texlive[42899] Master/texmf-dist: xlop (8jan17)
commits+karl at tug.org
commits+karl at tug.org
Sun Jan 8 23:20:53 CET 2017
Revision: 42899
http://tug.org/svn/texlive?view=revision&revision=42899
Author: karl
Date: 2017-01-08 23:20:53 +0100 (Sun, 08 Jan 2017)
Log Message:
-----------
xlop (8jan17)
Modified Paths:
--------------
trunk/Master/texmf-dist/doc/generic/xlop/LISEZMOI
trunk/Master/texmf-dist/doc/generic/xlop/README
trunk/Master/texmf-dist/doc/generic/xlop/xlop-doc-fr.pdf
trunk/Master/texmf-dist/doc/generic/xlop/xlop-doc-fr.tex
trunk/Master/texmf-dist/doc/generic/xlop/xlop-doc.pdf
trunk/Master/texmf-dist/doc/generic/xlop/xlop-doc.tex
trunk/Master/texmf-dist/source/generic/xlop/manual.sty
trunk/Master/texmf-dist/tex/generic/xlop/xlop.tex
Modified: trunk/Master/texmf-dist/doc/generic/xlop/LISEZMOI
===================================================================
--- trunk/Master/texmf-dist/doc/generic/xlop/LISEZMOI 2017-01-08 22:18:15 UTC (rev 42898)
+++ trunk/Master/texmf-dist/doc/generic/xlop/LISEZMOI 2017-01-08 22:20:53 UTC (rev 42899)
@@ -8,8 +8,8 @@
la m\xE9moire de TeX. Ces manipulations incluent toutes les op\xE9rations
usuelles, les entr\xE9es-sorties, la notion de variable num\xE9rique, les
tests et quelques op\xE9rations de haut niveau (sans permettre les
-op\xE9rations n\xE9cessitant un traitement infini telles que la racine
-carr\xE9e, l'exponentielle, les fonctions trigonom\xE9triques, etc.).
+op\xE9rations n\xE9cessitant un traitement infini telles l'exponentielle,
+les fonctions trigonom\xE9triques, etc.).
DISTRIBUTION
------------
@@ -21,8 +21,7 @@
-------
La distribution comporte les fichiers suivants :
- LISEZ.MOI (celui que vous \xEAtes en train de lire) ;
- - README (la m\xEAme en anglais) ;
- - XLOP03 qui indique ce que devrait fournir la version prochaine ;
+ - README (le m\xEAme en anglais) ;
- history.txt qui retrace l'historique rapide du projet ;
- manual.sty qui est le fichier de style n\xE9cessaire \xE0 la compilation
des fichiers de documentation ;
Modified: trunk/Master/texmf-dist/doc/generic/xlop/README
===================================================================
--- trunk/Master/texmf-dist/doc/generic/xlop/README 2017-01-08 22:18:15 UTC (rev 42898)
+++ trunk/Master/texmf-dist/doc/generic/xlop/README 2017-01-08 22:20:53 UTC (rev 42899)
@@ -6,7 +6,7 @@
fact, limitations are due to TeX memory. This features include
basic arithmetic operations, input/ouput, numeric variables, tests,
and some high level operation (without operations which imply infinite
-processing such roots, exponential, trigonometric functions, etc.).
+processing such exponential, trigonometric functions, etc.).
