SUPPLEMENTARY NOTES: THE WEIERSTRASS M-TEST AND POWER SERIES

Recall that the Taylor series at $x=a$ of a function $f(x)$ is the series of polynomials

$$
\begin{aligned}
& \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k}= \\
& \quad f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}+\cdots
\end{aligned}
$$

where $f^{(k)}(a)$ is the $k^{\text {th }}$ derivative of $f(x)^{1}$ at $x=a$. The partial sums of the Taylor series are the Taylor polynomials of $f(x)$ at $x=a$.

In this note, we study the convergence of series of this form:
Definition 1. A power series is a series of polynomials of the form ${ }^{2}$

$$
\sum_{k=0}^{\infty} c_{k}(x-a)^{k} .
$$

The series is centered at $x=a$.
We will for the most part focus on series centered at $x=0$

$$
\sum_{k=0}^{\infty} c_{k} x^{k}
$$

at the end we will use the substitution $x \mapsto(x-a)$ to obtain related results for power series centered elsewhere.

Our goal is to prove and explain the following picture:

- The set of points where the series $\sum_{k=0}^{\infty} c_{k} x^{k}$ converges is an interval I, called the interval of convergence of the series;
- I consists of the singleton $\{0\}=[0,0]$, the whole line $(-\infty, \infty)$, or an interval (open, closed, or half-open) whose endpoints are $\pm R$, where $0<R<\infty$; we call $R(0 \leq R \leq \infty)$ the radius of convergence of the series
- the convergence of the series is absolute at any point interior to the interval of convergence, and uniform on any sequentially compact interval contained in I.

[^0]1 of 5

1. The Weierstrass M-test

The following analogue of the Comparison Test for numerical series is a very useful tool for proving the uniform convergence of a series of functions.

Theorem 2 (Weierstrass M-test). Suppose a sequence of functions $f_{k}: D \rightarrow \mathbb{R}$, $k=0,1, \ldots$, satisfies the estimates

$$
\left|f_{k}(x)\right| \leq M_{k}, k=0,1, \ldots, \text { for all } x \in D
$$

where the constants $M_{k}>0$ satisfy

$$
\sum_{k=0}^{\infty} M_{k}<\infty .
$$

Then the series

$$
\sum_{k=0}^{\infty} f_{k}(x)
$$

converges uniformly on D.
Proof. Since the sum $\sum_{k=0}^{\infty} M_{k}$ converges, its partial sums $S_{N}=\sum_{k=0}^{N} M_{k}$ form a Cauchy sequence:

$$
\forall \varepsilon>0, \exists N \in \mathbb{N} . э . m, n \geq N \Rightarrow\left|S_{m}-S_{n}\right|<\varepsilon .
$$

For $N \leq n<m,\left|S_{m}-S_{n}\right|=\sum_{k=n+1}^{m} M_{k}$; the partial sums of the series $\sum_{k=0}^{\infty} f_{k}(x)$ satisfy, for $N \leq n<m$,

$$
\left|\sum_{k=0}^{m} f_{k}(x)-\sum_{k=0}^{n} f_{k}(x)\right|=\left|\sum_{k=n+1}^{m} f_{k}(x)\right| \leq \sum_{k=n+1}^{m}\left|f_{n}(x)\right| \leq \sum_{k=n+1}^{m} M_{k}<\varepsilon,
$$

showing that the sequence of partial sums of $\sum_{k=0}^{\infty} f_{k}(x)$ is uniformly Cauchy on D, and hence the series is uniformly convergent on D.

2. Power Series

2.1. Interval of Convergence.

Theorem 3. The power series $\sum_{k=0}^{\infty} c_{k} x^{k}$ always converges at $x=0$; if it converges at $x=b \neq 0$, then the series converges absolutely at any point x in the open interval $(-|b|,|b|)$; furthermore, for any r such that $0<r<|b|$, the series converges uniformly on the closed interval $[-r, r]$.

