[OS X TeX] corrupt pdf fille

Javier Elizondo javier_elizondo69 at yahoo.com
Mon Mar 17 21:49:46 CET 2008


Hello everyone,

I have edited a latex file with Emacs and texshop and after a while of being working on it, I got a corrupted pdf file, most of the math content appears not readable. And the fonts (usualy roman) are also changed.

Everything gets again fine if I restart the computer, and again, after a while when I keep working on the file and running it a few times the problem comes back. It is an easy file, and I have run the file in a linux computer and everything is fine. However, it seems that if I look at the file using adobe acrobat reader everything seems fine. 

The latex file is the following

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%              THIS FILE IS IN       LaTeX 2e
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\documentclass[12pt,spanish, english]{article}
\usepackage[latin1]{inputenc}
\usepackage[spanish]{babel}
%\usepackage{pdfsync}
%%%%%%%%%%%%%%%%%%%%    Packages     %%%%%%%%%%%%%%%%%%%%%
\usepackage{amscd}
\usepackage{amsmath}
\usepackage{amsthm}
\usepackage{amsfonts}
\usepackage{eucal}
\usepackage{amsgen}
\usepackage{amstext}
\usepackage{amsbsy}
\usepackage{amsopn}
\usepackage{amssymb}
\usepackage[all]{xy}

\AtBeginDocument{\decimalpoint}

\pagestyle{empty}
%%%%%%%%%%%%%%%%%%%%      Macros      %%%%%%%%%%%%%%%%%%%%

       %%%%%%%% Environments %%%%%%%%%%%

\newtheorem{theorem}{Theorem}[section]
\newtheorem{thm}[theorem]{Theorem}
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{proposition}[theorem]{Proposition}
\newtheorem{corollary}[theorem]{Corollary}

\theoremstyle{definition}

\newtheorem{definition}[theorem]{Definition}
\newtheorem{example}[theorem]{Example}
\newtheorem{subexamples}[theorem]{Subexamples}
\newtheorem{conjecture}[theorem]{Conjecture}
\newtheorem{properties}[theorem]{Properties}
\newtheorem{facts}[theorem]{Facts}
\newtheorem{problem}{Problem}
\theoremstyle{remark}

\newtheorem{remark}[theorem]{Remark}
\newtheorem{rmk}[theorem]{Remark}
\newtheorem{notation}[theorem]{Notation}


\newtheorem*{ack}{\bf Acknowledgement}


        %%%%%%%%%%% Fonts %%%%%%%%%%%%

%%%%%%% BlackBoardBold %%%%%%%%%%%%%%%

\newcommand{\field}[1]{\ensuremath{\mathbb{#1}}}
\newcommand{\A}{\field{A}}
\newcommand{\C}{\field{C}}
\newcommand{\F}{\field{F}}
\newcommand{\N}{\field{N}}
\newcommand{\Pp}{\field{P}}
\newcommand{\Q}{\field{Q}}
\newcommand{\R}{\field{R}}
\newcommand{\T}{\field{T}}
\newcommand{\Z}{\field{Z}}
\newcommand{\G}{\field{G}}
\renewcommand{\P}{\field{P}}

%%%%%%% Calligraphic %%%%%%%%%%%%%%%

\newcommand{\cala}{\mathcal{A}}
\newcommand{\calb}{\mathcal{B}}
\newcommand{\calc}{\mathcal{C}}
\newcommand{\cald}{\mathcal{D}}
\newcommand{\cale}{\mathcal{E}}
\newcommand{\calf}{\mathcal{F}}
\newcommand{\call}{\mathcal{L}}
\newcommand{\calm}{\mathcal{M}}
\newcommand{\caln}{\mathcal{N}}
\newcommand{\calo}{\mathcal{O}}
\newcommand{\calp}{\mathcal{P}}
\newcommand{\sO}{\calo}
\newcommand{\sS}{\mathcal{S}}
\newcommand{\sQ}{\mathcal{Q}}
\newcommand{\sL}{\call}
\newcommand{\sE}{\cale}
%%%%%%% MathBold   (lower case)  %%%%%%%%%%%%%%%

\newcommand{\bone}{\mathbf{1}}

\newcommand{\mba}{\mathbf{a}}
\newcommand{\mbb}{\mathbf{b}}
\newcommand{\mbc}{\mathbf{c}}
\newcommand{\mbd}{\mathbf{d}}
\newcommand{\mbe}{\mathbf{e}}
 \newcommand{\mbf}{\mathbf{f}}
\newcommand{\mbg}{\mathbf{g}}
\newcommand{\mbh}{\mathbf{h}}
\newcommand{\mbi}{\mathbf{i}}
\newcommand{\mbm}{\mathbf{m}}
\newcommand{\mbn}{\mathbf{n}}