DISTRIBUTION
------------
@@ -19,7 +19,6 @@
Distribution consists of files:
* README (the file you are reading)
* LISEZ.MOI (same in french)
- * XLOP03 indicates what features the next version should be provide
* history.txt relates project history
* manual.sty package file to compile documentation
* xlop-doc-fr.tex and xlop-doc-fr.pdf source and pdf of french user's
Modified: trunk/Master/texmf-dist/doc/generic/xlop/xlop-doc-fr.pdf
===================================================================
(Binary files differ)
Modified: trunk/Master/texmf-dist/doc/generic/xlop/xlop-doc-fr.tex
===================================================================
--- trunk/Master/texmf-dist/doc/generic/xlop/xlop-doc-fr.tex 2017-01-08 22:18:15 UTC (rev 42898)
+++ trunk/Master/texmf-dist/doc/generic/xlop/xlop-doc-fr.tex 2017-01-08 22:20:53 UTC (rev 42899)
@@ -1461,6 +1461,43 @@
\end{tabular}
\end{center}
+\index{racine carr\xE9e}
+Avec la version~0.26, \package{xlop} propose l'op\xE9ration de racine
+carr\xE9e \macro{opsqrt}. Cette macro n'a pas la m\xEAme syntaxe que les
+autres macros arithm\xE9tiques puisqu'il n'y a pas de forme \xE9toil\xE9e. En
+r\xE9alit\xE9, il y a bien une fa\xE7on d'afficher l'op\xE9ration d'extraction de
+racine carr\xE9e mais elle n'est pas franchement courante. Je suis
+relativement \xE2g\xE9 et mon grand-p\xE8re me racontait qu'il l'avait vue
+lorsqu'il \xE9tait \xE0 l'\xE9cole. Ainsi, il y a une macro \macro{opgfsqrt} o\xF9
+le \og gf \fg{} est pour \og grandfather \fg{} (grand-p\xE8re).
+
+Voyons la premi\xE8re macro : celle qui calcule la racine carr\xE9e et qui
+stocke le r\xE9sultat dans une variable \package{xlop}:
+\begin{SideBySideExample}
+ \opsqrt{2}{sqrt2}
+ $\sqrt{2}\approx\opprint{sqrt2}$
+\end{SideBySideExample}
+Cette macro partage le param\xE8tre \parameter{maxdivstep} avec les
+macros de division. Par exemple:
+\begin{SideBySideExample}
+ \opsqrt[maxdivstep=15]{2}{sqrt2}
+ $\sqrt{2}\approx\opprint{sqrt2}$
+\end{SideBySideExample}
+
+Pour la pr\xE9sentation \xE0 la \og grand-p\xE8re \fg{}, je n'ai vraiment pas
+le courage d'expliquer tout le processus. Il se base sur l'eidentiot\xE9
+remarquable $(a+b)^2=a^2+2ab+b^2$. Merci \xE0 Jean-Michel Sarlat d'avoir
+pris le temps de m'expliquer cette m\xE9thode afin que je puisse la coder
+dans \package{xlop}.
+
+Voici un exemple avec le calcul de la racine carr\xE9e de 15 :
+\begin{CenterExample}
+ \opgfsqrt[maxdivstep=5]{15}
+\end{CenterExample}
+Cette m\xE9thode est horrible, autant pour un humain que pour
+l'ordinateur. Par exemple, l'op\xE9ration r\xE9ellement effectu\xE9e par
+\package{xlop} se fonde sur la m\xE9thode de H\xE9ron.
