Math 135

Tufts University

Fall, 2019

SUPPLEMENTARY NOTES: THE WEIERSTRASS *M*-TEST AND POWER SERIES

Recall that the **Taylor series** at x = a of a function f(x) is the series of polynomials

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k = f^{(a)}(a) + f'(a)(x-a) + \frac{f''(a)}{2!} (x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!} (x-a)^n + \dots$$

where $f^{(k)}(a)$ is the k^{th} derivative of $f(x)^1$ at x = a. The partial sums of the Taylor series are the **Taylor polynomials** of f(x) at x = a.

In this note, we study the convergence of series of this form:

Definition 1. A power series is a series of polynomials of the form²

$$\sum_{k=0}^{\infty} c_k (x-a)^k$$

The series is centered at x = a.

We will for the most part focus on series centered at x = 0

$$\sum_{k=0}^{\infty} c_k x^k;$$

at the end we will use the substitution $x \mapsto (x-a)$ to obtain related results for power series centered elsewhere.

Our goal is to prove and explain the following picture:

- The set of points where the series $\sum_{k=0}^{\infty} c_k x^k$ converges is an interval *I*, called the **interval of convergence** of the series;
- I consists of the singleton $\{0\} = [0, 0]$, the whole line $(-\infty, \infty)$, or an interval (open, closed, or half-open) whose endpoints are $\pm R$, where $0 < R < \infty$; we call R $(0 \le R \le \infty)$ the **radius of convergence** of the series
- the convergence of the series is absolute at any point interior to the interval of convergence, and uniform on any sequentially compact interval contained in I.

^{©2019} L. TU, Z. NITECKI AND TUFTS UNIVERSITY

 $^{{}^{1}}f^{(0)}(a)$ is the "undifferentiated" function f(a) and k! is the factorial of k, with 0! = 1² We have rendered the starting index k = 0 to underline that a power series can have a "constant" term, and it is convenient to have the index run over the non-negative integers.

despite Fitzpatrick's convention of always using the natural numbers to index a sequence.

1. The Weierstrass M-test

The following analogue of the Comparison Test for numerical series is a very useful tool for proving the uniform convergence of a series of functions.

Theorem 2 (Weierstrass M-test). Suppose a sequence of functions $f_k: D \to \mathbb{R}$, $k = 0, 1, \ldots$, satisfies the estimates

$$|f_k(x)| \le M_k, \ k = 0, 1, \dots, \ for \ all \ x \in D$$

where the constants $M_k > 0$ satisfy

$$\sum_{k=0}^{\infty} M_k < \infty.$$

Then the series

$$\sum_{k=0}^{\infty} f_k(x)$$

converges uniformly on D.

Proof. Since the sum $\sum_{k=0}^{\infty} M_k$ converges, its partial sums $S_N = \sum_{k=0}^N M_k$ form a Cauchy sequence:

$$\forall \varepsilon > 0, \exists N \in \mathbb{N} . \mathfrak{d}. m, n \ge N \Rightarrow |S_m - S_n| < \varepsilon.$$

For $N \leq n < m$, $|S_m - S_n| = \sum_{k=n+1}^m M_k$; the partial sums of the series $\sum_{k=0}^{\infty} f_k(x)$ satisfy, for $N \leq n < m$,

$$\left|\sum_{k=0}^{m} f_k(x) - \sum_{k=0}^{n} f_k(x)\right| = \left|\sum_{k=n+1}^{m} f_k(x)\right| \le \sum_{k=n+1}^{m} |f_n(x)| \le \sum_{k=n+1}^{m} M_k < \varepsilon,$$

showing that the sequence of partial sums of $\sum_{k=0}^{\infty} f_k(x)$ is uniformly Cauchy on D, and hence the series is uniformly convergent on D.

2. Power Series

2.1. Interval of Convergence.

Theorem 3. The power series $\sum_{k=0}^{\infty} c_k x^k$ always converges at x = 0; if it converges at $x = b \neq 0$, then the series converges absolutely at any point x in the open interval (-|b|, |b|); furthermore, for any r such that 0 < r < |b|, the series converges uniformly on the closed interval [-r, r].

Proof. That the series converges at x = 0 follows from the fact that every term beyond $c_0 x^0 = c_0$ is zero.

If $\sum_{k=0}^{\infty} c_k b^k$ converges, then by the Divergence Test the sequence $\{c_k b^k\}$ converges (to 0) and hence is bounded: let *C* be an upper bound for the absolute values of these terms:

$$\left|c_k b^k\right| \le C \text{ for all } k = 0, 1, \cdots$$

Suppose $|x| \leq r < |b|$; then

$$\left|c_{k}x^{k}\right| = \left|(c_{k}b^{k})\left(\frac{x}{b}\right)^{k}\right| \leq \left|c_{k}b^{k}\right|\left(\frac{r}{|b|}\right)^{k} \leq C\left(\frac{r}{|b|}\right)^{k}.$$

Setting $M_k = C\left(\frac{r}{|b|}\right)^k$ and noting that the series $\sum_{k=0}^{\infty} C\left(\frac{r}{|b|}\right)^k$ is a geometric series with ratio less than 1, it follows from the Weierstrass M-Test that $\sum_{k=0}^{\infty} c_k x^k$ converges absolutely and uniformly on [-r, r].

Remark 4. An interval can be characterized as a set $S \subset \mathbb{R}$ with the property that if $x, y \in S$ and x < z < y then $z \in S$.

