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Lecture 1

More or Less: The Algebra

and Geometry of Inequalities

1.1 The Number Line

“Numbers ” come in several flavors, and in varying degrees of abstraction.

The natural numbers 1, 2, 3, . . . are associated with counting–either
counting how many elements belong to a set (“cardinal” numbers), or
locating a position in a list (“ordinal” numbers). Addition of natural
numbers is associated to counting the number of elements in the union
A ∪B1 of two disjoint2 sets A and B: if A has m elements and B has n then
A ∪B has m+ n. If we think of the natural numbers as a list, with the
successor m+ 1 of m ∈ N to the right of m, then adding n to m has the
effect of moving n places to the right. Multiplying m by n is the same as
adding together n copies of m. Addition and multiplication are related by
the distributive law: m(n+ k) = mk + nk. The collection of all natural
numbers is denoted N.

The integers Z consist of the natural numbers, or in this context the
positive integers together with the number zero (0) and the negative
integers −1,−2,−3, . . . , arranged in succession to the left of N. The
identities n+ 0 = n, −n+ n = 0 and −n = (−1)n together with the
distributive law lead to a unique extension of addition and multiplication
from N to Z. Subtraction of n from m is defined as m− n = m+ (−n).

1The union A ∪B consists of all elements that belong to either A or B or both.
2A and B are disjoint if they share no common elements–that is, their intersection

contains no elements–it is “empty”: A ∩ B = ∅.

11



12 LECTURE 1. INEQUALITIES

The rational numbers, denoted Q, are represented by fractions p
q
; we

adopt the convention that in this notation, the numerator p is an integer
but the denominator q is a natural number. To incorporate these in a
geometric representation, we think of the integers Z as spaced one unit of
length apart on a line.
Then we locate the fraction p

q
by taking the interval whose endpoints are 0

and p, dividing it into q subintervals of equal length, and then locating p
q
at

the “other” endpoint of the subinterval starting at 0. This scheme puts the
fraction mp

mq
, where m ∈ N is any positive integer, at the same location as p

q
.

This location is the ratonal number represented by any of these fractions.
Among them, there is one which minimizes the denominator; it is called a
reduced fraction and is characterized by the fact that p and q are
relatively prime. Every representative of the rational represented by a
reduced fraction p

q
has the form mp

mq
for some m ∈ N.

01234−1−2−3−4|
−1

3|
4

3|
5

2|
−3

2|
1

2|
−5

2

Figure 1.1: Q, the rationals

One major difference between Z and Q is that every x ∈ Z has a “successor”
(x+ 1) and a “predecessor” (x− 1), while it makes no sense to talk about
the “next” rational after x (or the “last” one before it), since between any
two distinct rationals, say x < y ∈ Q, there exists another rational x < z < y
(for example, their midpoint z = 1

2
(x+ y)).

Digression:
Irrational Numbers

As every Calculus student knows, not every quantity can be expressed
as a rational number. The most basic example comes from the
Pythagorean Theorem, that the square of the length of the
hypotenuse of a right triangle equals the sum of the squares of the
other two sides.

a
b

c

Ironically, the historical figure after which this result is named,
Pythagoras of Samos (ca. 580-500 BC), is also associated with a point
of view that was destroyed via this equation. According to this view,
any two quantities are commensurable, meaning that they are both
multiples (via natural numbers) of some common divisor. About a
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century after Pythagoras’ death, it was discovered by Hippasus of
Metapontum (ca. 400 BC) (a follower of the philosophical school
Pythagoras had started) that when a = 1 = b, then c (which we now
call

√
2) is incommensurable with a.a The standard argument

establishing this fact is a classic example of proof by contradiction,
a method of proof which amounts to showing that the statement to be
proved can’t possibly be false.

Theorem 1.1. There is no rational number whose square equals 2.