+
\index{expression complexe|(}
La derni\xE8re macro qui nous reste \xE0 voir est \macro{opexpr} qui permet
de r\xE9aliser le calcul d'une expression complexe. Cette macro demande
@@ -1737,6 +1774,9 @@
Construit le nombre \verb+N+ avec le seul chiffre situ\xE9 en
\verb+T+i\xE8me position de la partie enti\xE8re du nombre
\verb+n+. \\\hline
+ \verb+\opgfsqrt{n}+ &
+ Affiche la fa\xE7on ancienne d'afficher le calcul de la racine
+ carr\xE9e de \verb+n+. \\\hline
\verb+\ophline(T1,T2){T3}+ &
Trace un trait horizontal de longueur \verb+T3+, d'\xE9paisseur
\verb+hrulewidth+ et d\xE9butant en \verb+(T1,T2)+ par
@@ -1787,6 +1827,8 @@
\verb+\opsetintegerdigit{n}{T}{N}+ &
Modifie le \verb+T+i\xE8me chiffre de la partie enti\xE8re de
\verb+N+ pour qu'il soit \xE9gal \xE0 \verb+n+. \\\hline
+ \verb+\opsqrt{n}{N}+ &
+ M\xE9morise la racine carr\xE9e de \verb+n+ dans \verb+N+. \\\hline
\verb+\opsub[P]{n1}{n2}+ &
Affiche le r\xE9sultat de l'op\xE9ration n1-n2. \\\hline
\verb+\opsub*{n1}{n2}{N}+ &
Modified: trunk/Master/texmf-dist/doc/generic/xlop/xlop-doc.pdf
===================================================================
(Binary files differ)
Modified: trunk/Master/texmf-dist/doc/generic/xlop/xlop-doc.tex
===================================================================
--- trunk/Master/texmf-dist/doc/generic/xlop/xlop-doc.tex 2017-01-08 22:18:15 UTC (rev 42898)
+++ trunk/Master/texmf-dist/doc/generic/xlop/xlop-doc.tex 2017-01-08 22:20:53 UTC (rev 42899)
@@ -248,7 +248,7 @@
\index{number!valid}In practice, what does it mean all these rules?
First, they means that a number writes in a decimal form can be
preceded by any sequence of plus or minus signs. Obviously, if there
-is a odd number of minus signs, the number will be negative. Next, a
+is an odd number of minus signs, the number will be negative. Next, a
decimal number admits only one decimal separator symbol which can
be a dot or a comma, this one can be put anywhere in the
number. Finally, a number is write in basis~10. Be carefull: these
@@ -262,7 +262,7 @@
\index{parameter!syntax|(}
Parameter assignments are local to the macro when they are indicated
in the optional argument. To make global a parameter assignment, you
-have to use the \macro{opset} macro. For example:
+have to use the \macro{opset} macro. For instance:
\begin{Verbatim}[xrightmargin=0pt]
\opset{decimalsepsymbol={,}}
\end{Verbatim}
@@ -779,7 +779,7 @@
\parameter{safedivstep}, and \parameter{period} parameters. It is only
partially true because a classical division will stop automatically
when a remainder will be zero, whatever the values of these three
-parameters and a euclidean division will stop with an integer quotient
+parameters and an euclidean division will stop with an integer quotient
without attention for these three parameters.
\begin{SideBySideExample}
\opdiv{25}{7}
@@ -845,7 +845,7 @@
In order to avoid too long calculations, \package{xlop} don't process
beyond the value of \parameter{safedivstep} parameter in division with
period. Its default value is~50. However, \package{xlop} package show
-this problem. For example, if you ask for such a division with the
+this problem. For instance, if you ask for such a division with the
code:
\begin{Verbatim}[xrightmargin=0pt,frame=none]
\opdiv[period]{1}{289}
@@ -1388,6 +1388,42 @@
\end{tabular}
\end{center}
+\index{square root}
+With version~0.26 comes the square root operation:
+\macro{opsqrt}. This macro has not the same syntax as the other
+arithmetic macros since there is no starred version. In fact, there is
+a way to display a processing of square root but it's really not
+current. I'm pretty old and my grandfather told me that he saw
+this method when he was young! Therefore, there is an \macro{opgfsqrt}
+macro to display the operation (``gf'' for grandfather).
+
+Let us see the first macro: the one which calculates the square root
+and store the result in a xlop variable:
+\begin{SideBySideExample}
+ \opsqrt{2}{sqrt2}
+ $\sqrt{2}\approx\opprint{sqrt2}$
+\end{SideBySideExample}
+This macro shares the parameter \parameter{maxdivstep} with division
+macros. For instance:
+\begin{SideBySideExample}
+ \opsqrt[maxdivstep=15]{2}{sqrt2}
+ $\sqrt{2}\approx\opprint{sqrt2}$
+\end{SideBySideExample}
+
+For ``grandfather'' display, I have not the energy to explain the
+processus. It's based on remarkable identity
+$(a+b)^2=a^2+2ab+b^2$. Thanks to Jean-Michel Sarlat who had taken time
+to explain this method in order that I can write it for
+\package{xlop}!
