[OS X TeX] LaTeX -> Word?

L. J. Moffitt moffitt at resecon.umass.edu
Tue Apr 20 16:37:47 CEST 2004


Perhaps here though at a cost:

http://www.ktalk.com/service.html


On Apr 20, 2004, at 10:26 AM, Bruno Voisin wrote:

> Le 20 avr. 04, à 15:32, Thomas Schröder a écrit :
>
>> What I want is a way to convert my LaTeX files into Word files which  
>> should work autamatically for the most part.
>
> I think there just isn't any such thing. If you really need to produce  
> Word output, with no compromise on the quality of this output (as far  
> as Word allows quality, that is) and no extensive manual editing, then  
> you'd be better off using Word from the beginning, probably.
>
>> If I still have to adjust a few things manually than that's OK, and I  
>> can also live with having to replace all of the images with better  
>> quality ones. But all the other things like table of contents,  
>> references, bibliography, footnotes, math, greek symbols, German  
>> language, figures, tables, tabulars, index, nomenclature should work  
>> automatically because if they don't than I guess I'd be faster doing  
>> it by hand.
>
> See above.
>
>>> I don't know Word, but I can only suggest that the related program  
>>> TtM (costs for Windows, free for Linux---possibly compilable on Mac  
>>> OS X) could be used, which translates TeX to HTML + MathML. Then use  
>>> the MathML to generate Word's equations.
>>
>> I guess that TtM has the same shortcomings that TtH has i.e. limited  
>> support for macros and packages, foreign languages, greek symbols  
>> etc.
>
> Following Will's post, I went to the TtM page and tried the online  
> conversion with a plain TeX excerpt of mine (less than 2000  
> characters, as required). Converting to XML and viewing the result in  
> Mozilla gives better-looking output that I would have expected. The  
> resulting XML code is appended at the end of this message (save it as  
> a .xml file and open it with Mozilla).
>
> However, that's just plain TeX, not LaTeX, and that doesn't solve the  
> LaTeX -> Word issue, anyway.
>
>>> I wouldn't have a clue if Word's scripting ability is up to this  
>>> kind of translation/transformation, however.
>>
>> I don't really think that Word's scripting ability would be necessary  
>> for this. What I don't know is if Word actually understands MathML. I  
>> don't think so because if it did then you wouldn't have to use  
>> OpenOffice as an intermediate step in creating Word files with fully  
>> editable math formulas.
>
> I tried opening both .html and .xml files created by TtM in both Word  
> and OpenOffice, with limited success. Word can read bot HTML and XML  
> and interprets its content, OpenOffice interprets the HTML and reads  
> the XML as ASCII text, but none of them seems to interpret the  
> formulae as formulae.
>
> Bruno
>
> <?xml version="1.0"?>
> <!DOCTYPE html    PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0//EN"
>            "http://www.w3.org/Math/DTD/mathml2/xhtml-math11-f.dtd">
> <html xmlns="http://www.w3.org/1999/xhtml">
> <head>
> <meta name="GENERATOR" content="TtM 3.59" />
> <style type="text/css">
>  div.p { margin-top: 7pt; }