Proof. That the series converges at $x=0$ follows from the fact that every term beyond $c_{0} x^{0}=c_{0}$ is zero.

If $\sum_{k=0}^{\infty} c_{k} b^{k}$ converges, then by the Divergence Test the sequence $\left\{c_{k} b^{k}\right\}$ converges (to 0) and hence is bounded: let C be an upper bound for the absolute values of these terms:

$$
\left|c_{k} b^{k}\right| \leq C \text { for all } k=0,1, \cdots .
$$

Suppose $|x| \leq r<|b|$; then

$$
\left|c_{k} x^{k}\right|=\left|\left(c_{k} b^{k}\right)\left(\frac{x}{b}\right)^{k}\right| \leq\left|c_{k} b^{k}\right|\left(\frac{r}{|b|}\right)^{k} \leq C\left(\frac{r}{|b|}\right)^{k} .
$$

Setting $M_{k}=C\left(\frac{r}{|b|}\right)^{k}$ and noting that the series $\sum_{k=0}^{\infty} C\left(\frac{r}{|b|}\right)^{k}$ is a geometric series with ratio less than 1, it follows from the Weierstrass M-Test that $\sum_{k=0}^{\infty} c_{k} x^{k}$ converges absolutely and uniformly on $[-r, r]$.

Remark 4. An interval can be characterized as a set $S \subset \mathbb{R}$ with the property that if $x, y \in S$ and $x<z<y$ then $z \in S$.

Combining Theorem 3 and Remark 4 we obtain
Corollary 5. The convergence set of a power series centered at $x=0$

$$
I=\left\{x \in \mathbb{R} \mid \sum_{k=0}^{\infty} c_{k} x^{k} \text { converges }\right\}
$$

is an interval (open or closed or half-open). Let $R=\sup I$. The possibilities are
$\boldsymbol{R}=\mathbf{0}: I=\{0\}=[0,0]:$ The series converges at $x=0$ and diverges if $x \neq 0$.
$\mathbf{0}<\boldsymbol{R}<\infty$: I is an interval with finite endpoints $\pm R$, The series converges absolutely at every point x with $|x|<r$ and diverges at every point x with $|x|>R$; convergence is uniform on $[-r, r]$ for every $r<R$.

Convergence at the two endpoints $x= \pm R$ is not determined: depending on the series, it can converge conditionally, converge absolutely, or diverge at $x=R$ and (independently) at $x=-R$.
$\boldsymbol{R}=\infty$: The series converges absolutely at every $x \in \mathbb{R}$, uniformly on any bounded interval.
The number $R=\sup I$ is called the radius of convergence of the series $\sum_{k=0}^{\infty} c_{k} x^{k}$.
2.2. Finding the interval of convergence (OPTIONAL). An application of the Ratio Test can in many cases give us a way to determine the radius of convergence of a power series.
Proposition 6. Suppose the coefficients of the power series $\sum_{k=0}^{\infty} c_{k} x^{k}$ satisfy

$$
\left|\frac{c_{k+1}}{c_{k}}\right| \rightarrow \rho
$$

Then the radius of convergence of the series is $R=\frac{1}{\rho}$, where we mean $R=\frac{1}{0}=\infty$ if $\rho=0$ and $R=\frac{1}{\infty}=0$ if $\rho=\infty$.
Proof. The series always converges at $x=0$, as noted earlier.

If $0<\rho<\infty$, then for any $x \neq 0$ we apply the Ratio Test to the numerical series $\sum_{k=0}^{\infty} c_{k} x^{k}$:

$$
\left|\frac{c_{k+1} x^{k+1}}{c_{k} x^{k}}\right|=\left|\frac{c_{k+1}}{c_{k}}\right|\left|\frac{x^{k+1}}{x^{k}}\right| \rightarrow \rho|x|=\left|\frac{x}{R}\right|
$$

By the ratio test, the series converges if $\left|\frac{x}{R}\right|<1$ (i.e., $\left.|x|<R\right)$ and diverges if $\left|\frac{x}{R}\right|>1$ (i.e., $|x|>R$).