+
+Here is an example for square root of 15:
+\begin{CenterExample}
+ \opgfsqrt[maxdivstep=5]{15}
+\end{CenterExample}
+This method is horrible. It's horrible for human being. It's horrible
+for computer. For instance, the real operation isn't make that way:
+it uses Heron method.
+
\index{complex expression|(}
The very last macro we have to study is \macro{opexpr}. It calculates
a complex expression. This macro needs two parameters: the first one
@@ -1564,7 +1600,7 @@
\index{compilation time|)}\index{time (calculation)|)}%
\newpage
-\section{Macros List}
+\section{Macro List}
\label{sec:Liste des macros}
\index{macros!table of|(}%
\noindent\begin{longtable}{|l|p{6.3cm}|}
@@ -1641,6 +1677,9 @@
\verb+\opgetintegerdigit{n}{T}{N}+ &
Build the number \verb+N+ width the only digit in slot
\verb+T+ of integer part of \verb+n+. \\\hline
+ \verb+\opgfsqrt{n}+ &
+ Display the old timed way to calculate a square root of
+ \verb+n+. \\\hline
\verb+\ophline(T1,T2){T3}+ &
Draw a horizontal rule of length \verb+T3+, of thickness
\verb+hrulewidth+, and which begin at \verb+(T1,T2)+ in relation to
@@ -1690,6 +1729,8 @@
\verb+\opsetintegerdigit{n}{T}{N}+ &
Modify the digit of rank \verb+T+ in integer part of \verb+N+ in
order to have the value \verb+n+ for this digit. \\\hline
+ \verb+\opsqrt{n}{N}+ & Put square root of \verb+n+ in
+ \verb+N+. \\\hline
\verb+\opsub[P]{n1}{n2}+ &
Display result of \verb+n1-n2+. \\\hline
\verb+\opsub*{n1}{n2}{N}+ &
@@ -1816,7 +1857,8 @@
shifting. \\\hline
\verb+maxdivstep+ &
\verb+10+ &
- Maximal number of steps in division. \\\hline
+ Maximal number of steps in division or in square root
+ operation. \\\hline
\verb+safedivstep+ &
\verb+50+ &
Maximal number of steps in division when there is a period to
@@ -2070,7 +2112,7 @@
\end{SideBySideExample}
Note that this code is very bad: it is very slow and don't give
-anything against native \TeX{} operations. It is only a educational
+anything against native \TeX{} operations. It is only an educational
example. Note also that the tricks to put loop into loop with macro
\verb+\testprimality+ inside a group. \package{xlop} operations give
global results.\index{global allocation}
Modified: trunk/Master/texmf-dist/source/generic/xlop/manual.sty
===================================================================
--- trunk/Master/texmf-dist/source/generic/xlop/manual.sty 2017-01-08 22:18:15 UTC (rev 42898)
+++ trunk/Master/texmf-dist/source/generic/xlop/manual.sty 2017-01-08 22:20:53 UTC (rev 42899)
@@ -17,7 +17,9 @@
\geometry{a4paper,left=4cm,right=4cm,top=3cm,bottom=3cm,nohead}
\let\SBSori\SideBySideExample
-\def\SideBySideExample{\par\bigbreak\SBSori}
+\def\SideBySideExample{%
+ \par\bigbreak\SBSori
+}
\let\endSBSori\endSideBySideExample
\def\endSideBySideExample{%
\endSBSori
Modified: trunk/Master/texmf-dist/tex/generic/xlop/xlop.tex
===================================================================
--- trunk/Master/texmf-dist/tex/generic/xlop/xlop.tex 2017-01-08 22:18:15 UTC (rev 42898)
+++ trunk/Master/texmf-dist/tex/generic/xlop/xlop.tex 2017-01-08 22:20:53 UTC (rev 42899)
@@ -1,5 +1,5 @@
-\def\fileversion{0.25}
-\def\filedate{2013/02/26}
+\def\fileversion{0.26}
+\def\filedate{2017/01/07}
%%
%% xlop.tex:
%% eXtra Large OPeration macros for Generic TeX.
