1. Tight-projectivity Lemma for SPS lattices

Let L be an SPS lattice. For an element $a \in L$, let $\text{Mfork}(a)$ denote the multifork at a, that is, set of all edges (prime intervals) p with $1_p = a$. The edges in $\text{Mfork}(a)$ on the left and right, respectively are called the exterior edges; the others are called interior edges.

For the edges p, q of L, we define a binary relation:

p swings to q, in formula, $p \swung q$, if p and $q \in \text{Mfork}(a)$ for some $a \in L$ and q is an interior edge.

![Figure 1. $p \swung q$, two examples](image)

Lemma 1 (Tight-projectivity Lemma for SPS lattices). Let L be an SPS lattice and let p and q be prime intervals in L. Then $\con(p) \geq \con(q)$ iff there exists an edge r and sequence of edges $r = r_0, r_1, \ldots, r_n = q$ such that p is upper perspective to r, and for each $i = 0, \ldots, n-1$ r_i is down perspective to r_{i+1} or r_i swings to r_{i+1}.

Since the relations: down perspectivity and swing are transitive, two down perspectives equal one down perspectivity and two swings equal one swing. So we can assume that down perspectives and swings alternate.

Also note that