Proof:
Suppose that p

q
is a fraction satisfying

(

p

q

)2

= 2,

or
p2 = 2q2. (1.1)

We can assume that p is positive and the fraction p
q
is irreducible, and

in particular that p and q are not both even.
By Equation (??), p2 is even. It follows that q itself is even, since it is
easy to see that the square of an odd natural number is itself odd.
This says that

p = 2m (1.2)

for some m ∈ N. Substituting this in Equation (??) leads to

2m2 = q2 (1.3)

so (since q2 is even), q is also even.
But this contradicts our assumption that the fraction p

q
is reduced, or

more precisely that p and q can’t both be even. The contradiction
proves the theorem.b

aVarious versions of this story have Hippasus either banished or thrown overboard
at sea for uncovering and publicizing this inconvenient truth.

bIn effect, we have established that there is no reduced fraction representing
√
2.

The upshot of this is that we need to go beyond Q to get our hands on what
we mean by a “number”. Essentially, all arithmetic calculation is done on
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rationals: an expression like 1 +
√
2 or sin(π/

√
2) or e

√
2 is simply an

abstract manipulation of symbols unless we can ground it in some unified
conception of “real numbers”, which we think of as points on the “number
line”, denoted R.
These days we are used to thinking of real numbers in terms of decimal
expansions, which are infinite strings of digits. In practice, though, we
“calculate” (whether by hand or on a computer) with truncated versions of
these sequences, which in turn represent rational numbers. Our picture of
real numbers as points on a “number line” is a useful source of intuition, but
to understand real numbers in a careful way we need to connect this
geometric intuition to operational notions, starting with (rational)
arithmetic.

Such a connection was developed in the nineteenth century, starting with the
formulation and proof of the Intermediate Value Theorem[?] by Bernhard
Bolzano (1781-1848) in 1817 and two sets of lecture notes published by
Augustin-Louis Cauchy (1789-1857) in 1821 and 1823: Cours d’analyse de
l’école polytechnique(1821) [?, ?] and Résumé des leçons données à l’école
royale polytechnique sur le calcul infinitésimal (1823)Résumé des lecons sur
le calcul infinitesimal (1823)][?]. These works initiated a careful study of
convergence, based on the arithmetic of inequalities. In the course of the
nineteenth century, this point of view was developed and extended to a
rigorous theory real numbers, and of real-valued functions; in addition to
Bolzano and Cauchy some notable contributors were Niels Henrik Abel
(1802-1829), Peter Lejeune-Dirichlet (1805-1859), Bernhard Riemann
(1826-1866), Georg Ferdinand Cantor (1845-1918), and Karl Weierstrass
(1815-1897). This theoretical development is sometimes referred to as the
“arithmetization of analysis”.

1.2 Inequalities and Arithmetic

In practice, the relative position of two rational numbers is easy to decide

from a pair of representative fractions:3 m
n
< p

q
precisely if mq < np.

However, when a number, such as
√
2, is specified by some property, its

position relative to other numbers must be deduced from this property by
manipulating inequalities.

3We reiterate our convention that the denominator of a fraction is a natural number, so
we always assume when we write p

q
that, while p can be a positive or negative integer (or

zero), q is a positive integer.
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The manipulation of equalities is governed by a single, simple principle:
If the same arithmetic operation is applied to two equal numbers, the results
are equal.
An analogous simple rule does not hold when the same arithmetic operation
is applied to two unequal properties, say x < y–this inequality does not
necessarily continue to hold for the results of an arithmetic operation.
Depending on the operation, the signs involved, as well as other
considerations, the inequality may be preserved or reversed. An exhaustive
list of rules concerning this question would probably be very complicated,
but we can point to some particularly common pitfalls to avoid. What we
present can be justified for rational numbers from our definitions, but with
considerably more work they can also be extended to irrational numbers.

A surprisingly useful initial observation is
x < y if and only if x− y < 0, or equivalently y − x > 0 .
Very often, a question about inequality is much easier to answer when it is
posed as finding the sign of some related quantity. An equivalent
formulation (based on the trivial calculation (x+ y)− y = x) is

Remark 1.2. If y > 0 then for every x, x < x+ y.

Similarly, the fact that x− y and y − x have opposite signs yields

Remark 1.3. x < y if and only if −y < −x.

The fact that the product of two positive numbers is positive, together with
Remark ??, can be used to show

Remark 1.4. The product of two numbers is positive if they have the same
sign and negative if they have opposite sign.

Reciprocals are a bit trickier:

Remark 1.5. If x and y have the same sign, then x < y if and only if
1

y
< 1

x
.

