 0.062253523938647892863 }
+    ,{ 0.989400934991649932596, 0.027152459411754094852 }
+    };
+QUAD g32[16] = {
+     { 0.048307665687738316235, 0.096540088514727800567 }
+    ,{ 0.144471961582796493485, 0.095638720079274859419 }
+    ,{ 0.239287362252137074545, 0.093844399080804565639 }
+    ,{ 0.331868602282127649780, 0.091173878695763884713 }
+    ,{ 0.421351276130635345364, 0.087652093004403811143 }
+    ,{ 0.506899908932229390024, 0.083311924226946755222 }
+    ,{ 0.587715757240762329041, 0.078193895787070306472 }
+    ,{ 0.663044266930215200975, 0.072345794108848506225 }
+    ,{ 0.732182118740289680387, 0.065822222776361846838 }
+    ,{ 0.794483795967942406963, 0.058684093478535547145 }
+    ,{ 0.849367613732569970134, 0.050998059262376176196 }
+    ,{ 0.896321155766052123965, 0.042835898022226680657 }
+    ,{ 0.934906075937739689171, 0.034273862913021433103 }
+    ,{ 0.964762255587506430774, 0.025392065309262059456 }
+    ,{ 0.985611511545268335400, 0.016274394730905670605 }
+    ,{ 0.997263861849481563545, 0.007018610009470096600 }
+    };
+
+double LengthBezier(double x1,double y1,double x2,double y2,double x3,double y3,double tmax)
+{
+    double xa = 3*x1, xb = 6*(x2-2*x1), xc = 3*(x3-3*x2+3*x1);
+    double ya = 3*y1, yb = 6*(y2-2*y1), yc = 3*(y3-3*y2+3*y1);
+    double t, sum = 0, dx, dy;
+    int j;
+
+    for ( j = 0; j < 8; j++ ) {
+        t = 0.5*(1+g16[j].x)*tmax;
+        dx = xa+t*(xb+t*xc);
+        dy = ya+t*(yb+t*yc);
+        sum += 0.5*g16[j].w*sqrt(dx*dx+dy*dy);
+        t = 0.5*(1-g16[j].x)*tmax;
+        dx = xa+t*(xb+t*xc);
+        dy = ya+t*(yb+t*yc);
+        sum += 0.5*g16[j].w*sqrt(dx*dx+dy*dy);
+    }
+    return(sum*tmax);
+}
+
+/*
+ 		#] LengthBezier : 
+  	#] Service routines : 
+  	#[ ScanForObjects :
+
+    Routine reads the input buffer and sets up pointers to the commands.
+    Basically it is responsible for checking the input syntax and making
+    sure all commands will have the proper number of arguments.
+*/
+
+long ScanForObjects(char *buffer)
+{
+    char *s = buffer, *t;
+    if ( *s == COMMENTCHAR ) { while ( *s && *s != '\n' ) s++; }
+    while ( *s ) { /* here we are to look for a new command */
+        if ( *s != '[' ) { /* for the case of the very first character */
+            while ( *s && ( *s != '[' || ( *s == '[' && s[-1] == '\\' ) ) ) {
+                if ( *s == ' ' || *s == '\n' ) {
+                    while ( *s == ' ' || *s == '\n' ) s++; /* Skip blank lines */
+                }
+                else if ( *s == COMMENTCHAR && s[-1] != '\\' ) {
+                    while ( *s && *s != '\n' ) s++;
+                }
+                else s++;
+            }
+        }
+        if ( *s == 0 ) break;
+/*
+        if everything is correct we are now on a [
+        a: look for matching ] in the same line. This defines the label.
+*/
+        t = s+1;
+        while ( *t && *t != ']' && *t != '\n' && ( *t != COMMENTCHAR ||
+            ( *t == COMMENTCHAR && t[-1] != '\\' ) ) ) t++;
+        if ( *t == 0 ) {
+            fprintf(stderr,"%s: irregular end of file %s.\n",axohelp,inname);
+            return(-1);
+        }
+        else if ( *t == '\n' ) {
+            fprintf(stderr,"%s: a label in file %s should inside a single line.\n",axohelp,inname);
+            return(-1);
+        }
+        else if ( *t == COMMENTCHAR ) {
+            fprintf(stderr,"%s: illegal comment character inside a label in file %s.\n",axohelp,inname);
+            return(-1);
+        }
+        else if ( *t != ']' ) {
+            fprintf(stderr,"%s: internal error reading a label in file %s.\n",axohelp,inname);
+            return(-1);
+        }
+/*
+        Store the address of this command
+*/
+        if ( numinputs >= inputallocations ) {  /* we need more space */
+            long newnum, i;
+            char **newadd;
+            if ( inputallocations == 0 ) { newnum = 100; }
+            else { newnum = 2*inputallocations; }
+            if ( ( newadd = (char **)malloc(newnum*sizeof(char *)) ) == 0 ) {
+                fprintf(stderr,"%s: memory error reading file %s\n",axohelp,inname);
+                return(-1);
+            }
+            for ( i = 0; i < inputallocations; i++ ) { newadd[i] = inputs[i]; }
+            if ( inputs != 0 ) free(inputs);
+            inputs = newadd;
+            inputallocations = newnum;
+        }
+        inputs[numinputs++] = s;
+/*
+        Now scan for the first comment character. That is the end of the object.
+*/
+        while ( *t && ( *t != TERMCHAR || ( *t == TERMCHAR && t[-1] == '\\' ) )
+        && *t != '[' ) t++;
+        if ( *t != '[' ) {
+            while ( t[-1] == ' ' || t[-1] == '\n' ) t--;
+            *t++ = 0;
+        }
+        s = t;
+    }
+    return(numinputs);
+}
+
+/*
+  	#] ScanForObjects : 
+  	#[ ReadInput :
+*/
+
+char *ReadInput(char *filename)
+{
+    FILE *finput;
+    long filesize, num;
+    char *buffer;
+    if ( ( finput = fopen(filename,"r") ) == 0 ) {
+        fprintf(stderr,"%s: Cannot open file %s\n",axohelp,filename);
+        exit(-1);
+    }
+    if ( ( fseek(finput,0,SEEK_END) != 0 )
+      || ( ( filesize = ftell(finput) ) < 0 )
+      || ( fseek(finput,0,SEEK_SET) != 0 ) ) {
+        fprintf(stderr,"%s: File error in file %s\n",axohelp,filename);
+        exit(-1);
+    }
+    if ( ( buffer = malloc((filesize+1)*sizeof(char)) ) == 0 ) {
+        fprintf(stderr,"%s: Error allocating %ld bytes of memory",axohelp,filesize+1);
+        exit(-1);
+    }
+/*
+        Assume character in file is 1 byte, which is true for all cases
+        we currently encounter.
+*/
+    num = fread( buffer, 1, filesize, finput );
+    if ( ferror(finput) ) {
+        fprintf(stderr,"%s: Error reading file %s\n",axohelp,filename);
+        exit(-1);
+    }
+/*
+        By definition, fread reads ALL the items specified, or it gets to
+        end-of-file, or there is an error.
+        It returns the actual number of items successfully read, which
+        is less than the number given in the 3rd argument ONLY if a
+        read error or end-of-file is encountered.
+        We have already tested for an error.
+        But num could legitimately be less than filesize, because of
+        translation of CRLF to LF (on MSWindows with MSWindows text file).
+*/
+    buffer[num] = 0;
+    fclose(finput);
+    return(buffer);
+}
+
+/*
+  	#] ReadInput : 
+  	#[ CleanupOutput :
+*/
+
+void CleanupOutput(char *str)
+{
+    char *s, *t;
+    int period = 0;
+    s = t = str;
+    while ( *s && *s != '}' ) {
+        if ( *s == '\n' ) *s = ' ';
+        if ( ( *s == ' ' || *s == '\n' ) && ( s[1] == ' ' || s[1] == '\n' ) ) s++;
+        else *t++ = *s++;
+    }
+    while ( *s ) *t++ = *s++;
+    *t = 0;
+    s = t = str;
+    while ( *s ) {
+        if ( *s == '.' ) { period = 1; *t++ = *s++; }
+        else if ( *s == '-' && s[1] == '0' && s[2] == ' ' ) { s++; }
+        else if ( *s <= '9' && *s >= '0' ) { *t++ = *s++; }
+        else if ( *s == '\n' && ( t > str && t[-1] == '\n' ) ) { s++; }
+        else if ( period ) {
+            while ( t > str && t[-1] == '0' ) t--;
+            if ( t > str && t[-1] == '.' ) t--;
+            while ( *s == ' ' && s[1] == ' ' ) s++;
+            period = 0; *t++ = *s++;
+        }
+        else if ( *s == ' ' && s[1] == ' ' ) s++;
+        else {
+            period = 0; *t++ = *s++;
+        }
+    }
+    *t = 0;
+    s = t = str;
+    while ( *s ) {
+        if ( *s == '-' && s[1] == '0' && s[2] == ' ' ) { s++; }
+        else *t++ = *s++;
+    }
+    *t = 0;
+}
+
+/*
+  	#] CleanupOutput : 
+  	#[ DoOneObject :
+*/
+
+int DoOneObject(char *cinput)
+{
+    int num, i, num1, num2;
+    char *s, *t, *StartClean;
+    double *argbuf = 0;
+    SetDefaults();
+    s = cinput; while ( *s != '[' ) s++;
+    s++; t = s; while ( *t != ']' ) t++;
+    *t++ = 0; while ( *t == ' ' || *t == '\t' || *t == '\n' ) t++;
+    outpos = outputbuffer;
+    outpos += sprintf(outpos,"\\axo at setObject{%s}%%\n{%s%c}%%\n{",s,t,TERMCHAR);
+    if ( *s == '0' && s[1] == ']' ) {
+/*
+        The identification line.
+        In due time we might add more options here.
+*/
+        if ( strcmp(nameobject,"AxodrawWantsPDF") == 0 ) {
+            identification = 1;
+            outpos += sprintf(outpos,"Axohelp version %d.%d. PDF output.}",VERSION,SUBVERSION);
+            fprintf(outfile,"%s",outputbuffer);
+            return(0);
+        }
+        else {
+            fprintf(stderr,"%s: Illegal request in identification string [0]: %s\n"
+                        ,axohelp,nameobject);
+            if ( argbuf ) free(argbuf);
+            return(-1); 
+        }
+    }
+/*
+    if ( identification == 0 ) {
+        fprintf(stderr,"%s: No identification string. Check versions.\n",axohelp);
+        if ( argbuf ) free(argbuf);
+        return(-1); 
+    }
+*/
+    StartClean = outpos;
+
+    nameobject = t; while ( *t != ' ' && *t != '\t' && *t != '\n' && *t ) t++;
+    *t++ = 0; while ( *t == ' ' || *t == '\t' || *t == '\n' ) t++;
+/*
+        Now nameobject is the name of the command and t points at the first parameter.
+*/
+    if ( ( strcmp(nameobject,"Curve") == 0 )
+      || ( strcmp(nameobject,"Polygon") == 0 )
+      || ( strcmp(nameobject,"FilledPolygon") == 0 ) ) {
+/*
+ 		#[ Curve,Polygons :
+*/
+        if ( ( argbuf = ReadArray(t,&num1,&num2) ) == 0 ) return(-1);
+        if ( num2-1 != 0 ) {
+            fprintf(stderr,"%s: Command %s should have no extra numbers in %s.\n",
+                    axohelp,nameobject,inname);
+            free(argbuf);
+            return(-1);
+        }
+        else {
+/*
+            First some 'fixed' operations to set the state right
+            1: scale      2: linewidth      3: color
+            Then the function.
+            Finally the trailer and cleanup.
+*/
+            axolinewidth = argbuf[2*num1+num2-1];
+            SetLineWidth(axolinewidth);
+            if ( strcmp(nameobject,"Curve") == 0 ) {
+                Curve(argbuf,num1);
+            }
+            else if ( strcmp(nameobject,"Polygon") == 0 ) {
+                Polygon(argbuf,num1,0);
+            }
+            else if ( strcmp(nameobject,"FilledPolygon") == 0 ) {
+                Polygon(argbuf,num1,1);
+            }
+            free(argbuf);
+        }
+/*
+ 		#] Curve,Polygons : 
+*/
+    }
+    else if ( strcmp(nameobject,"DashCurve") == 0 ) {
+/*
+ 		#[ DashCurve :
+*/
+        if ( ( argbuf = ReadArray(t,&num1,&num2) ) == 0 ) return(-1);
+        if ( num2 != 2 ) {
+            fprintf(stderr,"%s: Command %s does not have two numbers after the coordinates\n  in file %s.\n",
+                    axohelp,nameobject,inname);
+            free(argbuf);
+            return(-1);
+        }
+        else {
+/*
+            First some 'fixed' operations to set the state right
+            1: scale      2: linewidth      3: color
+            Then the function.
+            Finally the trailer and cleanup.
+*/
+            axolinewidth = argbuf[2*num1+num2-1];
+            SetLineWidth(axolinewidth);
+            DashCurve(argbuf,num1);
+            free(argbuf);
+        }
+/*
+ 		#] DashCurve : 
+*/
+    }
+    else {
+/*
+ 		#[ Regular command :
+*/
+        if ( ( argbuf = ReadTail(t,&num) ) == 0 ) return(-1);
+        for ( i = 0; i < sizeof(commands)/sizeof(KEYWORD); i++ ) {
+            if ( strcmp(nameobject,commands[i].name) == 0 ) {
+                if ( num == commands[i].numargs+1 ) {
+/*
+                    First some 'fixed' operations to set the state right
+                    1: scale      2: linewidth      3: color
+                    Then the function.
+                    Finally the trailer and cleanup.
+*/
+                    axolinewidth = argbuf[num-1];
+                    SetLineWidth(axolinewidth);
+                    (*(commands[i].func))(argbuf);
+                    free(argbuf);
+                    break;
+                }
+                else {
+                    fprintf(stderr,"%s: Command %s should have %d(+1) arguments in %s.\n"
+                        ,axohelp,nameobject,commands[i].numargs,inname);
+                    free(argbuf);
+                    return(-1); 
+                }
+            }
+        }
+/*
+ 		#] Regular command : 
+*/
+        if ( i >= sizeof(commands)/sizeof(KEYWORD) ) {
+            fprintf(stderr,"%s: Command %s not recognized in file %s.\n",
+                    axohelp,nameobject,inname);
+            free(argbuf);
+            return(-1); 
+        }
+    }
+    outpos += sprintf(outpos,"}\n");
+    CleanupOutput(StartClean);
+    fprintf(outfile,"%s",outputbuffer);
+    return(0);
+}
+
+/*
+  	#] DoOneObject : 
+  	#[ PrintHelp :
+*/
+
+void PrintHelp(char *name)
+{
+    fprintf(stderr,"This is %s v. %d.%d of %s\n", NAME, VERSION, SUBVERSION, VERSIONDATE);
+    fprintf(stderr,"Proper use is: %s [-h] [-v] filename\n",name);
+    fprintf(stderr,"Input will then be from filename.ax1, output to filename.ax2\n");
+    fprintf(stderr,"-h : prints this help information and terminates.\n");
+    fprintf(stderr,"-v : prints information about each function treated in stdout.\n");
+    exit(-1);
+}
+
+/*
+  	#] PrintHelp : 
+  	#[ Inivars :
+*/
+
+void Inivars()
+{
+    M_pi = acos(-1.);
+    torad = M_pi/180.;
+    BzK = 4.*(sqrt(2.)-1.)/3.;
+}
+
+/*
+  	#] Inivars : 
+  	#[ main :
+*/
+
+int main(int argc,char **argv)
+{
+    char *s, *inbuffer;
+    int length, error = 0;
+    long num,i;
+
+    Inivars();
+    argc--;
+    axohelp = *argv++;
+    if ( argc <= 0 ) PrintHelp(axohelp);
+    s = *argv;
+    while ( *s == '-' ) {   /* we have arguments */
+        if ( s[1] == 'h' && s[2] == 0 ) PrintHelp(axohelp);
+        else if ( s[1] == 'v' && s[2] == 0 ) {
+            VerboseFlag = 1;
+        }
+        else {
+            fprintf(stderr,"Illegal option %s in call to %s\n",s,axohelp);
+            PrintHelp(axohelp);
+        }
+        argc--; argv++;
+        if ( argc <= 0 ) {
+            fprintf(stderr,"Not enough arguments in call to %s\n",axohelp);
+            PrintHelp(axohelp);
+        }
+        s = *argv;
+    }
+    if ( argc != 1 ) {
+        fprintf(stderr,"Too many arguments in call to %s\n",axohelp);
+        PrintHelp(axohelp);
+    }
+/*
+    The filename is now in s. We should copy it to a separate string and
+    paste on the extension .ax1 (if needed). We should also construct the
+    name of the output file.
+*/
+    length = strlen(s);
+    inname  = strcpy(malloc((length+5)*sizeof(char)),s);
+    outname = strcpy(malloc((length+5)*sizeof(char)),s);
+    s = inname + length;
+    if ( length > 4 && s[-4] == '.' && s[-3] == 'a' && s[-2] == 'x' && s[-1] == '1' ) {
+        outname[length-1] = '2';
+    }
+    else {
+        inname[length] = '.'; inname[length+1] = 'a';
+        inname[length+2] = 'x'; inname[length+3] = '1'; inname[length+4] = 0;
+        outname[length] = '.'; outname[length+1] = 'a';
+        outname[length+2] = 'x'; outname[length+3] = '2'; outname[length+4] = 0;
+    }
+    if ( ( inbuffer = ReadInput(inname) ) == 0 ) return(-1);
+    if ( ( outfile = fopen(outname,"w") ) == 0 ) {
+        fprintf(stderr,"%s: Cannot create file %s\n",axohelp,outname);
+        exit(-1);
+    }
+    num = ScanForObjects(inbuffer);
+    for ( i = 0; i < num; i++ ) {
+        numobject = i+1;
+        if ( DoOneObject(inputs[i]) < 0 ) { error++; }
+    }
+    fclose(outfile);
+    if ( error > 0 ) {
+        fprintf(stderr,"%s: %d objects in %s were not translated correctly.\n",
+            axohelp,error,inname);
+        return(-1);
+    }
+    return(0);
+}
+
+/*
+  	#] main : 
+  	#[ routines :
+ 		#[ Line routines :
+			#[ Line : *
+
+            Line(x1,y1)(x2,y2)
+*/
+
+void Line(double *args)
+{
+    MoveTo(args[0],args[1]);
+    LineTo(args[2],args[3]);
+    Stroke;
+}
+
+/*
+			#] Line : 
+			#[ DoubleLine : *
+
+            DoubleLine(x1,y1)(x2,y2){sep}
+*/
+
+void DoubleLine(double *args)
+{
+    SaveGraphicsState;
+    if ( args[4] > 0 ) {
+        SetLineWidth(args[4]+axolinewidth);
+        Line(args);
+        SetLineWidth(args[4]-axolinewidth);
+        SetBackgroundColor(STROKING);
+    }
+    Line(args);
+    RestoreGraphicsState;
+}
+
+/*
+			#] DoubleLine : 
+			#[ DashLine : *
+
+            DashLine(x1,y1)(x2,y2){dashsize}
+*/
+
+void DashLine(double *args)
+{
+    double dx = args[2]-args[0], dy = args[3]-args[1], dr = sqrt(dx*dx+dy*dy);
+    double dashsize = args[4];
+    int num;
+    num = dr/dashsize;
+    if ( ( num%2 ) == 1 ) num++;
+    dashsize = dr/num;
+    SetDashSize(dashsize,dashsize/2);
+    Line(args);
+}
+
+/*
+			#] DashLine : 
+			#[ DashDoubleLine : *
+
+            DashDoubleLine(x1,y1)(x2,y2){sep}{dashsize}
+*/
+
+void DashDoubleLine(double *args)
+{
+    double dx = args[2]-args[0], dy = args[3]-args[1], dr = sqrt(dx*dx+dy*dy);
+    double dashsize = args[5];
+    int num;
+    num = dr/dashsize;
+    if ( ( num%2 ) == 1 ) num++;
+    dashsize = dr/num;
+    SetDashSize(dashsize,dashsize/2);
+    DoubleLine(args);
+}
+
+/*
+			#] DashDoubleLine : 
+			#[ ArrowLine : *
+
+            ArrowLine(x1,y1)(x2,y2){size}{where}
+
+            where: x of arrowhead is x1+where*(x2-x1). Same for y.
+            serves both ArrowLine and LongArrowLine
+*/
+
+void ArrowLine(double *args)
+{
+    double dx, dy, dr, where;
+    Line(args);
+    if ( arrow.type == 0 ) where = args[5];
+    else where = arrow.where;
+    dx = args[2]-args[0];
+    dy = args[3]-args[1];
+    dr = sqrt(dx*dx+dy*dy);
+    SetTransferMatrix(1,0,0,1,args[0],args[1]);
+    SetTransferMatrix(dx/dr,dy/dr,-dy/dr,dx/dr,0,0);
+    SetTransferMatrix(1,0,0,1,dr*where,0);
+    if ( arrow.type == 0 ) arrow.width = args[4];
+    ArrowHead();
+}
+
+/*
+			#] ArrowLine : 
+			#[ ArrowDoubleLine : *
+
+            ArrowDoubleLine(x1,y1)(x2,y2){sep}{size}{where}
+
+            where: x of arrowhead is x1+where*(x2-x1). Same for y.
+            serves both ArrowLine and LongArrowLine
+*/
+
+void ArrowDoubleLine(double *args)
+{
+    double dx, dy, dr, where;
+    DoubleLine(args);
+    if ( arrow.type == 0 ) where = args[6];
+    else where = arrow.where;
+    dx = args[2]-args[0];
+    dy = args[3]-args[1];
+    dr = sqrt(dx*dx+dy*dy);
+    SetTransferMatrix(1,0,0,1,args[0],args[1]);
+    SetTransferMatrix(dx/dr,dy/dr,-dy/dr,dx/dr,0,0);
+    SetTransferMatrix(1,0,0,1,dr*where,0);
+    if ( arrow.type == 0 ) arrow.width = args[5]+args[4];
+    ArrowHead();
+}
+
+/*
+			#] ArrowDoubleLine : 
+			#[ DashArrowLine : *
+
+        DashArrowLine(x1,y1)(x2,y2){dashsize}{amplitude}{where}
+
+        where: x of arrowhead is x1+where*(x2-x1). Same for y.
+        we re-adjust the position of the arrow to place it on a dash.
+*/
+
+void DashArrowLine(double *args)
+{
+    double dx = args[2]-args[0], dy = args[3]-args[1], dr = sqrt(dx*dx+dy*dy);
+    double dashsize = args[4], where;
+    int num, nw;
+    if ( arrow.type == 0 ) where = args[6];
+    else where = arrow.where;
+    num = dr/dashsize;
+    if ( ( num%2 ) == 1 ) num++;
+    if ( num%4 != 0 && where > 0.499 && where < 0.501 ) num += 2;
+    dashsize = dr/num;
+    SetDashSize(dashsize,dashsize/2);
+    Line(args);
+    nw = where*(num/2)+0.5;
+    where = (2.0*nw)/num;
+    SetTransferMatrix(1,0,0,1,args[0],args[1]);
+    SetTransferMatrix(dx/dr,dy/dr,-dy/dr,dx/dr,0,0);
+    SetTransferMatrix(1,0,0,1,dr*where,0);
+    if ( arrow.type == 0 ) arrow.width = args[5];
+    ArrowHead();
+}
+
+/*
+			#] DashArrowLine : 
+			#[ DashArrowDoubleLine : *
+
+        DashArrowDoubleLine(x1,y1)(x2,y2){sep}{dashsize}{amplitude}{where}
+
+        where: x of arrowhead is x1+where*(x2-x1). Same for y.
+        we re-adjust the position of the arrow to place it on a dash.
+*/
+
+void DashArrowDoubleLine(double *args)
+{
+    double dx = args[2]-args[0], dy = args[3]-args[1], dr = sqrt(dx*dx+dy*dy);
+    double dashsize = args[5], where;
+    int num, nw;
+    if ( arrow.type == 0 ) where = args[7];
+    else where = arrow.where;
+    num = dr/dashsize;
+    if ( ( num%2 ) == 1 ) num++;
+    if ( num%4 != 0 && where > 0.499 && where < 0.501 ) num += 2;
+    dashsize = dr/num;
+    SetDashSize(dashsize,dashsize/2);
+    DoubleLine(args);
+    nw = where*(num/2)+0.5;
+    where = (2.0*nw)/num;
+    SetTransferMatrix(1,0,0,1,args[0],args[1]);
+    SetTransferMatrix(dx/dr,dy/dr,-dy/dr,dx/dr,0,0);
+    SetTransferMatrix(1,0,0,1,dr*where,0);
+    if ( arrow.type == 0 ) arrow.width = args[6]+args[4];
+    ArrowHead();
+}
+
+/*
+			#] DashArrowDoubleLine : 
+ 		#] Line routines : 
+ 		#[ Arc routines :
+			#[ CArc : *
+
+        CArc(x1,y1)(r,phi1,phi2)
+
+        The arc segment runs anticlockwise
+
+        We divide the segment into a number of equal segments, each less
+        than 90 degrees. Then the control points are at distance
+        4*tan(90/n)/3 from the endpoints, in which n=360/(phi2-phi1)
+        (note that if n=4 we get tan(22.5)=sqrt(2)-1).
+*/
+
+void CArc(double *args)
+{
+    double phi1 = args[3], phi2 = args[4], r = args[2];
+    double dphi;
+    while ( phi2 < phi1 ) phi2 += 360;
+    dphi = phi2-phi1;
+    if ( dphi <= 0 ) { return; }
+    if ( dphi >= 360 ) { ECirc(args); return; }
+    SetTransferMatrix(1,0,0,1,args[0],args[1]);
+    ArcSegment(r,phi1,dphi);
+    Stroke;
+}
+
+/*
+			#] CArc : 
+			#[ DoubleArc : *
+
+        DoubleArc(x1,y1)(r,phi1,phi2){sep}
+
+        The arc segment runs anticlockwise
+
+        We divide the segment into a number of equal segments, each less
+        than 90 degrees. Then the control points are at distance
+        4*tan(90/n)/3 from the endpoints, in which n=360/(phi2-phi1)
+        (note that if n=4 we get tan(22.5)=sqrt(2)-1).
+*/
+
+void DoubleArc(double *args)
+{
+    double phi1 = args[3], phi2 = args[4], r = args[2];
+    double dphi, sep = args[5];
+    while ( phi2 < phi1 ) phi2 += 360;
+    dphi = phi2-phi1;
+    if ( dphi <= 0 ) { return; }
+    SetTransferMatrix(1,0,0,1,args[0],args[1]);
+    ArcSegment(r+sep/2,phi1,dphi);
+    Stroke;
+    ArcSegment(r-sep/2,phi1,dphi);
+    Stroke;
+}
+
+/*
+			#] DoubleArc : 
+			#[ DashCArc : *
+
+        DashCArc(x1,y1)(r,phi1,phi2){dashsize}
+
+        The arc segment runs anticlockwise
+*/
+
+void DashCArc(double *args)
+{
+    double arcsize = args[4]-args[3];
+    double r = args[2], dr, dashsize = args[5];
+    int num;
+    if ( arcsize <= 0 ) arcsize += 360;
+    if ( arcsize > 360 ) arcsize = 360;
+    dr = 2*M_pi*r*(arcsize/360);
+    num = dr/dashsize;
+    if ( (num%2) == 1 ) num++;
+    dashsize = dr/num;
+    SetDashSize(dashsize,dashsize/2);
+    CArc(args);
+}
+
+/*
+			#] DashCArc : 
+			#[ DashDoubleArc : *
+
+        DashDoubleArc(x1,y1)(r,phi1,phi2){sep}{dashsize}
+
+        The arc segment runs anticlockwise
+        The trouble here is to synchronize the two dash patterns.
+        This is done by a rescaling. We assume that the rescaling is
+        sufficiently small that the linewidth does not suffer from it.
+*/
+
+void DashDoubleArc(double *args)
+{
+    double phi1 = args[3], r = args[2];
+    double arcsize = args[4]-args[3];
+    double dr, dashsize = args[6], sep = args[5];
+    int num;
+    linesep = sep;
+    SetTransferMatrix(1,0,0,1,args[0],args[1]);
+    if ( arcsize <= 0 ) arcsize += 360;
+    if ( arcsize > 360 ) arcsize = 360;
+    dr = 2*M_pi*r*(arcsize/360);
+    num = dr/dashsize;
+    if ( (num%2) == 1 ) num++;
+    dashsize = dr/num;
+    SetDashSize(dashsize,dashsize/2);
+    SaveGraphicsState;
+    SetTransferMatrix(1+0.5*sep/r,0,0,1+0.5*sep/r,0,0);
+    ArcSegment(r,phi1,arcsize);
+    Stroke;
+    RestoreGraphicsState;
+    SaveGraphicsState;
+    SetTransferMatrix(1-0.5*sep/r,0,0,1-0.5*sep/r,0,0);
+    ArcSegment(r,phi1,arcsize);
+    Stroke;
+    RestoreGraphicsState;
+}
+
+/*
+			#] DashDoubleArc : 
+			#[ ArrowArc : *
+
+        ArrowArc(x1,y1)(r,phi1,phi2){amplitude}{where}
+
+        where: phi of arrowhead is phi1+where*(phi2-phi1)
+        The arc segment runs anticlockwise
+        serves both ArrowArc and LongArrowArc and ... (Jaxodraw addition)
+*/
+
+void ArrowArc(double *args)
+{
+    double phi1 = args[3], phi2 = args[4], r = args[2];
+    double dphi, x, y, phi;
+    if ( arrow.type == 0 ) {
+        arrow.width = args[5];
+        arrow.where = args[6];
+    }
+
+    while ( phi2 < phi1 ) phi2 += 360;
+    dphi = phi2-phi1;
+    SetTransferMatrix(1,0,0,1,args[0],args[1]);
+
+    if ( dphi <= 0 ) { return; }
+    ArcSegment(r,phi1,dphi);
+    Stroke;
+/*
+    Now compute the position and angle of the arrowhead
+*/
+    phi = phi1 + arrow.where*dphi;
+    x = r*COS(phi); y = r*SIN(phi);
+    SetTransferMatrix(1,0,0,1,x,y);
+    SetTransferMatrix(COS(phi+90),SIN(phi+90),-SIN(phi+90),COS(phi+90),0,0);
+    ArrowHead();
+}
+
+/*
+			#] ArrowArc : 
+			#[ ArrowDoubleArc : *
+
+        ArrowDoubleArc(x1,y1)(r,phi1,phi2){sep}{amplitude}{where}
+
+        where: phi of arrowhead is phi1+where*(phi2-phi1)
+        The arc segment runs anticlockwise
+        serves both ArrowArc and LongArrowArc and ... (Jaxodraw addition)
+*/
+
+void ArrowDoubleArc(double *args)
+{
+    double phi1 = args[3], phi2 = args[4], r = args[2];
+    double dphi, x, y, phi;
+    linesep = args[5];
+    while ( phi2 < phi1 ) phi2 += 360;
+    dphi = phi2-phi1;
+    if ( dphi <= 0 ) { return; }
+    SetTransferMatrix(1,0,0,1,args[0],args[1]);
+    ArcSegment(r+linesep/2,phi1,dphi);
+    Stroke;
+    ArcSegment(r-linesep/2,phi1,dphi);
+    Stroke;
+/*
+    Now compute the position and angle of the arrowhead
+*/
+    if ( arrow.type == 0 ) {
+        arrow.width = args[6];
+        arrow.where = args[7];
+    }
+    phi = phi1 + arrow.where*dphi;
+    x = r*COS(phi); y = r*SIN(phi);
+    SetTransferMatrix(1,0,0,1,x,y);
+    SetTransferMatrix(COS(phi+90),SIN(phi+90),-SIN(phi+90),COS(phi+90),0,0);
+    ArrowHead();
+}
+
+/*
+			#] ArrowDoubleArc : 
+			#[ DashArrowArc : +
+
+        DashArrowArc(x1,y1)(r,phi1,phi2){dashsize}{amplitude}{where}
+
+        where: phi of arrowhead is phi1+where*(phi2-phi1)
+        The arc segment runs anticlockwise
+*/
+
+void DashArrowArc(double *args)
+{
+    double dphi, x, y, phi, phi1 = args[3], phi2 = args[4];
+    double r = args[2], dr, dashsize = args[5];
+    int num;
+    if ( arrow.type == 0 ) {
+        arrow.width = args[6];
+        arrow.where = args[7];
+    }
+
+    while ( phi2 < phi1 ) phi2 += 360;
+    dphi = phi2-phi1;
+    if ( dphi > 360 ) dphi = 360;
+    dr = 2*M_pi*r*(dphi/360);
+    num = dr/dashsize;
+    if ( (num%2) == 1 ) num++;
+    if ( num%4 != 0 && arrow.where > 0.499 && arrow.where < 0.501 ) num += 2;
+    dashsize = dr/num;
+    SetDashSize(dashsize,dashsize/2);
+    SetTransferMatrix(1,0,0,1,args[0],args[1]);
+    if ( dphi <= 0 ) { return; }
+    ArcSegment(r,phi1,dphi);
+    Stroke;
+/*
+    Now compute the position and angle of the arrowhead
+*/
+    phi = phi1 + arrow.where*dphi;
+    x = r*COS(phi); y = r*SIN(phi);
+    SetTransferMatrix(1,0,0,1,x,y);
+    SetTransferMatrix(COS(phi+90),SIN(phi+90),-SIN(phi+90),COS(phi+90),0,0);
+    ArrowHead();
+}
+
+/*
+			#] DashArrowArc : 
+			#[ DashArrowDoubleArc : +
+
+        DashArrowDoubleArc(x1,y1)(r,phi1,phi2){sep}{dashsize}{amplitude}{where}
+
+        where: phi of arrowhead is phi1+where*(phi2-phi1)
+        The arc segment runs anticlockwise
+*/
+
+void DashArrowDoubleArc(double *args)
+{
+    double dphi, x, y, phi, phi1 = args[3], phi2 = args[4];
+    double r = args[2], dr, dashsize = args[6];
+    int num;
+    linesep = args[5];
+    if ( arrow.type == 0 ) {
+        arrow.width = args[7];
+        arrow.where = args[8];
+    }
+
+    while ( phi2 < phi1 ) phi2 += 360;
+    dphi = phi2-phi1;
+    if ( dphi > 360 ) dphi = 360;
+    dr = 2*M_pi*r*(dphi/360);
+    num = dr/dashsize;
+    if ( (num%2) == 1 ) num++;
+    if ( num%4 != 0 && arrow.where > 0.499 && arrow.where < 0.501 ) num += 2;
+    dashsize = dr/num;
+    SetDashSize(dashsize,dashsize/2);
+    SetTransferMatrix(1,0,0,1,args[0],args[1]);
+    if ( dphi <= 0 ) { return; }
+    SaveGraphicsState;
+    SetTransferMatrix(1+0.5*linesep/r,0,0,1+0.5*linesep/r,0,0);
+    ArcSegment(r,phi1,dphi);
+    Stroke;
+    RestoreGraphicsState;
+    SaveGraphicsState;
+    SetTransferMatrix(1-0.5*linesep/r,0,0,1-0.5*linesep/r,0,0);
+    ArcSegment(r,phi1,dphi);
+    Stroke;
+    RestoreGraphicsState;
+/*
+    Now compute the position and angle of the arrowhead
+*/
+    phi = phi1 + arrow.where*dphi;
+    x = r*COS(phi); y = r*SIN(phi);
+    SetTransferMatrix(1,0,0,1,x,y);
+    SetTransferMatrix(COS(phi+90),SIN(phi+90),-SIN(phi+90),COS(phi+90),0,0);
+    ArrowHead();
+}
+
+/*
+			#] DashArrowDoubleArc : 
+			#[ ArrowArcn : +
+
+        ArrowArcn(x1,y1)(r,phi1,phi2){amplitude}{where}
+
+        where: phi of arrowhead is phi1+where*(phi2-phi1)
+        The arc segment runs clockwise
+*/
+
+void ArrowArcn(double *args)
+{
+    double newargs[7], a;
+    int i;
+    for ( i = 0; i < 7; i++ ) newargs[i] = args[i];
+    newargs[6] = 1-newargs[6];
+    a = newargs[3]; newargs[3] = newargs[4]; newargs[4] = a;
+    ArrowArc(newargs);
+}
+
+/*
+			#] ArrowArcn : 
+			#[ DashArrowArcn : +
+
+        DashArrowArc(x1,y1)(r,phi1,phi2){amplitude}{where}{dashsize}
+
+        where: phi of arrowhead is phi1+where*(phi2-phi1)
+        The arc segment runs clockwise
+*/
+
+void DashArrowArcn(double *args)
+{
+    double newargs[8], a;
+    int i;
+    for ( i = 0; i < 8; i++ ) newargs[i] = args[i];
+    newargs[6] = 1-newargs[6];
+    a = newargs[3]; newargs[3] = newargs[4]; newargs[4] = a;
+    DashArrowArc(newargs);
+}
+
+/*
+			#] DashArrowArcn : 
+ 		#] Arc routines : 
+ 		#[ Circle routines :
+			#[ ECirc : +
+
+        ECirc(x,y){radius}
+        Draws a circle
+*/
+
+void ECirc(double *args)
+{
+    SetTransferMatrix(1,0,0,1,args[0],args[1]);
+    BezierCircle(args[2],"S");
+}
+
+/*
+			#] ECirc : 
+			#[ FOval : +
+
+        FOval(x1,y1)(h,w) filled oval in default color
+
+*/
+
+void FOval(double *args)
+{
+    SetTransferMatrix(1,0,0,1,args[0],args[1]);  /* Move to center of oval */
+    SetTransferMatrix(COS(args[4]),SIN(args[4]),-SIN(args[4]),COS(args[4]),0,0);
+    BezierOval(args[3],args[2],"f");
+    BezierOval(args[3],args[2],"S");
+}
+
+/*
+			#] COval : 
+			#[ Oval : +
+
+        Oval(x1,y1)(h,w)(phi)
+
+        One way would be with different scales in the x and y direction,
+        but that messes up the linewidth.
