[pstricks] fusion, projection etc in pst3d-solides
Herbert Voss
Herbert.Voss at FU-Berlin.DE
Thu Sep 9 11:30:52 CEST 2010
Am 08.09.2010 20:40, schrieb Zbigniew Nitecki:
> Now, I am trying to do the analogous thing for the hyperbolic paraboloid (saddle
> surface) given by x^2-y^2=z.
> The following code
> %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[...]
>> \psSolid[object=plan,
>> definition=equation,
>> args={[0 0 1 -1]},
>> base=-2 2 -2 2,
>> fillcolor=gray!20,
>> name=zplaneup,
>> ngrid=0.5 0.5,
>> % action=none,
>> action=draw**,
that should also be action=none
[ ... ]
> Can you also confirm my understanding that you cannot fuse projections? (This is
> really what I would ideally like to do.)
yes
Here is what I get, when using the following code:
\documentclass{article}
\usepackage{pst-solides3d,pst-plot,amsmath}
\def\abs#1{\vert#1\vert}
\newcommand\zslicepos{%
\pspolygon[fillstyle=solid, fillcolor=gray!40, linestyle=none]%
(-2,-2)(2,-2)(2,2)(-2,2)
\psline[linestyle=dashed]{<->}(-2.5,0)(2.5,0)\uput[r](2.5,0){$x$}
\psline[linestyle=dashed]{<->}(0,-2.5)(0,2.5)\uput[u](0,2.5,0){$y$}
\psline[linecolor=darkgray](-2,-2)(2,2)
\psline[linecolor=darkgray](-2,2)(2,-2)
\parametricplot [linewidth=1.2pt]{-1.73}{1.73}{1 t dup mul add 0.5 exp t}
\parametricplot [linewidth=1.2pt]{-1.73}{1.73}{1 t dup mul add 0.5 exp
neg t}
\uput[d](0,-2.5){$z=c>0: x^{2}-y^{2}=c$}}
\newcommand\zsliceneg{%
\pspolygon[fillstyle=solid, fillcolor=gray!40, linestyle=none]%
(-2,-2)(2,-2)(2,2)(-2,2)
\psline[linestyle=dashed]{<->}(-2.5,0)(2.5,0)\uput[r](2.5,0){$x$}
\psline[linestyle=dashed]{<->}(0,-2.5)(0,2.5)\uput[u](0,2.5,0){$y$}
\psline[linecolor=darkgray](-2,-2)(2,2)
\psline[linecolor=darkgray](-2,2)(2,-2)
\parametricplot[linewidth=1.2pt]{-1.73}{1.73}{t 1 t dup mul add 0.5 exp }
\parametricplot [linewidth=1.2pt]{-1.73}{1.73}{t 1 t dup mul add 0.5
exp neg }
\uput[d](0,-2.5){$z=c<0: x^{2}-y^{2}=-\abs{c}$}}
\newcommand\xslice{%
\pspolygon[fillstyle=solid,
fillcolor=blue!10](-1.5,-2.25)(1.5,-2.25)(1.5,2.25)(-1.5,2.25)
\psline{<->}(-1.5,0)(1.5,0)\uput[r](1.5,0){$y$}
\psline{<->}(0,-2.25)(0,2.25)\uput[u](0,2.25,0){$z$}
\psplot[linewidth=1.2pt, linecolor=blue]{-1.5}{1.5}{x dup mul neg}
\uput[d](0,-2.5){$x=0:z=-y^{2}$}}
\newcommand\yslice{%
\pspolygon[fillstyle=solid, fillcolor=red!10]%
(-1.5,-2.25)(1.5,-2.25)(1.5,2.25)(-1.5,2.25)
\psline{<->}(-1.5,0)(1.5,0)\uput[r](1.5,0){$x$}
\psline{<->}(0,-2.25)(0,2.25)\uput[u](0,2.25,0){$z$}
\psplot[linewidth=1.2pt, linecolor=red]{-1.5}{1.5}{x dup mul}
\uput[d](0,-2.5){$y=0:z=x^{2}$}}
\begin{document}
\begin{pspicture}(-5,-5.5)(5,1.5)
\psset{unit=0.5}
\rput(-4.5,0){\zslicepos}
\rput(4.5,0){\zsliceneg}
\rput(-4.5,-7){\xslice}
\rput(4.5,-7){\yslice}
\end{pspicture}
\begin{pspicture*}(-3,-2.5)(3,3)