This follows from the calculation

1

x
− 1

y
=

y − x

xy

together with Remark ??. What about the other case (different sign)?

An illustration of the practical usefulness of switching from an inequality
question to a sign question is
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Question 1.6. Suppose we know that x < y and u < v; what is the relation
between x− u and y − v?

We note that if u and v are nearly zero, then x− u remains less than y − v,
but if u and v are very high, then x− u is greater than y − v,

To decide the threshold between the two, we ask for the sign of
(x− u)− (y − v) = (x− y)− (u− v), and it becomes clear that

x− u < y − v precisely if (x− y) < (u− v).

Exercises

1. Show that if m ∈ N then m2 is even if and only if m is even. Note that
there are two things to prove: if m is even, then so is m2, and if m2 is
even then m is even.

2. Each of the following statements is true whenever all the letters
represent positive real numbers. For each statement, either give an
example (involving some negative numbers) for which it is false, or
prove that it is true for all real numbers:

a) If a < b then 1

a
> 1

b
. (b) If a < b then −a > −b,

3. Suppose 0 < x < y and 0 < u < v. What is the relation between x
u
and

y
v
?

4. Cauchy’s mediant lemma: [?, Thm 1, p. 13]4

a) Show that if

0 <
a1
b1

≤ a2
b2

Then
a1
b1

≤ a1 + a2
b1 + b2

≤ a2
b2

.

4The fraction appearing in the middle of the inequality in (a) is called the mediant

or Farey sum of the outer fractions. If we consider all the reduced proper fractions with
denominator less than a given bound, listed in increasing order, then each entry is the
mediant of its two immediate neighbors. This was observed (without proof) by John Farey
(1766-1826)[?]; Cauchy then published a proof of this [?], crediting Farey with the idea of
mediants. However, it seems this same observation had been used much earlier by Charles
Haros when preparing tables giving the conversion of fractions to decimal form [?]. The
corresponding quantity in (b) is also called the mediant of the collection of fractions ai/bi;
Cauchy was interested in this as a kind of average.
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Note that we defined a fraction to have a positve denominator (but
a numerator of either sign).

b) Extend this (by induction on n) to a collection of n positive
fractions ai

bi
, i = 1, . . . , n:

min

{

ai
bi

}

≤ a1 + · · · + an
b1 + · · · + bn

≤ max

{

ai
bi

}

Is the assumption that both fractions are positive necessary for this to
hold?





Lecture 2

Intervals

2.1 Absolute Value

The fact that negation reverses inequalities leads us to the following

Definition 2.1. The absolute value of any number x is defined to be

|x| = max {x,−x} .

That is, the absolute value of any number is either the number itself or its
negative, whichever is higher:

|x| =
{

x if x ≥ 0,

−x otherwise.

Thus, the absolute value of x is a non-negative number, which expresses the
length of the interval with endpoints 0 and x. This can also be interpreted
as the size of the number x. We shall take some care to distinguish saying
that x is less than y–or y is higher than x (x < y)–from saying that x is
smaller than y–or y is larger than x (|x| < |y|).
For many reasons (not least of which is that inequalities among positive
numbers are simpler than inequalities among numbers that can sometimes
be negative) we will very often be trying to establish inequalities among
absolute values rather than numbers in general. To this end, it is useful to
note the following

Remark 2.2. Every number, as well as its negative, is less than or equal to
its absolute value:

x ≤ |x| and − x ≤ |x| ,
and for any other number y,

19
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|x| ≤ y if and only if both x ≤ y and −x ≤ y.

(After all, the higher of two numbers is less than y precisely if each of the
two numbers individually is less than y.)

We shall make frequent use of three basic properties of the absolute value,
codified in the following

Proposition 2.3. The absolute value function satisfies:

Positive-Definite: For all x, |x| ≥ 0, and |x| = 0 precisely when x = 0.

Scaling: For any x and y, |xy| = |x| |y|.

Triangle Inequality: For any x and y, |x+ y| ≤ |x|+ |y|.

The first property is an immediate consequences of the definition, but the
other two require proof.

