[pstricks] plot of the sum of the second derivative of a gamma function

Herbert Voss Herbert.Voss at FU-Berlin.DE
Thu Oct 21 15:00:38 CEST 2010

Am 20.10.2010 10:43, schrieb Cyrille Piatecki:

> where incidentaly $\mu$ is the mean of $F_1$ but this is not a problem  
> since it is easy to know the expectation from a Gamma distribution 
>  from its parameters.

hope, this helps. I have no idea what values the
constants may have ...





\[ F^\prime_1 = \Gamma(x)^{-1}\left[\lambda_1 e^{- \lambda_1
x}(\lambda_1 x)^{(t_1-1)}\right]

\[ F^\prime_2 = \Gamma(x)^{-1}\left[\lambda_2 e^{- \lambda_2
x}(\lambda_1 (x-\mu))^{(t_2-1)}\right]

    [ /mu -0.5 def  /lambda1 0.5 def /lambda2 0.5 def /t2 1.5 def ]% the
    {1 x GAMMA div
     lambda2 Euler lambda2 neg x mul exp mul
     lambda1 x mu sub t2 1 sub exp mul
     mul mul }


More information about the PSTricks mailing list