If $\rho=0$, the ratio test tells us that the series converges for all $x \in \mathbb{R}$, since the ratio goes to $0<1$. If $\rho=\infty$, for any $x \neq 0$ the terms of the series diverge to infinity.

There are several more sophisticated tests that can be used to find the radius of convergence when Proposition 6 does not apply. We state them without proof:

Root Test: If $\sqrt[k]{\left|c_{k}\right|} \rightarrow \rho$ then the radius of convergence is $R=\frac{1}{\rho}$ as before.
limit superior: If the ratios $\left|\frac{c_{k+1}}{c_{k}}\right|$ do not converge, we can replace their limit with the following:

Definition 7. Suppose $\left\{r_{k}\right\}$ is a non-negative sequence. Given $K \in \mathbb{N}$, let

$$
s_{K}=\sup \left\{r_{k} \mid k \geq K\right\} .
$$

This is a decreasing sequence, since we are taking suprema over smaller sets. Since we assume $r_{k} \geq 0$ for all k the sequence $\left\{s_{K}\right\}$ is bounded and monotone, hence converges. Define the limit superior of $\left\{r_{k}\right\}$ as

$$
\limsup _{k} r_{k}=\lim _{K} s_{K} .
$$

Then if we define ρ to be the the limit superior instead of the limit of the ratios in the Ratio Test, we get a version which (by tweaking our arguments in the proof of Proposition 6) always yields a value for the radius of convergence: if

$$
\rho=\limsup \left|\frac{c_{k+1}}{c_{k}}\right|, \quad R=\frac{1}{\rho}
$$

then the series always converges if $|x|<R$ and diverges if $|x|>R$.
2.3. General power series. Our discussion has focused on power series centered at $x=0, \sum_{k=0}^{\infty} c_{k} x^{k}$. To handle a power series centered at $x=a$ when $a \neq 0, \sum_{k=0}^{\infty} c_{k}(x-a)^{k}$, we can make the substitution $y=x-a$ to obtain a new power series, $\sum_{k=0}^{\infty} c_{k} y^{k}$, centered at $y=0$. We leave it to you to verify that applying Corollary 5 to this new series leads to the following generalization to arbitrary power series:

Theorem 8. The convergence set of a power series centered at $x=a$

$$
I=\left\{x \in \mathbb{R} \mid \sum_{k=0}^{\infty} c_{k}(x-a)^{k} \text { converges }\right\}
$$

is an interval (open or closed or half-open) whose midpoint is a.
The possibilities are
$\boldsymbol{R}=\mathbf{0}: I=\{a\}=[a, a]:$ The series converges at $x=a$ and diverges if $x \neq a$.
$\mathbf{0}<\boldsymbol{R}<\infty$: I is an interval with finite endpoints $a \pm R$, The series converges absolutely at every point x with $|x-a|<r$ and diverges at every point x with $|x-a|>R$; convergence is uniform on [$a-r, a+r]$ for every $r<R$.

Convergence at the two endpoints, $x=a \pm R$, is not determined: depending on the series, it can converge conditionally, converge absolutely, or diverge at $x=a+R$ and (independently) at $x=a-R$.
$\boldsymbol{R}=\infty$: The series converges absolutely at every $x \in \mathbb{R}$, uniformly on any bounded interval.

The number $R=\sup I$ is called the radius of convergence of the series $\sum_{k=0}^{\infty} c_{k}(x-a)^{k}$. Proposition 6 and its variants apply verbatim for finding this radius.

[^0]: © 2019 L. TU, Z. NITECKI AND TUFTS UNIVERSITY
 ${ }^{1} f^{(0)}(a)$ is the "undifferentiated " function $f(a)$ and $k!$ is the factorial of k, with $0!=1$
 ${ }^{2}$ We have rendered the starting index $k=0$ to underline that a power series can have a "constant" term, and it is convenient to have the index run over the non-negative integers, despite Fitzpatrick's convention of always using the natural numbers to index a sequence.