1. Proof of scaling:

Case 1 If x and y have the same sign, then xy is non-negative, and
hence equals |xy|. In this case, if x and y are both positive, then
also xy = |x| |y|, while if both are negative, then
|x| |y| = (−x)(−y) = xy = |xy|

Case 2 If they have opposite signs, then xy is negative, so |xy| = −xy.
Now, either |x| = −x or |y| = −y, but not both, so |x| |y| = −xy as
well.

2. Proof of triangle inequality:

We need to show that for any two numbers x and y,

max {(x+ y),−(x+ y)} ≤ |x|+ |y| .

Applying Remark ?? to x and y individually, we have the four
inequalities

x ≤ |x| and − x ≤ |x|
y ≤ |y| and − y ≤ |y| ;
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adding the first and third inequality (and using the basic fact about
adding unequals) yields

x+ y ≤ |x|+ |y|

while adding the second and fourth inequality yields

−x− y ≤ |x|+ |y|

or −(x+ y) ≤ |x|+ |y|. These two observations let us apply Remark ??
again, this time to (x+ y), to get

|x+ y| ≤ |x|+ |y|

which is the triangle inequality.

The absolute value |x| of a number can be interpreted as the distance from x
to the origin, 0. More generally, we can measure the distance between two
distinct numbers, x and y, as

dist(x, y) = |x− y|

From this point of view, the triangle inequality for the absolute value
translates to the statement
Triangle Inequality for Distance:

For any three points x, y, z, dist(x, y) ≤ dist(x, z) + dist(z, y).

This is the same as the triangle inequality for absolute value, applied to

|x− y| = |(x− z) + (z − y)| .

Geometrically, if we draw the collapsed triangle whose vertices are the three
points, it is the statement that each side of the triangle is no longer than the
sum of the other two.

2.2 Intervals

While subsets of R come in many different varieties, one variety of subset
which occurs very frequently (for example, as the domain of a function) is
the interval :

Definition 2.4. An interval is a set I of real numbers with the property
that for any two elements x, y ∈ I, every point between x and y is also an
element of I.
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We have a special notation for intervals, which distinguishes several
subvarieties:

• The closed interval with endpoints a ≤ b is

[a, b] = {x ∈ R | a ≤ x and x ≤ b} .

• The open interval with endpoints a ≤ b is

(a, b) = {x ∈ R | a < x and x < b} .

• We can also define half-open intervals:

(a, b] = {x ∈ R | a < x and x ≤ b}
[a, b) = {x ∈ R | a ≤ x and x < b} .

All of these sets consist of the points “between a and b” ; the distinction
between them hinges on whether a (resp. b) is included in, or excluded from,
the set. This distinction may seem a bit esoteric, but as we shall see it can
often play a crucial role in our study of real numbers. An interval specified
in any of these ways as the collection of points between two specified real
numbers a, b ∈ R is called a bounded interval and the points a and b are
its endpoints. When sketching intervals, we mark an included endpoint by
a filled-in dot, and an excluded one by a “hollow” dot:

ab

(a)
Closed
in-
ter-
val
[a, b]

ab

(b)
Open
in-
ter-
val
(a, b)

ab

(c)
Half-
open
In-
ter-
val
(a, b]

Figure 2.1: Bounded Intervals

Definition ?? encompasses, in addition to intervals defined by two
inequalities, intervals defined by a single inequality, like the set of strictly
positive numbers noted before Definition ??. We adapt our notation to these
sets by use of the symbols ∞ and −∞, which we can think of as the right
and left “ends” of the number line, so every real number x satisfies the two
inequalities −∞ < x and x < ∞. This device lets us write (0,∞) for the set
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of strictly positive numbers, and (−∞, 0] for the set of non-positive
numbers–we can even write

R = (−∞,∞)

for the interval defined by no inequalities at all. It is important to remember
that ±∞ are not numbers–we cannot perform arithmetic operations on them
in a meaningful way–and by convention we never write them as “included”
endpoints of an interval. We refer to an interval with at least one “infinite
endpoint” as an unbounded interval.

a

(a)
(a,∞)

b

(b)
(−∞, b]

(c)
(−∞,∞) =
R

Figure 2.2: Unbounded Intervals

Exercises

1. Each of the following statements is true whenever all the letters
represent positive real numbers. For each statement, either give an
example (involving some negative numbers) for which it is false, or
prove that it is true for all real numbers:

a) |a− b| ≤ |a|+ |b|. (b) |a− b| ≥ |a| − |b| .