>  span.roman {font-family: serif; font-style: normal; font-weight:  
> normal;}
> </style>
>
>
> <title> Translation </title>
> </head>
> <body>
>
> <h1 align="center">Translation </h1>
> <h2>You entered the following TeX</h2>
>
> <pre>
> We apply generalized function theory along the lines described, e.g.,  
> by Ffowcs
> Williams \& Hawkings (1969) or Farassat (1977). We define  
> Heaviside step
> functions according to $H(t) = 1$ for $t > 0$ and $0$ for $t <  
> 0$, and $H_V({\bf
> x}) = 1$ for ${\bf x} \in V$ and $0$ for ${\bf x} \notin V$. Writing  
> $L =
> (\partial^2/\partial t^2)\nabla^2+N^2\nabla_{\rm h}^2$ we have then,  
> for
> $\tilde\chi({\bf x},t) = H_V({\bf x})H(t)\chi({\bf x},t)$,
> $$
>   \eqalign{L\tilde\chi({\bf x},t)
>   & =H_V({\bf x})H(t)q({\bf x},t)+H_V({\bf x})
>     [\nabla^2\chi_1({\bf x})\delta(t)+\nabla^2\chi_0({\bf  
> x})\delta'(t)]\cr
>   \noalign{\smallskip}
>   & \qquad{}+H(t)\biggl\{\biggl({\partial^2\over\partial t^2}
>     {\partial\chi\over\partial n}+N^2{\partial\chi\over\partial n_{\rm  
> h}}
>     \biggr)({\bf x},t)\delta_S({\bf x})+{\partial\over\partial  
> n}\biggl[
>     {\partial^2\chi\over\partial t^2}({\bf x},t)\delta_S({\bf  
> x})\biggr]
>     \cr
>   & \qquad\qquad{}+N^2{\partial\over\partial n_{\rm h}}[\chi({\bf  
> x},t)
>     \delta_S({\bf x})]\biggr\}\cr
>   & \qquad{}+{\partial\chi_1\over\partial n}({\bf x})\delta_S({\bf  
> x})
>     \delta(t)+{\partial\chi_0\over\partial n}({\bf x})\delta_S({\bf x})
>     \delta'(t)+{\partial\over\partial n}[\chi_1({\bf x})\delta_S({\bf  
> x})]
>     \delta(t)\cr
>   & \qquad\qquad{}+{\partial\over\partial n}[\chi_0({\bf x})
>     \delta_S({\bf x})]\delta'(t),\cr}
> $$
> with $\delta_S({\bf x})$ the Dirac delta function of support $S$.
>
> </pre>
> This entire page was translated in real time by TtM.
> <hr />
>
> <h2>TtM Output</h2>We apply generalized function theory along the  
> lines described, e.g., by Ffowcs
> Williams & Hawkings (1969) or Farassat (1977). We define Heaviside  
> step
> functions according to
> <math xmlns="http://www.w3.org/1998/Math/MathML">
> <mrow><mi>H</mi><mo stretchy="false">(</mo><mi>t</mi><mo  
> stretchy="false">)</mo><mo>=</mo><mn>1</mn></mrow></math> for
>
> <math xmlns="http://www.w3.org/1998/Math/MathML">
> <mrow><mi>t</mi><mo>></mo><mn>0</mn></mrow></math> and
> <math xmlns="http://www.w3.org/1998/Math/MathML">
> <mrow><mn>0</mn></mrow></math> for
> <math xmlns="http://www.w3.org/1998/Math/MathML">
> <mrow><mi>t</mi><mo><</mo><mn>0</mn></mrow></math>, and
> <math xmlns="http://www.w3.org/1998/Math/MathML">
> <mrow>
> <msub><mrow><mi>H</mi></mrow><mrow><mi>V</mi></mrow>
>
> </msub>
> <mo stretchy="false">(</mo><mi fontweight="bold"  
> fontstyle="normal">x</mi><mo  
> stretchy="false">)</mo><mo>=</mo><mn>1</mn></mrow></math> for
> <math xmlns="http://www.w3.org/1998/Math/MathML">
> <mrow><mi fontweight="bold"  
> fontstyle="normal">x</mi><mo>∈</mo><mi>V</mi></mrow></math> and
> <math xmlns="http://www.w3.org/1998/Math/MathML">
> <mrow><mn>0</mn></mrow></math> for
>
> <math xmlns="http://www.w3.org/1998/Math/MathML">
> <mrow><mi fontweight="bold"  
> fontstyle="normal">x</mi><mo>∉</mo><mi>V</mi></mrow></math>.  