+        We need to describe quarter ovals with Bezier curves. The proper
+        parameters for the curves we can obtain from the circle with scaling.
+*/
+
+void Oval(double *args)
+{
+    SetTransferMatrix(1,0,0,1,args[0],args[1]);  /* Move to center of oval */
+    SetTransferMatrix(COS(args[4]),SIN(args[4]),-SIN(args[4]),COS(args[4]),0,0);
+    BezierOval(args[3],args[2],"S");
+}
+
+/*
+			#] Oval : 
+ 		#] Circle routines : 
+ 		#[ Box routines :
+			#[ EBox : *
+
+        \EBox(#1,#2)(#3,#4)
+
+        Draws a box with the left bottom at (x1,y1) and the right top
+        at (x2,y2).
+                Transparent interior. Current color for edge.
+*/
+
+void EBox(double *args)
+{
+    Rectangle(args[0],args[1],args[2]-args[0],args[3]-args[1]);
+    Stroke;
+}
+
+/*
+			#] EBox : 
+			#[ FBox : *
+
+        \FBox(#1,#2)(#3,#4)
+
+        Draws a filled box with the left bottom at (x1,y1) and 
+                the right top at (x2,y2).
+                Current color.
+*/
+
+void FBox(double *args)
+{
+    Rectangle(args[0],args[1],args[2]-args[0],args[3]-args[1]);
+    Fill;
+}
+
+/*
+			#] FBox : 
+			#[ Boxc : *
+
+        \Boxc(#1,#2)(#3,#4)
+
+    Draws a transparent box with the center at (x1,y1).
+    The width and height are (3,4).  Uses current color.
+*/
+
+void Boxc(double *args)
+{
+    Rectangle(args[0]-args[2]/2,args[1]-args[3]/2,args[2],args[3]);
+    Stroke;
+}
+
+/*
+			#] Boxc : 
+			#[ FBoxc : *
+
+        \FBoxc(#1,#2)(#3,#4)
+
+    Draws a filled box with the center at (x1,y1).
+    The width and height are (3,4). Uses current color.
+*/
+
+void FBoxc(double *args)
+{
+    Rectangle(args[0]-args[2]/2,args[1]-args[3]/2,args[2],args[3]);
+    Fill;
+}
+
+/*
+			#] FBoxc : 
+ 		#] Box routines : 
+ 		#[ Triangle routines :
+			#[ ETri : *
+
+        \ETri(#1,#2)(#3,#4)(#5,#6)
+
+        Draws a triangle with the three corners.
+*/
+
+void ETri(double *args)
+{
+    Triangle(args[0],args[1],args[2],args[3],args[4],args[5]);
+    Stroke;
+}
+
+/*
+			#] ETri : 
+			#[ FTri : *
+
+        \FTri(#1,#2)(#3,#4)(#5,#6)
+
+        Draws a triangle with the three corners.
+*/
+
+void FTri(double *args)
+{
+    Triangle(args[0],args[1],args[2],args[3],args[4],args[5]);
+    Fill;
+}
+
+/*
+			#] FTri : 
+ 		#] Triangle routines : 
+ 		#[ Particle routines :
+			#[ Vertex : +
+
+        Vertex(x,y){radius}
+        Draws a filled circle
+*/
+
+void Vertex(double *args)
+{
+    SetTransferMatrix(1,0,0,1,args[0],args[1]);
+    BezierCircle(args[2],"f");
+}
+
+/*
+			#] Vertex : 
+			#[ ComputeDash :
+*/
+
+double ComputeDash(double *args,double dr,double indash)
+{
+    int numwindings = args[5]+0.5, numdashes;
+    int numhalfwindings = 2*numwindings+2.1;
+    double onehalfwinding = dr/numhalfwindings; 
+    double amp8 = fabs(args[4])*0.9;
+    double size = LengthBezier(-amp8,0, -amp8,2*args[4], onehalfwinding,2*args[4],1.0);
+
+    numdashes = size/(2*indash);
+    if ( numdashes == 0 ) numdashes = 1;
+    if ( fabs(size-2*indash*numdashes) > fabs(size-2*indash*(numdashes+1)) )
+        numdashes++;
+    return(size/(2*numdashes));
+}
+
+/*
+			#] ComputeDash : 
+			#[ ComputeDashCirc :
+*/
+
+double ComputeDashCirc(double *args,double indash)
+{
+    int num = args[5]+0.5, numdashes;
+    double ampi = args[4], radius = args[2];
+    double darc;
+    double dr,conv,inc;
+    double amp1,amp2,amp4,amp5,amp8;
+    double x0,x1,x2,x3,y0,y1,y2,y3,xx,size;
+    darc = 360.;
+    dr = darc*torad*radius;
+    conv = 1.0/radius;
+    inc = dr/(2*num);      /* increment per half winding */
+    amp8 = ampi*0.9;
+    amp1 = radius+ampi;
+    amp2 = radius-ampi;
+    amp4 = amp1/cos((inc+amp8)*conv);
+    amp5 = amp2/cos(amp8*conv);
+    if ( amp8 < 0 ) amp8 = -amp8;
+    xx = 2*inc;
+    x0 = amp1*cos(inc*conv);
+    y0 = amp1*sin(inc*conv);
+    x1 = amp4*cos((xx+amp8)*conv)-x0;
+    y1 = amp4*sin((xx+amp8)*conv)-y0;
+    x2 = amp5*cos((xx+amp8)*conv)-x0;
+    y2 = amp5*sin((xx+amp8)*conv)-y0;
+    x3 = amp2*cos(xx*conv)-x0;
+    y3 = amp2*sin(xx*conv)-y0;
+    size = LengthBezier(x1,y1,x2,y2,x3,y3,1.0);
+    numdashes = size/(2*indash);
+    if ( numdashes == 0 ) numdashes = 1;
+    if ( fabs(size-2*indash*numdashes) > fabs(size-2*indash*(numdashes+1)) )
+        numdashes++;
+    return(size/(2*numdashes));
+}
+
+/*
+			#] ComputeDashCirc : 
+			#[ ComputeDashPhotonArc :
+*/
+
+double ComputeDashPhotonArc(double *args,double darc,double dashsize,double *dashstart)
+{
+    int numdashes, numd;
+    double len1, len2, size, size2, ampli = args[5], radius = args[2];
+    double cp = cos(darc);
+    double sp = sin(darc);
+    double cp2 = cos(darc/2.);
+    double sp2 = sin(darc/2.);
+    double beta = radius*darc/(M_pi*ampli);
+    double tt = (sp-cp*beta)/(cp+sp*beta);
+    double x2 = ((radius+ampli)*8*(beta*cp2-sp2)-(beta*(4+cp)
+        +(tt*cp*3.-sp*4.))*radius)/((beta-tt)*3.);
+    double x1 = ((radius+ampli)*8.*cp2-(1+cp)*radius)/3.-x2;
+    double y1 = (x1-radius)*beta;
+    double y2 = (x2-radius*cp)*tt+radius*sp;
+    double x3 = radius*cp;
+    double y3 = radius*sp;
+    len1 = LengthBezier(x1-radius,y1,x2-radius,y2,x3-radius,y3,1.0);
+    ampli = -ampli;
+    beta = radius*darc/(M_pi*ampli);
+    tt = (sp-cp*beta)/(cp+sp*beta);
+    x2 = ((radius+ampli)*8*(beta*cp2-sp2)-(beta*(4+cp)
+        +(tt*cp*3.-sp*4.))*radius)/((beta-tt)*3.);
+    x1 = ((radius+ampli)*8.*cp2-(1+cp)*radius)/3.-x2;
+    y1 = (x1-radius)*beta;
+    y2 = (x2-radius*cp)*tt+radius*sp;
+    x3 = radius*cp;
+    y3 = radius*sp;
+    len2 = LengthBezier(x1-radius,y1,x2-radius,y2,x3-radius,y3,1.0);
+    size = (len1+len2)/2;
+    size2 = len1/2;
+    numdashes = size/(2*dashsize);
+    if ( numdashes == 0 ) numdashes = 1;
+    if ( fabs(size-2*dashsize*numdashes) > fabs(size-2*dashsize*(numdashes+1)) )
+        numdashes++;
+    dashsize = size/(2*numdashes);
+    numd = size2/(2*dashsize);
+    *dashstart = -(size2 - 2*numd*dashsize) + dashsize/2;
+    if ( *dashstart < 0 ) *dashstart += 2*dashsize;
+    return(dashsize);
+}
+
+/*
+			#] ComputeDashPhotonArc : 
+			#[ ComputeDashGluonArc :
+*/
+
+double ComputeDashGluonArc(double *args,double darc,double dashsize)
+{
+    int numdashes, num = args[6];
+    double radius = args[2], ampi = args[5];
+    double dr,conv,inc, size;
+    double amp1,amp2,amp4,amp5,amp8;
+    double x1,x2,x3,y1,y2,y3,xx,x3p,y3p;
+    dr = darc*torad*radius;
+    conv = 1.0/radius;
+    inc = dr/(2*num+2);      /* increment per half winding */
+    amp8 = ampi*0.9;
+    amp1 = radius+ampi;
+    amp2 = radius-ampi;
+    amp4 = amp1/cos((inc+amp8)*conv);
+    amp5 = amp2/cos(amp8*conv);
+    if ( amp8 < 0 ) amp8 = -amp8;
+
+    xx = 2*inc;
+    x3p = amp2*cos(xx*conv);
+    y3p = amp2*sin(xx*conv);
+    x1 = amp5*cos((xx-amp8)*conv)-x3p;
+    y1 = amp5*sin((xx-amp8)*conv)-y3p;
+    x2 = amp4*cos((xx-amp8)*conv)-x3p;
+    y2 = amp4*sin((xx-amp8)*conv)-y3p;
+    x3 = amp1*cos((xx+inc)*conv)-x3p;
+    y3 = amp1*sin((xx+inc)*conv)-y3p;
+    size = LengthBezier(x1,y1,x2,y2,x3,y3,1.0);
+
+    numdashes = size/(2*dashsize);
+    if ( numdashes == 0 ) numdashes = 1;
+    if ( fabs(size-2*dashsize*numdashes) > fabs(size-2*dashsize*(numdashes+1)) )
+        numdashes++;
+    dashsize = size/(2*numdashes);
+    return(dashsize);
+}
+
+/*
+			#] ComputeDashGluonArc : 
+			#[ GluonHelp :
+
+        We draw the gluon in two strokes. This is due to the possibility
+        of a dash pattern. We want the dashes to be nicely symmetric on
+        the central windings. That means that either the start and end need
+        a different size dashes, or we draw the start 'backwards'.
+        We have chosen for the last solution.
+*/
+
+void GluonHelp(double *args,double dr)
+{
+    int numwindings = args[5]+0.5;
+    int numhalfwindings = 2*numwindings+2.1;
+    double onehalfwinding = dr/numhalfwindings; 
+    double amp8 = fabs(args[4])*0.9;
+    double xx = 2*onehalfwinding;
+    int i;
+    MoveTo(xx,-args[4]);
+    Bezier(xx+amp8,-args[4],xx+amp8,args[4],1.4*onehalfwinding,args[4]);
+    Bezier(0.5*onehalfwinding,args[4],
+           0.1*onehalfwinding,args[4]*0.5,0,0);
+    Stroke;
+    MoveTo(xx,-args[4]);
+    for ( i = 0; i < numwindings-1; i++ ) {
+        Bezier(xx-amp8,-args[4], xx-amp8,args[4], xx+onehalfwinding,args[4]);
+        xx += 2*onehalfwinding;
+        Bezier(xx+amp8,args[4], xx+amp8,-args[4], xx,-args[4]);
+    }
+    Bezier(xx-amp8,-args[4], xx-amp8,args[4], xx+onehalfwinding*0.6,args[4]);
+    Bezier(dr-onehalfwinding*0.5,args[4],
+           dr-onehalfwinding*0.1,args[4]*0.5,
+           dr,0);
+    Stroke;
+}
+
+/*
+			#] GluonHelp : 
+			#[ GluonCircHelp :
+*/
+
+void GluonCircHelp(double *args)
+{
+    int num = args[5], i;
+    double ampi = args[4], radius = args[2];
+    double darc;
+    double dr,conv,inc;
+    double amp1,amp2,amp4,amp5,amp8;
+    double x1,x2,x3,y1,y2,y3,xx;
+    darc = 360.;
+    dr = darc*torad*radius;
+    conv = 1.0/radius;
+    inc = dr/(2*num);      /* increment per half winding */
+    amp8 = ampi*0.9;
+    amp1 = radius+ampi;
+    amp2 = radius-ampi;
+    amp4 = amp1/cos((inc+amp8)*conv);
+    amp5 = amp2/cos(amp8*conv);
+    if ( amp8 < 0 ) amp8 = -amp8;
+    xx = 2*inc;
+    x3 = amp1*cos(inc*conv);
+    y3 = amp1*sin(inc*conv);
+    MoveTo(x3,y3);
+/*
+    Now the loop
+*/
+    for ( i = 0; i < num; i++ ) {
+        x1 = amp4*cos((xx+amp8)*conv);
+        y1 = amp4*sin((xx+amp8)*conv);
+        x2 = amp5*cos((xx+amp8)*conv);
+        y2 = amp5*sin((xx+amp8)*conv);
+        x3 = amp2*cos(xx*conv);
+        y3 = amp2*sin(xx*conv);
+            Bezier(x1,y1,x2,y2,x3,y3);
+        x1 = amp5*cos((xx-amp8)*conv);
+        y1 = amp5*sin((xx-amp8)*conv);
+        x2 = amp4*cos((xx-amp8)*conv);
+        y2 = amp4*sin((xx-amp8)*conv);
+        x3 = amp1*cos((xx+inc)*conv);
+        y3 = amp1*sin((xx+inc)*conv);
+            Bezier(x1,y1,x2,y2,x3,y3);
+        xx += 2*inc;
+    }
+    Stroke;
+}
+
+/*
+			#] GluonCircHelp : 
+			#[ GluonArcHelp :
+*/
+
+void GluonArcHelp(double *args, double darc, double ampi)
+{
+    int num = args[6], i;
+    double radius = args[2];
+    double dr,conv,inc;
+    double amp1,amp2,amp3,amp4,amp5,amp6,amp7,amp8;
+    double x1,x2,x3,y1,y2,y3,xx,x1p,y1p,x2p,y2p,x3p,y3p;
+    dr = darc*torad*radius;
+    conv = 1.0/radius;
+    inc = dr/(2*num+2);      /* increment per half winding */
+    amp8 = ampi*0.9;
+    amp1 = radius+ampi;
+    amp2 = radius-ampi;
+    amp3 = radius+ampi/2;
+    amp4 = amp1/cos((inc+amp8)*conv);
+    amp5 = amp2/cos(amp8*conv);
+    amp6 = amp1/cos((inc*0.6+amp8)*conv);
+    amp7 = amp1/cos(inc*0.9*conv);
+    if ( amp8 < 0 ) amp8 = -amp8;
+    xx = 2*inc;
+/*
+    First the starting part. We draw it separately because there could
+    be a dashing pattern. This way the windings come out best.
+*/
+    x1 = amp3*cos(inc*0.1*conv);
+    y1 = amp3*sin(inc*0.1*conv);
+    x2 = amp7*cos(inc*0.5*conv);
+    y2 = amp7*sin(inc*0.5*conv);
+    x3 = amp1*cos(inc*1.4*conv);
+    y3 = amp1*sin(inc*1.4*conv);
+    x1p = amp6*cos((xx+amp8)*conv);
+    y1p = amp6*sin((xx+amp8)*conv);
+    x2p = amp5*cos((xx+amp8)*conv);
+    y2p = amp5*sin((xx+amp8)*conv);
+    x3p = amp2*cos(xx*conv);
+    y3p = amp2*sin(xx*conv);
+    MoveTo(x3p,y3p);
+    Bezier(x2p,y2p,x1p,y1p,x3,y3);
+    Bezier(x2,y2,x1,y1,radius,0);
+    Stroke;
+/*
+    Now the loop
+*/
+    MoveTo(x3p,y3p);
+    for ( i = 1; i < num; i++ ) {
+        x1 = amp5*cos((xx-amp8)*conv);
+        y1 = amp5*sin((xx-amp8)*conv);
+        x2 = amp4*cos((xx-amp8)*conv);
+        y2 = amp4*sin((xx-amp8)*conv);
+        x3 = amp1*cos((xx+inc)*conv);
+        y3 = amp1*sin((xx+inc)*conv);
+            Bezier(x1,y1,x2,y2,x3,y3);
+        xx += 2*inc;
+        x1 = amp4*cos((xx+amp8)*conv);
+        y1 = amp4*sin((xx+amp8)*conv);
+        x2 = amp5*cos((xx+amp8)*conv);
+        y2 = amp5*sin((xx+amp8)*conv);
+        x3 = amp2*cos(xx*conv);
+        y3 = amp2*sin(xx*conv);
+            Bezier(x1,y1,x2,y2,x3,y3);
+    }
+/*
+    And now the end point
+*/
+    x1 = amp5*cos((xx-amp8)*conv);
+    y1 = amp5*sin((xx-amp8)*conv);
+    x2 = amp6*cos((xx-amp8)*conv);
+    y2 = amp6*sin((xx-amp8)*conv);
+    x3 = amp1*cos((xx+inc*0.6)*conv);
+    y3 = amp1*sin((xx+inc*0.6)*conv);
+        Bezier(x1,y1,x2,y2,x3,y3);
+    x1 = amp7*cos((xx+inc*1.5)*conv);
+    y1 = amp7*sin((xx+inc*1.5)*conv);
+    x2 = amp3*cos((dr-inc*0.1)*conv);
+    y2 = amp3*sin((dr-inc*0.1)*conv);
+    x3 = radius*cos(dr*conv);
+    y3 = radius*sin(dr*conv);
+
+    Bezier(x1,y1,x2,y2,x3,y3);
+
+    Stroke;
+}
+
+/*
+			#] GluonArcHelp : 
+			#[ PhotonHelp :
+*/
+
+void PhotonHelp(double *args, double dr)
+{
+    int numhalfwindings = args[5]*2+0.5;
+    double onehalfwinding = dr/numhalfwindings; 
+    double y = 4.*args[4]/3;
+    double x, xx;
+    int i;
+    MoveTo(0,0);
+/*
+    Now loop over the half windings, alternating the sign of the y's
+*/
+    x = (4*onehalfwinding)/3/M_pi; xx = 0;
+    for ( i = 0; i < numhalfwindings; i++, y = -y ) {
+        Bezier(xx+x,y, xx+onehalfwinding-x,y, xx+onehalfwinding,0);
+        xx += onehalfwinding;
+    }
+    Stroke;
+}
+/*
+			#] PhotonHelp : 
+			#[ PhotonArcHelp :
+*/
+
+void PhotonArcHelp(double *args,double arcend,int num)
+{
+    int i;
+    double ampli = args[5], radius = args[2];
+    double cp,sp,cp2,sp2,cpi,spi;
+    double x1,x2,x3,y1,y2,y3,beta,tt;
+
+    cp = cos(arcend);
+    sp = sin(arcend);
+    cp2 = cos(arcend/2.);
+    sp2 = sin(arcend/2.);
+
+    MoveTo(radius,0);
+    for ( i = 0; i < num; i++, ampli = -ampli ) {
+        cpi = cos(i*arcend);
+        spi = sin(i*arcend);
+        beta = radius*arcend/(M_pi*ampli);
+        tt = (sp-cp*beta)/(cp+sp*beta);
+        x2 = ((radius+ampli)*8*(beta*cp2-sp2)-(beta*(4+cp)
+            +(tt*cp*3.-sp*4.))*radius)/((beta-tt)*3.);
+        x1 = ((radius+ampli)*8.*cp2-(1+cp)*radius)/3.-x2;
+        y1 = (x1-radius)*beta;
+        y2 = (x2-radius*cp)*tt+radius*sp;
+        x3 = radius*cp;
+        y3 = radius*sp;
+        Bezier(cpi*x1-spi*y1,cpi*y1+spi*x1,
+               cpi*x2-spi*y2,cpi*y2+spi*x2,
+               cpi*x3-spi*y3,cpi*y3+spi*x3);
+    }
+    Stroke;
+}
+
+/*
+			#] PhotonArcHelp : 
+			#[ ZigZagHelp :
+*/
+
+void ZigZagHelp(double *args, double dr)
+{
+    int numhalfwindings = args[5]*2+0.5;
+    double onehalfwinding = dr/numhalfwindings; 
+    double x = onehalfwinding, y = args[4];
+    int i;
+    MoveTo(0,0);
+/*
+    Now loop over the half windings, alternating the sign of the y's
+*/
+    for ( i = 0; i < numhalfwindings; i++, y = -y ) {
+        LineTo(x-onehalfwinding/2.,y); LineTo(x,0);
+        x += onehalfwinding;
+    }
+    Stroke;
+}
+
+/*
+			#] ZigZagHelp : 
+			#[ ZigZagArcHelp :
+*/
+
+void ZigZagArcHelp(double *args)
+{
+    int num = 2*args[6]-0.5, i;
+    double amp = args[5], r = args[2];
+    double arcstart = args[3], arcend = args[4], darc;
+    if ( arcend < arcstart ) arcend += 360.;
+    darc = (arcend-arcstart)/(num+1);
+    MoveTo(r*COS(arcstart),r*SIN(arcstart));
+    arcstart += darc/2;
+    for ( i = 0; i <= num; i++, amp = -amp ) {
+        LineTo((r+amp)*COS(arcstart+darc*i),(r+amp)*SIN(arcstart+darc*i));
+    }
+    LineTo(r*COS(arcend),r*SIN(arcend));
+    Stroke;
+}
+
+/*
+			#] ZigZagArcHelp : 
+			#[ Gluon : *
+
+        Gluon(x1,y1)(x2,y2){amplitude}{windings}
+
+        Each half winding is one cubic Bezier curve.
+        In addition the end points are different Bezier curves.
+*/
+
+void Gluon(double *args)
+{
+    double dx = args[2] - args[0];
+    double dy = args[3] - args[1];
+    double dr = sqrt(dx*dx+dy*dy);
+ 
+    SetTransferMatrix(1,0,0,1,args[0],args[1]);
+    SetTransferMatrix(dx/dr,dy/dr,-dy/dr,dx/dr,0,0);
+    GluonHelp(args,dr);
+}
+
+/*
+			#] Gluon : 
+			#[ DashGluon : *
+
+        DashGluon(x1,y1)(x2,y2){amplitude}{windings}{dashsize}
+
+        Each half winding is one cubic Bezier curve.
+        In addition the end points are different Bezier curves.
+*/
+
+void DashGluon(double *args)
+{
+    double dx = args[2] - args[0];
+    double dy = args[3] - args[1];
+    double dr = sqrt(dx*dx+dy*dy);
+    double dashsize;
+ 
+    SetTransferMatrix(1,0,0,1,args[0],args[1]);
+    SetTransferMatrix(dx/dr,dy/dr,-dy/dr,dx/dr,0,0);
+
+    dashsize = ComputeDash(args,dr,args[6]);
+    SetDashSize(dashsize,dashsize/2);
+    GluonHelp(args,dr);
+}
+
+/*
+			#] DashGluon : 
+			#[ GluonCirc : *
+
+        GluonCirc(x1,y1)(r,phi){amplitude}{windings}
+
+        Draws a gluon on a circle
+        x_center,y_center,radius,phase_angle,gluon_radius,num
+        in which num is the number of windings of the gluon.
+        Method: Same as GluonArc, but without special start and end
+*/
+
+void GluonCirc(double *args)
+{
+    int num = args[5];
+    double arcstart = args[3];
+
+    SetTransferMatrix(1,0,0,1,args[0],args[1]);  /* Move to center of circle */
+
+    arcstart += 360./(2*num);  /* extra phase to make 0 angle more accessible */
+
+    SetTransferMatrix(COS(arcstart),SIN(arcstart)
+                    ,-SIN(arcstart),COS(arcstart),0,0);
+
+    GluonCircHelp(args);
+}
+
+/*
+			#] GluonCirc : 
+			#[ DashGluonCirc : *
+
+        DashGluonCirc(x1,y1)(r,phi){amplitude}{windings}{dashsize}
+
+        Draws a gluon on a circle
+        x_center,y_center,radius,phase_angle,gluon_radius,num
+        in which num is the number of windings of the gluon.
+        Method: Same as GluonArc, but without special start and end
+*/
+
+void DashGluonCirc(double *args)
+{
+    int num = args[5];
+    double arcstart = args[3], dashsize;
+
+    SetTransferMatrix(1,0,0,1,args[0],args[1]);  /* Move to center of circle */
+
+    arcstart += 360./(2*num);  /* extra phase to make 0 angle more accessible */
+
+    SetTransferMatrix(COS(arcstart),SIN(arcstart)
+                    ,-SIN(arcstart),COS(arcstart),0,0);
+
+    dashsize = ComputeDashCirc(args,args[6]);
+
+    SetDashSize(dashsize,dashsize/2);
+    GluonCircHelp(args);
+}
+
+/*
+			#] DashGluonCirc : 
+			#[ GluonArc : *
+
+        GluonArc(x1,y1)(r,phi1,phi2){amplitude}{windings}
+
+        Draws a gluon on an arcsegment
+        x_center,y_center,radius,stat_angle,end_angle,gluon_radius,num
+        in which num is the number of windings of the gluon.
+        Method:
+        1:  compute length of arc.
+        2:  generate gluon in x and y as if the arc is a straight line
+        3:  x' = (radius+y)*cos(x*const)
+            y' = (radius+y)*sin(x*const)
+*/
+
+void GluonArc(double *args)
+{
+    double darc, arcstart = args[3],arcend = args[4], ampi = args[5];
+/*  
+        When arcend comes before arcstart we have a problem. The solution is
+        to flip the order and change the sign on ampi
+*/
+    if ( arcend < arcstart ) {
+        darc = arcstart; arcstart = arcend; arcend = darc; ampi = -ampi;
+    }
+
+    SetTransferMatrix(1,0,0,1,args[0],args[1]);  /* Move to center of circle */
+
+    SetTransferMatrix(COS(arcstart),SIN(arcstart)
+                    ,-SIN(arcstart),COS(arcstart),0,0);
+    darc = arcend-arcstart;
+    GluonArcHelp(args,darc,ampi);
+}
+
+/*
+			#] GluonArc : 
+			#[ DashGluonArc : *
+
+        DashGluonArc(x1,y1)(r,phi1,phi2){amplitude}{windings}{dashsize}
+
+        Draws a gluon on an arcsegment
+        x_center,y_center,radius,stat_angle,end_angle,gluon_radius,num
+        in which num is the number of windings of the gluon.
+        Method:
+        1:  compute length of arc.
+        2:  generate gluon in x and y as if the arc is a straight line
+        3:  x' = (radius+y)*cos(x*const)
+            y' = (radius+y)*sin(x*const)
+*/
+
+void DashGluonArc(double *args)
+{
+    double darc, arcstart = args[3],arcend = args[4], ampi = args[5];
+    double dashsize = args[7];
+/*  
+        When arcend comes before arcstart we have a problem. The solution is
+        to flip the order and change the sign on ampi
+*/
+    if ( arcend < arcstart ) {
+        darc = arcstart; arcstart = arcend; arcend = darc; ampi = -ampi;
+    }
+
+    SetTransferMatrix(1,0,0,1,args[0],args[1]);  /* Move to center of circle */
+
+    SetTransferMatrix(COS(arcstart),SIN(arcstart)
+                    ,-SIN(arcstart),COS(arcstart),0,0);
+    darc = arcend-arcstart;
+    dashsize = ComputeDashGluonArc(args,darc,dashsize);
+    SetDashSize(dashsize,dashsize/2);
+    GluonArcHelp(args,darc,ampi);
+}
+
+/*
+			#] DashGluonArc : 
+			#[ Photon : *
+
+        Photon(x1,y1)(x2,y2){amplitude}{windings}
+
+        Each half winding is one cubic Bezier curve.
+*/
+
+void Photon(double *args)
+{
+    double dx = args[2] - args[0];
+    double dy = args[3] - args[1];
+    double dr = sqrt(dx*dx+dy*dy);
+
+    SetTransferMatrix(1,0,0,1,args[0],args[1]);
+    SetTransferMatrix(dx/dr,dy/dr,-dy/dr,dx/dr,0,0);
+
+    PhotonHelp(args,dr);
+}
+
+/*
+			#] Photon : 
+			#[ DoublePhoton : *
+
+        DoublePhoton(x1,y1)(x2,y2){amplitude}{windings}{sep}
+
+        Each half winding is one cubic Bezier curve.
+*/
+
+void DoublePhoton(double *args)
+{
+    double dx = args[2] - args[0];
+    double dy = args[3] - args[1];
+    double dr = sqrt(dx*dx+dy*dy);
+    linesep = args[6];
+
+    SetTransferMatrix(1,0,0,1,args[0],args[1]);
+    SetTransferMatrix(dx/dr,dy/dr,-dy/dr,dx/dr,0,0);
+
+    SaveGraphicsState;
+    SetLineWidth(linesep+axolinewidth);
+    PhotonHelp(args,dr);
+    RestoreGraphicsState;
+
+    SaveGraphicsState;
+    SetLineWidth(linesep-axolinewidth);
+    SetBackgroundColor(STROKING);
+    PhotonHelp(args,dr);
+    RestoreGraphicsState;
+}
+
+/*
+			#] DoublePhoton : 
+			#[ DashPhoton : *
+
+        DashPhoton(x1,y1)(x2,y2){amplitude}{windings}{dashsize}
+
+        Each half winding is one cubic Bezier curve.
+*/
+
+void DashPhoton(double *args)
+{
+    double dx = args[2] - args[0];
+    double dy = args[3] - args[1];
+    double dr = sqrt(dx*dx+dy*dy);
+    int numdashes, numhalfwindings = args[5]*2+0.5;
+    double x, y, size;
+    double dashsize = args[6], onehalfwinding = dr/numhalfwindings; 
+    x = (4*onehalfwinding)/3/M_pi; y = 4.*args[4]/3;
+    size = 0.5*LengthBezier(x,y, onehalfwinding-x,y, onehalfwinding,0,1.0);
+    numdashes = size/(2*args[6]);
+    if ( numdashes == 0 ) numdashes = 1;
+    if ( fabs(size-2*dashsize*numdashes) > fabs(size-2*dashsize*(numdashes+1)) )
+        numdashes++;
+    dashsize = size/(2*numdashes);
+
+    SetTransferMatrix(1,0,0,1,args[0],args[1]);
+    SetTransferMatrix(dx/dr,dy/dr,-dy/dr,dx/dr,0,0);
+
+    SetDashSize(dashsize,dashsize/2);
+    PhotonHelp(args,dr);
+}
+
+/*
+			#] DashPhoton : 
+			#[ DashDoublePhoton : *
+
+        DashDoublePhoton(x1,y1)(x2,y2){amplitude}{windings}{sep}{dashsize}
+
+        Each half winding is one cubic Bezier curve.
+*/
+
+void DashDoublePhoton(double *args)
+{
+    double dx = args[2] - args[0];
+    double dy = args[3] - args[1];
+    double dr = sqrt(dx*dx+dy*dy);
+    int numdashes, numhalfwindings = args[5]*2+0.5;
+    double x, y, size;
+    double dashsize = args[7], onehalfwinding = dr/numhalfwindings; 
+    x = (4*onehalfwinding)/3/M_pi; y = 4.*args[4]/3;
+    size = 0.5*LengthBezier(x,y, onehalfwinding-x,y, onehalfwinding,0,1.0);
+    numdashes = size/(2*args[6]);
+    if ( numdashes == 0 ) numdashes = 1;
+    if ( fabs(size-2*dashsize*numdashes) > fabs(size-2*dashsize*(numdashes+1)) )
+        numdashes++;
+    dashsize = size/(2*numdashes);
+
+    linesep = args[6];
+
+    SetTransferMatrix(1,0,0,1,args[0],args[1]);
+    SetTransferMatrix(dx/dr,dy/dr,-dy/dr,dx/dr,0,0);
+    SetDashSize(dashsize,dashsize/2);
+
+    SaveGraphicsState;
+    SetLineWidth(linesep+axolinewidth);
+    PhotonHelp(args,dr);
+    RestoreGraphicsState;
+
+/*  SetDashSize(0,0); */
+    SaveGraphicsState;
+    SetLineWidth(linesep-axolinewidth);
+    SetBackgroundColor(STROKING);
+    PhotonHelp(args,dr);
+    RestoreGraphicsState;
+}
+
+/*
+			#] DashDoublePhoton : 
+			#[ PhotonArc : *
+
+        PhotonArc(x1,y1)(r,phi1,phi2){amplitude}{windings}
+
+        This routine follows the Postscript routine closely, except for that
+        we do not put a transfer matrix inside the loop. The corresponding
+        moveto messes up the path. One would have to put stroking operations
+        in there each time.