2. What is closer to 1: 3

4
or 4

3
? As a general rule, which positive real

numbers are closer to 1 than their reciprocal? Justify your answer.

3. If p(x) is a polynomial of degree n, then for any a ∈ R, there are at
most n real numbers that satisfy the equation p(x) = a. So a solution
of such an equation is a list of all (real) numbers that satisfy it. In
general, an inequality can be satisfied by infinitely many numbers, so
such a list is impossible. But we could reasonably say that we have
“solved” the inequality if we can express the collection of all the
numbers that satisfy it as a disjoint union of intervals.

The function
f(x) = x2 − x4

has a local maximum at x = ± 1√
2
and a local minimum at x = 0.
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Solve each of the following:

a) f(x) = −2 (b) f(x) = 1 (c) f(x) = 0

d) f(x) > 0 (e) f(x) ≤ 0 (f) |f(x)| ≤ 2

g) |f(x)| > 2



Lecture 3

Convergence of Sequences

3.1 Sequences

Much of our investigation of the number line and functions will be based on
sequences, which we use to probe R. The word “sequence” connotes a
succession–that is, one object after another. Formally,

Definition 3.1. A sequence of real numbers is a function from N to R.

That is, it is a list consisting of a first number, a second number, and so on.
These numbers are called the terms of the sequence. Unless otherwise
specified, a sequence is assumed to be unending–that is, there is no “last”
term.1

Specifying a sequence

One informal way to refer to a sequence is to list its terms in order. Since
there are infinitely many terms, we are actually able to list only the first few
terms, leaving the rest of the sequence to the reader’s imagination. This is
highly unsatisfactory, as the first few terms can in principle be followed by
any numbers whatsoever. For example, the sequence

1, 2, 3, . . .

probably suggests that we are talking about the natural numbers, listed in
ascending order, so the next term should be 4. However, the sequence of

1A list which terminates is called a finite sequence.

25
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prime numbers (again listed in ascending order) also starts out with 1, 2, 3;
the next prime is 5. So we might think that the initial string

1, 2, 3, 5, . . .

should be followed by 7. However, the sequence of Fibonacci numbers (where
each term is the sum of the two preceding terms) follows the string 1, 2, 3, 5,
with 8, not 7. Then again, the sequence could also be a periodic sequence,
which repeats the string 1, 2, 3, 5, 8 over and over:

1, 2, 3, 5, 8, 1, 2, 3, 5, 8, 1, 2, 3, 5, 8, . . . .

(And of course, in principle this string of 15 initial terms could actually be
followed by anything else.)
So we need to have a better way to specify a sequence unambiguously: that
is, we should be able to calculate or otherwise determine each term. For
example, saying that we are looking at the natural numbers, or the primes,
beginning with 1, in ascending order, identifies the sequence unambiguously.
There are two standard ways of giving such a specification.

Closed form

The first is to say, in effect, “The kth term is...” and give an explicit rule
which determines each term from the number specifying its position in the
sequence. This is called a closed form specification of the sequence.
Generally, we use a subscripted notation for the terms of a sequence. The
subscript is a natural number specifying the position we are referring to,
called the index of the term. For example, we can specify the sequence of all
perfect squares listed in ascending order by

xk = k2, k = 1, 2, 3, . . . .

An alternative shorthand for this is

{k2}∞k=1.

A few observations to keep in mind about this notation:

• Any letter can be used for the index, though letters from the middle of
the alphabet (i, j, k, ℓ,m, n) are the conventional choice.

• The index can start at any integer, not just 1. For example, the
sequence of odd natural numbers could be written as {2k − 1}∞k=1

, or
as {2k + 1}∞k=0

.
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• However, once the initial index is fixed, the index must proceed by
increments of 1: it is not permissible to write the odds as
k, k = 1, 3, 5, . . . .

Recursive definition

A second standard way to specify a sequence is to determine each term from
the value of its predecessor(s) (possibly together with the index); this is
called the recursive step. To be able to use such a definition, we also need
to explicitly specify the initial term, or enough initial terms to allow the
recursive step to be applied.