        %%%%%%%%%%%%%%%%%% Mathfrak %%%%%%%%%%%%%%%%%%%%%%%

\newcommand{\mfm}{\ensuremath{\mathfrak{m}}}
 


        %%%%%%%%%%%% Delimiters %%%%%%%%%%%%

\newcommand{\lp}{\left( }
\newcommand{\rp}{\right) }

        %%%%%%%%%%%% Spaces %%%%%%%%%%%%

\newcommand{\ps}[1]{\ensuremath{\Pp^{#1}}}
\newcommand{\spr}[2]{\ensuremath{SP^{#1}\lp{#2}\rp}}
\newcommand{\gr}[2]{\ensuremath{G\lp{#1},{#2}\rp}}
\newcommand{\grp}[2]{G_{#1}(\Pp^{#2})}
\newcommand{\fl}[2]{F(#1;\Pp^{#2})}
\newcommand{\py}{p_\infty}
\newcommand{\cq}{/\!\!/ }
\newcommand{\scho}[2]{\omega^{#2}_{#1}}
\newcommand{\sch}[2]{\Omega^{#2}_{#1}}
\newcommand{\cvp}[2]{\ensuremath{{\mathcal C}_{#1}\bigl(#2\bigr)}}
\newcommand{\cvpd}[3]{\ensuremath{{\mathcal C}_{#1,#2}\left( #3\right)}}     
        %%%%%%%%%%%% Monoids, Groups and (Co)-Homology %%%%%%%%%%%%
\newcommand{\GL}{{\rm GL}\,}
\newcommand{\atm}{\mbox{${\mathfrak{Atm}}$}}
\newcommand{\atmp}{\mbox{${\mathfrak{Atm}_p}$}}
\newcommand{\gar}[1]{\ensuremath{{\mathfrak{A}}_R\hspace{-.04cm}\langle #1 \rangle }}
%
\newcommand{\garf}[1]{\ensuremath{{\mathfrak{A}}_{R}^{fin}\hspace{-.06cm}\langle #1 \rangle }}
%


\newcommand{\apx}[1]{\ensuremath{{\Pi}_{p}(#1)}}
\newcommand{\ap}{\ensuremath{{\Pi}_{p}}}
\newcommand{\ax}[2]{\ensuremath{\Pi_{#1}\bigl(#2\bigr)}}
\newcommand{\alg}[2]{\ensuremath{\mathcal{A}_{#1}\bigl(#2\bigr)}}
\newcommand{\algp}[2]{\ensuremath{\mathcal{A}^{\geq}_{#1}\bigl(#2\bigr)}}
\newcommand{\mmp}[2]{\ensuremath{M_{#1}\bigl(#2\bigr)}}
\newcommand{\hg}[3]{\ensuremath{H_{#1}(#2,#3)}}
\newcommand{\cg}[3]{\ensuremath{H^{#1}\lp #2,#3\rp}}
\newcommand{\ns}[1]{\ensuremath{\mbox{NS}(#1)}}
\newcommand{\nss}[2]{\ensuremath{{NS\bigl(#1\bigr)}{\oplus}{NS\bigl(#2\bigr)}}}
\newcommand{\pic}[3]{\ensuremath{{Pic}^{#1}_{#2}\bigl(#3 \bigr)}}
\newcommand{\Zp}{\ensuremath{{\field{Z}}_{p}}}
\newcommand{\Zplus}{\ensuremath{{\field{Z}}_{+}}}

        %%%%%%%%%%%% SERIES AND PROJECTIVIZATIONS %%%%%%%%%%%%

\newcommand{\ahcs}[2]{\ensuremath{P_{#1}^{#2}(t)}}
\newcommand{\hcs}[2]{\ensuremath{P_{#1}^{#2}(t)}}
\newcommand{\aecs}[2]{\ensuremath{E_{#1}\bigl(#2\bigr)}}
\newcommand{\ecs}[2]{\ensuremath{E_{#1}\bigl(#2\bigr)}}
\newcommand{\pb}[1]{\ensuremath{{\Pp}\bigl(#1\bigr)}}
\newcommand{\vb}[2]{\ensuremath{{\mathcal O}_{#1}\bigl(#2\bigr)}}
\newcommand{\eone}{\ensuremath{E\oplus{\bone}}}
\newcommand{\eot}{\ensuremath{E_1\oplus E_2}}
\newcommand{\efib}{\ensuremath{{\pb{E_1}\!\!\times_{W}\!\pb{E_2}}}}
\newcommand{\us}[1]{\ensuremath{\underline{#1}}}
%%%%%%%%%%%%%%%ARROWS%%%%%%%%%%%%%%%%%%%%
\newcommand{\by}[1]{\stackrel{#1}{\longrightarrow}}
\newcommand{\onto}{\twoheadrightarrow}
\newcommand{\into}{\hookrighthttp://www.cnn.com/arrow}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
      %%%%%%%%%%%%  MISCELLANEOUS  %%%%%%%%%%%%
\newcommand{\tensor}{\otimes}
\newcommand{\ie}{{\it i.e.\/},\/}
\newcommand{\coker}{{\rm coker}\,}
\newcommand{\codim}{{\rm codim}\,}