+*/
+
+void PhotonArc(double *args)
+{
+    double arcstart = args[3],arcend = args[4];
+    int num = 2*args[6]+0.5;
+
+    if ( arcend < arcstart ) arcend += 360.;
+
+    SetTransferMatrix(1,0,0,1,args[0],args[1]);  /* Move to center of circle */
+
+    arcend = torad*(arcend-arcstart)/num;
+
+    SetTransferMatrix(COS(arcstart),SIN(arcstart)
+                    ,-SIN(arcstart),COS(arcstart),0,0);
+
+    PhotonArcHelp(args,arcend,num);
+}
+
+/*
+			#] PhotonArc : 
+			#[ DoublePhotonArc : *
+
+        DoublePhotonArc(x1,y1)(r,phi1,phi2){amplitude}{windings}{sep}
+*/
+
+void DoublePhotonArc(double *args)
+{
+    double arcstart = args[3],arcend = args[4];
+    int num = 2*args[6]+0.5;
+    linesep = args[7];
+
+    if ( arcend < arcstart ) arcend += 360.;
+
+    SetTransferMatrix(1,0,0,1,args[0],args[1]);  /* Move to center of circle */
+
+    arcend = torad*(arcend-arcstart)/num;
+
+    SetTransferMatrix(COS(arcstart),SIN(arcstart)
+                    ,-SIN(arcstart),COS(arcstart),0,0);
+
+    SaveGraphicsState;
+    SetLineWidth(linesep+axolinewidth);
+    PhotonArcHelp(args,arcend,num);
+    RestoreGraphicsState;
+
+    SaveGraphicsState;
+    SetLineWidth(linesep-axolinewidth);
+    SetBackgroundColor(STROKING);
+    PhotonArcHelp(args,arcend,num);
+    RestoreGraphicsState;
+}
+
+/*
+			#] DoublePhotonArc : 
+			#[ DashPhotonArc : *
+
+        DashPhotonArc(x1,y1)(r,phi1,phi2){amplitude}{windings}{dashsize}
+*/
+
+void DashPhotonArc(double *args)
+{
+    double arcstart = args[3],arcend = args[4];
+    double dashsize = args[7], dashstart;
+    int num = 2*args[6]+0.5;
+
+    if ( arcend < arcstart ) arcend += 360.;
+
+    SetTransferMatrix(1,0,0,1,args[0],args[1]);  /* Move to center of circle */
+
+    arcend = torad*(arcend-arcstart)/num;
+
+    SetTransferMatrix(COS(arcstart),SIN(arcstart)
+                    ,-SIN(arcstart),COS(arcstart),0,0);
+
+    dashsize = ComputeDashPhotonArc(args,arcend,dashsize,&dashstart);
+    SetDashSize(dashsize,dashstart);
+    PhotonArcHelp(args,arcend,num);
+}
+
+/*
+			#] DashPhotonArc : 
+			#[ DashDoublePhotonArc : *
+
+        DashDoublePhotonArc(x1,y1)(r,phi1,phi2){amplitude}{windings}{sep}{dashsize}
+*/
+
+void DashDoublePhotonArc(double *args)
+{
+    double arcstart = args[3],arcend = args[4];
+    double dashsize = args[8], dashstart;
+    int num = 2*args[6]+0.5;
+    linesep = args[7];
+
+    if ( arcend < arcstart ) arcend += 360.;
+
+    SetTransferMatrix(1,0,0,1,args[0],args[1]);  /* Move to center of circle */
+
+    arcend = torad*(arcend-arcstart)/num;
+
+    SetTransferMatrix(COS(arcstart),SIN(arcstart)
+                    ,-SIN(arcstart),COS(arcstart),0,0);
+    dashsize = ComputeDashPhotonArc(args,arcend,dashsize,&dashstart);
+
+    SaveGraphicsState;
+    SetDashSize(dashsize,dashstart);
+    SetLineWidth(linesep+axolinewidth);
+    PhotonArcHelp(args,arcend,num);
+    RestoreGraphicsState;
+
+    SaveGraphicsState;
+    SetDashSize(0,0);
+    SetLineWidth(linesep-axolinewidth);
+    SetBackgroundColor(STROKING);
+    PhotonArcHelp(args,arcend,num);
+    RestoreGraphicsState;
+}
+
+/*
+			#] DashDoublePhotonArc : 
+			#[ ZigZag : *
+
+        ZigZag(x1,y1)(x2,y2){amplitude}{windings}
+
+        We draw each half winding as two straight lines.
+        This can be done better!
+*/
+
+void ZigZag(double *args)
+{
+    double dx = args[2] - args[0];
+    double dy = args[3] - args[1];
+    double dr = sqrt(dx*dx+dy*dy);
+
+    SetTransferMatrix(1,0,0,1,args[0],args[1]);
+    SetTransferMatrix(dx/dr,dy/dr,-dy/dr,dx/dr,0,0);
+    ZigZagHelp(args,dr);
+}
+
+/*
+			#] ZigZag : 
+			#[ DoubleZigZag : *
+
+        DoubleZigZag(x1,y1)(x2,y2){amplitude}{windings}{sep}
+
+        We draw each half winding as two straight lines.
+        This can be done better!
+*/
+
+void DoubleZigZag(double *args)
+{
+    double dx = args[2] - args[0];
+    double dy = args[3] - args[1];
+    double dr = sqrt(dx*dx+dy*dy);
+    linesep = args[6];
+
+    SetTransferMatrix(1,0,0,1,args[0],args[1]);
+    SetTransferMatrix(dx/dr,dy/dr,-dy/dr,dx/dr,0,0);
+
+    SaveGraphicsState;
+    SetLineWidth(linesep+axolinewidth);
+    ZigZagHelp(args,dr);
+    RestoreGraphicsState;
+
+    SaveGraphicsState;
+    SetLineWidth(linesep-axolinewidth);
+    SetBackgroundColor(STROKING);
+    ZigZagHelp(args,dr);
+    RestoreGraphicsState;
+}
+
+/*
+			#] DoubleZigZag : 
+			#[ DashZigZag : *
+
+        DashZigZag(x1,y1)(x2,y2){amplitude}{windings}{dashsize}
+
+        We should recalculate the size of the dashes. Otherwise the points
+        of the teeth can become messy.
+*/
+
+void DashZigZag(double *args)
+{
+    double dx = args[2] - args[0];
+    double dy = args[3] - args[1];
+    double dr = sqrt(dx*dx+dy*dy);
+    double dashsize = args[6];
+    int n = args[5]*2+0.5;
+    double size = dr/(n*2);
+
+    SetTransferMatrix(1,0,0,1,args[0],args[1]);
+    SetTransferMatrix(dx/dr,dy/dr,-dy/dr,dx/dr,0,0);
+
+    size = sqrt(size*size+args[4]*args[4]);
+    n = size/(2*dashsize);   /* number of complete dash patterns rounded down */
+/*
+    Now test what is closer to dash: size/n or size/(n+1)
+*/
+    if ( n == 0 ) n = 1;
+    if ( fabs(size-2*dashsize*n) > fabs(size-2*dashsize*(n+1)) ) n++;
+    dashsize = size/(2*n);
+
+    SetDashSize(dashsize,dashsize/2);
+    ZigZagHelp(args,dr);
+}
+
+/*
+			#] DashZigZag : 
+			#[ DashDoubleZigZag : *
+
+        DashDoubleZigZag(x1,y1)(x2,y2){amplitude}{windings}{sep}{dashsize}
+
+        We draw each half winding as two straight lines.
+        This can be done better!
+*/
+
+void DashDoubleZigZag(double *args)
+{
+    double dx = args[2] - args[0];
+    double dy = args[3] - args[1];
+    double dr = sqrt(dx*dx+dy*dy);
+    double dashsize = args[7];
+    int n = args[5]*2+0.5;
+    double size = dr/(n*2);
+    linesep = args[6];
+
+    SetTransferMatrix(1,0,0,1,args[0],args[1]);
+    SetTransferMatrix(dx/dr,dy/dr,-dy/dr,dx/dr,0,0);
+
+    size = sqrt(size*size+args[4]*args[4]);
+    n = size/(2*dashsize);   /* number of complete dash patterns rounded down */
+/*
+    Now test what is closer to dash: size/n or size/(n+1)
+*/
+    if ( n == 0 ) n = 1;
+    if ( fabs(size-2*dashsize*n) > fabs(size-2*dashsize*(n+1)) ) n++;
+    dashsize = size/(2*n);
+
+    SetDashSize(dashsize,dashsize/2);
+
+    SaveGraphicsState;
+    SetLineWidth(linesep+axolinewidth);
+    ZigZagHelp(args,dr);
+    RestoreGraphicsState;
+
+    SetDashSize(0,0);
+
+    SaveGraphicsState;
+    SetLineWidth(linesep-axolinewidth);
+    SetBackgroundColor(STROKING);
+    ZigZagHelp(args,dr);
+    RestoreGraphicsState;
+}
+
+/*
+			#] DashDoubleZigZag : 
+			#[ ZigZagArc : *
+
+        ZigZagArc(x1,y1)(r,phi1,phi2){amplitude}{windings}
+*/
+
+void ZigZagArc(double *args)
+{
+    SetTransferMatrix(1,0,0,1,args[0],args[1]);  /* Move to center of circle */
+    ZigZagArcHelp(args);
+}
+
+/*
+			#] ZigZagArc : 
+			#[ DoubleZigZagArc : *
+
+        DoubleZigZagArc(x1,y1)(r,phi1,phi2){amplitude}{windings}{sep}
+*/
+
+void DoubleZigZagArc(double *args)
+{
+    SetTransferMatrix(1,0,0,1,args[0],args[1]);  /* Move to center of circle */
+    linesep = args[7];
+
+    SaveGraphicsState;
+    SetLineWidth(linesep+axolinewidth);
+    ZigZagArcHelp(args);
+    RestoreGraphicsState;
+
+    SaveGraphicsState;
+    SetLineWidth(linesep-axolinewidth);
+    SetBackgroundColor(STROKING);
+    ZigZagArcHelp(args);
+    RestoreGraphicsState;
+}
+
+/*
+			#] DoubleZigZagArc : 
+			#[ DashZigZagArc : *
+
+        DashZigZagArc(x1,y1)(r,phi1,phi2){amplitude}{windings}{dashsize}
+*/
+
+void DashZigZagArc(double *args)
+{
+    double dashsize = args[7], dashstart;
+    SetTransferMatrix(1,0,0,1,args[0],args[1]);  /* Move to center of circle */
+    {
+        int num = 2*args[6]-0.5, numdashes;
+        double amp = args[5], r = args[2], size, size2;
+        double arcstart = args[3], arcend = args[4], darc;
+        if ( arcend < arcstart ) arcend += 360.;
+        darc = (arcend-arcstart)/(num+1);
+        size = sqrt(0.5*(amp*amp+r*r-(r*r-amp*amp)*COS(darc)));
+        size2 = sqrt(amp*amp+2*(amp+r)*r*(1-COS(darc/2)));
+        numdashes = size/(2*dashsize);
+        if ( numdashes == 0 ) numdashes = 1;
+        if ( fabs(size-2*dashsize*numdashes) > fabs(size-2*dashsize*(numdashes+1)) )
+                numdashes++;
+        dashsize = size/(2*numdashes);
+        num = size2/(2*dashsize);
+        dashstart = -(size2 - 2*num*dashsize) + dashsize/2;
+        if ( dashstart < 0 ) dashstart += 2*dashsize;
+    }
+    SetDashSize(dashsize,dashstart);
+    ZigZagArcHelp(args);
+}
+
+/*
+			#] DashZigZagArc : 
+			#[ DashDoubleZigZagArc : *
+
+        DashDoubleZigZagArc(x1,y1)(r,phi1,phi2){amplitude}{windings}{sep}{dashsize}
+*/
+
+void DashDoubleZigZagArc(double *args)
+{
+    double dashsize = args[8], dashstart;
+    SetTransferMatrix(1,0,0,1,args[0],args[1]);  /* Move to center of circle */
+    linesep = args[7];
+    {
+        int num = 2*args[6]-0.5, numdashes;
+        double amp = args[5], r = args[2], size, size2;
+        double arcstart = args[3], arcend = args[4], darc;
+        if ( arcend < arcstart ) arcend += 360.;
+        darc = (arcend-arcstart)/(num+1);
+        size = sqrt(0.5*(amp*amp+r*r-(r*r-amp*amp)*COS(darc)));
+        size2 = sqrt(amp*amp+2*(amp+r)*r*(1-COS(darc/2)));
+        numdashes = size/(2*dashsize);
+        if ( numdashes == 0 ) numdashes = 1;
+        if ( fabs(size-2*dashsize*numdashes) > fabs(size-2*dashsize*(numdashes+1)) )
+                numdashes++;
+        dashsize = size/(2*numdashes);
+        num = size2/(2*dashsize);
+        dashstart = -(size2 - 2*num*dashsize) + dashsize/2;
+        if ( dashstart < 0 ) dashstart += 2*dashsize;
+    }
+
+    SaveGraphicsState;
+    SetDashSize(dashsize,dashstart);
+    SetLineWidth(linesep+axolinewidth);
+    ZigZagArcHelp(args);
+    RestoreGraphicsState;
+
+    SaveGraphicsState;
+    SetDashSize(0,0);
+    SetLineWidth(linesep-axolinewidth);
+    SetBackgroundColor(STROKING);
+    ZigZagArcHelp(args);
+    RestoreGraphicsState;
+}
+
+/*
+			#] DashDoubleZigZagArc : 
+ 		#] Particle routines : 
+ 		#[ Drawing routines :
+			#[ Polygon :
+*/
+
+void Polygon(double *args,int num,int type)
+{
+    int i;
+    MoveTo(args[0],args[1]);
+    args += 2;
+    for ( i = 1; i < num; i++, args += 2 ) {
+        LineTo(args[0],args[1]);
+    }
+    if ( type == 0 ) { CloseAndStroke; }
+    else if ( type ==  1 ) { CloseAndFill; }
+}
+
+/*
+			#] Polygon : 
+			#[ Curve : +
+
+        Curve{(x1,y1),...,(xn,yn)}
+
+        num is the number of pairs in points.
+*/
+
+void Curve(double *points,int num)
+{
+    int i, ss;
+    double x0,y0,x1,y1,x2,y2,x3,y3;
+
+    if ( num < 2 ) return;
+    if ( num == 2 ) { Line(points); return; }
+
+    ss = 2*num;
+
+    x1 = points[0]; y1 = points[1];
+    x2 = points[2]; y2 = points[3];
+    x3 = points[4]; y3 = points[5];
+    x0 = 2*x1-x2;
+    y0 = 2*((y3-y2)/(x3-x2)-(y2-y1)/(x2-x1))*((x2-x1)*(x2-x1)/(x3-x1))+2*y1-y2;
+
+    MoveTo(x1,y1);
+    DoCurve(x0,y0,x1,y1,x2,y2,x3,y3);
+
+    for ( i = 0; i < ss-6; i += 2 ) {
+        DoCurve(points[i  ],points[i+1],points[i+2],points[i+3],
+                points[i+4],points[i+5],points[i+6],points[i+7]);
+    }
+    if ( ss > 6 ) {
+        x0 = points[ss-6]; y0 = points[ss-5];
+        x1 = points[ss-4]; y1 = points[ss-3];
+        x2 = points[ss-2]; y2 = points[ss-1];
+        x3 = 2*x2-x1;
+        y3 = 2*((y2-y1)/(x2-x1)-(y1-y0)/(x1-x0))*((x2-x1)*(x2-x1)/(x2-x0))+2*y2-y1;
+
+        DoCurve(x0,y0,x1,y1,x2,y2,x3,y3);
+    }
+    Stroke;
+}
+
+/*
+			#] Curve : 
+			#[ DashCurve : +
+
+        DashCurve{(x1,y1),...,(xn,yn)}{dashsize}
+*/
+
+void DashCurve(double *args,int num1)
+{
+    double dashsize = args[2*num1];
+    if ( num1 == 2 ) {
+        DashLine(args);
+    }
+    else if ( num1 > 2 ) {
+        SetDashSize(dashsize,dashsize/2);
+        Curve(args,num1);
+    }
+}
+
+/*
+			#] DashCurve : 
+			#[ LogAxis :
+
+        Draws a line with logarithmic hash marks along it.
+        LogAxis(x1,y1)(x2,y2)(num_logs,hashsize,offset,width)
+        The line is from (x1,y1) to (x2,y2) and the marks are on the left side
+        when hashsize is positive, and right when it is negative.
+        num_logs is the number of orders of magnitude and offset is the number
+        at which one starts at (x1,y1) (like if offset=2 we start at 2)
+        When offset is 0 we start at 1. Width is the linewidth.
+*/
+
+void LogAxis(double *args)
+{
+    double dx = args[2]-args[0], dy = args[3]-args[1], dr = sqrt(dx*dx+dy*dy);
+    double width = args[7], size, nlogs = args[4], hashsize = args[5];
+    double offset = args[6], x;
+    int i, j;
+    SetTransferMatrix(1,0,0,1,args[0],args[1]);
+    SetTransferMatrix(dx/dr,dy/dr,-dy/dr,dx/dr,0,0);
+    MoveTo(0,0); LineTo(dr,0); Stroke;
+/*
+    Now compute the hash marks.
+*/
+    size = dr/nlogs;
+    if ( offset <= 0 ) { offset = 0; }
+    else { offset = log10(offset); }
+/*
+    Big hash marks
+*/
+    for ( i = 1; i <= nlogs; i++ ) {
+        MoveTo((i-offset)*size,0);
+        LineTo((i-offset)*size,hashsize*1.2);
+        Stroke;
+    }
+/*
+    Little hash marks
+*/
+    SetLineWidth(0.6*width);
+    for ( i = 0; i <= nlogs; i++ ) {
+        for ( j = 2; j < 10; j++ ) {
+            x = (i-offset+log10(j))*size;
+            if ( x >= 0 && x <= dr ) {
+                MoveTo(x,0); LineTo(x,hashsize*0.8); Stroke;
+            }
+        }
+    }
+}
+
+/*
+			#] LogAxis : 
+			#[ LinAxis :
+
+        Draws a line with linear hash marks along it.
+        LinAxis(x1,y1)(x2,y2)(num_decs,per_dec,hashsize,offset,width)
+        The line is from (x1,y1) to (x2,y2) and the marks are on the left side
+        when hashsize is positive, and right when it is negative.
+        num_decs is the number of accented marks, per_dec the number of
+        divisions between them and offset is the number
+        at which one starts at (x1,y1) (like if offset=2 we start at the second
+        small mark) Width is the linewidth.
+*/
+
+void LinAxis(double *args)
+{
+    double width = args[8], hashsize = args[6], x;
+    double dx = args[2]-args[0], dy = args[3]-args[1], dr = sqrt(dx*dx+dy*dy);
+    double num_decs = args[4], per_dec = args[5], size, size2;
+    int i, j, numperdec = per_dec+0.5, offset = args[7];
+    SetTransferMatrix(1,0,0,1,args[0],args[1]);
+    SetTransferMatrix(dx/dr,dy/dr,-dy/dr,dx/dr,0,0);
+    MoveTo(0,0); LineTo(dr,0); Stroke;
+    size = dr/num_decs;
+    if ( numperdec > 1 ) size2 = size / numperdec;
+    else { size2 = size; numperdec = 1; }
+    if ( offset > numperdec ) offset = numperdec;
+    else if ( offset <= 0 ) offset = 0;
+/*
+    Big hashes
+*/
+    for ( i = 0; i <= num_decs; i++ ) {
+        x = i*size-offset*size2;
+        if ( x >= 0 && x <= dr ) {
+            MoveTo(x,0); LineTo(x,hashsize*1.2); Stroke;
+        }
+    }
+/*
+    Little hash marks.
+*/
+    j = num_decs*numperdec+0.5;
+    SetLineWidth(0.6*width);
+    for ( i = 0; i <= j; i++ ) {
+        if ( (i+offset)%numperdec != 0 ) {
+            x = i*size2;
+            if ( x >= 0 && x <= dr ) {
+                MoveTo(x,0); LineTo(x,hashsize*0.8); Stroke;
+            }
+        }
+    }
+}
+
+/*
+			#] LinAxis : 
+			#[ BezierCurve :
+
+            Draws a Bezier curve. Starts at (x1,y1).
+            The control points are (x2,y2),(x3,y3),(x4,y4)
+*/
+
+void BezierCurve(double *args)
+{
+    MoveTo(args[0],args[1]);
+    Bezier(args[2],args[3],args[4],args[5],args[6],args[7]);
+    Stroke;
+    if ( witharrow ) BezierArrow(args);
+}
+
+/*
+			#] BezierCurve : 
+			#[ DoubleBezier :
+
+            Draws a Bezier curve. Starts at (x1,y1).
+            The control points are (x2,y2),(x3,y3),(x4,y4)
+*/
+
+void DoubleBezier(double *args)
+{
+    linesep = args[8];
+    SaveGraphicsState;
+    SetLineWidth(linesep+axolinewidth);
+    MoveTo(args[0],args[1]);
+    Bezier(args[2],args[3],args[4],args[5],args[6],args[7]);
+    Stroke;
+    RestoreGraphicsState;
+    SaveGraphicsState;
+    SetLineWidth(linesep-axolinewidth);
+    SetBackgroundColor(STROKING);
+    MoveTo(args[0],args[1]);
+    Bezier(args[2],args[3],args[4],args[5],args[6],args[7]);
+    Stroke;
+    RestoreGraphicsState;
+    if ( witharrow ) BezierArrow(args);
+}
+
+/*
+			#] DoubleBezier : 
+			#[ DashBezier :
+
+            Draws a Bezier curve. Starts at (x1,y1).
+            The control points are (x2,y2),(x3,y3),(x4,y4)
+*/
+
+void DashBezier(double *args)
+{
+    int numdashes;
+    double size, dashsize = args[8];
+    size = LengthBezier(args[2]-args[0],args[3]-args[1]
+        ,args[4]-args[0],args[5]-args[1],args[6]-args[0],args[7]-args[1],1.0);
+
+    numdashes = size/(2*dashsize);
+    if ( numdashes == 0 ) numdashes = 1;
+    if ( fabs(size-2*dashsize*numdashes) > fabs(size-2*dashsize*(numdashes+1)) )
+        numdashes++;
+    dashsize = (size/(2*numdashes));
+
+    SetDashSize(dashsize,dashsize/2);
+    MoveTo(args[0],args[1]);
+    Bezier(args[2],args[3],args[4],args[5],args[6],args[7]);
+    Stroke;
+    if ( witharrow ) BezierArrow(args);
+}
+
+/*
+			#] DashBezier : 
+			#[ DashDoubleBezier :
+
+            Draws a Bezier curve. Starts at (x1,y1).
+            The control points are (x2,y2),(x3,y3),(x4,y4)
+*/
+
+void DashDoubleBezier(double *args)
+{
+    int numdashes;
+    double size, dashsize = args[9];
+    size = LengthBezier(args[2]-args[0],args[3]-args[1]
+        ,args[4]-args[0],args[5]-args[1],args[6]-args[0],args[7]-args[1],1.0);
+
+    numdashes = size/(2*dashsize);
+    if ( numdashes == 0 ) numdashes = 1;
+    if ( fabs(size-2*dashsize*numdashes) > fabs(size-2*dashsize*(numdashes+1)) )
+        numdashes++;
+    dashsize = (size/(2*numdashes));
+
+    SetDashSize(dashsize,dashsize/2);
+    linesep = args[8];
+    SaveGraphicsState;
+    SetLineWidth(linesep+axolinewidth);
+    MoveTo(args[0],args[1]);
+    Bezier(args[2],args[3],args[4],args[5],args[6],args[7]);
+    Stroke;
+    RestoreGraphicsState;
+    SaveGraphicsState;
+    SetLineWidth(linesep-axolinewidth);
+    SetBackgroundColor(STROKING);
+    MoveTo(args[0],args[1]);
+    Bezier(args[2],args[3],args[4],args[5],args[6],args[7]);
+    Stroke;
+    RestoreGraphicsState;
+    if ( witharrow ) BezierArrow(args);
+}
+
+/*
+			#] DashDoubleBezier : 
+ 		#] Drawing routines : 
+ 		#[ Wrapper routines :
+			#[ AxoArc :
+
+            Draws arc centered at (#1,#2), radius #3, starting and ending
+            angles #4, #5.
+            Double, dashing, arrow, flip, clockwise
+*/
+
+void AxoArc(double *args)
+{
+    double dashsize = args[6];
+    linesep = args[5];
+    GetArrow(args+7);
+    if ( args[16] ) {   /* If clockwise: reverse the angles and the arrow */
+        double e;
+        clockwise = 1;  /* In principle not needed */
+        flip = 1-flip;
+        arrow.where = 1-arrow.where;
+        e = args[3]; args[3] = args[4]; args[4] = e;
+    }
+
+    if ( witharrow ) {
+        if ( arrow.where > 1 ) arrow.where = 1;
+        if ( arrow.where < 0 ) arrow.where = 0;
+        if ( dashsize > 0 ) {
+            if ( linesep > 0 ) {
+                DashArrowDoubleArc(args);
+            }
+            else {
+                args[5] = args[6];
+                DashArrowArc(args);
+            }
+        }
+        else {
+            if ( linesep > 0 ) {
+                ArrowDoubleArc(args);
+            }
+            else {
+                ArrowArc(args);
+            }
+        }
+    }
+    else {
+        if ( dashsize > 0 ) {
+            if ( linesep > 0 ) {
+                DashDoubleArc(args);
+            }
+            else {
+                args[5] = args[6];
+                DashCArc(args);
+            }
+        }
+        else {
+            if ( linesep > 0 ) {
+                DoubleArc(args);
+            }
+            else {
+                CArc(args);
+            }
+        }
+    }
+}
+
+/*
+			#] AxoArc : 
+			#[ AxoBezier :
+*/
+
+void AxoBezier(double *args)
+{
+    linesep = args[8];
+    GetArrow(args+10);
+    if ( witharrow ) {
+        if ( arrow.where > 1 ) arrow.where = 1;
+        if ( arrow.where < 0 ) arrow.where = 0;
+    }
+    if ( args[9] ) {    /* dashes */
+        if ( args[8] ) {    /* double */
+            DashDoubleBezier(args);
+        }
+        else {
+            args[8] = args[9];
+            DashBezier(args);
+        }
+    }
+    else {
+        if ( args[8] ) {    /* double */
+            DoubleBezier(args);
+        }
+        else {
+            BezierCurve(args);  /* The name Bezier was already taken */
+        }
+    }
+}
+
+/*
+			#] AxoBezier : 
+			#[ AxoGluon :
+*/
+
+void AxoGluon(double *args)
+{
+        SetLineWidth(axolinewidth + args[6]);
+    if ( args[7] ) {    /* dashes */
+        args[6] = args[7];
+        DashGluon(args);
+    }
+    else {
+        Gluon(args);
+    }
+}
+
+/*
+			#] AxoGluon : 
+			#[ AxoGluonArc :
+*/
+
+void AxoGluonArc(double *args)
+{
+        SetLineWidth(axolinewidth + args[7]);
+    if ( args[9] ) {    /* Clockwise */
+        double a = args[3]; args[3] = args[4]; args[4] = a;
+    }
+    if ( args[8] ) {  /* Dashes */
+        args[7] = args[8];
+        DashGluonArc(args);
+    }
+    else {
+            GluonArc(args);
+    }
+}
+
+/*
+			#] AxoGluonArc : 
+			#[ AxoGluonCirc :
+*/
+
+void AxoGluonCirc(double *args)
+{
+        SetLineWidth(axolinewidth + args[6]);
+    if ( args[7] ) {    /* dashes */
+        args[6] = args[7];
+        DashGluonCirc(args);
+    }
+    else {
+        GluonCirc(args);
+    }
+}
+
+/*
+			#] AxoGluonCirc : 
+			#[ AxoLine :
+
+        AxoLine(x1,y1)(x2,y2){sep}{dashsize}{stroke width length inset}{where}
+
+        Generic switchyard to the various routines for compatibility
+        with Jaxodraw and axodraw4j
+
+        Note: because the specific routines can be called either in the
+        direct way or by means of the generic routine, they have to know
+        what arrow to use. This is regulated by arrow.type. 0=old arrows.
+*/
+
+void AxoLine(double *args)
+{
+    linesep = args[4];
+    GetArrow(args+6);
+    if ( witharrow ) {
+        if ( arrow.where > 1 ) arrow.where = 1;
+        if ( arrow.where < 0 ) arrow.where = 0;
+        if ( args[5] == 0 ) {
+            if ( linesep == 0 ) ArrowLine(args);
+            else { ArrowDoubleLine(args); }
+        }
+        else {
+            if ( linesep == 0 ) {
+                args[4] = args[5];
+                DashArrowLine(args);
+            }
+            else { DashArrowDoubleLine(args); }
+        }
+    }
+    else {
+        if ( args[5] == 0 ) {  /* No dashing */
+            if ( linesep == 0 ) Line(args);
+            else                DoubleLine(args);
+        }
+        else {
+            if ( linesep == 0 ) {
+                args[4] = args[5]; DashLine(args);
+            }
+            else DashDoubleLine(args);
+        }
+    }
+}
+
+/*
+			#] AxoLine : 
+			#[ AxoPhoton :
+*/
+
+void AxoPhoton(double *args)
+{
+    if ( args[7] ) {    /* dashes */
+        if ( args[6] ) {    /* double */
+            DashDoublePhoton(args);
+        }
+        else {
+            args[6] = args[7];
+            DashPhoton(args);
+        }
+    }
+    else {
+        if ( args[6] ) {    /* double */
+            DoublePhoton(args);
+        }
+        else {
+            Photon(args);
+        }
+    }
+}
+
+/*
+			#] AxoPhoton : 
+			#[ AxoPhotonArc :
+*/
+
+void AxoPhotonArc(double *args)
+{
+    if ( args[9] ) {    /* Clockwise */
+        int num = 2*args[6]+0.5;
+        double a = args[3]; args[3] = args[4]; args[4] = a;
+        if ( ( num & 1 ) == 0 ) args[5] = -args[5];
+    }
+    if ( args[8] ) {  /* dash */
+        if ( args[7] ) {    /* double */
+            DashDoublePhotonArc(args);
+        }
+        else {
+            args[7] = args[8];
+            DashPhotonArc(args);
+        }
+    }
+    else {
+        if ( args[7] ) {    /* double */
+            DoublePhotonArc(args);
+        }
+        else {
+            PhotonArc(args);
+        }
+    }
+}
+
+/*
+			#] AxoPhotonArc : 
+			#[ AxoZigZag :
+*/
+
+void AxoZigZag(double *args)
+{
+    if ( args[7] ) {    /* dashes */
+        if ( args[6] ) {    /* double */
+            DashDoubleZigZag(args);
+        }
+        else {
+            args[6] = args[7];
+            DashZigZag(args);
+        }
+    }
+    else {
+        if ( args[6] ) {    /* double */
+            DoubleZigZag(args);
+        }
+        else {
+            ZigZag(args);
+        }
+    }
+}
+
+/*
+			#] AxoZigZag : 
+			#[ AxoZigZagArc :
+*/
+
+void AxoZigZagArc(double *args)
+{
+    if ( args[9] ) {    /* Clockwise */
+        int num = 2*args[6]+0.5;
+        double a = args[3]; args[3] = args[4]; args[4] = a;
+        if ( ( num & 1 ) == 0 ) args[5] = -args[5];
+    }
+    if ( args[8] ) {  /* dash */
+        if ( args[7] ) {    /* double */
+            DashDoubleZigZagArc(args);
+        }
+        else {
+            args[7] = args[8];
+            DashZigZagArc(args);
+        }
+    }
+    else {
+        if ( args[7] ) {    /* double */
+            DoubleZigZagArc(args);
+        }
+        else {
+            ZigZagArc(args);
+        }
+    }
+}
+
+/*
+			#] AxoZigZagArc : 
+ 		#] Wrapper routines : 
+ 		#[ Various routines :
+			#[ Rotate : +
+
+        Rotate: x y angle hmode vmode textwidth textheight
+        Note, the textwidth/textheight have been scaled already;
+*/
+
+void Rotate(double *args)
+{
+    double textheight = args[6]*args[4]/2/65536.;
+    double textwidth  = args[5]*args[3]/2/65536.;
+    SetTransferMatrix(1,0,0,1,args[0],args[1]);
+    SetTransferMatrix(COS(args[2]),SIN(args[2]),-SIN(args[2]),COS(args[2]),0,0);
+    SetTransferMatrix(1,0,0,1,-textwidth,textheight);
+}
+
+/*
+			#] Rotate : 
+			#[ Grid :
+
+        Makes a coordinate grid in the indicated color.
+        (x0,y0)(incx,incy)(nx,ny){color}{linewidth}
+*/
+
+void Grid(double *args)
+{
+    int i, nx = args[4]+0.01, ny = args[5]+0.01;
+    double maxx = args[2]*args[4];
+    double maxy = args[3]*args[5];
+    SetTransferMatrix(1,0,0,1,args[0],args[1]);
+    for ( i = 0; i <= nx; i++ ) {
+        MoveTo(i*args[2],0);
+        LineTo(i*args[2],maxy);
+        Stroke;
+    }
+    for ( i = 0; i <= ny; i++ ) {
+        MoveTo(0,i*args[3]);
+        LineTo(maxx,i*args[3]);
+        Stroke;
+    }
+}
+
+/*
+			#] Grid : 
+ 		#] Various routines : 
+  	#] routines : 
+*/


Property changes on: trunk/Master/texmf-dist/source/latex/axodraw2/axohelp.c
___________________________________________________________________
Added: svn:eol-style
## -0,0 +1 ##
+native
\ No newline at end of property
Added: trunk/Master/texmf-dist/tex/latex/axodraw2/axodraw2.sty
===================================================================
--- trunk/Master/texmf-dist/tex/latex/axodraw2/axodraw2.sty	                        (rev 0)
+++ trunk/Master/texmf-dist/tex/latex/axodraw2/axodraw2.sty	2017-05-17 21:57:11 UTC (rev 44396)
@@ -0,0 +1,4728 @@
+%  This is axodraw2.sty
+%
+% (C) 1994-2016 by authors:
+%         John Collins (jcc8 at psu dot edu)
+%         Jos Vermaseren (t68 at nikhef dot nl) 
+%
+%
+%  Conditions of use:
+%
+%    axodraw is free software: you can redistribute it and/or modify it under 
+%    the terms of the GNU General Public License as published by the Free 
+%    Software Foundation, either version 3 of the License, or (at your option) 
+%    any later version.
+%
+%    axodraw is distributed in the hope that it will be useful, but WITHOUT ANY
+%    WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+%    FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
+%    details.
+%
+%    For the GNU General Public License see <http://www.gnu.org/licenses/>.
+%
+%  Code necessities:
+%
+%  1.  \ignorespaces at end of commands that draw things.  Often it won't
+%      matter, but occasionally a command in a picture environment
+%      will set material and a following uncommented end-of-line in
+%      the user's code will shift the insertion point.
+%  2.  Use end-of-line comments whereever TeX might use the end-of-line as
+%      a space to be typeset.
+%
+%  Conventions
+%
+%  1.  Any font and color changes that are supposed to be local should
+%      be made local, either by explicit TeX grouping or by being
+%      inside commands (e.g., box-making commands) that enforce groups.
+%      Braces work, but \begingroup and \endgroup are easier to see in
+%      multiline groups. 
+%  2.  Scaling:
+%           \unitlength is the unit for the canvas (as in picture environment).
+%           \axoscale is for the unit for coordinates, widths, etc
+%           \axotextscale is for all text objects, BUT only when
+%                PSText is NOT set to scale as graphics objects
+%           When PSText is set to scale as graphics objects, PSText
+%                scales by \axoscale, but TeX-text has unit scaling.
+%      Given a specification of a position (x,y) as in a call to \Line,
+%      the position of the point relative to the origin is
+%           x_act = (x + \axoxo ) \axoscale pt + \axoxoffset \unitlength
+%           y_act = (y + \axoyo ) \axoscale pt + \axoyoffset \unitlength
+%      Widths and the like for lines are in units of \axoscale pt
+%
+%		#[ About folds : (this line starts with one % and two tabs)
+%
+%   The internals of the file have been organized in folds.
+%   These are defined as a range of lines if which the first and last
+%   lines have a special format. Each starts with any three characters
+%   (may include tabs), then #[ for the start line and #] for the closing
+%   line, then both lines need identical name fields, closed by a colon.
+%   After the colon can be anything. When a fold is closed one should see
+%   only the first line but with the #[ replaced by ## as in
+%		## About folds : (this line starts with one % and two tabs)
+%   Folds can be nested.
+%   This fold concept comes originally from the occam compiler for the
+%   transputer in the second half of the 1980's although there it was
+%   implemented differently. It was taken over by the STedi editor in its
+%   current form. The sources of this editor are available from the form
+%   home site: http://www.nikhef.nl/~form
+%   Some people have managed to emulate these folds in editors like emacs
+%   and vim.
+%
+%		#] About folds : 
+%
+\ProvidesPackage{axodraw2}[2016/06/02 v2.1.0b]
+%
+%   axodraw.sty file, both for .tex -> .dvi -> .ps and for .tex -> .pdf
+%
+% 	#[ Common LaTeX code :
+%		#[ Variables :
+%
+%
+\RequirePackage{keyval}
+\RequirePackage{ifthen}
+\RequirePackage{graphicx}
+\RequirePackage{color}
+\RequirePackage{ifxetex}
+%
+%
+\DeclareOption{v1compatible}{
+    \def\B2Text{\BTwoText}
+    \def\G2Text{\GTwoText}
+    \def\C2Text{\CTwoText}
+}
+\DeclareOption{canvasScaleIs1pt}{\canvasScaleOnept}
+\DeclareOption{canvasScaleIsObjectScale}{\canvasScaleObjectScale}
+\DeclareOption{canvasScaleIsUnitLength}{\canvasScaleUnitLength}
+\DeclareOption{PSTextScalesIndependently}{\PSTextScalesLikeGraphicsfalse}
+\DeclareOption{PSTextScalesLikeGraphics}{\PSTextScalesLikeGraphicstrue}
+
+% N.B. Option processing is deferred to end of this file, so that all
+% definitions and initializations have been done first.
+
+% Settings for pdf v. dvi/ps output:
+% We need to be able to run under latex, pdflatex, lualatex, and
+% xelatex, and use (if possible) \pdfoutput and \pdfliteral
+%
+% latex:    Initially \pdfoutput is 0, and \pdfliteral is defined but
+%           not usable. 
+% pdflatex: Initially \pdfoutput is 1, and \pdfliteral is defined and
+%           usable. 