A familiar example of this is the definition of the factorial function k!,
which is given by

0! = 1

k! = k · (k − 1)!, k = 1, 2, . . . .

An example of a two-step recursive definition is the Fibonacci sequence,

x1 = 1

x2 = 2

xn = xn−1 + xn−2, n ≥ 3

whose first few terms are

1, 2, 3, 5, 8, 13, 21, . . . .

Series

An important class of recursively defined sequences are series, which are
infinite sums. Suppose, for example, that we wish to add up the reciprocals
of all the natural numbers

1

1
+

1

2
+

1

3
+

1

4
+ · · ·

Since addition is a binary operation, we can only add these up in stages:
begin by adding the second reciprocal to the first

1

1
+

1

2
=

3

2
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then add the third reciprocal to this sum

3

2
+

1

3
=

11

6

then in turn add the next reciprocal to this sum

11

6
+

1

4
=

25

12

and so on. Thus, the sequence of natural numbers

1, 2, 3, 4 . . .

gives rise to a new sequence

1,
3

2
,
11

6
,
25

12
, .....

called the partial sums of our summation. The Nth partial sum

SN =
1

1
+

1

2
+

1

3
+ · · ·+ 1

N

is more efficiently written in summation notation

SN =

N
∑

k=1

1

k
.

The stepwise addition gives a recursive definition for the sequence of partial
sums:

N = 1 : S1 =
1

∑

k=1

1

k
=

1

1
= 1

N = n+ 1 : Sn+1 =
n+1
∑

k=1

1

k
=

(

1

1
+

1

2
+ · · ·+ 1

n

)

+
1

n+ 1
= Sn +

1

n+ 1
.

It is the sequence of partial sums, not the original sequence of reciprocals,
which determines the outcome of our calculation.
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Digression:
A Caution and Clarification

It is common for beginners to confuse sets, sequences, and series.

• A set is simply a collection. It can be written as a list, but the
order is irrelevant: two sets are the same if the same items are
included. For example, the (finite) sets

{1, 2, 3} , {3, 2, 1} , {2, 1, 3}
are all the same set; even if our list is repetitive, this doesn’t
change things: the set {1, 2, 1, 3, 2, 1} is the same as the three
sets given above.

• A sequence (finite or infinite) is a succession of items: both
order and repetition are not to be ignored. The finite sequences

1,2, 3

3,2, 1

2,1, 3

1,2, 1, 3, 2, 1

are all different.

• A series is an infinite sum, which is a sequence of successive
additions, called the partial sums: given an original sequence of
numbers {ak}∞k=1

, the sequence of partial sums is defined
recursively by setting S1 = a1 and, given any particular partial
sum SN =

∑N
k=1

ak, the next partial sum is

SN+1 =

N+1
∑

k=1

= SN + aN+1.

In most instances, there is no closed form expression for the N th

partial sum.

The standard notation for a series extends the summation
notation from finite to infinite sums: given the sequence
{ak} = a1, a2, a3, . . . , we refer to the infinite sum of these terms
as the series

a1 + a2 + a3 + · · · =
∞
∑

k=1

ak.
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3.2 Mathematical Induction

A natural tool for investigating the sequence of partial sums of a series (or
more generally, any recursively defined sequence) is the recursive form of
argument called mathematical induction. The series of natural numbers
furnishes a standard example of this device: the recursive definition as a
series can be translated into a closed form definition of the partial sums:

Proposition 3.2. For every n ∈ N

n
∑

k=1

k = 1 + 2 + · · ·+ n =
n(n+ 1)

2
. (3.1)

Proof:

(by induction:) First, Equation (??) holds when n = 1:

1
∑

k=1

k = 1 =
1(1 + 1)

2
.

Second, if we happen to know that Equation (??) holds for some particular
value of n ∈ N, then we can use this to determine the formula for the next
term:

n+1
∑

k=1

k = 1 + 2 + · · ·+ n+ (n+ 1)

= {1 + 2 + · · ·+ n}+ (n+ 1) =

n
∑

k=1

k + (n+ 1)

=
n(n+ 1)

2
+ (n+ 1)

=
n(n+ 1) + 2(n + 1)

2

=
(n+ 1)(n+ 2)

2

which is Equation (??) with n replaced by n+ 1.