Combining Theorem 3 and Remark 4 we obtain

Corollary 5. The convergence set of a power series centered at x = 0

$$I = \left\{ x \in \mathbb{R} \mid \sum_{k=0}^{\infty} c_k x^k \text{ converges} \right\}$$

is an interval (open or closed or half-open). Let $R = \sup I$. The possibilities are

- R = 0: $I = \{0\} = [0, 0]$: The series converges at x = 0 and diverges if $x \neq 0$.
- $0 < R < \infty$: I is an interval with finite endpoints $\pm R$, The series converges absolutely at every point x with |x| < r and diverges at every point x with |x| > R; convergence is uniform on [-r, r] for every r < R.

Convergence at the two endpoints $x = \pm R$ is not determined: depending on the series, it can converge conditionally, converge absolutely, or diverge at x = R and (independently) at x = -R.

 $R = \infty$: The series converges absolutely at every $x \in \mathbb{R}$, uniformly on any bounded interval.

The number $R = \sup I$ is called the **radius of convergence** of the series $\sum_{k=0}^{\infty} c_k x^k$.

2.2. Finding the interval of convergence (OPTIONAL). An application of the Ratio Test can in many cases give us a way to determine the radius of convergence of a power series.

Proposition 6. Suppose the coefficients of the power series $\sum_{k=0}^{\infty} c_k x^k$ satisfy

$$\left|\frac{c_{k+1}}{c_k}\right| \to \rho.$$

Then the radius of convergence of the series is $R = \frac{1}{\rho}$, where we mean $R = \frac{1}{0} = \infty$ if $\rho = 0$ and $R = \frac{1}{\infty} = 0$ if $\rho = \infty$.

Proof. The series always converges at x = 0, as noted earlier.

If $0 < \rho < \infty$, then for any $x \neq 0$ we apply the Ratio Test to the numerical series $\sum_{k=0}^{\infty} c_k x^k$:

$$\left|\frac{c_{k+1}x^{k+1}}{c_kx^k}\right| = \left|\frac{c_{k+1}}{c_k}\right| \left|\frac{x^{k+1}}{x^k}\right| \to \rho \left|x\right| = \left|\frac{x}{R}\right|$$

By the ratio test, the series converges if $\left|\frac{x}{R}\right| < 1$ (*i.e.*, |x| < R) and diverges if $\left|\frac{x}{R}\right| > 1$ (*i.e.*, |x| > R).

If $\rho = 0$, the ratio test tells us that the series converges for all $x \in \mathbb{R}$, since the ratio goes to 0 < 1. If $\rho = \infty$, for any $x \neq 0$ the terms of the series diverge to infinity.

There are several more sophisticated tests that can be used to find the radius of convergence when Proposition 6 does not apply. We state them without proof:

Root Test: If $\sqrt[k]{|c_k|} \to \rho$ then the radius of convergence is $R = \frac{1}{\rho}$ as before.

limit superior: If the ratios $\left|\frac{c_{k+1}}{c_k}\right|$ do not converge, we can replace their limit with the following:

Definition 7. Suppose $\{r_k\}$ is a non-negative sequence. Given $K \in \mathbb{N}$, let $s_K = \sup \{r_k \mid k \ge K\}$.

This is a decreasing sequence, since we are taking suprema over smaller sets. Since we assume $r_k \ge 0$ for all k the sequence $\{s_K\}$ is bounded and monotone, hence converges. Define the **limit superior** of $\{r_k\}$ as

$$\limsup_k r_k = \lim_K s_K.$$

Then if we define ρ to be the limit superior instead of the limit of the ratios in the Ratio Test, we get a version which (by tweaking our arguments in the proof of Proposition 6) always yields a value for the radius of convergence: if

$$\rho = \limsup \left| \frac{c_{k+1}}{c_k} \right|, \ R = \frac{1}{\rho}$$

then the series always converges if |x| < R and diverges if |x| > R.

2.3. General power series. Our discussion has focused on power series centered at x = 0, $\sum_{k=0}^{\infty} c_k x^k$. To handle a power series centered at x = a when $a \neq 0$, $\sum_{k=0}^{\infty} c_k (x-a)^k$, we can make the substitution y = x - a to obtain a new power series, $\sum_{k=0}^{\infty} c_k y^k$, centered at y = 0. We leave it to you to verify that applying Corollary 5 to this new series leads to the following generalization to arbitrary power series:

Theorem 8. The convergence set of a power series centered at x = a

$$I = \left\{ x \in \mathbb{R} \mid \sum_{k=0}^{\infty} c_k (x-a)^k \text{ converges} \right\}$$

 $is \ an \ interval \ (open \ or \ closed \ or \ half-open) \ whose \ midpoint \ is \ a.$

The possibilities are

R = 0: $I = \{a\} = [a, a]$: The series converges at x = a and diverges if $x \neq a$.

 $0 < R < \infty$: I is an interval with finite endpoints $a \pm R$, The series converges absolutely at every point x with |x - a| < r and diverges at every point x with |x - a| > R; convergence is uniform on [a - r, a + r] for every r < R.

Convergence at the two endpoints, $x = a \pm R$, is not determined: depending on the series, it can converge conditionally, converge absolutely, or diverge at x = a + R and (independently) at x = a - R.

 $R = \infty$: The series converges absolutely at every $x \in \mathbb{R}$, uniformly on any bounded interval.

The number $R = \sup I$ is called the **radius of convergence** of the series $\sum_{k=0}^{\infty} c_k (x-a)^k$. Proposition 6 and its variants apply verbatim for finding this radius.