> Writing
> <math xmlns="http://www.w3.org/1998/Math/MathML">
> <mrow><mi>L</mi><mo>=</mo><mo stretchy="false">(</mo>
> <msup><mrow><mo>∂</mo></mrow><mrow><mn>2</mn></mrow>
> </msup>
> <mo>/</mo><mo>∂</mo>
> <msup><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow>
>
> </msup>
> <mo stretchy="false">)</mo>
> <msup><mrow><mo>∇</mo></mrow><mrow><mn>2</mn></mrow>
> </msup>
> <mo>+</mo>
> <msup><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow>
> </msup>
>
> <msubsup><mrow><mo>∇</mo></mrow><mrow><mi  
> fontstyle="normal">h</mi> </mrow>
> <mrow><mn>2</mn></mrow></msubsup>
>
> </mrow></math> we have then, for
>
> <math xmlns="http://www.w3.org/1998/Math/MathML">
> <mrow>
> <mover><mrow><mi>χ</mi></mrow>
> <mo>~</mo></mover>
> <mo stretchy="false">(</mo><mi fontweight="bold"  
> fontstyle="normal">x</mi><mo>,</mo><mi>t</mi><mo  
> stretchy="false">)</mo><mo>=</mo>
> <msub><mrow><mi>H</mi></mrow><mrow><mi>V</mi></mrow>
>
> </msub>
> <mo stretchy="false">(</mo><mi fontweight="bold"  
> fontstyle="normal">x</mi><mo stretchy="false">)</mo><mi>H</mi><mo  
> stretchy="false">(</mo><mi>t</mi><mo  
> stretchy="false">)</mo><mi>χ</mi><mo stretchy="false">(</mo><mi  
> fontweight="bold" fontstyle="normal">x</mi><mo>,</mo><mi>t</mi><mo  
> stretchy="false">)</mo></mrow></math>,
> <br />
> <table width="100%"><tr><td align="center">
>     <math xmlns="http://www.w3.org/1998/Math/MathML">
>
>     <mstyle displaystyle="true"><mrow>
> <mtable align="right" width="80%">
> <mtr><mtd columnalign="right" columnspan="1"><mrow><mi>L</mi>
> <mover><mrow><mi>χ</mi></mrow>
> <mo>~</mo></mover>
> <mo stretchy="false">(</mo><mi fontweight="bold"  
> fontstyle="normal">x</mi><mo>,</mo><mi>t</mi><mo  
> stretchy="false">)</mo></mrow>
> </mtd><mtd columnalign="left">
> <mrow><mo>=</mo>
>
> <msub><mrow><mi>H</mi></mrow><mrow><mi>V</mi></mrow>
> </msub>
> <mo stretchy="false">(</mo><mi fontweight="bold"  
> fontstyle="normal">x</mi><mo stretchy="false">)</mo><mi>H</mi><mo  
> stretchy="false">(</mo><mi>t</mi><mo  
> stretchy="false">)</mo><mi>q</mi><mo stretchy="false">(</mo><mi  
> fontweight="bold" fontstyle="normal">x</mi><mo>,</mo><mi>t</mi><mo  
> stretchy="false">)</mo><mo>+</mo>
>
> <msub><mrow><mi>H</mi></mrow><mrow><mi>V</mi></mrow>
> </msub>
> <mo stretchy="false">(</mo><mi fontweight="bold"  
> fontstyle="normal">x</mi><mo stretchy="false">)</mo><mo  
> stretchy="false">[</mo>
> <msup><mrow><mo>∇</mo></mrow><mrow><mn>2</mn></mrow>
> </msup>
>
> <msub><mrow><mi>χ</mi></mrow><mrow><mn>1</mn></mrow>
> </msub>
> <mo stretchy="false">(</mo><mi fontweight="bold"  
> fontstyle="normal">x</mi><mo  
> stretchy="false">)</mo><mi>δ</mi><mo  
> stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>+</mo>
>
> <msup><mrow><mo>∇</mo></mrow><mrow><mn>2</mn></mrow>
> </msup>
>
> <msub><mrow><mi>χ</mi></mrow><mrow><mn>0</mn></mrow>
> </msub>
> <mo stretchy="false">(</mo><mi fontweight="bold"  
> fontstyle="normal">x</mi><mo  
> stretchy="false">)</mo><mi>δ</mi><mo>'</mo><mo  
> stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo  
> stretchy="false">]</mo></mrow>
> </mtd></mtr>
>
> <mtr><mtd columnspan="6">
> <div class="p"><!----></div>