\newcommand{\co}[2]{\ensuremath{\mathcal{O}_{#1}\bigl(#2\bigr)}}
\newcommand{\eaeq}{\sim_{\text{alg}^+}}
\newcommand{\aeq}{\sim_{\text{alg}}}
\newcommand{\equdef}{:=}
\DeclareMathOperator{\supp}{supp}
%\DeclareMathOperator{\im}{im}
%\DeclareMathOperator{\Jac}{Jac}
\DeclareMathOperator{\Pic}{Pic}
%\DeclareMathOperator{\Div}{Div_{T}}
%\DeclareMathOperator{\Hom}{Hom}
%\DeclareMathOperator{\Spec}{Spec}
\DeclareMathOperator{\rank}{rk}
\DeclareMathOperator{\effd}{Div_+}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ENUMERATE %%%%%%%%%%%%%%%%%%%%%%%%

\renewcommand{\theenumi}{\Roman{enumi}}
\renewcommand{\labelenumi}{\theenumi.}
\renewcommand{\theenumii}{\arabic{enumii}}
\renewcommand{\labelenumii}{\theenumii.}
\renewcommand{\theenumiii}{\arabic{enumiii}}
\renewcommand{\labelenumiii}{http://www.cnn.com/\theenumii.\theenumiii.}
%\renewcommand{\p at enumiii}{\theenumii}

%%%%%%%%%%%%%%%%%%%%    Page layout   %%%%%%%%%%%%%%%%%%%%

%\markright{First Draft}
%\pagestyle{myheadings}

\hfuzz1.5pc % Don't bother to report overfull boxes if overage is < 1pc
%\vfuzz3pc % only for draftheadstyle

%\show \serieslogo@
%\show \makeatletter

%\makeatletter
%\renewcommand{\serieslogo@}{\begin{minipage}{8cm}
%To appear in \\ {\sc Journal of Algebraic Geometry}
%\end{minipage}}
%\renewcommand{\@setcopyright}{}
%\makeatother


%\setlength{\headsep}{0pt}
%\setlength{\headheight}{0pt}
%\setlength{\topmargin}{0pt}
%\setlength{\footskip}{50pt}
\setlength{\oddsidemargin}{0in}
\setlength{\evensidemargin}{0in}
\setlength{\textwidth}{6.5in}
\setlength{\textheight}{8.5in}
\setlength{\parskip}{1mm}
\renewcommand{\baselinestretch}{1.25}

%%%%%%%%%%%%%%%%%%%%    Top Matter (amsart style)  %%%%%%%%%%%%%%%%%%%%%

%\date{ }
%\title[Chow varietihttp://www.rae.es/es and Euler-Chow series]{Some remarks on Chow
%varieties and Euler-Chow series} 
%\author{E. Javier Elizondo}
%\address{Instituto de Matem\'aticas, UNAM, Mexico}
%\thanks{The first author was supported in part by grants UNAM-DGAPA
%IN119298 and CONACYT 27969E} 
%\email{javier at math.unam.mx}

%\author{V. Srinivas}
%\address{School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha
%Road, Mumbai-400005, India}
%\thanks{ Srinvias, here you have to write if you like to thanks} 
%\email{srinivas at math.tifr.res.in}



\begin{document}
%\maketitle

\begin{flushright}
Name:\underline{\hspace{7cm} }\\
UIN:\underline{\hspace{7cm} }
\end{flushright}%\vspace{1.5cm}
\begin{flushleft}
MATH-172-501
\end{flushleft}
\begin{center}{\Large {\bf Answers to Second Midterm}}\end{center}
\begin{center}{\large Javier Elizondo}\end{center}\vspace{.3cm}

\begin{enumerate}
\item[I.] Find the integral\ $$ \int \sin^{2}x \, \cos^{2}x\, \, dx$$
% Prob. 8.2 - 8
\\{\bf  Sol.} $\sin^2 x \cos^2 x = \left( \sin x \cos x\right) ^2 =
\left(\frac{1}{2} \sin (2x)\right)^2 =
\frac{1}{4} \sin^2 (2x) = \frac{1}{8} \left( 1-\cos (4x)\right) $ Now
the integral becomes $\int \frac{1}{8} \left( 1-\cos (4x)\right) \, dx$ which
is very easy to compute.

