[pdftex] pdfscreen example; with overlay and footer
Troy Goodson
Troy.D.Goodson at jpl.nasa.gov
Wed Nov 28 09:22:21 CET 2001
For the benefit of other novice users here, the following is how I got pdfscreen to work making slides the way I needed them. It may help someone else, so here it is:
there are two other files that go with this one:
<http://www.csun.edu/~kg46825/troy/trapz_error_steps.pdf>
<http://www.csun.edu/~kg46825/troy/friburg_template.pdf>
a couple of other notes:
* I had to set the footers in the first slide environment
* When I reset a footer with \cfoot, it affects the previous slide
-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
\documentclass{article}
\usepackage[screen,nopanel]{pdfscreen}
\usepackage{amsmath}
\usepackage{fancyhdr}
\renewcommand{\headrulewidth}{0mm} % fancyhdr
\renewcommand{\footrulewidth}{0mm} % fancyhdr
% I don't like alphabetic footnote-marker symbols...
\renewcommand{\thempfootnote}{\fnsymbol{mpfootnote}}
% next 3 lines from pdfscreen example, slide.tex
\margins{1.5in}{1.5in}{.5in}{.5in} %left,right,top,bot
\screensize{8.5in}{11in}
\notesname{Notes:}
% my common definitions
\newcommand{\deltav}[1]{$\Delta V#1$}
\newcommand\degrees[1]{\ensuremath{#1^\circ}} % for degrees symbol
% my uncommon definitions
\newcommand{\vconic}{\vec{V}_{\substack{no-SOI\\conic}}}
\newcommand{\slidehead}[1]{
\begin{center}\boldmath\textbf{\Large#1}\end{center}\hrule depth .3mm}
% next 2 lines: these adjustments put the footer where I want
% it and keep the main text centered on the page. This could
% screw something else up, but it works for me ;)
\headsep .3in
\textheight 6.84in
\begin{document}
\sffamily % I don't like serifs on slides
\pagestyle{fancy} % for fancydr package
\overlay{friburg_template} % typical engineer's overlay
% available at <http://www.csun.edu/~kg46825/troy/friburg_template.pdf>
\begin{slide}
% I don't know why it seems I have to setup the footer in the
% first slide, but this what I found to work
\lfoot{\colorbox{white}{\bf\sffamily\Large Nov. 30, 2001}}
\rfoot{\bf\boldmath\sffamily\Large \colorbox{white}{Navigation Algorithm Design}\\ \colorbox{white}{and $\Delta V$ Error Analysis}}
\cfoot{\colorbox{white}{\bf\sffamily\Large C-\thepage}}
\begin{center}
\parbox{.6\linewidth}{
\begin{center}
\Huge\noindent\bfseries{\boldmath
Navigation Algorithm Design and $\Delta V$ Error Analysis}
\end{center}}\\
\bigskip
Troy Goodson
\end{center}
\end{slide}
\begin{slide}
\slidehead{ Overview }
\begin{itemize}
\item SOI characteristics
\item \deltav{_{SOI}} for delays
\item Navigation's algorithm design
\item Deterministic errors
\item Statistical errors
\item Open issues
\end{itemize}
\end{slide}
% this slide has text on the left and a figure on the right
\begin{slide}
\slidehead{ Using trapezoidal integration instead of adaptive step-size }
\parbox{.4\linewidth}{
\begin{itemize}
\item Trapezoidal integration error bound is $(Nh)\frac{h^2}{12}f^{''}_{max} \approxeq 9 \times 10^{-10} km^2/s^2$
\begin{itemize}
\item $(Nh)$ is about 96 minutes
\item $h$ is one RTI (1/8 sec)
\item $f$ is $(\vec{V}\cdot\vec{a})$, so $f^{''}_{max}$ is roughly $12 \times 10^{-11} km^2/s^5$
\end{itemize}
\item $\frac{9 \times 10^{-10} km^2/s^2}{17 km^2/s^2} \approxeq 5 \times 10^{-11}$ at one RTI (8 steps per second), which bounds the plot to the right.
\end{itemize}
}
\hfill
\vrule
\parbox{.55\linewidth}{
\includegraphics[angle=-90,scale=.935]{trapz_error_steps.pdf}
% available at <http://www.csun.edu/~kg46825/troy/trapz_error_steps.pdf>
}
\end{slide}
\begin{slide}
\begin{center}
\parbox{.6\linewidth}{
\begin{center}
\Huge\noindent\bfseries{\boldmath
Appendix}
\end{center}}\\
\end{center}
\end{slide}
\begin{slide}
\slidehead{Simplifying the Computation of SOI's $\Delta E$ (alternate)}
% I don't know why changing the footer within this slide environment
% affects the previous slide, but it does...
\cfoot{\colorbox{white}{\bf\sffamily\Large C-\thepage (Appendix)}}
\begin{itemize}
\item The change in orbital energy for a two-body conic:
\[ \Delta E (t) = \int_0^t \vec{V}_{w/SOI}(\tau)\cdot\vec{a}_{SOI}(\tau) d\tau \]
\item Assume that the influence of $\vec{a}_{SOI}$ is small enough to be linear
\[ \vec{V}_{w/SOI}(t) = \vec{V}_{no-SOI}(t) + \int_0^t \Phi (t,\sigma) \vec{a}_{SOI}(\sigma) d\sigma
\]
\item Throw out second-order terms to arrive at the approximation
\[ \Delta E (t) = \int_0^t \vec{V}_{no-SOI}(\tau)\cdot\vec{a}_{SOI}(\tau) d\tau + \underbrace{\int_0^t \int_0^t \left[ \Phi (\tau,\sigma) \vec{a}_{SOI}(\sigma)\right] \cdot\vec{a}_{SOI}(\tau) d\sigma d\tau}_\text{second-order; throw away} \]
\end{itemize}
\end{slide}
\end{document}
More information about the pdftex
mailing list