\psset{unit=0.25,lightsrc=40 50 50,viewpoint=18 55 30 rtp2xyz,solidmemory}
\psSolid[object=plan,definition=equation,args={[0 0 1 -1]},base=-2 2 -2 2,
fillcolor=gray!40,name=zplaneup,ngrid=0.5 0.5,action=none]
\psSolid[object=plan,definition=equation,args={[0 0 1 1]},base=-2 2 -2 2,
fillcolor=gray!40,name=zplanedown,ngrid=0.5 0.5,action=none]
\psSolid[object=plan,definition=equation,args={[1 0 0 0] 90},base=-2 2 -2 2,
fillcolor=blue!10,name=xplane,ngrid=0.5 0.5,action=none]
\psSolid[object=plan,definition=equation,args={[0 1 0 0]},base=-2 2 -2 2,
fillcolor=red!10,name=yplane,ngrid=0.5 0.5,action=none]
\psSolid[object=fusion,base=xplane_s yplane_s zplaneup_s zplanedown_s]
%
\composeSolid%
%
\psSolid[object=plan,definition=equation,args={[0 1 0 0] 180},base=-2 2
-2 2,
name=yplane,linewidth=0.5pt,ngrid=0.5 0.5,action=none]
\psSolid[object=plan,definition=equation,args={[0 0 1 1]},base=-2 2 -2 2,
fillcolor=gray!40,name=zplanedown,ngrid=0.5 0.5,action=none]
\psSolid[object=plan,definition=equation,args={[0 0 1 -1]},base=-2 2 -2 2,
fillcolor=gray!20,name=zplaneup,ngrid=0.5 0.5,action=none]
\psSolid[object=plan,definition=equation,args={[1 0 0 0] 90},base=-2 2 -2 2,
name=xplane,ngrid=0.5 0.5,action=none]
%
\defFunction[algebraic]{ycutfcn}(x){x*x}{}{}%
\psProjection[object=courbe,linecolor=red,linewidth=2pt,plan=yplane,
range=-1.5 -1,resolution=720,function=ycutfcn,action=draw**]
\psProjection[object=courbe,linecolor=red,linewidth=2pt,linestyle=dashed,
plan=yplane,range=-1 1.0,resolution=720,function=ycutfcn,action=draw**]
\psProjection[object=courbe,linecolor=red,linewidth=2pt,
plan=yplane,range=1.0 1.5,resolution=720,function=ycutfcn,action=draw**]
%
\defFunction[algebraic]{xcutfcn}(y){-y*y}{}{}%
\psProjection[object=courbe,linecolor=blue,linewidth=2pt,plan=xplane,
range=0.5 1.5,resolution=720,function=xcutfcn,action=draw**]
\psProjection[object=courbe,linecolor=blue,linewidth=2pt,linestyle=dashed,
plan=xplane,range=-1.5 0.5,resolution=720,function=xcutfcn,action=draw**]
%
\defFunction[algebraic]{zcutupfcnplus}(t){sqrt(1+t^2)}{t}{}%
\psProjection[object=courbeR2,linecolor=black,linewidth=2pt,plan=zplaneup,
range=-2 2,resolution=720,function=zcutupfcnplus,action=draw**]
%
\defFunction[algebraic]{zcutupfcnminus}(t){-sqrt(1+t^2)}{t}{}%
\psProjection[object=courbeR2,linecolor=black,linewidth=2pt,plan=zplaneup,
range=-2 2,resolution=720,function=zcutupfcnminus,action=draw**]
\axesIIID(0,0,0)(3.5,3.5,3.5)
\end{pspicture*}
\end{document}
Herbert
-------------- next part --------------
A non-text attachment was scrubbed...
Name: x.png
Type: image/png
Size: 54483 bytes
Desc: not available
URL: <http://tug.org/pipermail/pstricks/attachments/20100909/2918f253/attachment-0001.png>
More information about the PSTricks
mailing list