In this argument, the first statement (that Equation (??) holds when n = 1)
is called the initial step and the second statement (that Equation (??) for
any particular n ∈ N implies Equation (??) for the next step) is called the
induction step.
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Why is this a proof of the original statement (for all n ∈ N)? This is a
“bootstrap” argument, or if you are familiar with coding, a “do” loop. For
any particular value of n, say n = k, we automatically have a chain of
implications: (the case n = 1) implies (the case n = 2) which in turn implies
(the case n = 3), and so on, until after k iterations we arrive at: (the case
n = k − 1) implies (the case n = k), as required.

3.3 Convergence

Locating Irrationals: Decimal Expansion

We saw in Theorem ?? that
√
2 cannot be located on the real line using the

cut-and-paste strategy we used to locate rationals. How do we locate it?

We can use the fact that, for positive numbers, x2 < y2 if and only if x < y,
to determine where

√
2 lies relative to any rational number. This

information is recorded in the decimal expansion of
√
2.

To start, we know that 12 = 1 < 2 = (
√
2)2 so 1 <

√
2, and

(
√
2)2 = 2 < 4 = 22. Thus,

√
2 is between 1 and 2 (and so positions

√
2

relative to all the integers). We say that the ‘integer part of
√
2 is x0 = 1.

Having established that
√
2 lies between 1 and 2, we divide the interval [1, 2]

into 10 subintervals of equal length 1

10
. The left endpoints of these

subintervals are 1.0, 1.1, 1.2, . . . , 1.9 By trial and error, we note that
1.42 = 1.96 < 2 and 1.52 = 2.25 > 2, so

√
2 lies in the subinterval with left

endpoint x1 = 1.4

Now we repeat this on a smaller scale: divide the interval [1.4, 1.5] into ten
subintervals of length 1

102
. Since 1.412 = 1.9881 < 2 while

1.422 = 2.0164 > 2, we know that
√
2 lies in the subinterval whose left

endpoint is x2 = 1.41. Continuing this process ad infinitum, we get a
sequence of rational numbers xk defined by
xk = max

{

x = p

10k

∣

∣ p ∈ N & x2 < 2
}

.

We can mimic this process for any number y ∈ R, provided we can decide
where it sits relative to the fractions with denominator a power of 10. When
a number is positive, this is efficiently and effectively encoded in its decimal
expansion.2

2For a negative number, we use the decimal expansion of its absolute value–or what is
the same thing, its negative–preceded with a minus sign.
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Definition 3.3. The decimal expansion of y ∈ [0,∞) is the sequence
{xn} defined by

xn =
pn
10n

where pn = max
{

p ∈ Z

∣

∣

∣

p

10n
≤ x

}

. (3.2)

We refer to the nth term xn of this sequence as the nth order decimal

expansion of y.

Note that a positive rational number of the form x = p
10n

can be written
uniquely as

x =
p

10n
= ⌊x⌋+ d1

101
+

d2
102

+ · · · + dn
10n

(3.3)

where

⌊x⌋ = max {N ∈ Z |N ≤ x}
di ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} .

⌊x⌋ is called the floor function or the integer part of x, and the
numerators di of the fractions in Equation (??) are the digits of the
expansion; the expression in Equation (??) is also called the decimal

expansion to n digits of x. A shorthand for this expression is to follow
the integer part with a dot and then the n digits themselves in succession
(not separated by commas)

x = ⌊x⌋.d1d2 . . . dn.

We can use the decimal expansion of any two positive numbers to decide
which is higher. Note first that since 0 = 0

10n
for any n ∈ N, xn will always

have the same sign as x. If two decimal expansions have the same initial
string of digits up to position k and then differ in the (k + 1)st digit, the one
with the higher (k+1)st digit represents the larger number, which means the
higher number.

Note that successive fractions with denominator 10n are spaced 1

10n
apart, so

for each n = 0, 1, 2, . . . we can say that

xn ≤ x < xn +
1

10n

which means in particular that the distance between x and its decimal
expansion to n digits is

|x− xn| <
1

10n
.
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