> </mtd></mtr>
> <mtr><mtd columnalign="right" columnspan="1"><mrow></mrow>
> </mtd><mtd columnalign="left">
> <mrow><mi>      </mi><mo>+</mo><mi>H</ 
> mi><mo stretchy="false">(</mo><mi>t</mi><mo  
> stretchy="false">)</mo><mrow><mo> </mo><mo>{</mo></mrow><mrow><mo>  
> </mo><mo>(</mo></mrow>
> <mfrac><mrow>
> <msup><mrow><mo>∂</mo></mrow><mrow><mn>2</mn></mrow>
>
> </msup>
> </mrow>
> <mrow><mo>∂</mo>
> <msup><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow>
> </msup>
> </mrow>
> </mfrac>
>
> <mfrac><mrow><mo>∂</mo><mi>χ</mi></mrow>
> <mrow><mo>∂</mo><mi>n</mi></mrow>
> </mfrac>
> <mo>+</mo>
> <msup><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow>
>
> </msup>
>
> <mfrac><mrow><mo>∂</mo><mi>χ</mi></mrow>
> <mrow><mo>∂</mo>
> <msub><mrow><mi>n</mi></mrow><mrow><mi fontstyle="normal">h</mi></mrow>
> </msub>
> </mrow>
> </mfrac>
> <mrow><mo> </mo><mo>)</mo></mrow><mo stretchy="false">(</mo><mi  
> fontweight="bold" fontstyle="normal">x</mi><mo>,</mo><mi>t</mi><mo  
> stretchy="false">)</mo>
>
> <msub><mrow><mi>δ</mi></mrow><mrow><mi>S</mi></mrow>
> </msub>
> <mo stretchy="false">(</mo><mi fontweight="bold"  
> fontstyle="normal">x</mi><mo stretchy="false">)</mo><mo>+</mo>
> <mfrac><mrow><mo>∂</mo></mrow>
> <mrow><mo>∂</mo><mi>n</mi></mrow>
> </mfrac>
> <mrow><mo> </mo><mo>[</mo></mrow>
> <mfrac><mrow>
> <msup><mrow><mo>∂</mo></mrow><mrow><mn>2</mn></mrow>
>
> </msup>
> <mi>χ</mi></mrow>
> <mrow><mo>∂</mo>
> <msup><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow>
> </msup>
> </mrow>
> </mfrac>
> <mo stretchy="false">(</mo><mi fontweight="bold"  
> fontstyle="normal">x</mi><mo>,</mo><mi>t</mi><mo  
> stretchy="false">)</mo>
> <msub><mrow><mi>δ</mi></mrow><mrow><mi>S</mi></mrow>
>
> </msub>
> <mo stretchy="false">(</mo><mi fontweight="bold"  
> fontstyle="normal">x</mi><mo stretchy="false">)</mo><mrow><mo>  
> </mo><mo>]</mo></mrow></mrow>
> </mtd></mtr>
> <mtr><mtd columnalign="right" columnspan="1"><mrow></mrow>
> </mtd><mtd columnalign="left">
> <mrow><mi>      </mi><mi>   
>     </mi><mo>+</mo>
> <msup><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow>
> </msup>
>
> <mfrac><mrow><mo>∂</mo></mrow>
> <mrow><mo>∂</mo>
> <msub><mrow><mi>n</mi></mrow><mrow><mi fontstyle="normal">h</mi></mrow>
> </msub>
> </mrow>
> </mfrac>
> <mo stretchy="false">[</mo><mi>χ</mi><mo  
> stretchy="false">(</mo><mi fontweight="bold"  
> fontstyle="normal">x</mi><mo>,</mo><mi>t</mi><mo  
> stretchy="false">)</mo>
> <msub><mrow><mi>δ</mi></mrow><mrow><mi>S</mi></mrow>
>
> </msub>
> <mo stretchy="false">(</mo><mi fontweight="bold"  
> fontstyle="normal">x</mi><mo stretchy="false">)</mo><mo  
> stretchy="false">]</mo><mrow><mo> </mo><mo>}</mo></mrow></mrow>
> </mtd></mtr>
> <mtr><mtd columnalign="right" columnspan="1"><mrow></mrow>
> </mtd><mtd columnalign="left">
> <mrow><mi>      </mi><mo>+</mo>
> <mfrac><mrow><mo>∂</mo>
> <msub><mrow><mi>χ</mi></mrow><mrow><mn>1</mn></mrow>
> </msub>
>
> </mrow>
> <mrow><mo>∂</mo><mi>n</mi></mrow>
> </mfrac>
> <mo stretchy="false">(</mo><mi fontweight="bold"  
> fontstyle="normal">x</mi><mo stretchy="false">)</mo>
> <msub><mrow><mi>δ</mi></mrow><mrow><mi>S</mi></mrow>
> </msub>