@@ -6,7 +6,7 @@
%% See `user.pdf' for documentation;
%% `hacker.pdf' for explanation.
%%
-%% Copyright 2005,2006, by Jean-C\^ome Charpentier
+%% Copyright 2005,2017, by Jean-C\^ome Charpentier
%% Jean-Come.Charpentier at wanadoo.fr
%%
%% This program may be distributed and/or modified under the
@@ -933,6 +933,11 @@
\advance\op at count@i by1
\xdef\op@@export{\@nameuse{OP at tmp@\the\op at count@vi}\op@@export}%
\repeat
+ % add 0.26
+ \ifnum\OP at tmp@s=1
+ \xdef\op@@export{-\op@@export}%
+ \fi
+ % end add 0.26
\fi
% comment 0.24
% \fi
@@ -1878,7 +1883,7 @@
\op at split{#3}{b}%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Ajout du 20/11/2006 %%%
-%%% Sur indication de Cristophe Poulain %%%
+%%% Sur indication de Christophe Poulain %%%
\op at cmp{b}{zero}%
\ifopeq
\op at error{divisor must be nonzero}%
@@ -3481,6 +3486,233 @@
\op at floor{#1}{#2}%
\fi
}
+% add 0.26
+\op at split{0}{@zero}
+\op at split{1}{@one}
+\op at split{2}{@two}
+\op at split{3}{@three}
+\op at split{4}{@four}
+\op at split{5}{@five}
+\op at split{6}{@six}
+\op at split{7}{@seven}
+\op at split{8}{@height}
+\op at split{9}{@nine}
+\op at split{10}{@ten}
+
+\def\opsqrt{%
+ \@ifnextchar[{\op at sqrt}{\op at sqrt[nil]}%]
+}
+\def\op at sqrt[#1]#2#3{%
+ \begingroup
+ \opset{#1}%
+ \opcmp{0}{#2}%
+ \ifopeq
+ \op at copy{@zero}{U}%
+ \let\op at savemaxdivstep\op at maxdivstep
+ \else
+ \op at split{#2}{z}%
+ \op at count@z=\OP at z@i
+ \divide\op at count@z by2
+ \edef\op at savemaxdivstep{\op at maxdivstep}%
+ \op at count@i=\op at maxdivstep
+ \advance\op at count@i by\op at count@z
+ \advance\op at count@i by1
+ \edef\op at maxdivstep{\the\op at count@i}%
+ \ifodd\OP at z@i
+ \xdef\op at initsqrt{\@nameuse{OP at z@\OP at z@w}}%
+ \else
+ \op at count@z=\OP at z@w
+ \xdef\op at initsqrt{\@nameuse{OP at z@\the\op at count@z}}%
+ \advance\op at count@z by-1
+ \xdef\op at initsqrt{\op at initsqrt\@nameuse{OP at z@\the\op at count@z}}%
+ \fi
+ \ifnum\op at initsqrt<1
+ \op at copy{@zero}{u}%
+ \else\ifnum\op at initsqrt<3
+ \op at copy{@one}{u}%
+ \else\ifnum\op at initsqrt<7
+ \op at copy{@two}{u}%
+ \else\ifnum\op at initsqrt<13
+ \op at copy{@three}{u}%
+ \else\ifnum\op at initsqrt<21
+ \op at copy{@four}{u}%
+ \else\ifnum\op at initsqrt<31
+ \op at copy{@five}{u}%
+ \else\ifnum\op at initsqrt<43
+ \op at copy{@six}{u}%
+ \else\ifnum\op at initsqrt<57
+ \op at copy{@seven}{u}%
+ \else\ifnum\op at initsqrt<73
+ \op at copy{@height}{u}%
+ \else\ifnum\op at initsqrt<91