+% lualatex: same as pdflatex in versions up to 0.80
+%           But in versions from 0.85, pdfouput and pdfliteral aren't
+%           defined; instead \outputmode, \pdfextension literal{...}
+%           are available instead.
+% xelatex:  Both \pdfoutput and \pdfliteral are undefined
+%           but special{pdf:literal ...} gives same effect as
+%           \pdfliteral would, and we can assume pdf mode always.
+% When \pdfoutput is defined, the user can change its value to change
+% the type of output.  This must be done before the first page is
+% created.  But various packages (including graphics and ifpdf, as
+% well as axodraw) take actions when the package is loaded that depend
+% on current state of \pdfoutput (or its equivalent).  So it is
+% reasonable to require that \pdfoutput be set only before packages
+% are loaded and not set later.
+%
+% We define \axo at pdfoutput and \axo at pdfliteral for our uses to have
+% function of \pdfoutput and \pdfliteral, but to be defined always.
+% We initialize them to a default suitable for dvi mode, and override
+% these definitions to cover the situations listed above.  This needs
+% tests for whether \pdfoutput, \outputmode, etc are undefined of
+% defined.  We put these inside a group, to evade the side effect that 
+% \@ifundefined defines the object being tested.
+%
+% Default values:
+\newcount\axo at pdfoutput
+\axo at pdfoutput=0
+\def\axo at pdfliteral#1%
+     {\PackageWarning{axo}{Bug: pdfliteral accessed but not available}}
+\bgroup
+    \@ifundefined{pdfoutput}%
+        {}%
+        {\global\axo at pdfoutput=\pdfoutput}%
+    %
+    \@ifundefined{pdfliteral}%
+        {}%
+        {% Define \axo at pdfliteral to call \pdfliteral, so that if the
+         % definition of \pdfliteral were to be overridden, we get to
+         % use the changed definition
+         \gdef\axo at pdfliteral#1{\pdfliteral{#1}}}%
+    \@ifundefined{outputmode}%
+                 {}%
+                 {\global\axo at pdfoutput=\outputmode}
+    \@ifundefined{pdfextension}%
+                 {}%
+                 {\gdef\axo at pdfliteral#1{\pdfextension literal{#1}}}
+\egroup
+\ifxetex
+    \axo at pdfoutput=1
+    \def\axo at pdfliteral#1{\special{pdf:literal #1}}
+\fi
+
+%
+%  For communicating with axohelp with global file
+%
+\newif\ifaxo at axohelpRerun
+\axo at axohelpRerunfalse
+%
+\newcounter{axo at objectIndex}
+\setcounter{axo at objectIndex}{0}
+\newwrite\axo at spec
+\newread\axo at axohelpFile
+%
+\newcommand\axo at setObject[3]{
+    \expandafter\gdef\csname axo at input@#1\endcsname{#2}
+    \expandafter\gdef\csname axo at output@#1\endcsname{#3}
+}
+%
+\ifcase\axo at pdfoutput
+\else
+    \IfFileExists{\jobname.ax2}%
+        {{% For comparisons between current definition of object
+        % and previously processed definition, spaces must be preserved.
+            \obeyspaces
+            \openin\axo at axohelpFile=\jobname.ax2
+        }}%
+        {%
+            \PackageWarning{axo}{File `\jobname.ax2' not found.}
+        \axo at axohelpReruntrue
+        }
+    \AtBeginDocument{\immediate\openout\axo at spec\jobname.ax1}
+    \AtEndDocument{\immediate\closeout\axo at spec
+                  \ifaxo at axohelpRerun
+                    \PackageWarning{axodraw2}{Run `axohelp \jobname'
+                      and then rerun pdflatex.}
+                  \fi
+                 }
+\fi
+
+%  Commands to set parameters
+%
+%  Arrow scale:
+\newcommand{\AXO at DefaultArrowScale}{1}
+\newcommand\SetArrowScale[1]{%
+    \renewcommand\AXO at DefaultArrowScale{#1}%
+}
+% Alternative name
+\newcommand\DefaultArrowScale[1]{\SetArrowScale{#1}}
+\SetArrowScale{1}
+
+% Arrow inset:
+\newcommand\AXO at ArrowInset{0.2}
+%\renewcommand\AXO at ArrowInset{-1 }
+\newcommand\SetArrowInset[1]{%
+    \renewcommand\AXO at ArrowInset{#1}%
+}
+
+% Arrow aspect:
+\newcommand\AXO at DefaultArrowAspect{1.25}
+\newcommand\SetArrowAspect[1]{%
+    \renewcommand\AXO at DefaultArrowAspect{#1}%
+}
+
+% Arrow position (fractional position along line):
+\newcommand\AXO at ArrowPos{0.5}
+\newcommand\SetArrowPosition[1]{%
+    \renewcommand\AXO at ArrowPos{#1}%
+}
+
+% Arrow stroke width
+\newcommand{\AXO at DefaultArrowStroke}{0 }
+\newcommand\SetArrowStroke[1]{%
+    \renewcommand\AXO at DefaultArrowStroke{#1}%
+}
+
+\newlength{\axounitlength}
+% The next two are scratch registers
+\newlength\axo at x
+\newlength\axo at y
+% Initializations
+\axounitlength=\unitlength
+\def\axocanvas{1}     % How unitlength is set in axopicture environment
+                      % 0 => 1 pt
+                      % 1 => \axoscale pt
+                      % 2 => Don't set it
+\def\axominusone{-1}
+\def\axoone{1}
+\def\axozero{0}
+\def\axowidth{0.5}
+\def\axoscale{1.0}
+\def\axotextscale{1.0}
+\newif\ifPSTextScalesLikeGraphics
+\PSTextScalesLikeGraphicstrue
+\def\axoxoff{0}
+\def\axoyoff{0}
+\def\axoxo{0}
+\def\axoyo{0}
+\def\axoarrowsize{2}
+%
+%
+%       Now the user callable routines, and their immediate helpers
+%
+% Commands for setting parameters applicable to subsequent graphical objects:
+%
+\def\SetLineSep#1{\def\AXO at Sep{#1}\ignorespaces}\relax
+\let\SetSep=\SetLineSep\relax
+\def\SetDashSize#1{\def\AXO at DashSize{#1}\ignorespaces}\relax
+\def\SetWidth#1{\def\axowidth{#1}\ignorespaces}
+\def\SetArrowSize#1{\def\axoarrowsize{#1}}
+
+\def\SetObjectScale#1{\def\axoscale{#1}\ignorespaces}
+\def\SetCanvasScale#1{\unitlength = #1 pt\ignorespaces}
+\def\SetTextScale#1{\def\axotextscale{#1}\ignorespaces}
+\let\SetScale = \SetObjectScale
+
+\def\SetOffset(#1,#2){\def\axoxoff{#1}\def\axoyoff{#2}\ignorespaces}
+\def\SetScaledOffset(#1,#2){\def\axoxo{#1}\def\axoyo{#2}\ignorespaces}
+
+\def\canvasScaleOnept{\def\axocanvas{0}}
+\def\canvasScaleObjectScale{\def\axocanvas{1}}
+\def\canvasScaleUnitLength{\def\axocanvas{2}}
+
+%
+%
+%		#] Variables : 
+%		#[ Defining commands with optional arguments : 
+%
+\def\defWithOption#1#2#3{%
+    \@namedef{#1}%
+        {%
+            \@ifnextchar[%]
+                {\@nameuse{#1 at A}}%
+                {\@nameuse{#1 at A}[]}%
+        }%
+    \@namedef{#1 at A}[##1]#2%
+         {#3}%
+}
+%
+%		#] Defining commands with optional arguments : 
+%		#[ axopicture :
+%
+%   Version of picture environment with unitlength set to 1pt
+%   as assumed by axodraw. We also store some variables and reset them
+%   afterwards. This makes the picture environment also local from the
+%   axodraw viewpoint. To change the global settings one should issue
+%   the corresponding command from outside the axopicture environment.
+%   Use: \begin{axopicture}(width,height)(xshift,yshift)
+%        \end{axopicture}
+%   The old use with the regular picture environment will still work,
+%   but it will have the old shortcomings connected to it.
+%   
+\let\OLDpicture=\picture
+\let\endOLDpicture=\endpicture
+\newenvironment{axopicture}
+{%
+    \ifcase \axocanvas  
+        \setlength{\unitlength}{1 pt}%
+    \or
+        \setlength{\unitlength}{\axoscale\space pt}%
+    \else
+        % Leave \unitlength as whatever the user set
+    \fi
+    \begin{OLDpicture}%
+}
+{%
+    \end{OLDpicture}%
+    \ignorespacesafterend
+}
+%
+%		#] axopicture : 
+%		#[ AXO at keys :
+%
+
+% Diagnostics for unimplemented features:
+\newif\ifAXONotImplemented
+\AXONotImplementedfalse
+\def\AXO at NOTIMPLEMENTED#1{%
+    \global\AXONotImplementedtrue
+    \PackageWarning{axodraw2}{#1}%
+}
+\AtEndDocument{%
+    \ifAXONotImplemented
+        \PackageWarningNoLine{axodraw2}{unimplemented features used
+          somewhere in document}%
+    \fi
+}
+
+% The next is used temporarily, it gives the result of parsing an
+% arrow-using command to give the Postscript code for setting the
+% arrow.
+%
+%  Keys for optional arguments:
+%  First the variables used, with some defaults.
+\newif\ifAXO at arrow
+\AXO at arrowfalse
+\newif\ifAXO at clock
+\AXO at clockfalse
+\newif\ifAXO at dash
+\AXO at dashfalse
+\newif\ifAXO at double
+\AXO at doublefalse
+\newif\ifAXO at flip       % Flip arrow orientation, as in JaxoDraw
+\AXO at flipfalse
+\newif\ifAXO at linecolor  % Option sets color for current line
+\AXO at linecolorfalse
+
+\def\AXO at Sep{2}        % Double line separation
+\def\AXO at DashSize{3}
+
+%  Then the definitions of the keys
+\define at key{axo}{arrowscale}{%
+    \def\AXO at CurrentArrowScale{#1}%
+}
+\define at key{axo}{arrowwidth}{%
+    \def\AXO at CurrentArrowWidth{#1}%
+}
+\define at key{axo}{arrowlength}{%
+    \def\AXO at CurrentArrowLength{#1}%
+}
+% Make arrowheight a synonym for arrowlength
+\let\KV at axo@arrowheight=\KV at axo@arrowlength
+%
+\define at key{axo}{arrowpos}{%
+    \def\AXO at CurrentArrowPos{#1 }
+}
+%
+\define at key{axo}{arrowaspect}{%
+    \def\AXO at CurrentArrowAspect{#1 }
+}
+%
+\define at key{axo}{arrowinset}{%
+    \def\AXO at CurrentArrowInset{#1 }
+}
+% Make inset a synonym for arrowinset
+\let\KV at axo@inset=\KV at axo@arrowinset
+%
+\define at key{axo}{arrowstroke}{%
+    \def\AXO at CurrentArrowStroke{#1 }
+}
+%
+\define at key{axo}{arrow}[true]{%
+    \AXO at boolkey{#1}{arrow}%
+}
+\define at key{axo}{clock}[true]{%
+    \AXO at boolkey{#1}{clock}%
+}
+\define at key{axo}{clockwise}[true]{%
+    \AXO at boolkey{#1}{clock}%
+}
+\define at key{axo}{color}{%
+    \def\AXO at CurrentColor{#1}%
+        \AXO at linecolortrue
+}
+% Make colour a synonym for color
+\let\KV at axo@colour=\KV at axo@color
+%
+\define at key{axo}{dash}[true]{%
+    \AXO at boolkey{#1}{dash}%
+}
+\define at key{axo}{dashsize}{%
+    \def\AXO at CurrentDashSize{#1 }
+}
+\define at key{axo}{dsize}{%
+    \def\AXO at CurrentDashSize{#1 }
+}
+\define at key{axo}{double}[true]{%
+    \AXO at boolkey{#1}{double}%
+}
+\define at key{axo}{flip}[true]{%
+    \AXO at boolkey{#1}{flip}%
+}
+\define at key{axo}{linesep}{%
+    \def\AXO at CurrentSep{#1}
+}
+\define at key{axo}{sep}{%
+    \def\AXO at CurrentSep{#1}
+}
+\define at key{axo}{width}{%
+    \def\AXO at CurrentWidth{#1}%
+}
+%
+%		#] AXO at keys : 
+%		#[ AXO at Parse :
+%
+%  Parsing of optional arguments, etc
+%
+\def\AXO at Parse#1#2{%
+    % Usage: \AXO at Parse#1#2 or \AXO at Parse#1#2[#3]
+    % #1 is a command for setting an object, that takes no optional argument
+    % #2 and the optional #3 are keyword settings.
+    % There then follow the compulsory arguments for the command in #1.
+    %
+    % E.g., \AXO at Parse{\AXO at Line}{double}(x1,y1)(x2,y2)
+    %      \AXO at Parse{\AXO at Line}{double}[arrow](x1,y1)(x2,y2)
+    %
+    % I will 
+    %   (a) Set standard initial settings (arrows, etc)
+    %   (b) Parse the keyword settings in #2 and #3, e.g., scale = 3,
+    %   (c) Call #1 to make the object
+    \AXO at arrowfalse
+    \AXO at clockfalse
+    \AXO at dashfalse
+    \AXO at doublefalse
+    \AXO at flipfalse
+    \AXO at linecolorfalse
+    \let\AXO at CurrentWidth\axowidth
+    \let\AXO at CurrentArrowPos\AXO at ArrowPos
+    \let\AXO at CurrentArrowWidth\relax
+    \let\AXO at CurrentArrowLength\relax
+    \let\AXO at CurrentArrowInset\AXO at ArrowInset
+    \let\AXO at CurrentArrowScale\AXO at DefaultArrowScale
+    \let\AXO at CurrentArrowStroke\AXO at DefaultArrowStroke
+    \let\AXO at CurrentArrowAspect\AXO at DefaultArrowAspect
+    \let\AXO at CurrentDashSize\AXO at DashSize
+    \let\AXO at CurrentSep=\AXO at Sep
+    \@ifnextchar[{\AXO at Options{#1}{#2}}%
+                 {\AXO at Options{#1}{#2}[]}%
+}
+%
+%		#] AXO at Parse : 
+%		#[ AXO at Options :
+%  
+\def\AXO at Options#1#2[#3]{%
+    % #1 is command to execute, #2 and #3 are options.
+    \setkeys{axo}{#2}%
+    \setkeys{axo}{#3}%
+    \ifx\AXO at CurrentArrowLength\relax
+        \def\AXO at CurrentArrowLength{0 }%
+    \fi
+    \ifx\AXO at CurrentArrowWidth\relax
+        \def\AXO at CurrentArrowWidth{0 }%
+    \fi
+    \ifAXO at arrow
+        \def\AXO at ArrowArg{
+            \AXO at CurrentArrowStroke \space %
+            \AXO at CurrentArrowWidth \space %
+            \AXO at CurrentArrowLength \space %
+            \AXO at CurrentArrowInset \space %
+            \AXO at CurrentArrowScale \space %
+            \AXO at CurrentArrowAspect \space %
+            \AXO at CurrentArrowPos \space %
+            \ifcase\axo at pdfoutput
+             true \space % Indicates that an arrow should be drawn.
+            \else
+             1 \space % Indicates that an arrow should be drawn.
+            \fi
+        }%
+    \else
+        \ifcase\axo at pdfoutput
+            \def\AXO at ArrowArg{ 0 0 0 0 0 0 0 false }%
+        \else
+            \def\AXO at ArrowArg{ 0 0 0 0 0 0 0 0 }%
+        \fi
+    \fi
+    #1%
+}
+%
+\def\AXO at useopts{%
+  % Override global settings by those from options
+  % HACK: The \@killglue solves problem that setting color
+  % causes a shift in horizontal position.
+  % Motivation: From definition of \put.
+  \@killglue
+  \ifAXO at linecolor \SetColor{\AXO at CurrentColor}\fi
+}
+%
+% Now ensure there is a setting for the current arrow
+\AXO at Parse{}{}
+%
+%		#] AXO at Options : 
+%		#[ AXO at varia :
+%
+% Now ensure there is a setting for the current arrow
+\AXO at Parse{}{}
+
+\def\AXO at PrependOption#1#2{%
+    % Run command #1, which has an optional argument, with #2 prepended
+    % to the command's optional arguments.  If there are no optional
+    % arguments, just run the command with #2 as the optional arguments
+    \@ifnextchar[{\AXO at TwoOption{#1}{#2}}%
+                 {#1[#2]}%
+}
+\def\AXO at TwoOption#1#2[#3]{%
+    #1[#2,#3]%
+}
+%
+% Copied from graphicx.sty, for use with boolean keys
+% Modified to do lower casing here
+\def\AXO at boolkey#1#2{%
+    \lowercase{\AXO at boolkeyA{#1}}{#2}%
+}
+\def\AXO at boolkeyA#1#2{%
+    \csname AXO@#2\ifx\relax#1\relax true\else#1\fi\endcsname
+}
+%
+%		#] AXO at varia : 
+%		#[ Colors :
+%
+%       Here we make an interface, compatible with both: color.sty,
+%       with the commands of axodraw v. 1, and with the commands of
+%       colordvi.sty (used by axodraw v. 1).
+%
+%       1. We make a set of named colors suitable for use with both
+%          axodraw's commands that take color arguments and with
+%          color.sty's \color command.
+%       2. We define a command \SetColor to set a named color as the
+%          current color.  It is now identical to \color.
+%       3. For each of the colors that we define here, we make 
+%          named color setting commands, e.g., \Red
+%          \textRed.  \Red sets its (one) argument in Red, \textRed
+%          is a "declaration" that changes the current color.
+%       All the commands for setting color apply to both regular LaTeX
+%       material and to axodraw objects. Their setting of color
+%       respects LaTeX environments and TeX groups. 
+%
+%       We also define
+%          a. Named-color commands like \textRed and \Red for named
+%             colors to give the same interface as the colordvi
+%             package (and hence axodraw v. 1).
+%          b. \SetColor command to set a named color. 
+
+
+\let\SetColor=\color
+
+% For v. 1 compatibility:
+\def\IfColor#1#2{#1}
+
+\newcommand\newcolor[2]{%
+    % Define a named color both in the color.sty style
+    % and in the colordvi.sty, with also a command giving the CMYK value.
+    % #1 is the color's name, #2 is its CMYK definition, space
+    % separated. 
+    % 
+    % Invoke color.sty's \definecolor after change of argument format:
+    \axo at new@color #1 #2\@%
+    % Define commands to use this color,
+    % E.g., if #1 is Red, then define \Red and \textRed:
+    \expandafter\def\csname #1\endcsname##1{{\SetColor{#1}##1}\ignorespaces}
+    \expandafter\def\csname text#1\endcsname{\SetColor{#1}\ignorespaces}
+    % The following to give the cmyk value of a color, e.g., \cmykRed,
+    % is no longer needed, since we no longer do color setting in
+    % postscript and pdf code:
+%%   \expandafter\def\csname cmyk#1\endcsname{#2}
+}
+
+% Command to invoke color.sty's \definecolor, which needs a translation
+% of our space-separated CMYK vector to a comma-separated vector:
+\def\axo at new@color #1 #2 #3 #4 #5\@{\definecolor{#1}{cmyk}{#2,#3,#4,#5}}
+
+
+%   For consistency we define our named colors here, rather than
+%   using color.sty's mechanisms.  The
+%   first 68 are standard colors, as defined by dvips, and
+%   implemented in both colordvi.ps, and in color.sty with its
+%   usenames and dvipsnames options (in the file dvipsnam.def
+%   provided by the LaTeX graphics package). 
+%
+%       We define an extra 5 colors at the end
+%
+% The 68 dvips-defined colors are:
+%
+\newcolor{GreenYellow}{0.15 0 0.69 0}
+\newcolor{Yellow}{0 0 1 0}
+\newcolor{Goldenrod}{0 0.10 0.84 0}
+\newcolor{Dandelion}{0 0.29 0.84 0}
+\newcolor{Apricot}{0 0.32 0.52 0}
+\newcolor{Peach}{0 0.50 0.70 0}
+\newcolor{Melon}{0 0.46 0.50 0}
+\newcolor{YellowOrange}{0 0.42 1 0}
+\newcolor{Orange}{0 0.61 0.87 0}
+\newcolor{BurntOrange}{0 0.51 1 0}
+\newcolor{Bittersweet}{0 0.75 1 0.24}
+\newcolor{RedOrange}{0 0.77 0.87 0}
+\newcolor{Mahogany}{0 0.85 0.87 0.35}
+\newcolor{Maroon}{0 0.87 0.68 0.32}
+\newcolor{BrickRed}{0 0.89 0.94 0.28}
+\newcolor{Red}{0 1 1 0}
+\newcolor{OrangeRed}{0 1 0.50 0}
+\newcolor{RubineRed}{0 1 0.13 0}
+\newcolor{WildStrawberry}{0 0.96 0.39 0}
+\newcolor{Salmon}{0 0.53 0.38 0}
+\newcolor{CarnationPink}{0 0.63 0 0}
+\newcolor{Magenta}{0 1 0 0}
+\newcolor{VioletRed}{0 0.81 0 0}
+\newcolor{Rhodamine}{0 0.82 0 0}
+\newcolor{Mulberry}{0.34 0.90 0 0.02}
+\newcolor{RedViolet}{0.07 0.90 0 0.34}
+\newcolor{Fuchsia}{0.47 0.91 0 0.08}
+\newcolor{Lavender}{0 0.48 0 0}
+\newcolor{Thistle}{0.12 0.59 0 0}
+\newcolor{Orchid}{0.32 0.64 0 0}
+\newcolor{DarkOrchid}{0.40 0.80 0.20 0}
+\newcolor{Purple}{0.45 0.86 0 0}
+\newcolor{Plum}{0.50 1 0 0}
+\newcolor{Violet}{0.79 0.88 0 0}
+\newcolor{RoyalPurple}{0.75 0.90 0 0}
+\newcolor{BlueViolet}{0.86 0.91 0 0.04}
+\newcolor{Periwinkle}{0.57 0.55 0 0}
+\newcolor{CadetBlue}{0.62 0.57 0.23 0}
+\newcolor{CornflowerBlue}{0.65 0.13 0 0}
+\newcolor{MidnightBlue}{0.98 0.13 0 0.43}
+\newcolor{NavyBlue}{0.94 0.54 0 0}
+\newcolor{RoyalBlue}{1 0.50 0 0}
+\newcolor{Blue}{1 1 0 0}
+\newcolor{Cerulean}{0.94 0.11 0 0}
+\newcolor{Cyan}{1 0 0 0}
+\newcolor{ProcessBlue}{0.96 0 0 0}
+\newcolor{SkyBlue}{0.62 0 0.12 0}
+\newcolor{Turquoise}{0.85 0 0.20 0}
+\newcolor{TealBlue}{0.86 0 0.34 0.02}
+\newcolor{Aquamarine}{0.82 0 0.30 0}
+\newcolor{BlueGreen}{0.85 0 0.33 0}
+\newcolor{Emerald}{1 0 0.50 0}
+\newcolor{JungleGreen}{0.99 0 0.52 0}
+\newcolor{SeaGreen}{0.69 0 0.50 0}
+\newcolor{Green}{1 0 1 0}
+\newcolor{ForestGreen}{0.91 0 0.88 0.12}
+\newcolor{PineGreen}{0.92 0 0.59 0.25}
+\newcolor{LimeGreen}{0.50 0 1 0}
+\newcolor{YellowGreen}{0.44 0 0.74 0}
+\newcolor{SpringGreen}{0.26 0 0.76 0}
+\newcolor{OliveGreen}{0.64 0 0.95 0.40}
+\newcolor{RawSienna}{0 0.72 1 0.45}
+\newcolor{Sepia}{0 0.83 1 0.70}
+\newcolor{Brown}{0 0.81 1 0.60}
+\newcolor{Tan}{0.14 0.42 0.56 0}
+\newcolor{Gray}{0 0 0 0.50}
+\newcolor{Black}{0 0 0 1}
+\newcolor{White}{0 0 0 0}
+%
+%   Our extra colors
+%
+\newcolor{LightYellow}{0 0 0.7 0}
+\newcolor{LightRed}{0 0.75 0.7 0}
+\newcolor{LightBlue}{0.7 0.5 0 0}
+\newcolor{LightGray}{0 0 0 0.1}
+\newcolor{VeryLightBlue}{0.15 0.07 0 0}
+%
+\SetColor{Black}
+%
+%		#] Colors : 
+% 	#] Common LaTeX code : 
+% 	#[ LaTeX primitives :
+%
+%    #[ Putting material
+%
+
+% Some utilities that remove extra space that creeps in, particularly
+% when extra groups are inserted before the use of \put.
+% Use the definition of \@killglue used in latex.ltx for \put,
+% but copy it here, since \@killglue is internal and not documented.
+\gdef\AXO at killglue{\unskip\@whiledim \lastskip >\z@\do{\unskip}}
+
+% Special purpose versions of \put and \special
+\long\gdef\putLen(#1,#2)#3{%
+  % Like LaTeX's \put, except that #1 and #2 are lengths instead of numbers
+  % giving lengths in units of \unitlength.
+  \AXO at killglue\raise#2\relax
+  \hbox to 0pt{\kern#1\relax #3\hss}%
+  \ignorespaces
+}
+%
+\def\AxoPut(#1,#2)#3{%
+  % Like \put, but shifted by axodraw's offsets.
+  % This provides a way of coding the offsets in one place.
+  % But we are only using it in a limited set of cases so far.
+  \AXO at killglue
+  \bgroup
+    \axounitlength = \axoscale pt
+    \axo at x = \axoxoff \unitlength
+    \advance\axo at x by \axoxo \axounitlength
+    \advance\axo at x by #1 \axounitlength
+    \axo at y = \axoyoff \unitlength
+    \advance\axo at y by \axoyo \axounitlength
+    \advance\axo at y by #2 \axounitlength
+    \putLen(\axo at x,\axo at y){%
+                           % If there are axodraw objects in #3, they should not also
+                           % apply shifts, that would be double
+                           % counting! Hence:
+                           \SetOffset(0,0)%
+                           \SetScaledOffset(0,0)%
+                           #3%
+                          }%
+  \egroup
+\ignorespaces
+}
+
+\def\AXOspecial#1{%
+  % Insertion of postscript code:
+  % Replacement for \special{" ...}, with the color initialized
+  % to the color befor the \special.  (Ordinary \special{"...}
+  % initializes color to black.)
+  % Definitions made by \special{!...} are in dictionary SDict
+  % (as stated in dvips documentation), and we save color there.
+  \special{ps:: SDict begin savecolor end }%
+  \special{" restorecolor #1 }%
+}
+
+\def\AXOputPS#1{%
+    % Insert postscript code after allowing for offsets.
+    \AxoPut(0,0){\AXOspecial{#1}}%
+}
+
+\def\AXOputPDF#1{
+    % Insert pdf code after allowing for offsets.
+    \AxoPut(0,0){\axo at pdfliteral{#1}}%
+}
+
+%
+%  Now variables and routines for setting material in boxes (used by
+%  the BText etc commands.
+%
+\newdimen\tmpX
+\newdimen\tmpY
+\newsavebox{\tmpBox}
+\newsavebox{\tmpBoxA}
+%
+\newcount\axo at tmp
+\newcount\axo at tmpA
+\newcount\axo at tmpB
+
+\newcount\bpinsp
+\bpinsp = 65782
+\newcount\ptinsp
+\ptinsp = 65536
+
+\def\AssignDecDiv#1#2#3{%
+    % Assign the variable of name #1 to the result of dividing integer
+    % #2 by integer #3, with result as a textual decimal.  Absolute
+    % accuracy: 0.001. 
+    % Typical use: conversion of lengths to points and big points.
+    %      \AssignDecDiv{cachedscale}{\unitlength}{65536}
+    %      \AssignDecDiv{cachedscale}{\unitlength}{\ptinsp}
+    % to get length in points.
+    % Notes on conversion
+    % 1 sp = 2^{-16} pt = (1/65536) pt
+    % 1 pt = (1/72.27) in
+    % 1 bp = (1/72) in
+    % 1 sp = (1/65781.76) bp
+    % Use \relax at end of lines setting count registers.
+    % This ensures that the code works both when the arguments are
+    % given as numbers, e.g., \AxoDecDiv{100}{3}, as well as when they are
+    % given as lengths, etc, e.g., \AxoDecDiv{\unitlength}{256}
+    % 
+    \axo at tmp = #2\relax
+    \axo at tmpA = \axo at tmp
+    \divide \axo at tmpA by #3\relax
+    \axo at tmpB=\axo at tmpA
+    \multiply \axo at tmpA by #3\relax
+    \advance \axo at tmp by -\axo at tmpA
+    \multiply \axo at tmp by 1000
+    \divide \axo at tmp by #3\relax
+    \expandafter\edef\csname #1\endcsname{\the\axo at tmpB.\the\axo at tmp}%
+}
+
+\def\SetTmpBox#1{%
+    % Sets the box \tmpBox to the contents of #1 set with current PS
+    % font and size. Sets \tmpX and \tmpY to the dimensions of the box
+    % plus some space around it, suitable for drawing an enclosing box.
+    %
+    % The vertical box setting numbers agree with those in axodraw's
+    % postscript code, but not (28 July 2014) with the axohelp pdf code.
+    % The reverse is true for the horizontal box settings.
+    % We can tweak them further.
+    % This is a standardized routine for use in all versions of postscript
+    % textbox routines.
+    % N.B. Use LaTeX's \sbox at first step, not TeX primitives to set
+    % box contents; it works properly with color.
+    \sbox{\tmpBox}{\UseCurrentPSFont #1}%
+    \tmpX = \axofontsize pt
+    \advance \tmpX by \wd\tmpBox
+    \tmpY = \axofontsize pt
+    \tmpY = 0.33333 \tmpY
+    \advance \tmpY by \ht\tmpBox
+    \advance \tmpY by \dp\tmpBox
+    \AssignDecDiv{tmpXT}{\tmpX}{\ptinsp}%
+    \AssignDecDiv{tmpYT}{\tmpY}{\ptinsp}%
+}
+
+\def\SetTmpBoxTwo#1#2{%
+    % Equivalent of \SetTmpBox for two line commands.
+    %
+    % N.B. Use LaTeX's \sbox at first step, not TeX primitives to set
+    % box contents; it works properly with color.
+    \sbox{\tmpBox}{\UseCurrentPSFont  #1}%
+    \sbox{\tmpBoxA}{\UseCurrentPSFont #2}%
+    \ifdim \wd\tmpBox > \wd\tmpBoxA 
+        \tmpX = \wd\tmpBox
+    \else
+        \tmpX = \wd\tmpBoxA
+    \fi 
+    \advance \tmpX by \axofontsize pt
+    \tmpY = \axofontsize pt
+    \setbox\tmpBox=%
+        \vbox{% 
+           \lineskip = 0.1 \tmpY
+           \baselineskip = 1.1 \tmpY
+           \vskip 0.3 \tmpY
+           \hbox{\makebox[0pt]{\box\tmpBox}}%
+           \hbox{\makebox[0pt]{\box\tmpBoxA}}%
+           \vskip 0.3 \tmpY
+        }%
+    \tmpY = \ht\tmpBox
+    \advance \tmpY by \dp\tmpBox
+    \AssignDecDiv{tmpXT}{\tmpX}{\ptinsp}%
+    \AssignDecDiv{tmpYT}{\tmpY}{\ptinsp}%
+}
+%
+%    #] Putting
+%	 #[ Point setting and using :
+%
+\def\SetPoint#1(#2,#3){%
+    % Define a named point in 2D
+    \@namedef{AXO at p.X@#1}{#2}%
+    \@namedef{AXO at p.Y@#1}{#3}%
+}
+\def\useX#1{%
+    % Use a named point
+    \@nameuse{AXO at p.X@#1}%
+}
+\def\useY#1{%
+    % Use a named point
+    \@nameuse{AXO at p.Y@#1}%
+}
+%
+%	 #] Point setting and using : 
+%	 #[ Particle routines :
+%		#[ Gluon :
+%
+\def\Gluon{%
+%
+%   Draws a gluon from (x1,y1) to (x2,y2) with amplitude and number of windings
+%
+    \AXO at Parse{\AXO at Gluon}{}%
+}
+%
+%		#] Gluon : 
+%		#[ DoubleGluon :
+%
+\defWithOption{DoubleGluon}{(#2,#3)(#4,#5)#6#7#8}{%
+%
+%   Draws a gluon from (x1,y1) to (x2,y2) with amplitude and number of windings
+%
+    \Gluon[double,sep=#8,#1](#2,#3)(#4,#5){#6}{#7}%
+}
+%
+%		#] DoubleGluon : 
+%		#[ DashGluon :
+%
+\defWithOption{DashGluon}{(#2,#3)(#4,#5)#6#7#8}{%
+%
+%   Draws a gluon from (x1,y1) to (x2,y2) with amplitude and number of windings
+%
+    \Gluon[dash,dashsize=#8,#1](#2,#3)(#4,#5){#6}{#7}%
+}
+%
+%		#] DashGluon : 
+%		#[ DashDoubleGluon :
+%
+\defWithOption{DashDoubleGluon}{(#2,#3)(#4,#5)#6#7#8#9}{%
+%
+%   Draws a gluon from (x1,y1) to (x2,y2) with amplitude and number of windings
+%
+    \Gluon[double,sep=#8,dash,dashsize=#9,#1](#2,#3)(#4,#5){#6}{#7}%
+}
+%
+%		#] DashDoubleGluon : 
+%		#[ GluonCirc :
+%
+%   Draws a gluon on a circle. The center of the circle is at (#1,#2)
+%   The radius and the phase angle are (#3,#4), #5 is the
+%   amplitude of the gluon, and #6 is the number of windings.
+%
+\def\GluonCirc{%
+%
+%   Draws a gluon from (x1,y1) to (x2,y2) with amplitude and number of windings
+%
+    \AXO at Parse{\AXO at GluonCirc}{}%
+}
+%
+%		#] GluonCirc : 
+%		#[ DoubleGluonCirc :
+%
+\defWithOption{DoubleGluonCirc}{(#2,#3)(#4,#5)#6#7#8}{%
+%
+%   Draws a gluon from (x1,y1) to (x2,y2) with amplitude and number of windings
+%
+    \GluonCirc[double,sep=#8,#1](#2,#3)(#4,#5){#6}{#7}%
+}
+%
+%		#] DoubleGluonCirc : 
+%		#[ DashGluonCirc :
+%
+\defWithOption{DashGluonCirc}{(#2,#3)(#4,#5)#6#7#8}{%
+%
+%   Draws a gluon from (x1,y1) to (x2,y2) with amplitude and number of windings
+%
+    \GluonCirc[dash,dashsize=#8,#1](#2,#3)(#4,#5){#6}{#7}%
+}
+%
+%		#] DashGluonCirc : 
+%		#[ DashDoubleGluonCirc :
+%
+\defWithOption{DashDoubleGluonCirc}{(#2,#3)(#4,#5)#6#7#8#9}{%
+%
+%   Draws a gluon from (x1,y1) to (x2,y2) with amplitude and number of windings
+%
+    \GluonCirc[double,sep=#8,dash,dashsize=#9,#1](#2,#3)(#4,#5){#6}{#7}%
+}
+%
+%		#] DashDoubleGluonCirc : 
+%		#[ GluonArc :
+%
+\def\GluonArc{%
+%   \GluonArc(x,y)(r,theta1,theta2){amplitude}{numwind}
+%   draws a gluon on an arc centered at (x,y) of radius r, starting
+%   at theta1, and ending at theta2, with given amplitude and
+%   number of windings 
+%
+    \AXO at Parse{\AXO at GluonArc}{}%
+}
+%
+\let\GlueArc=\GluonArc  % For backward compatibility
+%
+%		#] GluonArc : 
+%		#[ DoubleGluonArc :
+%
+\defWithOption{DoubleGluonArc}{(#2)(#3)#4#5#6}{%
+%
+%   \DoubleGluonArc(x,y)(r,theta1,theta2){amplitude}{numwind}{sep}
+%   draws a gluon on an arc centered at (x,y) of radius r, starting
+%   at theta1, and ending at theta2, with given amplitude and
+%   number of windings 
+%
+    \GluonArc[double,sep=#6,#1](#2)(#3){#4}{#5}%
+}
+%
+\let\DoubleGlueArc=\DoubleGluonArc  % For backward compatibility
+%
+%		#] DoubleGluonArc : 
+%		#[ DashGluonArc :
+%
+\defWithOption{DashGluonArc}{(#2)(#3)#4#5#6}{%
+%
+%   \DashGluonArc(x,y)(r,theta1,theta2){amplitude}{numwind}{dashsize}
+%   draws a gluon on an arc centered at (x,y) of radius r, starting
+%   at theta1, and ending at theta2, with given amplitude and
+%   number of windings 
+%
+    \GluonArc[dash,dashsize=#6,#1](#2)(#3){#4}{#5}%
+}
+%
+\let\DashGlueArc=\DashGluonArc  % For backward compatibility
+%
+%		#] DashGluonArc : 
+%		#[ DashDoubleGluonArc :
+%
+\defWithOption{DashDoubleGluonArc}{(#2)(#3)#4#5#6#7}{%
+%
+%   \DashGluonArc(x,y)(r,theta1,theta2){amplitude}{numwind}{dashsize}
+%   draws a gluon on an arc centered at (x,y) of radius r, starting
+%   at theta1, and ending at theta2, with given amplitude and
+%   number of windings 
+%
+    \GluonArc[double,sep=#6,dash,dashsize=#7,#1](#2)(#3){#4}{#5}%
+}
+%
+\let\DashDoubleGlueArc=\DashDoubleGluonArc  % For backward compatibility
+%
+%		#] DashDoubleGluonArc : 
+%		#[ GluonArcn :
+%
+\defWithOption{GluonArcn}{(#2)(#3)#4#5}{%
+%   \GluonArcn(x,y)(r,theta1,theta2){amplitude}{numwind}
+%   draws a gluon on an arc centered at (x,y) of radius r, starting
+%   at theta1, and ending at theta2, with given amplitude and
+%   number of windings. The n stands for clockwise
+%
+    \GluonArc[clockwise,#1](#2)(#3){#4}{#5}%
+}
+%
+\let\GlueArcn=\GluonArcn  % For backward compatibility
+%
+%		#] GluonArcn : 
+%		#[ DoubleGluonArcn :
+%
+\defWithOption{DoubleGluonArcn}{(#2)(#3)#4#5#6}{%
+%
+%   \DoubleGluonArcn(x,y)(r,theta1,theta2){amplitude}{numwind}{sep}
+%   draws a gluon on an arc centered at (x,y) of radius r, starting
+%   at theta1, and ending at theta2, with given amplitude and
+%   number of windings. Clockwise.