> <mo stretchy="false">(</mo><mi fontweight="bold"  
> fontstyle="normal">x</mi><mo  
> stretchy="false">)</mo><mi>δ</mi><mo  
> stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>+</mo>
>
> <mfrac><mrow><mo>∂</mo>
> <msub><mrow><mi>χ</mi></mrow><mrow><mn>0</mn></mrow>
> </msub>
> </mrow>
> <mrow><mo>∂</mo><mi>n</mi></mrow>
> </mfrac>
> <mo stretchy="false">(</mo><mi fontweight="bold"  
> fontstyle="normal">x</mi><mo stretchy="false">)</mo>
> <msub><mrow><mi>δ</mi></mrow><mrow><mi>S</mi></mrow>
> </msub>
> <mo stretchy="false">(</mo><mi fontweight="bold"  
> fontstyle="normal">x</mi><mo  
> stretchy="false">)</mo><mi>δ</mi><mo>'</mo><mo  
> stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>+</mo>
>
> <mfrac><mrow><mo>∂</mo></mrow>
> <mrow><mo>∂</mo><mi>n</mi></mrow>
> </mfrac>
> <mo stretchy="false">[</mo>
> <msub><mrow><mi>χ</mi></mrow><mrow><mn>1</mn></mrow>
> </msub>
> <mo stretchy="false">(</mo><mi fontweight="bold"  
> fontstyle="normal">x</mi><mo stretchy="false">)</mo>
> <msub><mrow><mi>δ</mi></mrow><mrow><mi>S</mi></mrow>
> </msub>
> <mo stretchy="false">(</mo><mi fontweight="bold"  
> fontstyle="normal">x</mi><mo stretchy="false">)</mo><mo  
> stretchy="false">]</mo><mi>δ</mi><mo  
> stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow>
>
> </mtd></mtr>
> <mtr><mtd columnalign="right" columnspan="1"><mrow></mrow>
> </mtd><mtd columnalign="left">
> <mrow><mi>      </mi><mi>   
>     </mi><mo>+</mo>
> <mfrac><mrow><mo>∂</mo></mrow>
> <mrow><mo>∂</mo><mi>n</mi></mrow>
> </mfrac>
> <mo stretchy="false">[</mo>
> <msub><mrow><mi>χ</mi></mrow><mrow><mn>0</mn></mrow>
> </msub>
> <mo stretchy="false">(</mo><mi fontweight="bold"  
> fontstyle="normal">x</mi><mo stretchy="false">)</mo>
>
> <msub><mrow><mi>δ</mi></mrow><mrow><mi>S</mi></mrow>
> </msub>
> <mo stretchy="false">(</mo><mi fontweight="bold"  
> fontstyle="normal">x</mi><mo stretchy="false">)</mo><mo  
> stretchy="false">]</mo><mi>δ</mi><mo>'</mo><mo  
> stretchy="false">(</mo><mi>t</mi><mo  
> stretchy="false">)</mo><mo>,</mo></mrow>
> </mtd></mtr>
> </mtable>
> </mrow>
>     </mstyle></math>
>
> </td></tr></table>
> <br />
>
> with
> <math xmlns="http://www.w3.org/1998/Math/MathML">
> <mrow>
> <msub><mrow><mi>δ</mi></mrow><mrow><mi>S</mi></mrow>
> </msub>
> <mo stretchy="false">(</mo><mi fontweight="bold"  
> fontstyle="normal">x</mi><mo stretchy="false">)</mo></mrow></math> the  
> Dirac delta function of support
> <math xmlns="http://www.w3.org/1998/Math/MathML">
> <mrow><mi>S</mi></mrow></math>.
>
> <br /><br /><hr /><small>File translated from
> T<sub><font size="-1">E</font></sub>X
> by <a href="http://hutchinson.belmont.ma.us/tth/">
> T<sub><font size="-1">T</font></sub>M</a>,
> version 3.59.<br />On 20 Apr 2004, 06:45.</small>
> </body></html>
>
> -----------------------------------------------------
> Please see <http://www.esm.psu.edu/mac-tex/> for list
> guidelines, information, and LaTeX/TeX resources.
>
>

-----------------------------------------------------
Please see <http://www.esm.psu.edu/mac-tex/> for list
guidelines, information, and LaTeX/TeX resources.





More information about the macostex-archives mailing list