[pstricks] plot of the sum of the second derivative of a gamma function
Herbert Voss
Herbert.Voss at FU-Berlin.DE
Thu Oct 21 15:00:38 CEST 2010
Am 20.10.2010 10:43, schrieb Cyrille Piatecki:
> where incidentaly $\mu$ is the mean of $F_1$ but this is not a problem
> since it is easy to know the expectation from a Gamma distribution
> from its parameters.
hope, this helps. I have no idea what values the
constants may have ...
Herbert
\documentclass{article}
\usepackage{pst-plot,pst-math}
\begin{document}
\[ F^\prime_1 = \Gamma(x)^{-1}\left[\lambda_1 e^{- \lambda_1
x}(\lambda_1 x)^{(t_1-1)}\right]
\]
and
\[ F^\prime_2 = \Gamma(x)^{-1}\left[\lambda_2 e^{- \lambda_2
x}(\lambda_1 (x-\mu))^{(t_2-1)}\right]
\]
\begin{psgraph}[Dy=0.2,Dx=2](0,0)(10,1.1){7cm}{5cm}
\psplot[plotpoints=1000,linecolor=red,linewidth=2pt]{0.1}{4}%
[ /mu -0.5 def /lambda1 0.5 def /lambda2 0.5 def /t2 1.5 def ]% the
constants
{1 x GAMMA div
lambda2 Euler lambda2 neg x mul exp mul
lambda1 x mu sub t2 1 sub exp mul
mul mul }
\end{psgraph}
\end{document}
More information about the PSTricks
mailing list