\item[II.] Find the integral\ $$\int \frac{dx}{x\sqrt{x^2 + 3}}.$$
%8.3 #15
\\ {\bf Sol.} $x= \sqrt{3}\tan \theta$, where
$\frac{-\pi}{2}<\theta<\frac{\pi}{2}$, and $dx = \sqrt{3}\sec^2 \theta
\,d\theta.$ We also now that\newline  $\sqrt{3\tan^2 + 3} =
\sqrt{3}\sqrt{\sec^2 x} = \sqrt{3} \sec x.$ Therefore the integral
becomes\newline  $ \frac{1}{\sqrt{3}}\int \frac{\sec\theta \,
  d\theta}{\tan\theta} =\frac{1}{\sqrt{3}}\int \csc\theta \, d\theta.$ 
We use the formula written in the exam, and with the appropriate right
rectangle we return to the variable $x$. 

\item[III.] Find \ $$\int \frac{x^2}{(x-3)(x+2)^2}\, \, dx$$
%prob. 8.4-30
\\ {\bf Sol.} 
$ 
\frac{x^2}{(x-3)(x+2)2} = \frac{A}{x-3} +
\frac{B}{x+2}+\frac{C}{(x+2)^2}
\Longrightarrow x^2 = A(x+2)^2 +B(x-3)(x+2) + C(x-3)$. If $x=3$ we get
$A=9/25$, if $x= -2$ we get $C=-4/5$. If we compare the coefficient of
$x^2$ in the right hand side and left hand side polynomials of the
equality we see that $1= A+B \Rightarrow B=16/25$. Then the integral is
equal to \newline 
$\frac{9}{25} \ln|x-3| + \frac{16}{25} \ln|x+2| + \frac{4}{5(x+2)} +
C$.
 
\item[IV.] Compute the improper integral $$\int_0^{\infty} xe^{-x}\, dx$$
%prob. 8.9-20
\\ {\bf Sol.} Using parts with $du =e^{-x} dx$ and $v = x$ we obtain
\newline $\int_0^{\infty} xe^{-x}\, dx = \lim_{t\rightarrow
  \infty}\left( -xe^{-x} - e^{-x}\right)_0^t =  \lim_{t\rightarrow
  \infty}\left(1-(t+1)e^{-t}\right) =1
-\lim_{t\rightarrow\infty}\frac{t+1}{e^t}$ by L'Hôpital this last
limit is equal to $1-\lim_{t\rightarrow\infty}\frac{1}{e^t} = 1-0=1.$
Therefore the integral is convergent and is equal to $1$.
 

\item[V.] A tank contains 100 L of pure water. Brine that contains
  $0.1$ kg of salt per liter enters the tank at a rate of 10
  L/min. The solution is kept thoroughly mixed and drains from the tank
  at the same rate. How much salt is in the tank after t minutes?
%9-Review-32
\\ {\bf Sol.} The initial condition is $y(0)=0$ where as usual $y(t)$
is the amount of salt at time $t$. Now,  $\frac{dy}{dt} =
\text{rate in - rate out} =\left( 0.1 \, \times \, 10\right)  -
  \left(\frac{y}{100}\, \times\, 10\right)  = 1 -
  \frac{y}{10} =
  \frac{10-y}{10} \Rightarrow\newline 
  \int\frac{dy}{10-y}=\int\frac{1}{10}dt \Rightarrow -\ln|10-y| =
  \frac{1}{10}t +C \Rightarrow 10 - y = Ae^{-t/10}.$ The 
  initial condition implies $A=10$, therefore $y = 10\left( 1-e^{-t/10}\right)$.

\item[VI.] Solve the initial-value problem 
$$
x^2 \frac{dy}{dx} + 2xy = \cos x, \,\,\,\, y(\pi) = 0
$$
%9.2-19
\\ {\bf Sol.} $y^{\prime}=\frac{2}{x}y=\frac{\cos x}{x^2}$, and
$I(x)=e^{\int (2/x) dx}= x^2. $ Multiplying the differential equation
by $I(x)$ we obtain $x^2y^{\prime} + 2xy=\cos x \Rightarrow
(x^2y)^{\prime} = \cos x \Rightarrow y = \frac{1}{x^2}\left(\int cos x
  dx + C\right) = \frac{1}{x^2}\left(\sin x + C\right)
\Longrightarrow  y = \frac{ \sin x}{x^2}$ where the last
equality follows from the fact that 
the initial condition implies that $C = 0$. 
\end{enumerate}

\end{document}






      ____________________________________________________________________________________
Never miss a thing.  Make Yahoo your home page. 
http://www.yahoo.com/r/hs



More information about the macostex-archives mailing list