We think of the point set M as the real projective plane P minus one point ∞, even if our geometry is not pointwise coaffine. We depict P as a circular disk, whose boundary points are identified in antipodal pairs, that is, $|x| \leq 1$ holds for all points, and $x = -x$ if $|x| = 1$. The point ∞ will always be represented by the pair

\{(0, 1), (0, -1)\}

as in Figure 1.

Since lines are closed subsets $L \subseteq M$, their closure \overline{L} in the one-point compactification \overline{P} will always be homeomorphic to a circle. This circle contains the point ∞ if and only if L is not compact.

\section{Proof of the Theorem}

We think of the point set M as the real projective plane P minus one point ∞, even if our geometry is not pointwise coaffine. We depict P as a circular disk, whose boundary points are identified in antipodal pairs, that is, $|x| \leq 1$ holds for all points, and $x = -x$ if $|x| = 1$. The point ∞ will always be represented by the pair

\{(0, 1), (0, -1)\}

as in Figure 1.

Since lines are closed subsets $L \subseteq M$, their closure \overline{L} in the one-point compactification \overline{P} will always be homeomorphic to a circle. This circle contains the point ∞ if and only if L is not compact.