+%
+    \GluonArc[clockwise,double,sep=#6,#1](#2)(#3){#4}{#5}%
+}
+%
+\let\DoubleGlueArcn=\DoubleGluonArcn  % For backward compatibility
+%
+%		#] DoubleGluonArcn : 
+%		#[ DashGluonArcn :
+%
+\defWithOption{DashGluonArcn}{(#2)(#3)#4#5#6}{%
+%
+%   \DashGluonArc(x,y)(r,theta1,theta2){amplitude}{numwind}{dashsize}
+%   draws a gluon on an arc centered at (x,y) of radius r, starting
+%   at theta1, and ending at theta2, with given amplitude and
+%   number of windings. Clockwise.
+%
+    \GluonArc[clockwise,dash,dashsize=#6,#1](#2)(#3){#4}{#5}%
+}
+%
+\let\DashGlueArcn=\DashGluonArcn  % For backward compatibility
+%
+%		#] DashGluonArcn : 
+%		#[ DashDoubleGluonArcn :
+%
+\defWithOption{DashDoubleGluonArcn}{(#2)(#3)#4#5#6#7}{%
+%
+%   \DashGluonArcn(x,y)(r,theta1,theta2){amplitude}{numwind}{dashsize}
+%   draws a gluon on an arc centered at (x,y) of radius r, starting
+%   at theta1, and ending at theta2, with given amplitude and
+%   number of windings. Clockwise.
+%
+    \GluonArc[clockwise,double,sep=#6,dash,dashsize=#7,#1](#2)(#3){#4}{#5}%
+}
+%
+\let\DashDoubleGlueArcn=\DashDoubleGluonArcn  % For backward compatibility
+%
+%		#] DashDoubleGluonArcn : 
+%		#[ Photon :
+%
+\def\Photon{%
+%   \Photon[opt](x1,y1)(x2,y2){amplitude}{numwind}
+%   Draws a photon from (x1,y1) to (x2,y2) with given amplitude and
+%   number of windings 
+%   Supported options: double, sep, linesep
+%
+    \AXO at Parse{\AXO at Photon}{}%
+}
+%
+%		#] Photon : 
+%		#[ DoublePhoton :
+%
+\defWithOption{DoublePhoton}{(#2,#3)(#4,#5)#6#7#8}{%
+%
+%   Draws a photon from (x1,y1) to (x2,y2) with amplitude and number of windings
+%
+    \Photon[double,sep=#8,#1](#2,#3)(#4,#5){#6}{#7}%
+}
+%
+%		#] DoublePhoton : 
+%		#[ DashPhoton :
+%
+\defWithOption{DashPhoton}{(#2,#3)(#4,#5)#6#7#8}{%
+%
+%   Draws a photon from (x1,y1) to (x2,y2) with amplitude and number of windings
+%
+    \Photon[dash,dashsize=#8,#1](#2,#3)(#4,#5){#6}{#7}%
+}
+%
+%		#] DashPhoton : 
+%		#[ DashDoublePhoton :
+%
+\defWithOption{DashDoublePhoton}{(#2,#3)(#4,#5)#6#7#8#9}{%
+%
+%   Draws a photon from (x1,y1) to (x2,y2) with amplitude and number of windings
+%
+    \Photon[double,sep=#8,dash,dashsize=#9,#1](#2,#3)(#4,#5){#6}{#7}%
+}
+%
+%		#] DashDoublePhoton : 
+%		#[ PhotonArc :
+%
+\def\PhotonArc{%
+%   \PhotonArc(x,y)(r,theta1,theta2){amplitude}{numwind}
+%   draws a photon on an arc centered at (x,y) of radius r, starting
+%   at theta1, and ending at theta2, with given amplitude and
+%   number of windings 
+%
+    \AXO at Parse{\AXO at PhotonArc}{}%
+}
+%
+%		#] PhotonArc : 
+%		#[ DoublePhotonArc :
+%
+\defWithOption{DoublePhotonArc}{(#2,#3)(#4,#5,#6)#7#8#9}{%
+%
+%   \PhotonArc(x,y)(r,theta1,theta2){amplitude}{numwind}{sep}
+%   draws a photon on an arc centered at (x,y) of radius r, starting
+%   at theta1, and ending at theta2, with given amplitude and
+%   number of windings 
+%
+    \PhotonArc[double,sep=#9,#1](#2,#3)(#4,#5,#6){#7}{#8}%
+}
+%
+%		#] DoublePhotonArc : 
+%		#[ DashPhotonArc :
+%
+\defWithOption{DashPhotonArc}{(#2,#3)(#4,#5,#6)#7#8#9}{%
+%
+%   \DashPhotonArc(x,y)(r,theta1,theta2){amplitude}{numwind}{dashsize}
+%   draws a photon on an arc centered at (x,y) of radius r, starting
+%   at theta1, and ending at theta2, with given amplitude and
+%   number of windings 
+%
+    \PhotonArc[dash,dashsize=#9,#1](#2,#3)(#4,#5,#6){#7}{#8}%
+}
+%
+%
+%		#] DashPhotonArc : 
+%		#[ DashDoublePhotonArc :
+%
+\defWithOption{DashDoublePhotonArc}{(#2)(#3)#4#5#6#7}{%
+% Note that there are actually ten arguments with the optional #1,
+% which LaTeX/TeX can't handle.  I consolidate the comma separated
+% arguments into one, and then pass them to \PhotonArc
+%
+%   \DashPhotonArc(x,y)(r,theta1,theta2){amplitude}{numwind}{dashsize}
+%   draws a photon on an arc centered at (x,y) of radius r, starting
+%   at theta1, and ending at theta2, with given amplitude and
+%   number of windings 
+%
+    \PhotonArc[double,sep=#6,dash,dashsize=#7,#1](#2)(#3){#4}{#5}%
+}
+%
+%
+%		#] DashDoublePhotonArc : 
+%		#[ PhotonArcn :
+%
+\defWithOption{PhotonArcn}{(#2,#3)(#4,#5,#6)#7#8}{%
+%   \PhotonArcn(x,y)(r,theta1,theta2){amplitude}{numwind}
+%   draws a photon on an arc centered at (x,y) of radius r, starting
+%   at theta1, and ending at theta2, with given amplitude and
+%   number of windings 
+%
+    \PhotonArc[clockwise,#1](#2,#3)(#4,#5,#6){#7}{#8}%
+}
+%
+%		#] PhotonArcn : 
+%		#[ DoublePhotonArcn :
+%
+\defWithOption{DoublePhotonArcn}{(#2)(#3)#4#5#6}{%
+% I consolidate the comma separated arguments into one, and then pass
+% them to \PhotonArc 
+%
+%   \PhotonArcn(x,y)(r,theta1,theta2){amplitude}{numwind}{sep}
+%   draws a photon on an arc centered at (x,y) of radius r, starting
+%   at theta1, and ending at theta2, with given amplitude and
+%   number of windings 
+%
+    \PhotonArc[clockwise,double,sep=#6,#1](#2)(#3){#4}{#5}%
+}
+%
+%		#] DoublePhotonArcn : 
+%		#[ DashPhotonArcn :
+%
+\defWithOption{DashPhotonArcn}{(#2)(#3)#4#5#6}{%
+% I consolidate the comma separated arguments into one, and then pass
+% them to \PhotonArc 
+%
+%   \DashPhotonArcn(x,y)(r,theta1,theta2){amplitude}{numwind}{dashsize}
+%   draws a photon on an arc centered at (x,y) of radius r, starting
+%   at theta1, and ending at theta2, with given amplitude and
+%   number of windings.Clockwise.
+%
+    \PhotonArc[clockwise,dash,dashsize=#6,#1](#2)(#3){#4}{#5}%
+}
+%
+%
+%		#] DashPhotonArcn : 
+%		#[ DashDoublePhotonArcn :
+%
+\defWithOption{DashDoublePhotonArcn}{(#2)(#3)#4#5#6#7}{%
+% I consolidate the comma separated arguments into one, and then pass
+% them to \PhotonArc 
+%
+%   \DashPhotonArcn(x,y)(r,theta1,theta2){amplitude}{numwind}{dashsize}
+%   draws a photon on an arc centered at (x,y) of radius r, starting
+%   at theta1, and ending at theta2, with given amplitude and
+%   number of windings. Clockwise.
+%
+    \PhotonArc[clockwise,double,sep=#6,dash,dashsize=#7,#1](#2)(#3){#4}{#5}%
+}
+%
+%
+%		#] DashDoublePhotonArcn : 
+%		#[ ZigZag :
+%
+\def\ZigZag{%
+%   \ZigZag[opt](x1,y1)(x2,y2){amplitude}{numwind}
+%   Draws a zigzag from (x1,y1) to (x2,y2) with given amplitude and
+%   number of windings 
+%   Supported options: double, sep, linesep
+%
+    \AXO at Parse{\AXO at ZigZag}{}%
+}
+%
+%		#] ZigZag : 
+%		#[ DoubleZigZag :
+%
+\defWithOption{DoubleZigZag}{(#2,#3)(#4,#5)#6#7#8}{%
+%
+%   Draws a zigzag from (x1,y1) to (x2,y2) with amplitude and number of windings
+%
+    \ZigZag[double,sep=#8,#1](#2,#3)(#4,#5){#6}{#7}%
+}
+%
+%		#] DoubleZigZag : 
+%		#[ DashZigZag :
+%
+\defWithOption{DashZigZag}{(#2,#3)(#4,#5)#6#7#8}{%
+%
+%   Draws a zigzag from (x1,y1) to (x2,y2) with amplitude and number of windings
+%
+    \ZigZag[dash,dashsize=#8,#1](#2,#3)(#4,#5){#6}{#7}%
+}
+%
+%		#] DashZigZag : 
+%		#[ DashDoubleZigZag :
+%
+\defWithOption{DashDoubleZigZag}{(#2,#3)(#4,#5)#6#7#8#9}{%
+%
+%   Draws a zigzag from (x1,y1) to (x2,y2) with amplitude and number of windings
+%
+    \ZigZag[double,sep=#8,dash,dashsize=#9,#1](#2,#3)(#4,#5){#6}{#7}%
+}
+%
+%		#] DashDoubleZigZag : 
+%		#[ ZigZagArc :
+%
+\def\ZigZagArc{%
+%   \ZigZagArc(x,y)(r,theta1,theta2){amplitude}{numwind}
+%   draws a zigzag on an arc centered at (x,y) of radius r, starting
+%   at theta1, and ending at theta2, with given amplitude and
+%   number of windings 
+%
+    \AXO at Parse{\AXO at ZigZagArc}{}%
+}
+%
+%		#] ZigZagArc : 
+%		#[ DoubleZigZagArc :
+%
+\defWithOption{DoubleZigZagArc}{(#2,#3)(#4,#5,#6)#7#8#9}{%
+%
+%   \ZigZagArc(x,y)(r,theta1,theta2){amplitude}{numwind}{sep}
+%   draws a zigzag on an arc centered at (x,y) of radius r, starting
+%   at theta1, and ending at theta2, with given amplitude and
+%   number of windings 
+%
+    \ZigZagArc[double,sep=#9,#1](#2,#3)(#4,#5,#6){#7}{#8}%
+}
+%
+%		#] DoubleZigZagArc : 
+%		#[ DashZigZagArc :
+%
+\defWithOption{DashZigZagArc}{(#2)(#3)#4#5#6}{%
+%
+%   \DashZigZagArc(x,y)(r,theta1,theta2){amplitude}{numwind}{dashsize}
+%   draws a zigzag on an arc centered at (x,y) of radius r, starting
+%   at theta1, and ending at theta2, with given amplitude and
+%   number of windings 
+%
+    \ZigZagArc[dash,dashsize=#6,#1](#2)(#3){#4}{#5}%
+}
+%
+%
+%		#] DashZigZagArc : 
+%		#[ DashDoubleZigZagArc :
+%
+\defWithOption{DashDoubleZigZagArc}{(#2)(#3)#4#5#6#7}{%
+%
+%   \DashZigZagArc(x,y)(r,theta1,theta2){amplitude}{numwind}{dashsize}
+%   draws a zigzag on an arc centered at (x,y) of radius r, starting
+%   at theta1, and ending at theta2, with given amplitude and
+%   number of windings 
+%
+    \ZigZagArc[double,sep=#6,dash,dashsize=#7,#1](#2)(#3){#4}{#5}%
+}
+%
+%
+%		#] DashDoubleZigZagArc : 
+%		#[ ZigZagArcn :
+%
+\defWithOption{ZigZagArcn}{(#2)(#3)#4#5}{%
+%   \ZigZagArcn(x,y)(r,theta1,theta2){amplitude}{numwind}
+%   draws a zigzag on an arc centered at (x,y) of radius r, starting
+%   at theta1, and ending at theta2, with given amplitude and
+%   number of windings 
+%
+    \ZigZagArc[clockwise,#1](#2)(#3){#4}{#5}%
+}
+%
+%		#] ZigZagArcn : 
+%		#[ DoubleZigZagArcn :
+%
+\defWithOption{DoubleZigZagArcn}{(#2)(#3)#4#5#6}{%
+%
+%   \ZigZagArcn(x,y)(r,theta1,theta2){amplitude}{numwind}{sep}
+%   draws a zigzag on an arc centered at (x,y) of radius r, starting
+%   at theta1, and ending at theta2, with given amplitude and
+%   number of windings 
+%
+    \ZigZagArc[clockwise,double,sep=#6,#1](#2)(#3){#4}{#5}%
+}
+%
+%		#] DoubleZigZagArcn : 
+%		#[ DashZigZagArcn :
+%
+\defWithOption{DashZigZagArcn}{(#2)(#3)#4#5#6}{%
+%
+%   \DashZigZagArcn(x,y)(r,theta1,theta2){amplitude}{numwind}{dashsize}
+%   draws a zigzag on an arc centered at (x,y) of radius r, starting
+%   at theta1, and ending at theta2, with given amplitude and
+%   number of windings.Clockwise.
+%
+    \ZigZagArc[clockwise,dash,dashsize=#6,#1](#2)(#3){#4}{#5}%
+}
+%
+%
+%		#] DashZigZagArcn : 
+%		#[ DashDoubleZigZagArcn :
+%
+\defWithOption{DashDoubleZigZagArcn}{(#2)(#3)#4#5#6#7}{%
+%
+%   \DashZigZagArcn(x,y)(r,theta1,theta2){amplitude}{numwind}{dashsize}
+%   draws a zigzag on an arc centered at (x,y) of radius r, starting
+%   at theta1, and ending at theta2, with given amplitude and
+%   number of windings. Clockwise.
+%
+    \ZigZagArc[clockwise,double,sep=#6,dash,dashsize=#7,#1](#2)(#3){#4}{#5}%
+}
+%
+%		#] DashDoubleZigZagArcn : 
+%	 #] Particle routines : 
+%	 #[ Line routines :
+%		#[ Line :
+%
+\def\Line{%
+% \Line[opt](x1,y1)(x2,y2)
+% draws a line from (x1,y1) to (x2,y2).  NO arrow by default.
+% Supported options: all arrow settings, all double line settings,
+% all dash line settings.
+%
+    \AXO at Parse{\AXO at Line}{}%
+}
+%
+%		#] Line : 
+%		#[ DoubleLine :
+%
+\defWithOption{DoubleLine}{(#2,#3)(#4,#5)#6}{%
+%
+%   \DoubleLine[opt](x1,y1)(x2,y2){sep}
+%   Draws a double line, with NO arrow by default, from (x1,y1) to (x2,y2),
+%      with separation sep
+%
+    \Line[arrow=false,double,sep=#6,#1](#2,#3)(#4,#5)%
+}
+%
+%		#] DoubleLine : 
+%		#[ DashLine :
+%
+\defWithOption{DashLine}{(#2,#3)(#4,#5)#6}{%
+%   \DashLine[opt](x1,y1)(x2,y2){sep}
+%   Draws a line from (x1,y1) to (x2,y2) with a dash pattern of which the
+%   alternating black and white pieces are approximately sep points long
+%
+    \Line[dash,dashsize=#6,#1](#2,#3)(#4,#5)%
+}
+%
+%		#] DashLine : 
+%		#[ DashDoubleLine :
+%
+\defWithOption{DashDoubleLine}{(#2,#3)(#4,#5)#6#7}{%
+%   \DashDoubleLine[opt](x1,y1)(x2,y2){sep}{dashsize}
+%   Draws a double line from (x1,y1) to (x2,y2) with separation sep,
+%   and with a dash pattern of which the
+%   alternating black and white pieces are approximately sep points long
+%   Arrow off.
+    \Line[arrow=off,dash,dashsize=#7,double,sep=#6,#1](#2,#3)(#4,#5)%
+}
+%
+%		#] DashDoubleLine : 
+%		#[ ArrowLine :
+%
+\defWithOption{ArrowLine}{(#2,#3)(#4,#5)}{%
+% \ArrowLine[opt](x1,y1)(x2,y2)
+% draws a line from (x1,y1) to (x2,y2).  Arrow by default.
+%
+    \Line[arrow,#1](#2,#3)(#4,#5)%
+}
+%
+%		#] ArrowLine : 
+%		#[ ArrowDoubleLine :
+%
+\defWithOption{ArrowDoubleLine}{(#2,#3)(#4,#5)#6}{%
+%
+%   \ArrowDoubleLine[opt](x1,y1)(x2,y2){sep}
+%   Draws a double line, with arrow by default, from (x1,y1) to (x2,y2),
+%      with separation sep
+%
+    \Line[arrow,double,sep=#6,#1](#2,#3)(#4,#5)%
+}
+%
+%		#] ArrowDoubleLine : 
+%		#[ DashArrowLine :
+%
+\defWithOption{DashArrowLine}{(#2,#3)(#4,#5)#6}{%
+%   \DashArrowLine[opt](x1,y1)(x2,y2){sep}
+%   Draws a line from (x1,y1) to (x2,y2) with a dash pattern of which the
+%   alternating black and white pieces are approximately sep points
+%   long.   Arrow by default.
+%
+    \Line[arrow,dash,dashsize=#6,#1](#2,#3)(#4,#5)%
+}
+%
+\let\ArrowDashLine=\DashArrowLine%
+%
+%		#] DashArrowLine : 
+%		#[ DashArrowDoubleLine :
+%
+\defWithOption{DashArrowDoubleLine}{(#2,#3)(#4,#5)#6#7}{%
+%   \DashArrowDoubleLine[opt](x1,y1)(x2,y2){sep}{dashsize}
+%   Draws a double line from (x1,y1) to (x2,y2) with separation sep,
+%   and with a dash pattern of which the
+%   alternating black and white pieces are approximately sep points long
+%   Arrow on.
+%
+    \Line[arrow,dash,dashsize=#7,double,sep=#6,#1](#2,#3)(#4,#5)%
+}
+%
+\let\ArrowDashDoubleLine=\DashArrowDoubleLine%
+%
+%		#] DashArrowDoubleLine : 
+%		#[ LongArrow :
+%
+\defWithOption{LongArrow}{(#2,#3)(#4,#5)}{%
+    \Line[arrow,arrowpos=1,#1](#2,#3)(#4,#5)%
+}
+%
+%		#] LongArrow : 
+%		#[ DashLongArrowLine :
+%
+\defWithOption{DashLongArrowLine}{(#2,#3)(#4,#5)#6}{%
+%   \DashLongArrowLine[opt](x1,y1)(x2,y2){sep}
+%   Draws a line from (x1,y1) to (x2,y2) with a dash pattern of which the
+%   alternating black and white pieces are approximately sep points
+%   long.   Arrow by default.
+%
+%
+    \Line[arrow,arrowpos=1,dash,dashsize=#6,#1](#2,#3)(#4,#5)%
+}
+\let\DashLongArrow=\DashLongArrowLine
+\let\LongArrowDash=\DashLongArrowLine
+\let\LongArrowDashLine=\DashLongArrowLine
+%
+%		#] DashLongArrowLine : 
+%	 #] Line routines : 
+%	 #[ Arc routines :
+%		#[ Arc :
+%
+\def\Arc{%
+% \Arc[opt](x,y)(r,theta1,theta2)
+% draws an arc centered at (x,y) of radius r, starting at theta1,
+% and ending at theta2.  By default: no arrow, undashed, single,
+% anticlockwise. 
+% Supported options: all arrow settings, all double line settings,
+% all dash line settings, clock
+%
+    \AXO at Parse{\AXO at Arc}{}%
+}
+%
+%		#] Arc : 
+%		#[ CArc :
+%
+\let\CArc=\Arc
+%
+%		#] CArc : 
+%		#[ DoubleArc :
+%
+\defWithOption{DoubleArc}{(#2,#3)(#4,#5,#6)#7}{%
+%
+%   Draws a double lined arc segment. The center of the curve
+%   is at (1,2).
+%   The radius, start angle and target angle are (#3,#4,#5).
+%   The arc segment runs anticlockwise
+%   #6 is the separation of the lines.
+%
+    \Arc[double,sep=#7,#1](#2,#3)(#4,#5,#6)%
+}
+\let\DoubleCArc=\DoubleArc
+%
+%		#] DoubleArc : 
+%		#[ DashArc :
+%
+\defWithOption{DashArc}{(#2,#3)(#4,#5,#6)#7}{%
+%
+%   Draws a dashed arc segment. The center of the curve
+%   is at (1,2).
+%   The radius, start angle and target angle are (#3,#4,#5).
+%   The arc segment runs anticlockwise
+%   #6 is the dashsize. this is rounded to make things come
+%   out right.
+%
+    \Arc[dash,dsize=#7,#1](#2,#3)(#4,#5,#6)%
+}
+\let\DashCArc=\DashArc
+%
+%		#] DashArc : 
+%		#[ DashDoubleArc :
+%
+\defWithOption{DashDoubleArc}{(#2,#3)(#4,#5,#6)#7#8}{
+%
+%   Draws a dashed arc segment. The center of the curve
+%   is at (1,2).
+%   The radius, start angle and target angle are (#3,#4,#5).
+%   The arc segment runs anticlockwise
+%   #6 is the line separation.
+%   #7 is the dashsize. this is rounded to make things come
+%   out right.
+%
+    \Arc[double,sep=#7,dash,dsize=#8,#1](#2,#3)(#4,#5,#6)%
+}
+\let\DashDoubleCArc=\DashDoubleArc
+%
+%		#] DashDoubleArc : 
+%		#[ ArrowArc :
+%
+\def\ArrowArc{%
+    \AXO at PrependOption{\Arc}{arrow}%
+}
+\let\ArrowCArc=\ArrowArc
+%
+%		#] ArrowArc : 
+%		#[ ArrowDoubleArc :
+%
+\defWithOption{ArrowDoubleArc}{(#2,#3)(#4,#5,#6)#7}{%
+    \Arc[arrow,double,sep=#7,#1](#2,#3)(#4,#5,#6)%
+}
+\let\ArrowDoubleCArc=\ArrowDoubleArc
+%
+%		#] ArrowDoubleArc : 
+%		#[ ArrowDashArc :
+%
+\defWithOption{ArrowDashArc}{(#2,#3)(#4,#5,#6)#7}{%
+    \Arc[arrow,dash,dsize=#7,#1](#2,#3)(#4,#5,#6)%
+}
+\let\ArrowDashCArc=\ArrowDashArc
+\let\DashArrowCArc=\ArrowDashArc
+\let\DashArrowArc=\ArrowDashArc
+%
+%		#] ArrowDashArc : 
+%		#[ ArrowDashDoubleArc :
+%
+\defWithOption{ArrowDashDoubleArc}{(#2,#3)(#4,#5,#6)#7#8}{%
+    \Arc[arrow,double,sep=#7,dash,dsize=#8,#1](#2,#3)(#4,#5,#6)%
+}
+\let\ArrowDashDoubleCArc=\ArrowDashDoubleArc
+\let\DashArrowDoubleCArc=\ArrowDashDoubleArc
+\let\DashArrowDoubleArc=\ArrowDashDoubleArc
+%
+%
+%		#] ArrowDashDoubleArc : 
+%		#[ LongArrowArc :
+%
+\def\LongArrowArc{%
+    \AXO at PrependOption{\Arc}{arrow,arrowpos=1}%
+}
+%
+%		#] LongArrowArc : 
+%		#[ LongDashArrowArc :
+%
+\defWithOption{LongArrowDashArc}{(#2,#3)(#4,#5,#6)#7}{%
+    \Arc[arrow,arrowpos=1,dash,dsize=#7,#1](#2,#3)(#4,#5,#6)%
+}
+\let\LongArrowDashCArc=\LongArrowDashArc
+\let\LongDashArrowCArc=\LongArrowDashArc
+\let\LongDashArrowArc=\LongArrowDashArc
+%
+%
+%		#] LongDashArrowArc : 
+%		#[ ArrowArcn :
+%
+\def\ArrowArcn{%
+    \AXO at PrependOption{\Arc}{arrow,clock}%
+}
+%
+%		#] ArrowArcn : 
+%		#[ LongArrowArcn :
+%
+\def\LongArrowArcn{%
+    % \ArrowArcn, but with arrow at end by default
+    \AXO at PrependOption{\Arc}{arrow, clock, arrowpos=1}%
+}
+%
+%		#] LongArrowArcn : 
+%		#[ DashArrowArcn :
+%
+\defWithOption{DashArrowArcn}{(#2,#3)(#4,#5,#6)#7}{%
+%   (x,y)(radius,start,end){dashsize}
+%   Draws a dashed arc segment with an arrow in it. The center of the curve
+%   is at (x,y), with given radius, start angle, and end angle
+%   The arc segment runs anticlockwise
+    \Arc[clock,arrow,dash,dashsize=#7,#1](#2,#3)(#4,#5,#6)%
+}
+%
+\let\ArrowDashArcn=\DashArrowArcn%
+%
+%
+%		#] DashArrowArcn : 
+%	 #] Arc routines : 
+%	 #[ Bezier :
+%
+\def\Bezier{%
+%   \Bezier[opt](x1,y1)(x2,y2)(x3,y3)(x4,y4)
+%   Draws a Bezier cubic with the control points (x1,y1), (x2,y2), (x3,y3), (x4,y4)
+%   Supported options: dash, dashsize and dashsize
+    \AXO at Parse{\AXO at Bezier}{}%
+}
+%
+\defWithOption{DoubleBezier}{(#2,#3)(#4,#5)(#6,#7)(#8)#9}{%
+%
+%   Draws a Bezier cubic with control points (x1,y1), (x2,y2),
+%   (x3,y3), (x4,y4) in a double line
+%
+    \Bezier[double,sep=#9,#1](#2,#3)(#4,#5)(#6,#7)(#8)%
+}
+%
+\defWithOption{DashBezier}{(#2,#3)(#4,#5)(#6,#7)(#8)#9}{%
+%
+%   Draws a Bezier cubic with control points (x1,y1), (x2,y2),
+%   (x3,y3), (x4,y4) with a dash pattern of which the 
+%   alternating black and white pieces are approximately #9 points long
+%
+    \Bezier[dash,dashsize=#9,#1](#2,#3)(#4,#5)(#6,#7)(#8)%
+}
+%
+\defWithOption{DashDoubleBezier}{(#2,#3)(#4,#5)(#6)(#7)#8#9}{%
+%
+%   Draws a Bezier cubic with control points (x1,y1), (x2,y2),
+%   (x3,y3), (x4,y4) with a dash pattern of which the 
+%   alternating black and white pieces are approximately #9 points long
+%   The line is a double line
+%
+    \Bezier[double,sep=#8,dash,dashsize=#9,#1](#2,#3)(#4,#5)(#6)(#7)%
+}
+%
+%	 #] Bezier : 
+% 	#] LaTeX primitives : 
+% 	#[ Mixed routines :
+%
+%   Here we have routines that make different calls depending on the value
+%   of the variable \axo at pdfoutput
+%
+%	 #[ EBox :
+%
+\def\EBox(#1,#2)(#3,#4){%
+%
+%   Draws a transparent box with the left bottom at (x1,y1) andthe
+%   right top at (x2,y2).
+%
+\ifcase\axo at pdfoutput
+    \put(\axoxoff,\axoyoff){\AXOspecial{%
+    #1 \axoxo\space add #2 \axoyo\space add
+    #3 \axoxo\space add #4 \axoyo\space add \axowidth\space \axoscale\space ebox }}
+\else
+    \getaxohelp{EBox}{#1 #2 #3 #4 \axowidth}
+    \put(\axoxoff,\axoyoff){\axo at pdfliteral{\contentspdf}}
+\fi
+}
+%
+%	 #] EBox : 
+%	 #[ FBox :
+%
+\def\FBox(#1,#2)(#3,#4){%
+%
+%   Draws a filled box with the left bottom at (x1,y1) and the right top
+%   at (x2,y2).
+%
+\ifcase\axo at pdfoutput
+    \put(\axoxoff,\axoyoff){\AXOspecial{%
+    #1 \axoxo\space add #2 \axoyo\space add
+    #3 \axoxo\space add #4 \axoyo\space add \axowidth\space \axoscale\space fbox }}
+\else
+    \getaxohelp{FBox}{#1 #2 #3 #4 \axowidth}
+    \put(\axoxoff,\axoyoff){\axo at pdfliteral{\contentspdf}}
+\fi
+}
+%
+%	 #] FBox : 
+%	 #[ BBox : 
+%
+\def\BBox(#1,#2)(#3,#4){%
+%
+%   Draws a box with the left bottom at (x1,y1) and the right top
+%   at (x2,y2). The contents are blanked out.
+%
+    {%
+      \SetColor{White}%
+      \FBox(#1,#2)(#3,#4)%
+    }%
+    \EBox(#1,#2)(#3,#4)%
+}
+%
+%	 #] BBox : 
+%	 #[ GBox :
+%
+\def\GBox(#1,#2)(#3,#4)#5{%
+%
+%   Draws a box with the left bottom at (x1,y1) and the right top
+%   at (x2,y2). The contents are in Grayscale#5 (0=black,1=white).
+%
+    {%
+      \color[gray]{#5}%
+      \FBox(#1,#2)(#3,#4)%
+      \color[gray]{0}%
+      \EBox(#1,#2)(#3,#4)%
+    }%
+\ignorespaces
+}
+%
+%	 #] GBox : 
+%	 #[ CBox :
+%
+\def\CBox(#1,#2)(#3,#4)#5#6{%
+%
+%   Draws a box with the left bottom at (x1,y1) and the right top
+%   at (x2,y2). The outside is color#5 and the inside color #6.
+%
+    {%
+      \SetColor{#6}%
+      \FBox(#1,#2)(#3,#4)%
+      \SetColor{#5}%
+      \EBox(#1,#2)(#3,#4)%
+    }%
+\ignorespaces
+}
+%
+%	 #] CBox : 
+%	 #[ EBoxc :
+%
+\def\EBoxc(#1,#2)(#3,#4){%
+%
+%   Draws a centered box with the center at (x1,y1).
+%   The other parameters are the width and the height.
+%   Uses current color  
+%
+\ifcase\axo at pdfoutput
+    \put(\axoxoff,\axoyoff){\AXOspecial{%
+    #1 \axoxo\space add #3 2 div sub #2 \axoyo\space add
+    #4 2 div sub #1 \axoxo\space add #3 2 div add #2
+    \axoyo\space add #4 2 div add \axowidth\space \axoscale\space ebox }}
+\else
+    \getaxohelp{Boxc}{#1 #2 #3 #4 \axowidth}
+    \put(\axoxoff,\axoyoff){\axo at pdfliteral{\contentspdf}}
+\fi
+}
+%
+\let\Boxc=\EBoxc
+%
+%	 #] EBoxc : 
+%	 #[ FBoxc :
+%
+\def\FBoxc(#1,#2)(#3,#4){%
+%
+%   Draws a filled centered box with the center at (x1,y1).
+%   The other parameters are the width and the height.
+%   Current color  
+%
+\ifcase\axo at pdfoutput
+    \put(\axoxoff,\axoyoff){\AXOspecial{%
+    #1 \axoxo\space add #3 2 div sub #2 \axoyo\space add
+    #4 2 div sub #1 \axoxo\space add #3 2 div add #2 \axoyo\space add #4 2 div add
+    \axowidth\space \axoscale\space fbox }}
+\else
+    \getaxohelp{FBoxc}{#1 #2 #3 #4 \axowidth}
+    \put(\axoxoff,\axoyoff){\axo at pdfliteral{\contentspdf}}
+\fi
+}
+%
+%	 #] FBoxc : 
+%	 #[ BBoxc :
+%
+\def\BBoxc(#1,#2)(#3,#4){%
+%
+%   Draws a centered box with the center at (x1,y1).
+%   The other parameters are the width and the height.
+%   The contents are blanked out.
+%
+\bgroup
+    \SetColor{White}%
+    \FBoxc(#1,#2)(#3,#4)%
+\egroup
+\EBoxc(#1,#2)(#3,#4)%
+}
+%
+%	 #] BBoxc : 
+%	 #[ GBoxc :
+%
+\def\GBoxc(#1,#2)(#3,#4)#5{%
+%
+%   Draws a centered box with the center at (x1,y1).
+%   The other parameters are the width and the height.
+%   The contents are in Grayscale#5 (0=black,1=white).
+%
+  {%
+    \color[gray]{#5}%
+    \FBoxc(#1,#2)(#3,#4)%
+    \color[gray]{0}%
+    \EBoxc(#1,#2)(#3,#4)%
+  }%
+\ignorespaces
+}
+%
+%	 #] GBoxc : 
+%	 #[ CBoxc :
+%
+\def\CBoxc(#1,#2)(#3,#4)#5#6{%
+%
+%   Draws a centered box with the center at (x1,y1).
+%   The other parameters are the width and the height.
+%   The outside is color#5 and the inside color #6.
+%
+  {%
+    \SetColor{#6}%
+    \FBoxc(#1,#2)(#3,#4)%
+    \SetColor{#5}%
+    \EBoxc(#1,#2)(#3,#4)%
+  }%
+\ignorespaces
+}
+%
+%	 #] CBoxc : 
+%	 #[ RotatedBox :
+%
+\def\RotatedBox(#1,#2)(#3,#4)#5#6{%
+%
+%   Draws a centered box with the center at (#1,#2)
+%   with width #3, height #4, anticlockwise rotated by #5, and in
+%   color #6.