+ \op at copy{@nine}{u}%
+ \else
+ \op at copy{@ten}{u}%
+ \fi\fi\fi\fi\fi\fi\fi\fi\fi\fi
+ \op at count@ii=\OP at z@i
+ \advance\op at count@ii by1
+ \divide\op at count@ii by2
+ \advance\op at count@ii by-1
+ \op at lshift{\the\op at count@ii}{u}%
+ \op at count@z=\OP at z@w
+ \advance\op at count@z by1
+ \edef\op@@maxdivstep{\op at maxdivstep}%
+ \loop
+ \op at mul{u}{u}{U}%
+ \op at add{U}{z}{U}%
+ \op at mul{u}{@two}{D}%
+ \edef\op at maxdivstep{\the\op at count@z}%
+ \op at div{0}{U}{D}{U}{r}%
+ \multiply\op at count@z by2
+ \ifnum\op at count@z>\op@@maxdivstep
+ \op at count@z=\op@@maxdivstep
+ \fi
+ \op at cmp{u}{U}%
+ \ifopneq
+ \op at copy{U}{u}%
+ \repeat
+ \fi
+ \op at unsplit{U}{#3}%
+ \opround{#3}{\op at savemaxdivstep}{#3}%
+ \endgroup
+}
+
+\def\opgfsqrt{%
+ \@ifnextchar[{\op at gfsqrt}{\op at gfsqrt[nil]}%]
+}
+\def\op at gfsqrt[#1]#2{%
+ \begingroup
+ \edef\op at saveparindent{\the\parindent}%
+ \parindent=0pt
+ \opset{#1}%
+ \op at split{#2}{sq}%
+ \opsqrt{#2}{@sqrt}%
+ \op at split{@sqrt}{sqrt}%
+ \op at split{\op at initsqrt}{init}%
+ \op at count@z=\OP at sqrt@w
+ \op at split{\@nameuse{OP at sqrt@\the\op at count@z}}{atosub}%
+ \op at mul{atosub}{atosub}{tosub}%
+ \setbox1=\hbox{\kern\opcolumnwidth
+ \op at display{operandstyle.1}{sq}}%
+ \setbox2=\vtop{%
+ \hbox{\ophline(-0.5,-0.25){\OP at sqrt@w.5}%
+ \op at display{resultstyle}{sqrt}}%
+ \hbox{\op at display{intermediarystyle.1}{atosub}%
+ \hbox to\opcolumnwidth{\hss\op at mulsymbol\hss}%
+ \op at display{intermediarystyle.1}{atosub}%
+ \hbox to\opcolumnwidth{\hss\op at equalsymbol\hss}%
+ \op at display{operandstyle.2}{tosub}}%
+ }
+ \op at sub{init}{tosub}{rest}%
+ \op at count@ii=\OP at init@w
+ \op at count@iii=\op at count@ii
+ \advance\op at count@iii by1
+ \setbox1=\hbox{\hsize=\op at count@iii\opcolumnwidth\vtop{%
+ \box1
+ \hbox{%
+ \op at makebox{\the\op at count@iii}{0}%
+ {operandstyle.2}{tosub}%
+ \box0}}}%
+ \op at unzero{rest}%
+ \op at copy{@zero}{cursqrt}%
+ \op at copy{@zero}{digitmul}%
+ \op at count@i=\OP at sq@w
+ \advance\op at count@i by-\OP at init@w
+ \op at count@iv=2
+ \loop
+ \ifnum\op at count@z>1
+ \op at lshift{2}{rest}%
+ \ifnum\op at count@i>0
+ \@namexdef{OP at rest@2}{\@nameuse{OP at sq@\the\op at count@i}}%
+ \advance\op at count@i by-1
+ \ifnum\op at count@i>0
+ \@namexdef{OP at rest@1}{\@nameuse{OP at sq@\the\op at count@i}}%
+ \advance\op at count@i by-1
+ \fi
+ \fi
+ \op at count@ii=\op at count@iii