+%
+    \AxoPut(#1,#2){%
+        {\SetColor{#6}%
+         \rotatebox{#5}{\EBoxc(0,0)(#3,#4)}%
+    }}%
+}
+%
+%	 #] RotatedBox : 
+%	 #[ FilledRotatedBox :
+%
+\def\FilledRotatedBox(#1,#2)(#3,#4)#5#6{%
+%
+%   Draws a filled centered box with the center at (#1,#2)
+%   with width #3, height #4, anticlockwise rotated by #5, and in
+%   color #6.
+%
+    \AxoPut(#1,#2){%
+        {\SetColor{#6}%
+         \rotatebox{#5}{\FBoxc(0,0)(#3,#4)}%
+    }}%
+}
+%
+%	 #] FilledRotatedBox : 
+%	 #[ ETri :
+%
+%   Draws a triangle. No filling.
+%   The corners are (x1,y1), (x2,y2), (x3,y3)
+%
+\def\ETri(#1,#2)(#3,#4)(#5,#6){%
+%
+\ifcase\axo at pdfoutput
+    \put(\axoxoff,\axoyoff){\AXOspecial{%
+    #1 \axoxo\space add #2 \axoyo\space add
+    #3 \axoxo\space add #4 \axoyo\space add
+    #5 \axoxo\space add #6 \axoyo\space add
+    \axowidth\space \axoscale\space triangle }}
+\else
+    \getaxohelp{ETri}{#1 #2 #3 #4 #5 #6 \axowidth}
+    \put(\axoxoff,\axoyoff){\axo at pdfliteral{\contentspdf}}
+\fi
+}
+%
+%	 #] ETri : 
+%	 #[ FTri :
+%
+%   Draws a filled triangle.
+%   The corners are (x1,y1), (x2,y2), (x3,y3)
+%
+\def\FTri(#1,#2)(#3,#4)(#5,#6){%
+%
+\ifcase\axo at pdfoutput
+    \put(\axoxoff,\axoyoff){\AXOspecial{%
+    #1 \axoxo\space add #2 \axoyo\space add
+    #3 \axoxo\space add #4 \axoyo\space add
+    #5 \axoxo\space add #6 \axoyo\space add
+    \axowidth\space \axoscale\space ftriangle }}
+\else
+    \getaxohelp{FTri}{#1 #2 #3 #4 #5 #6 \axowidth}
+    \put(\axoxoff,\axoyoff){\axo at pdfliteral{\contentspdf}}
+\fi
+}
+%
+%	 #] FTri : 
+%	 #[ BTri :
+%
+%   Draws a triangle. The contents are blanked out.
+%   The corners are (x1,y1), (x2,y2), (x3,y3)
+%
+\def\BTri(#1,#2)(#3,#4)(#5,#6){%
+    {%
+        \SetColor{White}%
+        \FTri(#1,#2)(#3,#4)(#5,#6)%
+    }%
+    \ETri(#1,#2)(#3,#4)(#5,#6)%
+}
+%
+%	 #] BTri : 
+%	 #[ GTri :
+%
+%   Draws a triangle. The contents are given in Grayscale #7 (0=black,1=white)
+%   The corners are (x1,y1), (x2,y2), (x3,y3)
+%
+\def\GTri(#1,#2)(#3,#4)(#5,#6)#7{%
+%
+    {%
+        \color[gray]{#7}%
+        \FTri(#1,#2)(#3,#4)(#5,#6)%
+        \color[gray]{0}%
+        \ETri(#1,#2)(#3,#4)(#5,#6)%
+    }%
+\ignorespaces
+}
+%
+%	 #] GTri : 
+%	 #[ CTri :
+%
+%   Draws a colored(#7) triangle. The contents are blanked out in color #8
+%   The corners are (x1,y1), (x2,y2), (x3,y3)
+%
+\def\CTri(#1,#2)(#3,#4)(#5,#6)#7#8{%
+    {%
+        \SetColor{#7}%
+        \FTri(#1,#2)(#3,#4)(#5,#6)%
+        \SetColor{#8}%
+        \ETri(#1,#2)(#3,#4)(#5,#6)%
+    }%
+\ignorespaces
+}
+%
+%	 #] CTri : 
+%	 #[ Vertex :
+%
+\def\Vertex(#1,#2)#3{%
+%
+%   Draws a fat dot at (1,2). The radius of the dot is given by 3.
+%
+\ifcase\axo at pdfoutput
+    \put(\axoxoff,\axoyoff){\AXOspecial{%
+    #1 \axoxo\space add #2 \axoyo\space add #3
+    \axoscale\space vertex }}
+\else
+    \getaxohelp{Vertex}{#1 #2 #3 \axowidth}
+    \put(\axoxoff,\axoyoff){\axo at pdfliteral{\contentspdf}}
+\fi
+}
+%
+%	 #] Vertex : 
+%	 #[ ECirc :
+%
+\def\ECirc(#1,#2)#3{%
+%
+%   Draws a circle at (1,2) and radius 3, with current color.
+%   Nothing is written inside.
+%
+\ifcase\axo at pdfoutput
+    \put(\axoxoff,\axoyoff){\AXOspecial{%
+    #1 \axoxo\space add #2 \axoyo\space add #3
+    \axowidth\space \axoscale\space ecirc }}%
+\else
+    \getaxohelp{ECirc}{#1 #2 #3 \axowidth}%
+    \put(\axoxoff,\axoyoff){\axo at pdfliteral{\contentspdf}}%
+\fi
+}
+%
+%	 #] ECirc : 
+%	 #[ FCirc :
+%
+\let\FCirc=\Vertex
+%
+%	 #] FCirc : 
+%	 #[ BCirc :
+%
+\def\BCirc(#1,#2)#3{%
+%
+%   Draws a circle at (1,2) and radius 3 that is blanked out.
+    {%
+        \SetColor{White}%
+        \FCirc(#1,#2){#3}
+    }%
+    \ECirc(#1,#2){#3}%
+}
+%
+%	 #] BCirc : 
+%	 #[ GCirc :
+%
+\def\GCirc(#1,#2)#3#4{%
+%
+%   Draws a circle at (1,2) and radius 3 that is blanked out.
+%   Then it fills the circle with a gray scale 4 (0 = black, 1 is white)
+%
+    {%
+        \color[gray]{#4}%
+        \FCirc(#1,#2){#3}%
+        \color[gray]{0}%
+        \ECirc(#1,#2){#3}%
+    }%
+\ignorespaces
+}
+%
+%	 #] GCirc : 
+%	 #[ CCirc :
+%
+%   Draws a circle at (1,2) and radius 3 that is blanked out.
+%   #4 is the color of the circle, #5 the color of the contents
+%
+\def\CCirc(#1,#2)#3#4#5{%
+%
+%   Draws a circle at (1,2) and radius 3 that is blanked out.
+%   #4 is the color of the circle, #5 the color of the contents
+%
+{%
+    \SetColor{#5}%
+    \FCirc(#1,#2){#3}%
+    \SetColor{#4}%
+    \ECirc(#1,#2){#3}%
+}%
+\ignorespaces
+}
+%
+%	 #] CCirc : 
+%	 #[ GOval :
+%
+\def\GOval(#1,#2)(#3,#4)(#5)#6{%
+%
+%   Draws a gray oval that overwrites whatever was there.
+%   \GOval(x_center,y_center)(height,width)(rotation)(grayscale)
+%   The grayscale: (0 = black, 1 is white)
+%
+    {%
+        \color[gray]{#6}%
+        \FOval(#1,#2)(#3,#4)(#5)%
+        \color[gray]{0}%
+        \Oval(#1,#2)(#3,#4)(#5)%
+    }%
+    \ignorespaces
+}
+%
+%	 #] GOval : 
+%	 #[ COval :
+%
+\def\COval(#1,#2)(#3,#4)(#5)#6#7{%
+%
+%   Draws a colored oval that overwrites whatever was there.
+%   \COval(x_center,y_center)(height,width)(rotation){color1}{color2}
+%
+    {%
+        \SetColor{#7}%
+        \FOval(#1,#2)(#3,#4)(#5)%
+        \SetColor{#6}%
+        \Oval(#1,#2)(#3,#4)(#5)%
+    }%
+    \ignorespaces
+}
+%
+%	 #] COval : 
+%	 #[ FOval :
+%
+\def\FOval(#1,#2)(#3,#4)(#5){%
+%
+%   Draws a colored oval that overwrites whatever was there.
+%   \FOval(x_center,y_center)(height,width)(rotation)
+%   Uses current color  
+%
+    \ifcase\axo at pdfoutput
+        \put(\axoxoff,\axoyoff)%
+            {\AXOspecial{#1 \axoxo\space add #2 \axoyo\space add #3 #4 #5
+            \axowidth\space \axoscale\space foval 
+            }}%
+    \else
+        \getaxohelp{FOval}{#1 #2 #3 #4 #5 \axowidth}%
+        \put(\axoxoff,\axoyoff){\axo at pdfliteral{\contentspdf}}%
+    \fi
+}
+%
+%	 #] FOval : 
+%	 #[ Oval :
+%
+\def\Oval(#1,#2)(#3,#4)(#5){%
+%
+%   Draws an oval that does not overwrite whatever was there.
+%   \Oval(x_center,y_center)(height,width)(rotation)
+%
+\ifcase\axo at pdfoutput
+    \put(\axoxoff,\axoyoff)%
+    {\AXOspecial{#1 \axoxo\space add #2 \axoyo\space add #3 #4 #5
+     \axowidth\space \axoscale\space oval 
+    }}%
+\else
+    \getaxohelp{Oval}{#1 #2 #3 #4 #5 \axowidth}%
+    \put(\axoxoff,\axoyoff){\axo at pdfliteral{\contentspdf}}%
+\fi
+}
+%
+%	 #] Oval : 
+%	 #[ Polygon :
+%
+%       Draws a curve through the points in argument 1.
+%       The points are given as coordinates (x1,y1)(x2,y2)(x3,y3).....
+%       The curve is continous and continuous in its first and second
+%       derivatives. The method is linear interpolation of
+%               quadratic curves.
+%               Color name is argument 2.
+%
+\def\Polygon#1#2{%
+    {%
+        \SetColor{#2}%
+        \ifcase\axo at pdfoutput
+            \put(\axoxoff,\axoyoff){\AXOspecial{%
+               [ \axoparray#1] \axowidth\space \axoscale\space polygon }}%
+        \else
+            \getaxohelp{Polygon}{"#1" \axowidth}%
+            \put(\axoxoff,\axoyoff){\axo at pdfliteral{\contentspdf}}%
+        \fi
+    }%
+    \ignorespaces
+}
+%
+%	 #] Polygon : 
+%	 #[ FilledPolygon :
+%
+%       Draws a curve through the points in argument 1.
+%       The points are given as coordinates (x1,y1)(x2,y2)(x3,y3).....
+%       The curve is continous and continuous in its first and second
+%       derivatives. The method is linear interpolation of
+%               quadratic curves. 
+%               Color name is argument 2.
+%
+\def\FilledPolygon#1#2{%
+    {%
+        \SetColor{#2}%
+        \ifcase\axo at pdfoutput
+            \put(\axoxoff,\axoyoff){\AXOspecial{%
+              [ \axoparray#1] \axowidth\space \axoscale\space filledpolygon }}
+        \else
+            \getaxohelp{FilledPolygon}{"#1" \axowidth}%
+            \put(\axoxoff,\axoyoff){\axo at pdfliteral{\contentspdf}}%
+        \fi
+    }%
+    \ignorespaces
+}
+%
+%	 #] FilledPolygon : 
+%	 #[ Curve :
+%
+%       Draws a curve through the points in argument 1.
+%       The points are given as coordinates (x1,y1)(x2,y2)(x3,y3).....
+%       The curve is continous and continuous in its first and second
+%       derivatives. The method is linear interpolation of quadratic curves.
+%
+\def\Curve#1{%
+\ifcase\axo at pdfoutput
+    \put(\axoxoff,\axoyoff){\AXOspecial{[ \axoparray#1]
+    \axowidth\space \axoscale\space makecurve }}
+\else
+    \getaxohelp{Curve}{"#1" \axowidth}
+    \put(\axoxoff,\axoyoff){\axo at pdfliteral{\contentspdf}}
+\fi
+}
+%
+%	 #] Curve : 
+%	 #[ DashCurve :
+%
+%       Draws a curve through the points in argument 1.
+%       The points are given as coordinates (x1,y1)(x2,y2)(x3,y3).....
+%       The curve is continous and continuous in its first and second
+%       derivatives. The method is linear interpolation of quadratic curves.
+%       Argument 2 gives a dash size.
+%
+\def\DashCurve#1#2{%
+\ifcase\axo at pdfoutput
+    \put(\axoxoff,\axoyoff){\AXOspecial{[ \axoparray#1] #2
+    \axowidth\space \axoscale\space makedashcurve }}
+\else
+    \getaxohelp{DashCurve}{"#1" #2 \axowidth}
+    \put(\axoxoff,\axoyoff){\axo at pdfliteral{\contentspdf}}
+\fi
+}
+%
+%	 #] DashCurve : 
+%	 #[ LinAxis :
+%
+\def\LinAxis(#1,#2)(#3,#4)(#5,#6,#7,#8,#9){%
+%
+%   Draws a line with linear hash marks along it.
+%   LinAxis(x1,y1)(x2,y2)(num_decs,per_dec,hashsize,offset,width)
+%   The line is from (x1,y1) to (x2,y2) and the marks are on the left side
+%   when hashsize is positive, and right when it is negative.
+%   num_decs is the number of accented marks, per_dec the number of
+%   divisions between them and offset is the number
+%   at which one starts at (x1,y1) (like if offset=2 we start at the second
+%   small mark) Width is the linewidth.
+%
+\ifcase\axo at pdfoutput
+    \put(\axoxoff,\axoyoff){\AXOspecial{%
+      #1 \axoxo\space add #2 \axoyo\space add
+      #3 \axoxo\space add #4 \axoyo\space add
+      #5 #6 #7 #8 #9 \axoscale\space linaxis }}
+\else
+    \getaxohelp{LinAxis}{#1 #2 #3 #4 #5 #6 #7 #8 #9}
+    \put(\axoxoff,\axoyoff){\axo at pdfliteral{\contentspdf}}
+\fi
+}
+%
+%	 #] LinAxis : 
+%	 #[ LogAxis :
+%
+\def\LogAxis(#1,#2)(#3,#4)(#5,#6,#7,#8){%
+%
+%   Draws a line with logarithmic hash marks along it.
+%   LogAxis(x1,y1)(x2,y2)(num_logs,hashsize,offset,width)
+%   The line is from (x1,y1) to (x2,y2) and the marks are on the left side
+%   when hashsize is positive, and right when it is negative.
+%   num_logs is the number of orders of magnitude and offset is the number
+%   at which one starts at (x1,y1) (like if offset=2 we start at 2)
+%   When offset is 0 we start at 1. Width is the linewidth.
+%
+\ifcase\axo at pdfoutput
+    \put(\axoxoff,\axoyoff){\AXOspecial{%
+    #1 \axoxo\space add #2 \axoyo\space add
+    #3 \axoxo\space add #4 \axoyo\space add
+    #5 #6 #7 #8 \axoscale\space logaxis }}
+\else
+    \getaxohelp{LogAxis}{#1 #2 #3 #4 #5 #6 #7 #8}
+    \put(\axoxoff,\axoyoff){\axo at pdfliteral{\contentspdf}}
+\fi
+}
+%
+%	 #] LogAxis : 
+%	 #[ AxoGrid :
+%
+\def\AxoGrid(#1,#2)(#3,#4)(#5,#6)#7#8{%
+%
+%   Makes a grid with the left bottom at #1,#2
+%   The increments in x and y are #3,#4
+%   The number of steps in each direction are #5,#6 (there are n+1 lines)
+%   #7 is the color and #8 the linewidth
+%
+{\SetColor{#7}%
+    \ifcase\axo at pdfoutput
+        \put(\axoxoff,\axoyoff){%
+            \AXOspecial{%
+               #3 #4 #5 #6
+               #1 \axoxo\space add #2 \axoyo\space add 
+               #8 \axoscale\space axogrid
+        }}%
+    \else
+        \getaxohelp{Grid}{#1 #2 #3 #4 #5 #6 #8}%
+        \put(\axoxoff,\axoyoff){\axo at pdfliteral{\contentspdf}}%
+    \fi   
+}%
+\ignorespaces
+}
+%
+%	 #] AxoGrid : 
+%	 #[ AXO at Arc :
+%
+%       Generic Arc segment with many options.
+%
+%
+\def\AXO at Arc(#1,#2)(#3,#4,#5){%
+%
+%   Draws arc centered at (#1,#2), radius #3, starting and ending
+%   angles #4, #5.
+%   Double, dashing, arrow, clockwise according to current settings
+%
+{\AXO at useopts
+\ifcase\axo at pdfoutput
+    \put(\axoxoff,\axoyoff){%
+        \AXOspecial{%
+        \AXO at ArrowArg \space
+        \ifAXO at flip true \else false \fi
+        \ifAXO at double \AXO at CurrentSep \space \else 0 \fi
+        \ifAXO at dash \AXO at CurrentDashSize \space \else 0 \fi
+        \ifAXO at clock true \else false \fi
+        #3 #4 #5
+        #1 \axoxo\space add #2 \axoyo\space add 
+        \AXO at CurrentWidth\space \axoscale\space arc2
+    }}%
+\else
+    \getaxohelp{AxoArc}{#1 #2 #3 #4 #5
+        \ifAXO at double \AXO at CurrentSep \space \else 0 \fi
+        \ifAXO at dash \AXO at CurrentDashSize \space \else 0 \fi
+        \AXO at ArrowArg \space
+        \ifAXO at flip 1 \else 0 \fi
+        \ifAXO at clock 1 \else 0 \fi
+        \AXO at CurrentWidth}
+    \put(\axoxoff,\axoyoff){\axo at pdfliteral{\contentspdf}}
+\fi
+}\ignorespaces
+}
+%
+%	 #] AXO at Arc : 
+%	 #[ AXO at Bezier :
+%
+\def\AXO at Bezier(#1,#2)(#3,#4)(#5,#6)(#7,#8){%
+%
+%   Draws a Bezier cubic with the control points (x1,y1), (x2,y2),
+%   (x3,y3), (x4,y4)
+%   Assumes options have been set
+%
+{\AXO at useopts
+\ifcase\axo at pdfoutput
+    \put(\axoxoff,\axoyoff){\AXOspecial{%
+        #1 \axoxo\space add #2 \axoyo\space add
+        #3 \axoxo\space add #4 \axoyo\space add
+        #5 \axoxo\space add #6 \axoyo\space add
+        #7 \axoxo\space add #8 \axoyo\space add
+           \AXO at ArrowArg \space 
+           \ifAXO at flip true \else false \fi
+    \ifAXO at double \AXO at CurrentSep \space \else 0 \fi
+    \ifAXO at dash \AXO at CurrentDashSize \space \else 0 \fi
+    \AXO at CurrentWidth\space \axoscale\space dashdoublebezier 
+    }}%
+\else
+    \getaxohelp{AxoBezier}{#1 #2 #3 #4 #5 #6 #7 #8
+        \ifAXO at double \AXO at CurrentSep \space \else 0 \fi
+        \ifAXO at dash \AXO at CurrentDashSize \space \else 0 \fi
+        \AXO at ArrowArg \space
+        \ifAXO at flip 1 \else 0 \fi
+        \AXO at CurrentWidth}
+    \put(\axoxoff,\axoyoff){\axo at pdfliteral{\contentspdf}}
+\fi
+}\ignorespaces
+}
+%
+%	 #] AXO at Bezier : 
+%	 #[ AXO at GluonHelper :
+%
+\def\AXO at GluonHelper(#1,#2)(#3,#4)#5#6#7#8{%
+%
+%   Draws a single gluon from (x1,y1) to (x2,y2) with amplitude #5 and number
+%   of windings #6. Width #7 + #8
+%   Assumes options have been set.
+%   Used as helper from \AXO at Gluon
+  %
+\ifAXO at arrow\AXO at NOTIMPLEMENTED{arrow not implemented for gluon}\fi
+\ifcase\axo at pdfoutput
+    \put(\axoxoff,\axoyoff){%
+        \AXOspecial{%
+                  #1 \axoxo\space add #2 \axoyo\space add
+                  #3 \axoxo\space add #4 \axoyo\space add 
+                  #5 #6
+                  \ifAXO at dash \AXO at CurrentDashSize \space \else 0 \fi
+                  #7 #8 add \axoscale \space dashgluon
+        }%
+    }%
+\else
+    \getaxohelp{AxoGluon}{#1 #2 #3 #4 #5 #6 
+             #7
+             \ifAXO at dash \AXO at CurrentDashSize \space \else 0 \fi
+            #8}%
+    \put(\axoxoff,\axoyoff){\axo at pdfliteral{\contentspdf}}
+\fi
+}
+%
+\def\AXO at GluonHelperNEW(#1,#2)(#3,#4)#5#6#7#8{%
+% IDEA: Showing cleaner code
+%
+%   Draws a single gluon from (x1,y1) to (x2,y2) with amplitude #5 and number
+%   of windings #6. Width #7 + #8
+%   Assumes options have been set.
+%   Used as helper from \AXO at Gluon
+%
+    \ifAXO at arrow\AXO at NOTIMPLEMENTED{arrow not implemented for gluon}\fi
+    \ifcase\axo at pdfoutput
+        \AXOputPS{%
+                  #1 #2 #3 #4 #5 #6
+                  \ifAXO at dash \AXO at CurrentDashSize \space \else 0 \fi
+                  #7 #8 add \axoscale \space dashgluon
+        }%
+    \else
+        \getaxohelp{AxoGluon}{#1 #2 #3 #4 #5 #6 
+             #7
+             \ifAXO at dash \AXO at CurrentDashSize \space \else 0 \fi
+            #8}%
+        \AXOputPDF{\contentspdfNoOffset}%
+    \fi
+}
+%
+%	 #] AXO at GluonHelper : 
+%	 #[ AXO at Gluon :
+%
+\def\AXO at Gluon(#1,#2)(#3,#4)#5#6{%
+%
+%   Draws a gluon from (x1,y1) to (x2,y2) with amplitude #5 and number
+%   of windings #6.
+%   Assumes options have been set
+%
+{\AXO at useopts
+    \ifAXO at arrow\AXO at NOTIMPLEMENTED{arrow not implemented for gluon}\fi
+    \AXO at arrowfalse  % To avoid repeated errors
+    \ifAXO at double
+        \AXO at GluonHelper(#1,#2)(#3,#4){#5}{#6}{\AXO at CurrentWidth}{\AXO at CurrentSep}%
+        \SetColor{White}%
+        \AXO at dashfalse
+        \AXO at GluonHelper(#1,#2)(#3,#4){#5}{#6}{-\AXO at CurrentWidth}{\AXO at CurrentSep}%
+    \else
+        \AXO at GluonHelper(#1,#2)(#3,#4){#5}{#6}{0}{\AXO at CurrentWidth}%
+    \fi
+  }%
+\ignorespaces
+}
+%	 #] AXO at Gluon : 
+%	 #[ AXO at GluonArcHelper :
+%
+\def\AXO at GluonArcHelper(#1,#2)(#3,#4,#5)#6#7#8#9{%
+%
+%   Draws a gluon on an arc segment. The center of the curve is at (1,2)
+%   The radius, start angle and target angle are (#3,#4,#5), #6 is the
+%   amplitude of the gluon, and #7 is the number of windings.
+%   Assumes options have been set
+%   Width #8 + #9
+%   Assumes options have been set.
+%   Used as helper from \AXO at GluonArc
+\ifAXO at arrow\AXO at NOTIMPLEMENTED{arrow not implemented for gluon arc}\fi
+\ifcase\axo at pdfoutput
+    \put(\axoxoff,\axoyoff){\AXOspecial{#6 #7 
+        \ifAXO at dash \AXO at CurrentDashSize \space \else 0 \fi
+        \ifAXO at clock true \else false \fi
+        #3 #4 #5
+        #1 \axoxo\space add #2 \axoyo\space add 
+        #8 #9 add \axoscale\space dashgluearc
+    }}%
+\else
+    \getaxohelp{AxoGluonArc}{#1 #2 #3 #4 #5 #6 #7 
+        #8
+        \ifAXO at dash \AXO at CurrentDashSize \space \else 0 \fi
+        \ifAXO at clock 1 \else 0 \fi
+        #9}
+    \put(\axoxoff,\axoyoff){\axo at pdfliteral{\contentspdf}}
+\fi
+}
+%	 #] AXO at GluonArcHelper : 
+%	 #[ AXO at GluonArc :
+%
+\def\AXO at GluonArc(#1,#2)(#3,#4,#5)#6#7{%
+%
+%   Draws a gluon on an arc segment. The center of the curve is at (1,2)
+%   The radius, start angle and target angle are (#3,#4,#5), #6 is the
+%   amplitude of the gluon, and #7 is the number of windings.
+%   Assumes options have been set
+%
+    {\AXO at useopts
+        \ifAXO at arrow\AXO at NOTIMPLEMENTED{arrow not implemented for gluon}\fi
+        \AXO at arrowfalse  % To avoid repeated errors
+        \ifAXO at double
+            \AXO at GluonArcHelper(#1,#2)(#3,#4,#5){#6}{#7}{\AXO at CurrentWidth}{\AXO at CurrentSep}%
+            \SetColor{White}%
+            \AXO at dashfalse
+            \AXO at GluonArcHelper(#1,#2)(#3,#4,#5){#6}{#7}{-\AXO at CurrentWidth}{\AXO at CurrentSep}%
+        \else
+            \AXO at GluonArcHelper(#1,#2)(#3,#4,#5){#6}{#7}{0}{\AXO at CurrentWidth}%
+        \fi
+    }%
+\ignorespaces
+}
+%	 #] AXO at GluonArc : 
+%	 #[ AXO at GluonCircHelper :
+%
+\def\AXO at GluonCircHelper(#1,#2)(#3,#4)#5#6#7#8{%
+%
+%   Draws a gluon on a circle. The center of the circle is at (1,2)
+%   The radius and the phase angle are (#3,#4), 5 is the
+%   amplitude of the gluon, and 6 is the number of windings.
+%   Width #7 + #8
+%   Assumes options have been set.
+%   Used as helper from \AXO at GluonCirc
+\ifAXO at arrow\AXO at NOTIMPLEMENTED{arrow not implemented for gluon arc}\fi
+\ifcase\axo at pdfoutput
+    \put(\axoxoff,\axoyoff){\AXOspecial{%
+       #5 #6
+       \ifAXO at dash \AXO at CurrentDashSize \space \else 0 \fi
+       #3 #4
+       #1 \axoxo\space add #2 \axoyo\space add 
+       #7 #8 add \axoscale\space dashgluoncirc
+    }}%
+\else
+    \getaxohelp{AxoGluonCirc}{#1 #2 #3 #4 #5 #6
+       #7
+       \ifAXO at dash \AXO at CurrentDashSize \space \else 0 \fi
+       #8}
+    \put(\axoxoff,\axoyoff){\axo at pdfliteral{\contentspdf}}
+\fi
+}
+%	 #] AXO at GluonCicHelper : 
+%	 #[ AXO at GluonCirc :
+%
+\def\AXO at GluonCirc(#1,#2)(#3,#4)#5#6{%
+%
+%   Draws a gluon on a circle. The center of the circle is at (1,2)
+%   The radius and the phase angle are (#3,#4), 5 is the
+%   amplitude of the gluon, and 6 is the number of windings.
+%
+    {\AXO at useopts
+        \ifAXO at arrow\AXO at NOTIMPLEMENTED{arrow not implemented for gluon}\fi
+        \AXO at arrowfalse  % To avoid repeated errors
+        \ifAXO at double
+            \AXO at GluonCircHelper(#1,#2)(#3,#4){#5}{#6}{\AXO at CurrentWidth}{\AXO at CurrentSep}%
+            \SetColor{White}%
+            \AXO at dashfalse
+            \AXO at GluonCircHelper(#1,#2)(#3,#4){#5}{#6}{-\AXO at CurrentWidth}{\AXO at CurrentSep}%
+        \else
+            \AXO at GluonCircHelper(#1,#2)(#3,#4){#5}{#6}{0}{\AXO at CurrentWidth}%
+        \fi
+    }%
+\ignorespaces
+}
+%
+% 	#] AXO at GluonCirc : 
+%	 #[ AXO at Line :
+%
+\def\AXO at Line(#1,#2)(#3,#4){%
+%
+%   Draws a line from (x1,y1) to (x2,y2)
+%   Double, dashing, arrow according to current settings
+%
+{\AXO at useopts
+\ifcase\axo at pdfoutput
+    \put(\axoxoff,\axoyoff){%
+        \AXOspecial{%
+            \AXO at ArrowArg \space
+            \ifAXO at flip true \else false \fi
+            \ifAXO at double \AXO at CurrentSep \space \else 0 \fi
+            \ifAXO at dash \AXO at CurrentDashSize \space \else 0 \fi
+            #1 \axoxo\space add #2 \axoyo\space add
+            #3 \axoxo\space add #4 \axoyo\space add 
+            \AXO at CurrentWidth \space \axoscale \space
+            dasharrowdoubleline
+    }}%
+\else
+    \getaxohelp{AxoLine}{#1 #2 #3 #4 
+        \ifAXO at double \AXO at CurrentSep \space \else 0 \fi
+        \ifAXO at dash \AXO at CurrentDashSize \space \else 0 \fi
+        \AXO at ArrowArg \space
+        \ifAXO at flip 1 \else 0 \fi
+        \AXO at CurrentWidth}
+    \put(\axoxoff,\axoyoff){\axo at pdfliteral{\contentspdf}}%
+\fi
+}\ignorespaces
+}
+%
+%	 #] AXO at Line : 
+%	 #[ AXO at Photon :
+%
+\def\AXO at Photon(#1,#2)(#3,#4)#5#6{%
+%
+%   Draws a photon from (x1,y1) to (x2,y2) with amplitude #5 and number
+%   of windings #6.
+%   Assumes options have been set
+%
+{\AXO at useopts
+\ifAXO at arrow\AXO at NOTIMPLEMENTED{arrow not implemented for photon}\fi
+\ifcase\axo at pdfoutput
+    \put(\axoxoff,\axoyoff){\AXOspecial{%
+    #1 \axoxo\space add #2 \axoyo\space add
+    #3 \axoxo\space add #4 \axoyo\space add #5 #6 
+    \ifAXO at double \AXO at CurrentSep \space \else 0 \fi
+    \ifAXO at dash \AXO at CurrentDashSize \space \else 0 \fi
+    \AXO at CurrentWidth\space \axoscale\space dashdoublephoton }}%
+\else
+    \getaxohelp{AxoPhoton}{#1 #2 #3 #4 #5 #6 
+        \ifAXO at double \AXO at CurrentSep \space \else 0 \fi
+        \ifAXO at dash \AXO at CurrentDashSize \space \else 0 \fi
+        \AXO at CurrentWidth}
+    \put(\axoxoff,\axoyoff){\axo at pdfliteral{\contentspdf}}
+\fi
+}\ignorespaces
+}
+%	 #] AXO at Photon : 
+%	 #[ AXO at PhotonArc :
+%
+\def\AXO at PhotonArc(#1,#2)(#3,#4,#5)#6#7{%
+%
+%   Draws a photon on an arc segment. The center of the curve is at (1,2)
+%   The radius, start angle and target angle are (#3,#4,#5), #6 is the
+%   amplitude of the gluon, and #7 is the number of wiggles.
+%   Assumes options have been set
+%
+{\AXO at useopts
+\ifAXO at arrow\AXO at NOTIMPLEMENTED{arrow not implemented for photon arc}\fi
+\ifcase\axo at pdfoutput
+    \put(\axoxoff,\axoyoff){\AXOspecial{%
+        #6 #7 
+        \ifAXO at double \AXO at CurrentSep \space \else 0 \fi
+        \ifAXO at dash \AXO at CurrentDashSize \space \else 0 \fi
+        \ifAXO at clock true \else false \fi
+        #3 #4 #5
+        #1 \axoxo\space add #2 \axoyo\space add 
+        \AXO at CurrentWidth\space \axoscale\space dashdoublephotonarc
+    }}%
+\else
+    \getaxohelp{AxoPhotonArc}{#1 #2 #3 #4 #5 #6 #7 
+        \ifAXO at double \AXO at CurrentSep \space \else 0 \fi
+        \ifAXO at dash \AXO at CurrentDashSize \space \else 0 \fi
+        \ifAXO at clock 1 \else 0 \fi
+        \AXO at CurrentWidth}
+    \put(\axoxoff,\axoyoff){\axo at pdfliteral{\contentspdf}}
+\fi
+}\ignorespaces
+}
+%
+%	 #] AXO at PhotonArc : 
+%	 #[ AXO at ZigZag :
+%
+\def\AXO at ZigZag(#1,#2)(#3,#4)#5#6{%
+%
+%   Draws a zigzag from (x1,y1) to (x2,y2) with amplitude #5 and number
+%   of windings #6.
+%   Assumes options have been set
+%
+{\AXO at useopts
+\ifAXO at arrow\AXO at NOTIMPLEMENTED{arrow not implemented for zigzag}\fi
+\ifcase\axo at pdfoutput
+    \put(\axoxoff,\axoyoff){\AXOspecial{%
+    #1 \axoxo\space add #2 \axoyo\space add
+    #3 \axoxo\space add #4 \axoyo\space add #5 #6 
+    \ifAXO at double \AXO at CurrentSep \space \else 0 \fi
+    \ifAXO at dash \AXO at CurrentDashSize \space \else 0 \fi
+    \AXO at CurrentWidth\space \axoscale\space dashdoublezigzag }}%
+\else
+    \getaxohelp{AxoZigZag}{#1 #2 #3 #4 #5 #6 
+         \ifAXO at double \AXO at CurrentSep \space \else 0 \fi
+         \ifAXO at dash \AXO at CurrentDashSize \space \else 0 \fi
+         \AXO at CurrentWidth}
+    \put(\axoxoff,\axoyoff){\axo at pdfliteral{\contentspdf}}%
+\fi
+}\ignorespaces
+}
+%	 #] AXO at ZigZag : 
+%	 #[ AXO at ZigZagArc :
+%
+\def\AXO at ZigZagArc(#1,#2)(#3,#4,#5)#6#7{%
+%
+%   Draws a zigzag on an arc segment. The center of the curve is at (1,2)
+%   The radius, start angle and target angle are (#3,#4,#5), #6 is the
+%   amplitude of the gluon, and #7 is the number of wiggles.
+%   Assumes options have been set
+%
+{\AXO at useopts
+\ifAXO at arrow\AXO at NOTIMPLEMENTED{arrow not implemented for zigzag arc}\fi
+\ifcase\axo at pdfoutput
+    \put(\axoxoff,\axoyoff){\AXOspecial{%
+        #6 #7 
+        \ifAXO at double \AXO at CurrentSep \space \else 0 \fi
+        \ifAXO at dash \AXO at CurrentDashSize \space \else 0 \fi
+        \ifAXO at clock true \else false \fi
+        #3 #4 #5
+        #1 \axoxo\space add #2 \axoyo\space add 
+        \AXO at CurrentWidth\space \axoscale\space dashdoublezigzagarc
+    }}%
+\else
+    \getaxohelp{AxoZigZagArc}{#1 #2 #3 #4 #5 #6 #7 
+        \ifAXO at double \AXO at CurrentSep \space \else 0 \fi
+        \ifAXO at dash \AXO at CurrentDashSize \space \else 0 \fi
+        \ifAXO at clock 1 \else 0 \fi
+        \AXO at CurrentWidth}
+    \put(\axoxoff,\axoyoff){\axo at pdfliteral{\contentspdf}}
+\fi
+}\ignorespaces
+}
+%
+%	 #] AXO at ZigZagArc : 
+%	 #[ Text and boxes :
+%		#[ SetPFont :
+%
+%               To access fonts, from both latex and pdflatex, we need
+%               to define a mapping from the human-readable name to
+%               the name known to (pdf)latex.  Then we can define a
+%               user command for setting the font.  The human-readable
+%               name is the one used by postscript.
+%            Variables used:
+%           \pfontN = human name of current PS font (e.g., Helvetica).
+%           \pfontC = TeX code for the font (e.g., phvr).
+%           Both are \relax to use regular document font
+%           \axofontsize = size of font (text command with unit)
+
+
+\def\defineaxofont#1#2{%
+    % #1 is user visible name of font, #2 is LaTex name.
+    % Define a command of name #1 to return #2
+    \expandafter\def\csname #1\endcsname{#2}
+}
+
+\def\SetPFont#1#2{%
+    \ifthenelse{ \equal{#1}{} }%
+        {\let\pfontN=\relax  \let\pfontC=\relax}%
+        {\@ifundefined{#1}%
+            {\PackageWarning{axodraw2}{trying to set undefined font `#1'}}%
+            {\def\pfontN{#1}%             Human name (postscript)
+             \def\pfontC{\@nameuse{#1}}%  Code name
+            }%
+        }%
+    \ifthenelse{ \equal{#2}{} }%
+        {%   Use the value of LaTeX's fontsize when the font is used:
+            \def\axofontsize{\f at size}%
+        }%
+        {\def\axofontsize{#2}}%
+\ignorespaces
+}
+
+\def\UseCurrentPSFont{%
+    % Set regular size of regular font, so math has rational size
+    \fontsize{\axofontsize}{\axofontsize}%
+    \selectfont
+    \ifx\pfontC\relax
+    \else
+        \font\axofont = \pfontC \space at \axofontsize pt
+        \axofont
+    \fi
+}
+
+\defineaxofont{AvantGarde-Book}{pagk}
+\defineaxofont{AvantGarde-BookOblique}{pagko}
+\defineaxofont{AvantGarde-Demi}{pagd}
+\defineaxofont{AvantGarde-DemiOblique}{pagdo}
+\defineaxofont{Bookman-Demi}{pbkd}
+\defineaxofont{Bookman-DemiItalic}{pbkdi}
+\defineaxofont{Bookman-Light}{pbkl}
+\defineaxofont{Bookman-LightItalic}{pbkli}
+\defineaxofont{Courier-Bold}{pcrb}
+\defineaxofont{Courier-BoldOblique}{pcrbo}
+\defineaxofont{Courier}{pcrr}
+\defineaxofont{Courier-Oblique}{pcrro}
+\defineaxofont{Helvetica-Bold}{phvb}
+\defineaxofont{Helvetica-BoldOblique}{phvbo}
+\defineaxofont{Helvetica-NarrowBold}{phvbrn}
+\defineaxofont{Helvetica-NarrowBoldOblique}{phvbon}
+\defineaxofont{Helvetica}{phvr}
+\defineaxofont{Helvetica-Oblique}{phvro}
+\defineaxofont{Helvetica-Narrow}{phvrrn}
+\defineaxofont{Helvetica-NarrowOblique}{phvron}
+\defineaxofont{NewCenturySchlbk-Bold}{pncb}
+\defineaxofont{NewCenturySchlbk-BoldItalic}{pncbi}
+\defineaxofont{NewCenturySchlbk-Italic}{pncri}
+\defineaxofont{NewCenturySchlbk-Roman}{pncr}
+\defineaxofont{Palatino-Bold}{pplb}
+\defineaxofont{Palatino-BoldItalic}{pplbi}
+\defineaxofont{Palatino-Italic}{pplri}
+\defineaxofont{Palatino-Roman}{pplr}
+\defineaxofont{Symbol}{psyr}
+\defineaxofont{Times-Bold}{ptmb}
+\defineaxofont{Times-BoldItalic}{ptmbi}
+\defineaxofont{Times-Italic}{ptmri}
+\defineaxofont{Times-Roman}{ptmr}
+\defineaxofont{ZapfChancery-MediumItalic}{pzcmi}
+\defineaxofont{ZapfDingbats}{pzdr}
+
+% Now we can set the default:
+
+\SetPFont{Times-Roman}{10}
+
+%
+%		#] SetPFont : 
+%	 #[ Text :
+%
+% Aim:  \Text(#1,#2)(#3)[#4]#5, to set text #5 at position (#1,#2)
+%       with angle #3 and positioning #4.  
+%       But the presence of (#3) and [#3] is to be optional (with
+%       defaults being equivalent to (0) and []
+%
+\def\Text(#1,#2){%
+    \@ifnextchar(%  )
+        {\Text at A(#1,#2)}%
+        {\Text at A(#1,#2)(0)}%
+}
+%
+\def\Text at A(#1,#2)(#3){%
+    \@ifnextchar[%  ]
+        {\Text at Z(#1,#2)(#3)}%
+        {\Text at Z(#1,#2)(#3)[]}%
+}
+%
+\def\axoscaleTT{\ifPSTextScalesLikeGraphics 1\else \axotextscale \fi}
+\def\axoscalePT{\ifPSTextScalesLikeGraphics \axoscale\else \axotextscale \fi}
+%
+\def\Text at Z(#1,#2)(#3)[#4]#5{%
+    %
+    %   Draws text at (#1,#2). Argument #3 is combination of l, r, t, b to
+    %   indicate positioning instead of default (which is horizontally and
+    %   vertically centered --- these are same as \makebox 
+    %   the text is left adjusted, right adjusted or centered. Or b or t.
+    %   4 is of course the text.
+    %
+    \AxoPut(#1,#2){%
+        \scalebox{\axoscaleTT}%
+                 {\rotatebox{#3}{\makebox(0,0)[#4]{#5}}}%
+    }%
+    \ignorespaces
+}
+%
+%	 #] Text : 
+%		#[ PText : *+
+%
+\def\PText(#1,#2)(#3)[#4]#5{%
+%
+%   Draws a postscript text in a postscript font.
+%   Focal point is (1,2), rotation angle is 3, 4 is the mode (as in text)
+%   and 5 is the text.
+%
+    \begingroup
+        \UseCurrentPSFont
+        \AxoPut(#1,#2){%
+              \scalebox{\axoscalePT}%
+                       {\rotatebox{#3}{\makebox(0,0)[#4]{#5}}}%
+            }%
+    \endgroup
+    \ignorespaces
+}
+%
+%		#] PText : 
+%		#[ RText :
+%
+\def\RText(#1,#2)[#3](#4)#5{%
+%
+%   Draws rotated text at (1,2). Argument 3 is l,r or c indicating whether
+%   the text is left adjusted, right adjusted or centered.
+%   4 is the rotation angle and 5 is of course the text.
+%
+    \Text(#1,#2)(#4)[#3]{#5}%
+    \ignorespaces
+}
+%
+%		#] RText : 
+%		#[ rText : *
+%
+\def\rText(#1,#2)[#3][#4]#5{%
+%
+%   Draws rotated text at (1,2). Argument 3 is l,r or c indicating whether
+%   the text is left adjusted, right adjusted or centered.
+%   4 is the rotation angle (specified as l, r, u, or blank,
+%    and 5 is of course the text.
+%
+    \begingroup
+    \def\this at angle{0}%
+    \ifx#4l%
+        \def\this at angle{90}%
+    \else 
+        \ifx#4r%
+            \def\this at angle{-90}%
+        \else
+            \ifx#4u%
+                \def\this at angle{180}%
+            \fi
+        \fi
+    \fi
+    \Text(#1,#2)(\this at angle)[#3]{#5}%
+    \endgroup
+    \ignorespaces
+}
+%
+%		#] rText : 
+%		#[ BText :
+%
+\def\BText(#1,#2)#3{%
+%
+%   Draws a box with the center at (x1,y1) and postscript text #3 in it.
+%
+    \AxoPut(#1,#2){%
+        \edef\axoscale{\axoscalePT}%
+        \SetTmpBox{#3}%
+        \BBoxc(0,0)(\tmpXT,\tmpYT)%
+        \PText(0,0)(0)[]{\usebox{\tmpBox}}%
+    }%
+    \ignorespaces
+}
+%
+%		#] BText : 
+%		#[ GText :
+%
+\def\GText(#1,#2)#3#4{%
+%
+%   Draws a box with the center at (x1,y1) and postscript(#4) text in it.
+%   The grayness of the box is given by #3
+%
+    \AxoPut(#1,#2){%
+        \edef\axoscale{\axoscalePT}%
+        \SetTmpBox{#4}%
+        \GBoxc(0,0)(\tmpXT,\tmpYT){#3}%
+        \PText(0,0)(0)[]{\usebox{\tmpBox}}%
+    }%
+    \ignorespaces
+}
+%
+%		#] GText : 
+%		#[ CText :
+%
+\def\CText(#1,#2)#3#4#5{%
+%
+%   Draws a box with the center at (x1,y1) and postscript(#5) text in it.
+%   The color of box and text is in #3
+%   The color of the background is in #4
+%
+    \AxoPut(#1,#2){%
+        \edef\axoscale{\axoscalePT}%
+        \SetTmpBox{\SetColor{#3}{#5}}%
+        \CBoxc(0,0)(\tmpXT,\tmpYT){#3}{#4}%
+        \PText(0,0)(0)[]{\usebox{\tmpBox}}%
+    }%
+}
+%
+%		#] CText : 
+%		#[ BTwoText :
+%
+\def\BTwoText(#1,#2)#3#4{%
+%
+%   Draws a box with the center at (x1,y1) and two lines of postscript
+%   text in it.
+%
+    \AxoPut(#1,#2){%
+        \edef\axoscale{\axoscalePT}%
+        \SetTmpBoxTwo{#3}{#4}%
+        \BBoxc(0,0)(\tmpXT,\tmpYT)%
+        \PText(0,0)(0)[]{\usebox{\tmpBox}}%
+    }%
+    \ignorespaces
+}
+%
+%		#] BTwoText : 
+%		#[ GTwoText :
+%
+\def\GTwoText(#1,#2)#3#4#5{%
+%
+%   Draws a box with the center at (x1,y1) and two lines of postscript
+%   text (#4 and #5) in it.
+%   The grayness of the box is given by #3
+%
+    \AxoPut(#1,#2){%
+        \edef\axoscale{\axoscalePT}%
+        \SetTmpBoxTwo{#4}{#5}%
+        \GBoxc(0,0)(\tmpXT,\tmpYT){#3}%
+        \PText(0,0)(0)[]{\usebox{\tmpBox}}%
+    }%
+    \ignorespaces
+}
+%
+%		#] GTwoText : 
+%		#[ CTwoText :
+%
+\def\CTwoText(#1,#2)#3#4#5#6{%
+%
+%   Draws a box with the center at (x1,y1) and two lines of postscript
+%   text (#5 and #6) in it.
+%   The color of the box and the text is given by #3
+%   The background color is given by #4
+%
+    \AxoPut(#1,#2){%
+        \edef\axoscale{\axoscalePT}%
+        \SetTmpBoxTwo{\SetColor{#3}#5}{\SetColor{#3}#6}%
+        \CBoxc(0,0)(\tmpXT,\tmpYT){#3}{#4}%
+        \PText(0,0)(0)[]{\usebox{\tmpBox}}%
+    }%
+    \ignorespaces
+}
+%
+%		#] CTwoText : 
+%	 #] Text and boxes : 
+% 	#] Mixed routines : 
+% 	#[ Postscript specific :
+%
+%   The code here is used only when we need Postscript output. This concerns
+%   mainly the Postscript library.
+%
+\ifcase\axo at pdfoutput
+%
+%		#[ PostScript preamble :
+%
+\AtBeginDvi{
+%
+%    This forces the PostScript preamble commands to be put into the
+%       dvi file.  Without this, revtex4 can remove them by funny
+%       stuff with manipulating the first page.
+%
+%		#[ inventory :
+%
+%   The variables in here are:
+%   num,num1,ampi,ampi1,x1,y1,x2,y2,x3,y3,x4,y4,dx,dy,dr
+%   width, arrowpos, arrowspec, arrowwidth, arrowlength, arrowinset
+%   arcend, arcmid, arcstart, radius, linesep, angdsize, dsize,
+%   clockwise, dotsize, inc, pi, sign
+%   darc,const,amp1, amp2, amp3, amp4, amp5, amp6, amp7, amp8, amp1i
+%   gcolor,xx2
+%
+%   NOTE: blank lines are not allowed inside the postscript code!!!!!
+%   (LaTeX sneaks \par commands in and the postscript goes boink)
+%
+\special{color}  % Provoke dvips into including color.pro
+                 % Revtex4 in 2-column mode fails to force that
+%
+\special{!
+  /savecolor { %/cmyk [ currentcmykcolor ]  def 
+               /oldcolor [ [ currentcolor ] currentcolorspace ] def
+             } def
+  /restorecolor { oldcolor aload pop setcolorspace aload pop setcolor } def
+%  /savecolor { [ currentcmykcolor ] /cmyk ed } def
+%  /restorecolor { cmyk aload pop setcmykcolor } def
+%  % Do a save color now, to ensure default variables are defined:
+  savecolor
+}
+%
+\special{! 
+    /pi 3.141592 def
+    /ed{exch def}def 
+% Implement conversion of length unit from pt to bp by scaling
+    /gs{gsave 1.00375 div dup scale}def
+    /gsw{ gs
+          /width ed
+          width setlinewidth
+    }def
+    /p1{/y1 ed /x1 ed}def
+    /p2{/y2 ed /x2 ed}def
+    /p3{/y3 ed /x3 ed}def
+    /p4{/y4 ed /x4 ed}def
+    /pp1{/yy1 ed /xx1 ed}def
+    /pp2{/yy2 ed /xx2 ed}def
+    /pp3{/yy3 ed /xx3 ed}def
+    /setabs{
+        % Usage /var setabs
+        % Sets variable to its absolute value
+        dup load abs def
+    }def
+    %
+    /normalizearc {
+        % Usage: clockwise r angle1 angle2 x y normalizearc
+        % Adjusts coordinate system for anticlockwize arc from angle
+        % zero, centered at origin.
+        % Left on stack: r d_angle, with 0<d_angle <=360.
+        % Zero angle arc converted to loop
+        translate
+        exch dup rotate  % Origin of arc now at angle 0
+        sub              % Change angle2 to dangle
+        3 2 roll
+        { % Clockwise arc: obtain from anticlockwise arc
+          neg
+          1 -1 scale
+        } if
+        dup abs 360 ge 
+        {  %Outside 360 degrees, make exactly a loop
+           pop 360 
+        }
+        { % Convert to positive angle mod 360.  
+           dup
+           dup 0 lt { 360 sub } if
+           360 div truncate 360 mul sub
+           dup 0.1 lt { pop 360 } if
+        }ifelse
+    } def
+    %
+    /normalizeline {
+        % Usage: x1 y1 x2 y2 normalizeline
+        % Adjusts coordinate system for line from origin in x direction
+        % Left on stack: dr = length of line
+        3 index 3 index translate
+        2 index sub exch 3 index sub
+        2 copy atan rotate
+        dup mul exch dup mul add sqrt
+        3 1 roll pop pop
+    } def
+    %
+    /abox{
+        newpath 
+            x1 y1 moveto
+            x1 y2 lineto
+            x2 y2 lineto
+            x2 y1 lineto
+         closepath
+    }def
+    /atriangle{
+        newpath
+            x1 y1 moveto
+            x2 y2 lineto
+            x3 y3 lineto
+        closepath
+   }def
+   /abezier{
+       newpath
+           x1 y1 moveto
+           x2 y2 x3 y3 x4 y4 curveto
+   }def
+   /distance{
+      %   Usage: x1 y1 x2 y2 distance -> x1 y1 x2 y2 r
+      %   Pure stack based: computes distance between points.  Keeps points
+     dup
+     3 index sub dup mul 
+     2 index 5 index sub dup mul add sqrt
+   } def
+   /setbackgroundcolor{
+     0 0 0 0 setcmykcolor
+   } def
+}
+%
+%		#] inventory : 
+%		#[ Arrows :
+%
+% Define better arrows
+%
+\special{!
+% Arrow making routines
+%
+    /getarrow {
+        /witharrow ed
+        /arrowpos ed
+        /arrowaspect ed
+        /arrowscale ed
+        /arrowinset ed
+        /arrowlength ed
+        /arrowwidth ed
+        /arrowstroke ed
+    } def
+    /drawarrow {
+        gsave
+            [] 0 setdash
+            rotate
+            arrowwidth 0 eq {
+                arrowlength 0 eq {
+                    linewidth linesep 0.7 mul add 1 add 1.2 mul dup
+                    2.5 lt {
+                        pop
+                        2.5
+                    } if
+                    arrowscale mul
+                    /arrowwidth ed
+                    /arrowlength arrowwidth 2 mul arrowaspect mul def
+                } {
+                    /arrowlength arrowlength arrowscale mul def
+                    /arrowwidth arrowlength 2 div arrowaspect div def
+                } ifelse
+            } {
+                arrowlength 0 eq {
+                    /arrowwidth arrowwidth arrowscale mul def
+                    /arrowlength arrowwidth 2 mul arrowaspect mul def
+                } {
+                    /arrowwidth arrowwidth arrowscale mul def
+                    /arrowlength arrowlength arrowscale mul def
+                } ifelse
+            } ifelse
+            arrowstroke 0 ne {
+              arrowstroke setlinewidth
+              gsave
+              setbackgroundcolor
+              newpath
+                0           arrowlength -0.5 mul moveto         
+                arrowwidth  arrowlength          rlineto
+                arrowwidth -1  mul  arrowlength arrowinset mul -1 mul rlineto
+                arrowwidth -1  mul  arrowlength arrowinset mul rlineto
+              closepath fill
+              grestore
+              newpath
+                0           arrowlength -0.5 mul moveto         
+                arrowwidth  arrowlength          rlineto
+                arrowwidth -1  mul  arrowlength arrowinset mul -1 mul rlineto
+                arrowwidth -1  mul  arrowlength arrowinset mul rlineto
+              closepath stroke
+            } {
+              newpath
+                0           arrowlength -0.5 mul moveto         
+                arrowwidth  arrowlength          rlineto
+                arrowwidth -1  mul  arrowlength arrowinset mul -1 mul rlineto
+                arrowwidth -1  mul  arrowlength arrowinset mul rlineto
+              closepath fill
+            } ifelse
+        grestore
+    } def
+%
+}
+%
+%		#] Arrows : 
+%
+% Basic line drawing
+%		#[ fixdash :
+%
+\special{! /fixdash{
+%   Usage: r dashsize fixdash
+%   Sets renormalized dashsize, doing
+%      [rdsize rdsize] 0 setdash
+%   so that n+1/2 patterns fit in length r
+%   If dsize is too big or if dsize is zero, use continuous line
+%   Uses stack, no named variables.
+    2 copy gt 
+    1 index 0 ne 
+    and 
+    {
+       2 copy 
+       2 mul div 0.5 sub round 
+       dup 0 le { pop 0 } if
+       2 mul 1 add exch pop div
+       dup 2 array astore 0 setdash
+    } 
+    { pop pop [] 0 setdash }
+    ifelse
+} def }
+%
+%		#] fixdash : 
+%		#[ dashline :
+%
+\special{! /dashline{
+%   Draws a straight dashed line: x1,y1,x2,y2
+%   Assumes dsize already set
+%   The pattern is ideally [dsize dsize] 0 setdash
+%   but we want to have (2*n+1)/2 patterns, so dsize must be rounded
+%   If dsize is too large or zero, use a continuous line
+%   Pure stack operation. 
+    gsave
+    distance dsize fixdash   % Function distance leaves points on stack
+    newpath
+      moveto
+      lineto
+    stroke
+    grestore
+} def }
+%		#] dashline : 
+%		#[ dasharc :
+%
+\special{! /dasharc{
+%   Draws an arc segment anticlockwise:
+%   x_center, y_center, radius, start_angle, end_angle
+%   Assumes angdsize (radians) set elsewhere
+    gsave
+    3 copy sub abs
+    % Top of stack is copy of radius, start_angle, end_angle
+    pi mul 180 div mul 
+    % Top of stack is arc length
+    3 index angdsize mul fixdash
+    newpath  arc stroke
+    grestore
+} def }
+%
+%		#] dasharc : 
+%		#[ dashgluon :
+%
+\special{! /dashgluon{
+%
+%   Draw gluon, possibly dashed
+%   We have a 'head' and a 'tail' and in between the 'body'
+%   The head + tail is 2 windings. The body is num-1 windings.
+%
+    gsw
+    /dsize ed
+    /num ed /ampi ed 
+    normalizeline /dr ed
+    /num num 0.5 sub round def
+%
+    dsize 0 eq {
+    [] 0 setdash
+    } {
+        /amp8 ampi abs 0.9 mul def
+    /size amp8 neg 0 amp8 neg ampi 2 mul dup dr num 2 mul 2 add div exch
+    1 lengthofbezier def
+%
+    /ndash size dsize 2 mul div truncate def
+    ndash 0 eq { /ndash 1 def } if
+    size 2 dsize ndash mul mul sub abs
+    size 2 dsize ndash 1 add mul mul sub abs gt { /ndash ndash 1 add def } if
+    /dsize size 2 ndash mul div def
+    [ dsize dsize ] dsize 2 div setdash
+    } ifelse
+%
+    /inc dr num 2 mul 2 add div def         % increment per half winding
+    /amp8 ampi 0.9 mul def
+    amp8 0 lt {/amp8 amp8 neg def} if
+%
+    /x1 inc 2 mul def
+%
+    newpath
+    x1 ampi neg moveto
+        x1 amp8 add dup ampi neg exch ampi inc 1.4 mul ampi curveto
+        inc 0.5 mul ampi inc 0.1 mul ampi 0.5 mul 0 0 curveto
+    stroke
+    newpath
+    x1 ampi neg moveto
+        2 1 num {
+            pop
+            x1 amp8 sub dup ampi neg exch ampi dup x1 inc add exch curveto
+            /x1 x1 inc dup add add def
+            x1 amp8 add dup ampi exch ampi neg dup x1 exch curveto
+        } for
+%
+        x1 amp8 sub dup ampi neg exch ampi dup x1 inc 0.6 mul add exch curveto
+        x1 inc 1.5 mul add ampi dr inc 0.1 mul sub ampi 0.5 mul dr 0 curveto
+    stroke
+%
+    grestore
+} def }
+%
+%		#] dashgluon : 
+%		#[ dashdoublephoton :
+%
+\special{! /dashdoublephoton{
+%
+%   Draws a photon from x1,y1 to x2,y2 with amplitude A and n wiggles
+%   Possibly double
+%
+    gsw 
+    /dsize ed
+    /linesep ed
+    /num ed /ampi ed 
+    normalizeline /dr ed
+    /num num 2 mul 0.5 sub round def
+%
+    dsize 0 eq {
+        [] 0 setdash
+    } {
+%       Compute the dash size
+       /xdd dr num div def
+       /size 4 3 div xdd mul pi div dup neg xdd add
+             4 3 div ampi mul dup 3 1 roll xdd 0 1 lengthofbezier 2 div def
+       /ndash size dsize 2 mul div truncate def
+       ndash 0 eq { /ndash 1 def } if
+       size 2 dsize ndash mul mul sub abs
+       size 2 dsize ndash 1 add mul mul sub abs gt { /ndash ndash 1 add def } if
+       /dsize size 2 ndash mul div def
+       [ dsize dsize ] dsize 2 div setdash
+    } ifelse
+%
+    linesep 0 eq 
+       { 0 0 dr 0 ampi num photon1 }
+       {
+%         0 linesep 2 div  dup dr exch  ampi num photon1 
+%         0 linesep -2 div dup dr exch  ampi num photon1 
+%
+          linesep width add setlinewidth 0 0 dr 0 ampi num photon1
+          [] 0 setdash
+          0 0 0 0 setcmykcolor
+          linesep width sub setlinewidth 0 0 dr 0 ampi num photon1
+%
+       }
+    ifelse
+    grestore
+} def }
+%
+%		#] dashdoublephoton : 
+%		#[ photon1 :
+%
+\special{! /photon1{
+%
+%   Draws a single photon from x1,y1 to x2,y2 with amplitude A and n wiggles
+%
+    gsave
+    /num1 ed /ampi1 ed 
+    normalizeline /dr ed
+%
+    /x2 dr num1 div def
+    /sign 1 def
+    1 1 num1 {
+        pop
+        newpath
+        0 0 moveto
+        4 3 div x2 mul pi div dup neg x2 add
+        4 3 div ampi1 sign mul mul dup 3 1 roll
+        x2 0 curveto
+        stroke
+        /sign sign neg def
+        x2 0 translate
+    } for
+%
+    grestore
+} def }
+%
+%		#] photon1 : 
+%		#[ dashdoublezigzag :
+%
+\special{! /dashdoublezigzag{
+%
+%   Draws a zigzag from x1,y1 to x2,y2 with amplitude A and n wiggles
+%   Possibly double
+%
+    gsw 
+    /dsize ed
+    /linesep ed
+    /num ed /ampi ed 
+    normalizeline /dr ed
+    /num num 2 mul 0.5 sub round def
+%
+    dsize 0 eq {
+        [] 0 setdash
+    } {
+%       Compute the dash size
+       /size dr num 2 mul div dup mul ampi dup mul add sqrt def
+       /ndash size dsize 2 mul div truncate def
+       ndash 0 eq { /ndash 1 def } if
+       size 2 dsize ndash mul mul sub abs
+       size 2 dsize ndash 1 add mul mul sub abs gt { /ndash ndash 1 add def } if
+       /dsize size 2 ndash mul div def
+       [ dsize dsize ] dsize 2 div setdash
+    } ifelse
+%
+    linesep 0 eq 
+       { 0 0 dr 0 ampi num zigzag1 }
+       {
+%         0 linesep 2 div  dup dr exch  ampi num zigzag1 
+%         0 linesep -2 div dup dr exch  ampi num zigzag1 
+%
+          linesep width add setlinewidth 0 0 dr 0 ampi num zigzag1
+          [] 0 setdash
+          0 0 0 0 setcmykcolor
+          linesep width sub setlinewidth 0 0 dr 0 ampi num zigzag1
+%
+       }
+    ifelse
+    grestore
+} def }
+%
+%		#] dashdoublezigzag : 
+%		#[ zigzag1 :
+%
+\special{! /zigzag1{
+%
+%   Draws a single zigzag from x1,y1 to x2,y2 with amplitude A and n wiggles
+%
+    gsave
+    /num1 ed /ampi1 ed 
+    normalizeline /dr ed
+%
+    /x2 dr num1 div def
+    /sign 1 def
+    1 1 num1 {
+        pop
+        newpath
+        0 0 moveto
+        x2 2 div ampi1 sign mul lineto
+        x2 0 lineto
+        stroke
+        /sign sign neg def
+        x2 0 translate
+    } for
+%
+    grestore
+} def }
+%
+%		#] zigzag1 : 
+%		#[ dashgluearc :
+%
+\special{! /dashgluearc{
+%
+%   Draws a gluon on an arcsegment
+%   gluon_radius, num, linesep (0 for no-double), dsize (0 for no dashes)
+%   clock, radius, start_angle, end_angle, x_center, y_center
+%   in which num is the number of windings of the gluon.
+%
+%   Method for the gluon arc itself:
+%   1:  compute length of arc.
+%   2:  generate gluon in x and y as if the arc is a straight line
+%   3:  x' = (radius+y)*cos(x*const)
+%       y' = (radius+y)*sin(x*const)
+%
+    gsw 
+    normalizearc
+    /darc ed  /radius ed /dsize ed /num ed /ampi ed
+    /num num 0.5 sub round def
+%
+    dsize 0 eq {
+    [] 0 setdash
+    } {
+    /dr radius darc mul pi mul 180 div def  % length of segment.
+        /const darc dr div def                  % conversion constant
+        /inc dr num 2 mul 2 add div def    % increment per half winding
+        /amp8 ampi 0.9 mul def
+        /amp1 radius ampi add def
+    /amp2 radius ampi sub def
+    /amp4 amp1 inc amp8 add const mul cos div def
+    /amp5 amp2 amp8 const mul cos div def
+    amp8 0 lt {/amp8 amp8 neg def} if
+    /x1 inc 2 mul def
+    /x0 x1 const mul cos amp2 mul def
+    /y0 x1 const mul sin amp2 mul def
+    x1 amp8 sub const mul dup cos amp5 mul x0 sub exch sin amp5 mul y0 sub
+    x1 amp8 sub const mul dup cos amp4 mul x0 sub exch sin amp4 mul y0 sub
+    x1 inc add const mul dup cos amp1 mul x0 sub exch sin amp1 mul y0 sub
+    1 lengthofbezier
+    /size ed
+%
+    /ndash size dsize 2 mul div truncate def
+    ndash 0 eq { /ndash 1 def } if
+    size 2 dsize ndash mul mul sub abs
+    size 2 dsize ndash 1 add mul mul sub abs gt { /ndash ndash 1 add def } if
+    /dsize size 2 ndash mul div def
+    [ dsize dsize ] dsize 2 div setdash
+    } ifelse
+%
+    /dr radius darc mul pi mul 180 div def  % length of segment.
+    /const darc dr div def                  % conversion constant
+    /inc dr num 2 mul 2 add div def    % increment per half winding
+    /amp8 ampi 0.9 mul def
+    /amp1 radius ampi add def
+    /amp2 radius ampi sub def
+    /amp3 radius ampi 2 div add def
+    /amp4 amp1 inc amp8 add const mul cos div def
+    /amp5 amp2 amp8 const mul cos div def
+    /amp6 amp1 inc 0.6 mul amp8 add const mul cos div def
+    /amp7 amp1 inc 0.9 mul const mul cos div def
+    amp8 0 lt {/amp8 amp8 neg def} if
+%
+    newpath
+        /x1 inc 2 mul def
+        x1 const mul dup cos amp2 mul exch sin amp2 mul
+    moveto
+        x1 amp8 add const mul dup cos amp5 mul exch sin amp5 mul
+        x1 amp8 add const mul dup cos amp6 mul exch sin amp6 mul
+        inc 1.4 mul const mul dup cos amp1 mul exch sin amp1 mul
+    curveto
+        inc 0.5 mul const mul dup cos amp7 mul exch sin amp7 mul
+        inc 0.1 mul const mul dup cos amp3 mul exch sin amp3 mul
+        radius 0
+    curveto
+    stroke
+    newpath
+        x1 const mul dup cos amp2 mul exch sin amp2 mul moveto
+        2 1 num { pop
+            x1 amp8 sub const mul dup cos amp5 mul exch sin amp5 mul
+            x1 amp8 sub const mul dup cos amp4 mul exch sin amp4 mul
+            x1 inc add const mul dup cos amp1 mul exch sin amp1 mul
+                curveto
+            /x1 x1 inc dup add add def
+            x1 amp8 add const mul dup cos amp4 mul exch sin amp4 mul
+            x1 amp8 add const mul dup cos amp5 mul exch sin amp5 mul
+            x1 const mul dup cos amp2 mul exch sin amp2 mul
+                curveto
+        } for
+        x1 amp8 sub const mul dup cos amp5 mul exch sin amp5 mul
+        x1 amp8 sub const mul dup cos amp6 mul exch sin amp6 mul
+        x1 inc 0.6 mul add const mul dup cos amp1 mul exch sin amp1 mul
+        curveto
+        x1 inc 1.5 mul add const mul dup cos amp7 mul exch sin amp7 mul
+        dr inc 0.1 mul sub const mul dup cos amp3 mul exch sin amp3 mul
+        dr const mul dup cos radius mul exch sin radius mul
+        curveto
+    stroke
+%
+    grestore
+} def
+}
+%
+%		#] dashgluearc : 
+%		#[ dashdoublephotonarc :
+%
+\special{! /dashdoublephotonarc{
+%
+%   Draws a photon on an arcsegment
+%   photon_radius, num, linesep (0 for no-double), dsize (0 for no dashes),
+%   clock, radius, start_angle, end_angle, x_center, y_center
+%   in which num is the number of wiggles of the photon.
+%
+    gsw 
+    normalizearc
+    /darc ed  /radius ed /dsize ed /linesep ed /num ed /ampli ed
+%
+    /num num 2 mul round def    % number of half wiggles
+    /darc1 darc num div def
+    /cp darc1 cos def
+    /sp darc1 sin def
+    darc1 2 div dup
+    /cp2 exch cos def
+    /sp2 exch sin def
+%
+    dsize 0 eq {
+        [] 0 setdash
+    } {
+%
+%       Compute the length of the outer curve and the inner curve.
+%       There must be an integer number of patterns in half the sum.
+%       The we use half of the first to determine where in the pattern
+%       we should start.
+%
+        /ampli1 ampli def
+        /beta radius darc1 mul 180 ampli1 mul div def
+        /tt sp cp beta mul sub cp sp beta mul add div def
+        /amp1 radius ampli1 add 8 mul beta cp2 mul sp2 sub mul beta 4 cp add mul
+            tt cp mul 3 mul sp 4 mul sub add radius mul sub
+            beta tt sub 3 mul div def           % this is x2
+        radius ampli1 add 8 mul cp2 mul 1 cp add radius mul sub 3 div amp1 sub
+            dup radius sub exch radius sub beta mul             % x1,y1
+        amp1 radius sub amp1 radius cp mul sub tt mul radius sp mul add     % x2,y2
+        radius cp mul radius sub radius sp mul             % x3 y3
+                1 lengthofbezier
+        /len1 ed
+        /ampli1 ampli1 neg def
+        /beta radius darc1 mul 180 ampli1 mul div def
+        /tt sp cp beta mul sub cp sp beta mul add div def
+        /amp1 radius ampli1 add 8 mul beta cp2 mul sp2 sub mul beta 4 cp add mul
+            tt cp mul 3 mul sp 4 mul sub add radius mul sub
+            beta tt sub 3 mul div def           % this is x2
+        radius ampli1 add 8 mul cp2 mul 1 cp add radius mul sub 3 div amp1 sub
+            dup radius sub exch radius sub beta mul             % x1,y1
+        amp1 radius sub amp1 radius cp mul sub tt mul radius sp mul add     % x2,y2
+        radius cp mul radius sub radius sp mul             % x3 y3
+                1 lengthofbezier
+        /len2 ed
+        /size len1 len2 add 2 div def
+        /size2 len1 2 div def
+%
+        /ndash size dsize 2 mul div truncate def
+        ndash 0 eq { /ndash 1 def } if
+        size 2 dsize ndash mul mul sub abs
+        size 2 dsize ndash 1 add mul mul sub abs gt { /ndash ndash 1 add def } if
+        /dsize size 2 ndash mul div def
+        /numd size2 dsize 2 mul div truncate def
+        /dstart dsize 2 div size2 sub 2 numd dsize mul mul add def
+        dstart 0 lt { /dstart dstart dsize 2 mul add def } if
+        [ dsize dsize ] dstart setdash
+    } ifelse
+%
+    linesep 0 eq { 
+        radius photonarc1 
+    } {
+        linesep width add setlinewidth radius photonarc1
+        [] 0 setdash
+        0 0 0 0 setcmykcolor
+        linesep width sub setlinewidth radius photonarc1
+    } ifelse
+%
+    grestore
+} def }
+%
+%		#] dashdoublephotonarc : 
+%		#[ photonarc1 :
+%
+\special{! /photonarc1{
+%   Usage: radius photonarc1
+%   Draws a single photon on an arcsegment.
+%   Called from dashdoublephotonarc with coordinates centered on center,
+%   start on x-axis.  
+%   Assume the following are set: num, ampli, arcend phi, arcstart phi/2, cp,
+%      cp2, sp, sp2.
+%   Draws a photonarc center at x1,y1, radius arcstart,arcend, amplitude
+%       number of wiggles,  width, scale
+%
+    gsave
+    /radius1 ed
+    % Local copy of amplitude, since I change it
+    /ampli1 ampli def
+%
+    newpath
+    radius1 0 moveto
+    1 1 num { 1 sub /ii ed
+        /cpi darc1 ii mul cos def
+        /spi darc1 ii mul sin def
+        /beta radius1 darc1 mul 180 ampli1 mul div def
+        /tt sp cp beta mul sub cp sp beta mul add div def
+        /x2 radius1 ampli1 add 8 mul beta cp2 mul sp2 sub mul beta 4 cp add mul
+            tt cp mul 3 mul sp 4 mul sub add radius1 mul sub
+            beta tt sub 3 mul div def
+        /x1 radius1 ampli1 add 8 mul cp2 mul 1 cp add radius1 mul sub 3 div x2 sub def
+        /y1 x1 radius1 sub beta mul def
+        /y2 x2 radius1 cp mul sub tt mul radius1 sp mul add def
+        /x3 radius1 cp mul def
+        /y3 radius1 sp mul def
+        x1 cpi mul y1 spi mul sub y1 cpi mul x1 spi mul add
+        x2 cpi mul y2 spi mul sub y2 cpi mul x2 spi mul add
+        x3 cpi mul y3 spi mul sub y3 cpi mul x3 spi mul add
+                curveto
+        /ampli1 ampli1 neg def
+    } for
+    stroke
+%
+    grestore
+} def }
+%
+%		#] photonarc1 : 
+%		#[ dashdoublezigzagarc :
+%
+\special{! /dashdoublezigzagarc{
+%
+%   Draws a zigzag on an arcsegment
+%   zigzag_radius, num, linesep (0 for no-double), dsize (0 for no dashes),
+%   clock, radius, start_angle, end_angle, x_center, y_center
+%   in which num is the number of wiggles of the zigzag.