+ \advance\op at count@ii by-\OP at tosub@w
+ \advance\op at count@ii by-1
+ \advance\op at count@iii by2
+ \setbox1=\hbox{\hsize=\op at count@iii\opcolumnwidth
+ \vtop{%
+ \hbox{\box1}%
+ \hbox{%
+ \oplput(\op at count@ii,0.75){\ophline(0,0){1}}%
+ \oplput(\op at count@ii,0.75){\ophline(1,0){\OP at tosub@w}}%
+ \advance\op at count@iv by-1
+ \op at makebox{\the\op at count@iii}{0}%
+ {remainderstyle.\the\op at count@iv}{rest}%
+ \advance\op at count@iv by1
+ \oplput(\op at count@ii,1.5){$-$}%
+ \box0}%
+ }}%
+ \op at multen{cursqrt}%
+ \@namexdef{OP at cursqrt@1}%
+ {\@nameuse{OP at sqrt@\the\op at count@z}}%
+ \advance\op at count@z by-1
+ \op at mul{cursqrt}{@two}{atosub}%
+ \op at unzero{atosub}%
+ \op at multen{atosub}%
+ \@namexdef{OP at atosub@1}%
+ {\@nameuse{OP at sqrt@\the\op at count@z}}%
+ \@namexdef{OP at digitmul@1}%
+ {\@nameuse{OP at sqrt@\the\op at count@z}}%
+ \op at mul{atosub}{digitmul}{tosub}%
+ \op at unzero{tosub}%
+ \setbox2=\hbox{\vtop{%
+ \hbox{\box2}%
+ \hbox{\vrule width0pt height0pt
+ depth\oplineheight}%
+ \hbox{%
+ \op at display
+ {intermediarystyle.\the\op at count@iv}{atosub}%
+ \hbox to\opcolumnwidth{\hss\op at mulsymbol\hss}%
+ \op at display
+ {intermediarystyle.\the\op at count@iv}{digitmul}%
+ \hbox to\opcolumnwidth{\hss\op at equalsymbol\hss}%
+ \advance\op at count@iv by1
+ \op at display{operandstyle.\the\op at count@iv}{tosub}%
+ }%
+ }}%
+ \op at sub{rest}{tosub}{rest}%
+ \op at unzero{rest}%
+ \advance\op at count@iv by1
+ \setbox1=\hbox{\hsize=\op at count@iii\opcolumnwidth
+ \vtop{%
+ \hbox{\box1}%
+ \hbox{%
+ \op at makebox{\the\op at count@iii}{0}%
+ {operandstyle.\the\op at count@iv}{tosub}%
+ \box0}}}%
+ \repeat
+ \op at count@ii=\op at count@iii
+ \advance\op at count@ii by-\OP at tosub@w
+ \advance\op at count@ii by-1
+ \setbox1=\hbox{\hsize=\op at count@iii\opcolumnwidth
+ \vtop{%
+ \hbox{\box1}%
+ \hbox{%
+ \oplput(\op at count@ii,0.75){%
+ \ophline(0,0){1}}%
+ \oplput(\op at count@ii,0.75){%
+ \ophline(1,0){\OP at tosub@w}}%
+ \op at makebox{\the\op at count@iii}{0}%
+ {remainderstyle.\the\op at count@iv}{rest}%
+ \oplput(\op at count@ii,1.5){$-$}%
+ \box0}%
+ }%
+ }%
+ \parindent=\op at saveparindent
+ \leavevmode\hbox{%
+ \box1
+ \kern0.5\opcolumnwidth
+ \vrule
+ \kern0.5\opcolumnwidth
+ \box2}%
+ \endgroup
+ }
+% end add 0.26
\edef\opHatCode{\the\catcode`\^}
\catcode`\^=12\relax
\def\opexpr{\@ifnextchar[{\op at exprarg}{\op at exprarg[nil]}}
More information about the tex-live-commits
mailing list