+%
+    gsw 
+    normalizearc
+    /darc ed  /radius ed /dsize ed /linesep ed /num ed /ampli ed
+%
+    /num num 2 mul round def    % number of half wiggles
+    /darc1 darc num div def
+    /cp darc1 cos def
+    /sp darc1 sin def
+    darc1 2 div dup
+    /cp2 exch cos def
+    /sp2 exch sin def
+%
+    dsize 0 eq {
+        [] 0 setdash
+    } {
+        /size ampli dup mul radius dup mul add radius dup mul ampli dup mul sub
+            cp mul sub 2 div sqrt def
+        /size2 ampli dup mul ampli radius add radius mul 2 mul 1 cp2 sub mul
+            add sqrt def
+%
+        /ndash size dsize 2 mul div truncate def
+        ndash 0 eq { /ndash 1 def } if
+        size 2 dsize ndash mul mul sub abs
+        size 2 dsize ndash 1 add mul mul sub abs gt { /ndash ndash 1 add def } if
+        /dsize size 2 ndash mul div def
+        /numd size2 dsize 2 mul div truncate def
+        /dstart dsize 2 div size2 sub 2 numd dsize mul mul add def
+        dstart 0 lt { /dstart dstart dsize 2 mul add def } if
+        [ dsize dsize ] dstart setdash
+    } ifelse
+%
+    linesep 0 eq { 
+          radius zigzagarc1 
+    } {
+        linesep width add setlinewidth radius zigzagarc1
+        [] 0 setdash
+        0 0 0 0 setcmykcolor
+        linesep width sub setlinewidth radius zigzagarc1
+    } ifelse
+%
+    grestore
+} def }
+%
+%		#] dashdoublezigzagarc : 
+%		#[ zigzagarc1 :
+%
+\special{! /zigzagarc1{
+%   Usage: radius zigzagarc1
+%   Draws a single zigzag on an arcsegment.
+%   Called from dashdoublezigzagarc with coordinates centered on center,
+%   start on x-axis.  
+%   Assume the following are set: num, ampli, arcend phi, arcstart phi/2, cp,
+%      cp2, sp, sp2.
+%   Draws a zigzagarc center at x1,y1, radius arcstart,arcend, amplitude
+%       number of wiggles,  width, scale
+%
+    gsave
+    /radius1 ed
+%   Local copy of amplitude, since I change it
+    /ampli1 ampli def
+%
+%   Num is the number of half wiggles. We like to start and end with
+%   quarter wiggles though.
+%
+    /darc2 darc1 2 div def
+    newpath
+    radius1 0 moveto
+    darc2 dup sin exch cos
+    radius1 ampli1 add mul exch radius1 ampli1 add mul lineto
+    /ampli1 ampli1 neg def
+    /num1 num 1 sub def
+    1 1 num1 {
+        darc1 mul darc2 add dup sin exch cos
+        radius1 ampli1 add mul exch radius1 ampli1 add mul lineto
+        /ampli1 ampli1 neg def
+    } for
+    num darc1 mul dup sin exch cos
+    radius1 mul exch radius1 mul lineto
+    stroke
+%
+    grestore
+} def }
+%
+%		#] zigzagarc1 : 
+%		#[ dashgluoncirc :
+%
+\special{! /dashgluoncirc{
+%
+%   Draws a gluon on a complete circle
+%   cmyk color setting
+%   gluon_ampl, num, linesep (0 for no-double), dsize (0 for no dashes)
+%   radius, phase_angle, x_center, y_center
+%   in which num is the number of windings of the gluon.
+%
+    gsw 
+    translate
+    /phase ed /radius ed /dsize ed /num ed /ampi ed
+    /num num 0.5 sub round def
+    /darc 180 num div def
+%
+%   We rotate in such a way that 0 angle becomes more accessible.
+%
+    darc phase add rotate
+%
+    dsize 0 eq {
+        [] 0 setdash
+    } {
+        /dr radius 2 mul pi mul def  % 2*pi*r
+        /inc dr 2 num mul div def    % 2*pi*r/(2*num)
+        /const 360 dr div def        % 360/(2*pi*r)
+        /amp8 ampi 0.9 mul def
+        /amp1 radius ampi add def
+        /amp2 radius ampi sub def
+        /amp4 amp1 inc amp8 add const mul cos div def
+        /amp5 amp2 amp8 const mul cos div def
+        amp8 0 lt {/amp8 amp8 neg def} if
+        /xx inc 2 mul def
+        /x0 amp1 inc const mul cos mul def
+        /y0 amp1 inc const mul sin mul def
+        amp4 xx amp8 add const mul cos mul x0 sub
+        amp4 xx amp8 add const mul sin mul y0 sub
+        amp5 xx amp8 add const mul cos mul x0 sub
+        amp5 xx amp8 add const mul sin mul y0 sub
+        amp2 xx const mul cos mul x0 sub
+        amp2 xx const mul sin mul y0 sub
+        1 lengthofbezier
+        /size ed
+%
+        /ndash size dsize 2 mul div truncate def
+        ndash 0 eq { /ndash 1 def } if
+        size 2 dsize ndash mul mul sub abs
+        size 2 dsize ndash 1 add mul mul sub abs gt { /ndash ndash 1 add def } if
+        /dsize size 2 ndash mul div def
+        [ dsize dsize ] dsize 2 div setdash
+    } ifelse
+%
+    /dr radius 2 mul pi mul def  % 2*pi*r
+    /inc dr 2 num mul div def    % 2*pi*r/(2*num)
+    /const 360 dr div def        % 360/(2*pi*r)
+    /amp8 ampi 0.9 mul def
+    /amp1 radius ampi add def
+    /amp2 radius ampi sub def
+    /amp4 amp1 inc amp8 add const mul cos div def
+    /amp5 amp2 amp8 const mul cos div def
+    amp8 0 lt {/amp8 amp8 neg def} if
+%
+    newpath
+%
+    /xx inc 2 mul def
+    amp1 inc const mul cos mul amp1 inc const mul sin mul moveto
+%
+    1 1 num { pop
+        amp4 xx amp8 add const mul cos mul
+        amp4 xx amp8 add const mul sin mul
+        amp5 xx amp8 add const mul cos mul
+        amp5 xx amp8 add const mul sin mul
+        amp2 xx const mul cos mul
+        amp2 xx const mul sin mul
+            curveto
+        amp5 xx amp8 sub const mul cos mul
+        amp5 xx amp8 sub const mul sin mul
+        amp4 xx amp8 sub const mul cos mul
+        amp4 xx amp8 sub const mul sin mul
+        amp1 xx inc add const mul cos mul
+        amp1 xx inc add const mul sin mul
+            curveto
+        /xx xx inc 2 mul add def
+    } for
+%
+    stroke
+%
+    grestore
+} def }
+%
+%		#] dashgluoncirc : 
+%		#[ arc2 :
+%
+\special{! /arc2{
+%   Draws an arc segment:
+%   arrowspec, arrowpos, flip, linesep, dsize,
+%       clock, radius, start_angle, end_angle, x_center, y_center, width, scale
+%   If linesep == 0, then single line, else double with separation linesep. 
+%
+    gsw
+    normalizearc
+    /darc ed /radius ed
+    /dsize ed /linesep ed 
+    /angdsize dsize radius div def
+    /flip ed
+    getarrow
+    /arcmid darc arrowpos mul def
+    /linewidth width def
+    dsize 0 eq 
+    { linesep 0 eq 
+         { 0 0 radius 0 darc dasharc }
+         {  gsave
+                linesep linewidth add setlinewidth
+                0 0 radius 0 darc dasharc
+                setbackgroundcolor
+                [] 0 setdash
+                linesep linewidth sub setlinewidth
+                0 0 radius 0 darc dasharc
+            grestore
+         } ifelse
+    }
+    { linesep 0 eq 
+         { 0 0 radius 0 arcmid dasharc 
+           0 0 radius arcmid darc dasharc
+         } {
+            gsave
+                linesep linewidth add setlinewidth
+                0 0 radius 0 arcmid dasharc
+                0 0 radius arcmid darc dasharc
+                setbackgroundcolor
+                [] 0 setdash
+                linesep linewidth sub setlinewidth
+                0 0 radius 0 darc dasharc
+            grestore
+         } ifelse
+    } ifelse
+    arcmid rotate 
+    radius 0 translate 
+    flip { 0 } { 180 } ifelse
+    witharrow { drawarrow } if
+    grestore
+} def }
+%
+%		#] arc2 : 
+%		#[ dasharrowdoubleline :
+%
+\special{! /dasharrowdoubleline{
+%
+%   arrowspec, arrowpos, flip, linesep, dsize,
+%       x1, y1, x2, y2, width, scale
+%   If linesep == 0, then single line, else double with separation linesep. 
+%   Draws a dashed double straight line with arrow. 
+%   If dsize==0, then continuous line.
+%   If linesep==0, then single line.
+    gsw 
+    normalizeline
+    /dr ed
+    /dsize ed 
+    /linesep ed
+    /flip ed
+    getarrow
+%
+    % If linesep is negative, that means the arrow is flipped.
+    % But the lineend coordinates are already flipped, so there is
+    % no need to make any adjustment; i.e., replace linesep by
+    % absolute value.
+    /linesep setabs
+    /linewidth width def
+    linesep 0 eq {
+        0 0 dr 0 dashline
+    } {
+        gsave
+            linesep linewidth add setlinewidth 0 0 dr 0 dashline
+            setbackgroundcolor
+            [] 0 setdash
+            linesep linewidth sub setlinewidth 0 0 dr 0 newpath moveto lineto stroke
+        grestore
+    } ifelse
+    dr arrowpos mul 0 translate
+    flip { -90 }{ 90 } ifelse
+    witharrow { drawarrow } if
+    grestore
+} def }
+%
+%		#] dasharrowdoubleline : 
+%		#[ vertex :
+%
+\special{! /vertex{
+%
+%   Puts a fat dot at x,y  size is the radius of the dot
+%
+    gs
+    /dotsize ed
+    translate
+    newpath
+        0 0 dotsize 0 360 arc
+    fill stroke
+    grestore
+} def }
+%
+%		#] vertex : 
+%		#[ ecirc :
+%
+\special{! /ecirc{
+%
+%   Draws an anti-clockwise circle :
+%   x_center, y_center, radius
+%   Transparent interior
+%
+    gsw /radius ed
+    translate                               % x and y are still on stack
+    newpath 0 0 radius 0 360 arc stroke
+    grestore
+} def }
+%
+%		#] ecirc : 
+%		#[ ebox :
+%
+\special{! /ebox{
+%
+%   Draws a transparent box x1,y1,x2,y2
+%
+    gsw p2 p1
+    abox stroke
+    grestore
+} def }
+%
+%		#] ebox : 
+%		#[ fbox :
+%
+\special{! /fbox{
+%
+%   Draws a filled box x1,y1,x2,y2
+%
+    gsw p2 p1
+    abox fill
+    grestore
+} def }
+%
+%		#] fbox : 
+%		#[ triangle :
+%
+\special{! /triangle{
+%
+%   Draws a triangle x1,y1,x2,y2,x3,y3
+%
+    gsw p3 p2 p1
+    atriangle stroke
+    grestore
+} def }
+%
+%		#] triangle : 
+%		#[ ftriangle :
+%
+\special{! /ftriangle{
+%
+%   Draws a triangle x1,y1,x2,y2,x3,y3
+%
+    gsw p3 p2 p1
+    atriangle fill
+    grestore
+} def }
+%
+%		#] ftriangle : 
+%		#[ ellipse:
+%
+\special{! /ellipse {
+    % Draw an ellipse
+    % RedGrittyBrick 20/10/2003
+    % From http://www.redgrittybrick.org/postscript/ellipse.html. 2011/03/22
+    % draw an ellipse using four bezier curves
+    %
+    /r2 exch def % 2nd parameter
+    /r1 exch def % 1st parameter
+    /kappa 0.5522847498 def
+    %
+    newpath
+    0 r2 moveto % start point of curve
+    %
+    % top clockwise
+    kappa r1 mul r2 % 1st Bezier control point
+    r1 kappa r2 mul % 2nd Bezier control point
+    r1 0 curveto % end point of curve
+    %
+    % right clockwise
+    r1 kappa r2 mul neg
+    kappa r1 mul r2 neg
+    0 r2 neg curveto
+    %
+    % bottom clockwise
+    kappa r1 mul neg r2 neg
+    r1 neg kappa r2 mul neg
+    r1 neg 0 curveto
+    %
+    % left clockwise
+    r1 neg kappa r2 mul
+    kappa r1 mul neg r2
+    0 r2 curveto
+    %
+    } def % ellipse
+}
+%
+%		#] ellipse: 
+%		#[ goval :
+%
+\special{! /goval{
+%
+%   Draws a gray oval that overwrites whatever was there.
+%   x_center y_center height width rotation color linewidth scale
+%
+    gsw /gcolor ed /angle ed /width ed /height ed
+%
+    translate                            % x and y are still on stack
+    angle rotate
+    1 setgray      width height ellipse fill
+    gcolor setgray width height ellipse fill
+    0 setgray      width height ellipse stroke
+    grestore
+} def }
+%
+%		#] goval : 
+%		#[ fcoval :
+%
+\special{! /foval{
+%
+%   Draws an oval that overwrites whatever was there.
+%   x_center y_center height width rotation linewidth scale
+%
+    gsw /angle ed /width ed /height ed
+%
+    translate                            % x and y are still on stack
+    angle rotate
+    width height ellipse fill
+    grestore
+} def }
+%
+%		#] foval :
+%		#[ oval :
+%
+\special{! /oval{
+%
+%   Draws an oval that does not overwrite whatever was there.
+%   x_center y_center height width rotation linewidth scale
+%
+    gsw /angle ed /width ed /height ed
+%
+    translate                         % x and y are still on stack
+    angle rotate
+    width height ellipse stroke
+    grestore
+} def }
+%
+%		#] oval : 
+%		#[ polygon :
+%
+%   Incoming stack:
+%   [array of x,y pairs] width scale
+%
+\special{! /polygon{
+    gsw /points ed
+    /ss points length 2 idiv 2 mul def
+    ss 4 gt {
+        newpath
+        points 0 get points 1 get moveto
+        0 2 ss 4 sub { /ii ed
+            /x1 points ii 2 add get def
+            /y1 points ii 3 add get def
+            x1 y1 lineto
+        } for
+        closepath
+        stroke
+    } if
+    grestore
+} def }
+%
+%		#] polygon : 
+%		#[ filledpolygon :
+%
+%   Incoming stack:
+%   [array of x,y pairs] width scale
+%
+\special{! /filledpolygon{
+    gsw /points ed
+    /ss points length 2 idiv 2 mul def
+    ss 4 gt {
+        newpath
+        points 0 get points 1 get moveto
+        0 2 ss 4 sub { /ii ed
+            /x1 points ii 2 add get def
+            /y1 points ii 3 add get def
+            x1 y1 lineto
+        } for
+        closepath
+        fill
+    } if
+    grestore
+} def }
+%
+%		#] filledpolygon : 
+%		#[ makecurve :
+%
+\special{! /docurve{
+    x1 2 mul x2 add 3 div
+        y1 y0 sub x1 x0 sub div x2 x0 sub mul
+        y2 y0 sub x2 x0 sub div x1 x0 sub mul add
+        y1 add y0 2 mul add 3 div
+    x1 x2 2 mul add 3 div
+        y2 y3 sub x2 x3 sub div x1 x3 sub mul
+        y1 y3 sub x1 x3 sub div x2 x3 sub mul add
+        y2 add y3 2 mul add 3 div
+    x2 y2 curveto
+} def }
+%
+\special{! /makecurve{
+%
+%   Incoming stack:
+%   [array of x,y pairs] width scale
+%
+    gsw /points ed
+    /ss points length 2 idiv 2 mul def
+    newpath
+    ss 4 gt {
+        /x1 points 0 get def
+        /y1 points 1 get def
+        /x2 points 2 get def
+        /y2 points 3 get def
+        /x3 points 4 get def
+        /y3 points 5 get def
+        /x0 x1 2 mul x2 sub def
+        /y0 y3 y2 sub x3 x2 sub div y2 y1 sub x2 x1 sub div sub 2 mul
+            x2 x1 sub dup mul x3 x1 sub div mul
+            y1 2 mul add y2 sub def
+        x1 y1 moveto
+        docurve
+        0 2 ss 8 sub { /ii ed
+            /x0 points ii       get def
+            /y0 points ii 1 add get def
+            /x1 points ii 2 add get def
+            /y1 points ii 3 add get def
+            /x2 points ii 4 add get def
+            /y2 points ii 5 add get def
+            /x3 points ii 6 add get def
+            /y3 points ii 7 add get def
+            docurve
+        } for
+        /x0 points ss 6 sub get def
+        /y0 points ss 5 sub get def
+        /x1 points ss 4 sub get def
+        /y1 points ss 3 sub get def
+        /x2 points ss 2 sub get def
+        /y2 points ss 1 sub get def
+        /x3 x2 2 mul x1 sub def
+        /y3 y2 y1 sub x2 x1 sub div y1 y0 sub x1 x0 sub div sub 2 mul
+            x2 x1 sub dup mul x2 x0 sub div mul
+            y2 2 mul add y1 sub def
+        docurve
+    } {
+        ss 4 eq {
+            points 0 get points 1 get moveto
+            points 2 get points 3 get lineto
+        } if
+    } ifelse
+    stroke
+    grestore
+} def }
+%
+%		#] makecurve : 
+%		#[ makedashcurve :
+%
+\special{! /makedashcurve{
+%
+%   Incoming stack:
+%   [array of x,y pairs] dashsize width scale
+%
+    gsw /dsize ed /points ed
+    /ss points length 2 idiv 2 mul def
+    newpath
+    ss 4 gt {
+        /x1 points 0 get def
+        /y1 points 1 get def
+        /x2 points 2 get def
+        /y2 points 3 get def
+        /x3 points 4 get def
+        /y3 points 5 get def
+        /x0 x1 2 mul x2 sub def
+        /y0 y3 y2 sub x3 x2 sub div y2 y1 sub x2 x1 sub div sub 2 mul
+            x2 x1 sub dup mul x3 x1 sub div mul
+            y1 2 mul add y2 sub def
+        x1 y1 moveto
+        docurve
+        0 2 ss 8 sub { /ii ed
+            /x0 points ii       get def
+            /y0 points ii 1 add get def
+            /x1 points ii 2 add get def
+            /y1 points ii 3 add get def
+            /x2 points ii 4 add get def
+            /y2 points ii 5 add get def
+            /x3 points ii 6 add get def
+            /y3 points ii 7 add get def
+            docurve
+        } for
+        /x0 points ss 6 sub get def
+        /y0 points ss 5 sub get def
+        /x1 points ss 4 sub get def
+        /y1 points ss 3 sub get def
+        /x2 points ss 2 sub get def
+        /y2 points ss 1 sub get def
+        /x3 x2 2 mul x1 sub def
+        /y3 y2 y1 sub x2 x1 sub div y1 y0 sub x1 x0 sub div sub 2 mul
+            x2 x1 sub dup mul x2 x0 sub div mul
+            y2 2 mul add y1 sub def
+        docurve
+    } {
+        ss 4 eq {
+            points 0 get points 1 get moveto
+            points 2 get points 3 get lineto
+        } if
+    } ifelse
+    centerdash
+    stroke
+    grestore
+} def }
+%
+\special{! /pathlength{
+    flattenpath
+    /dist 0 def
+    { /yfirst ed /xfirst ed /ymoveto yfirst def /xmoveto xfirst def }
+    { /ynext ed /xnext ed /dist dist ynext yfirst sub dup mul
+        xnext xfirst sub dup mul add sqrt add def
+        /yfirst ynext def /xfirst xnext def }
+    {}
+    {/ynext ymoveto def /xnext xmoveto def
+        /dist ynext yfirst sub dup mul
+              xnext xfirst sub dup mul add sqrt add def
+        /yfirst ynext def /xfirst xnext def }
+    pathforall
+    dist
+} def }
+%
+\special{! /centerdash{
+    /pathlen pathlength def
+    /jj pathlen dsize div 2.0 div cvi def
+    /ddsize pathlen jj 2.0 mul div def
+    [ddsize] ddsize 2 div setdash
+} def }
+%
+%		#] makedashcurve : 
+%		#[ logaxis :
+%
+\special{! /logaxis{
+%
+%   Draws an axis from x1,y1 to x2,y2 with nl log divisions
+%   size of the hashes hs, offset F
+%   and width W. The stack looks like
+%   x1,y1,x2,y2,nl,hs,F,W,scale
+%   After the rotation the hash marks are on top if nl is positive and
+%   on the bottom if nl is negative
+%
+    gsw /offset ed /hashsize ed /nlogs ed
+    normalizeline /rr ed
+    offset 0 ne { /offset offset ln 10 ln div def } if
+    /offset offset dup cvi sub def
+    newpath
+        0 0 moveto
+        rr 0 lineto
+    /lsize rr nlogs div def
+    0 1 nlogs { /x2 ed
+        x2 offset ge {
+            /y2 x2 offset sub lsize mul def
+            y2 rr le {
+                y2 0 moveto
+                y2 hashsize 1.2 mul lineto
+            } if
+        } if
+    } for
+    stroke
+    width 0.6 mul setlinewidth
+    newpath
+    0 1 nlogs { /x2 ed
+        2 1 9 {
+            ln 10 ln div x2 add
+            /xx2 ed
+            xx2 offset ge {
+                /y2 xx2 offset sub lsize mul def
+                y2 rr le {
+                    y2 0 moveto
+                    y2 hashsize 0.8 mul lineto
+                } if
+            } if
+        } for
+    } for
+    stroke
+    grestore
+} def }
+%
+%		#] logaxis : 
+%		#[ linaxis :
+%
+\special{! /linaxis{
+%
+%   x1,y1,x2,y2,num_decs,per_dec,hashsize,offset,width,scale
+%
+    gsw /offset ed /hashsize ed /perdec ed /numdec ed 
+    normalizeline
+    /rr ed
+    /perdec perdec round def
+    /offset offset
+    % Do real equivalent of offset perdec mod
+            dup cvi perdec idiv
+            sub
+            dup 0 lt {perdec add} if
+            dup perdec ge {perdec sub} if
+    def
+    newpath
+        0 0 moveto
+        rr 0 lineto
+    /x1 rr numdec perdec mul div def
+    /y1 rr numdec div def
+    offset 0 eq {0} {1} ifelse 1 numdec 
+       { y1 mul offset x1 mul sub
+         dup 0 moveto
+         hashsize 1.2 mul lineto
+    } for
+    stroke
+    width 0.6 mul setlinewidth
+    newpath
+    /offset offset dup cvi sub def
+    offset 0 eq {0} {1} ifelse  1 numdec perdec mul  {
+        offset sub x1 mul 
+        dup 0 ge {
+            dup rr le {
+                dup 0 moveto
+                hashsize 0.8 mul lineto
+            } if
+        } if 
+    } for
+    stroke
+    grestore
+} def }
+%
+%		#] linaxis : 
+%		#[ dashbezier :
+%
+\special{! /dashbezier{
+%
+%   Draws a dashed Bezier with control points x1,y1,x2,y2,x3,y3,x4,y4
+%
+    gsw /dsize ed p4 p3 p2 p1
+    dsize 0 ne {
+        /size x2 x1 sub y2 y1 sub x3 x1 sub y3 y1 sub x4 x1 sub y4 y1 sub
+            1 lengthofbezier def
+        /numdashes size dsize 2 mul div def
+        numdashes 0 eq { /numdashes 1 def } if
+        size dsize 2 mul numdashes mul sub abs
+        size dsize 2 mul numdashes 1 add mul sub abs
+            gt { /numdashes 1 add def } if
+        /dsize size numdashes 2 mul div def
+        [dsize dsize] dsize 2 div setdash
+    } if
+    abezier stroke
+    grestore
+} def }
+%
+%		#] dashbezier : 
+%		#[ dashdoublebezier :
+%
+\special{! /dashdoublebezier{
+%
+%   Draws a dashed Bezier with control points x1,y1,x2,y2,x3,y3,x4,y4
+%
+    gsw /dsize ed /linesep ed
+    /flip ed
+    getarrow
+    p4 p3 p2 p1
+    /linewidth width def
+    /bsize x2 x1 sub y2 y1 sub x3 x1 sub y3 y1 sub x4 x1 sub y4 y1 sub
+        1 lengthofbezier def
+    dsize 0 ne {
+        /numdashes bsize dsize 2 mul div def
+        numdashes 0 eq { /numdashes 1 def } if
+        bsize dsize 2 mul numdashes mul sub abs
+        bsize dsize 2 mul numdashes 1 add mul sub abs
+            gt { /numdashes 1 add def } if
+        /dsize bsize numdashes 2 mul div def
+        [dsize dsize] dsize 2 div setdash
+    } if
+    linesep 0 ne {
+        linesep linewidth add setlinewidth abezier stroke
+        gsave
+            0 0 0 0 setcmykcolor
+            linesep linewidth sub setlinewidth abezier stroke
+        grestore
+    } {
+        abezier stroke
+    } ifelse
+%
+    witharrow {
+        /tb arrowpos def
+        /tbmax 1 def /tbmin 0 def
+        {
+            /sizeb x2 x1 sub y2 y1 sub x3 x1 sub y3 y1 sub x4 x1 sub y4 y1 sub
+                tb lengthofbezier def
+            sizeb bsize div arrowpos sub abs 0.0001 le { exit } if
+            sizeb bsize div arrowpos gt
+                { /tbmax tb def /tb tb tbmin add 2 div def }
+                { /tbmin tb def /tb tb tbmax add 2 div def } ifelse
+        } loop
+        /ub 1 tb sub def
+        x1 ub ub ub mul mul mul tb x2 3 mul ub mul ub mul tb x3 3 mul ub mul
+            x4 tb mul add mul add mul add
+        y1 ub ub ub mul mul mul tb y2 3 mul ub mul ub mul tb y3 3 mul ub mul
+            y4 tb mul add mul add mul add translate
+        y4 tb dup mul mul y3 tb mul 2 3 tb mul sub mul add y2 ub mul 1 3 tb mul
+            sub mul add y1 ub dup mul mul sub 3 mul
+        x4 tb dup mul mul x3 tb mul 2 3 tb mul sub mul add x2 ub mul 1 3 tb mul
+            sub mul add x1 ub dup mul mul sub 3 mul
+        atan rotate
+        flip { -90 }{ 90 } ifelse
+        drawarrow
+    } if
+%
+    grestore
+} def }
+%
+%		#] dashdoublebezier : 
+%		#[ lengthofbezier :
+%
+%       Calculates the length of a Bezier curve assuming that we start
+%       in the point 0,0. We use a Gaussian quadrature with 16 points.
+%       If, at any time, more precision is needed we have the 32 points
+%       numbers in axohelp.c. (and there is more commentary in that file)
+%
+\special{!
+    /g16x1 { 0.095012509837637440185 } def
+    /g16x2 { 0.281603550779258913230 } def
+    /g16x3 { 0.458016777657227386342 } def
+    /g16x4 { 0.617876244402643748447 } def
+    /g16x5 { 0.755404408355003033895 } def
+    /g16x6 { 0.865631202387831743880 } def
+    /g16x7 { 0.944575023073232576078 } def
+    /g16x8 { 0.989400934991649932596 } def
+    /g16w1 { 0.189450610455068496285 } def
+    /g16w2 { 0.182603415044923588867 } def
+    /g16w3 { 0.169156519395002538189 } def
+    /g16w4 { 0.149595988816576732081 } def
+    /g16w5 { 0.124628971255533872052 } def
+    /g16w6 { 0.095158511682492784810 } def
+    /g16w7 { 0.062253523938647892863 } def
+    /g16w8 { 0.027152459411754094852 } def
+    /onepoint {
+         /gpt ed
+         /tpt 1 gpt add 2 div tmax mul def
+         xc tpt mul xb add tpt mul xa add dup mul
+         yc tpt mul yb add tpt mul ya add dup mul
+         add sqrt
+         /tpt 1 gpt sub 2 div tmax mul def
+         xc tpt mul xb add tpt mul xa add dup mul
+         yc tpt mul yb add tpt mul ya add dup mul
+         add sqrt add 2 div
+    } def
+    /lengthofbezier {
+         /tmax ed
+         pp3 pp2 pp1
+         /xa xx1 3 mul def /xb xx2 xx1 2 mul sub 6 mul def
+         /xc xx3 xx2 xx1 sub 3 mul sub 3 mul def
+         /ya yy1 3 mul def /yb yy2 yy1 2 mul sub 6 mul def
+         /yc yy3 yy2 yy1 sub 3 mul sub 3 mul def
+%
+         g16x1 onepoint g16w1 mul
+         g16x2 onepoint g16w2 mul add
+         g16x3 onepoint g16w3 mul add
+         g16x4 onepoint g16w4 mul add
+         g16x5 onepoint g16w5 mul add
+         g16x6 onepoint g16w6 mul add
+         g16x7 onepoint g16w7 mul add
+         g16x8 onepoint g16w8 mul add
+         tmax mul
+    } def
+}
+%		#] lengthofbezier : 
+%		#[ axogrid :
+%
+\special{! /axogrid{
+    gsw translate
+    /ny ed /nx ed /dy ed /dx ed
+    /maxx nx dx mul def
+    /maxy ny dy mul def
+    0 1 nx {
+        newpath dx mul dup 0 moveto maxy lineto stroke
+    } for
+    0 1 ny {
+        newpath maxx exch dy mul dup 0 exch moveto lineto stroke
+    } for
+} def }
+%
+%		#] axogrid : 
+} 
+%		#] PostScript preamble : 
+%		#[ axoparray : Puts an array of 2-dim points
+%
+%       Puts a sequence of points in the notation (x1,y1)(x2,y2)....
+%       on the Postscript stack. This is for Curve and DashCurve.
+%
+\let\eind=]
+%
+\def\axoparray(#1,#2)#3{#1 \axoxo\space add #2 \axoyo\space add \ifx #3\eind\else
+\expandafter\axoparray\fi#3}
+%
+%		#] axoparray : 
+%
+\fi
+% 	#] Postscript specific : 
+% 	#[ PDF specific :
+%
+%   Here are the routines that are used purely for the PDF output.
+%   The main concern here is the communication with the axohelp program.
+%
+\ifcase\axo at pdfoutput\else
+%
+%		#[ getaxohelp :
+%
+%       This is the command that makes the PDF work. Use as in
+%           getaxohelp{NameOfFunction}{parameters to be passed}
+%       The format is very precise. If axohelp is not happy there will
+%       be no output. The most common error is that the parameters are
+%       not separated by black spaces. Some \space might have to be inserted.
+%       The reason we do not separate the parameters by comma's is that
+%       both Postscript and PDF want their objects separated by blanks.
+%       Also a separation by blanks makes the parameters into separate
+%       arguments in the call to axohelp. Our colors need blanks....
+%
+%
+\def\getoneline#1#2{%
+    % Set the command of name #1 to the next line of the file
+    % for which the input stream number is #2.
+    \def\tmpfh{#2}%
+    \ifeof\tmpfh
+    \else
+       \read\tmpfh to \tmpline
+    \fi
+    \ifeof\tmpfh
+       \@namedef{#1}{}%
+    \else
+       \expandafter \let \csname #1\endcsname = \tmpline
+    \fi
+}
+%
+\def\getaxohelp#1#2{%
+    \def\axohelp{}%
+    \stepcounter{axo at objectIndex}%
+    \def\axo at currentInput{#1 #2;}%
+    \immediate\write\axo at spec{[\arabic{axo at objectIndex}]\space \axo at currentInput}%
+    \ifaxo at axohelpRerun%
+    \else%
+        \def\axo at currentInput{{#1 #2;}}%
+        \getoneline{axo at partOne}\axo at axohelpFile%
+        \catcode`\ =13%
+        \getoneline{axo at partTwo}\axo at axohelpFile%
+        \catcode`\ =10%
+        \getoneline{axo at partThree}\axo at axohelpFile%
+        \ifeof\axo at axohelpFile
+            \rlap{New object; rerun axohelp}%
+            \global\axo at axohelpReruntrue
+        \else
+            \ifthenelse{\equal{\axo at partTwo}{\axo at currentInput}}%
+             {%  Current definition is same as the one processed
+              %  by axohelp, so it is safe to use
+                 \expandafter\def\expandafter\axohelp\axo at partThree%
+             }%
+             {%
+                 \rlap{Changed object; rerun axohelp}%
+                 \global\axo at axohelpReruntrue
+             }%
+        \fi
+    \fi%
+}
+%
+%		#] getaxohelp : 
+%		#[ Use the axohelp output :
+%
+% Implement conversion of length unit from pt to bp by scaling
+\def\contentspdf{q \axoscale\space 0 0 \axoscale\space 0 0 cm 
+                   0.99626401 0 0 0.99626401 0 0 cm
+                   1 0 0 1 \axoxo\space \axoyo\space cm
+                   \axohelp\space
+                 Q}
+\def\contentspdfNoOffset{q \axoscale\space 0 0 \axoscale\space 0 0 cm
+                           0.99626401 0 0 0.99626401 0 0 cm
+                           \axohelp\space
+                         Q}
+%
+%		#] Use the axohelp output : 
+%
+\fi
+% 	#] PDF specific : 
+
+% Process options now, after all potentially necessary commands have
+% been defined.  Use starred form, so that the options are processed
+% in the order the user writes them.  Also set defaults here.
+\PSTextScalesLikeGraphicstrue
+\canvasScaleObjectScale
+\ProcessOptions*


Property changes on: trunk/Master/texmf-dist/tex/latex/axodraw2/axodraw2.sty
___________________________________________________________________
Added: svn:eol-style
## -0,0 +1 ##
+native
\ No newline at end of property
Modified: trunk/Master/tlpkg/bin/tlpkg-ctan-check
===================================================================
--- trunk/Master/tlpkg/bin/tlpkg-ctan-check	2017-05-17 21:54:24 UTC (rev 44395)
+++ trunk/Master/tlpkg/bin/tlpkg-ctan-check	2017-05-17 21:57:11 UTC (rev 44396)
@@ -52,7 +52,7 @@
     aucklandthesis augie auncial-new aurical aurl autobreak autopdf
     authoraftertitle authorindex
     auto-pst-pdf autoaligne autoarea automata autonum autosp avantgar avremu
-    awesomebox
+    awesomebox axodraw2
   b1encoding babel
     babel-albanian babel-azerbaijani babel-basque
     babel-belarusian babel-bosnian babel-breton

Modified: trunk/Master/tlpkg/libexec/ctan2tds
===================================================================
--- trunk/Master/tlpkg/libexec/ctan2tds	2017-05-17 21:54:24 UTC (rev 44395)
+++ trunk/Master/tlpkg/libexec/ctan2tds	2017-05-17 21:57:11 UTC (rev 44396)
@@ -135,7 +135,6 @@
  'auto1',       "die 'skipping, nonfree font support'",
  'autolatex',   "die 'skipping, not self-locating'",
  'autotab',     "die 'skipping, noinfo license, latex 2.09'",
- 'axodraw2',	"die 'skipping, requires compilation'",
  'babel-frenchb',  "die 'skipping, use babel-french'",
  'babel-serbianc', "&MAKEflatten",
  'babel-slovene',  "die 'skipping, use babel-slovenian'",
@@ -2929,6 +2928,7 @@
  'accfonts'     => $standardclean . '|dvips.enc',       # dup enc
  'acmconf'      => $standardclean . '|flushend.sty',    # dup with sttools
  'apalike'      => "apalike2.bst",                      # does not belong
+ 'axodraw2'	=> "axohelp.exe",			# later
  'bardiag'      => "example/.*(aux|log)",               # junk on CTAN
  'bibleref'	=> $standardclean . '|sample.tex|sample-.*', # derived uploaded
  'bbm-macros'   => $standardclean . '|^bbm$',           # symlink

Added: trunk/Master/tlpkg/tlpsrc/axodraw2.tlpsrc
===================================================================
Modified: trunk/Master/tlpkg/tlpsrc/collection-mathscience.tlpsrc
===================================================================
--- trunk/Master/tlpkg/tlpsrc/collection-mathscience.tlpsrc	2017-05-17 21:54:24 UTC (rev 44395)
+++ trunk/Master/tlpkg/tlpsrc/collection-mathscience.tlpsrc	2017-05-17 21:57:11 UTC (rev 44396)
@@ -14,6 +14,7 @@
 depend amstex
 depend apxproof
 depend autobreak
+depend axodraw2
 depend backnaur
 depend begriff
 depend binomexp



More information about the tex-live-commits mailing list