[latex3-commits] [git/LaTeX3-latex3-latex3] master: Drop some aux/int [ci skip] (e10f9d7)

Joseph Wright joseph.wright at morningstar2.co.uk
Thu Mar 22 09:58:47 CET 2018


Repository : https://github.com/latex3/latex3
On branch  : master
Link       : https://github.com/latex3/latex3/commit/e10f9d7b964db999c8dd8323d184b58b788261fd

>---------------------------------------------------------------

commit e10f9d7b964db999c8dd8323d184b58b788261fd
Author: Joseph Wright <joseph.wright at morningstar2.co.uk>
Date:   Thu Mar 22 08:58:47 2018 +0000

    Drop some aux/int [ci skip]


>---------------------------------------------------------------

e10f9d7b964db999c8dd8323d184b58b788261fd
 l3trial/l3bigint/l3bigint.dtx |  142 ++++++++++++++++++++---------------------
 1 file changed, 71 insertions(+), 71 deletions(-)

diff --git a/l3trial/l3bigint/l3bigint.dtx b/l3trial/l3bigint/l3bigint.dtx
index de1df9f..2256119 100644
--- a/l3trial/l3bigint/l3bigint.dtx
+++ b/l3trial/l3bigint/l3bigint.dtx
@@ -621,7 +621,7 @@
 % In particular, copies of primitives and internal commands from other
 % packages.
 %
-% \begin{macro}[int]{\@@_str_cmp_x:nn}
+% \begin{macro}{\@@_str_cmp_x:nn}
 %   This is a wrapper around the primitive \tn{pdfstrcmp} or \tn{strcmp} or some equivalent Lua code.
 %    \begin{macrocode}
 \cs_new_eq:NN \@@_str_cmp_x:nn \__str_if_eq_x:nn
@@ -642,7 +642,7 @@
 %    \end{macrocode}
 % \end{macro}
 %
-% \begin{macro}[int]{\@@_scan_new:N}
+% \begin{macro}{\@@_scan_new:N}
 %   A poor man's version of the kernel's \cs{__scan_new:N}.
 %    \begin{macrocode}
 \cs_new_protected:Npn \@@_scan_new:N #1
@@ -650,7 +650,7 @@
 %    \end{macrocode}
 % \end{macro}
 %
-% \begin{macro}[int]{\@@_int_value:w, \@@_int_eval:w, \@@_int_eval_end:}
+% \begin{macro}{\@@_int_value:w, \@@_int_eval:w, \@@_int_eval_end:}
 %   Copies of \TeX{}'s and \eTeX{}'s \tn{number} and \tn{numexpr}
 %   primitives, used for calculations.
 %    \begin{macrocode}
@@ -661,8 +661,8 @@
 % \end{macro}
 %
 %
-% \begin{variable}[int]{\s_@@}
-% \begin{macro}[aux]{\@@_chk:w}
+% \begin{variable}{\s_@@}
+% \begin{macro}{\@@_chk:w}
 %   Big integer variables all start with \cs{s_@@} \cs{@@_chk:w},
 %   where \cs{s_@@} is equal to the \TeX{} primitive \tn{relax}, and
 %   \cs{@@_chk:w} is protected.  The rest of the variable is made of
@@ -681,7 +681,7 @@
 % \end{macro}
 % \end{variable}
 %
-% \begin{variable}[int]{\c_@@_zero_bigint}
+% \begin{variable}{\c_@@_zero_bigint}
 %   Used as an initial value for big integers.
 %    \begin{macrocode}
 \tl_const:Nn \c_@@_zero_bigint { \s_@@ \@@_chk:w 0 . 0 ; }
@@ -692,7 +692,7 @@
 %
 % \subsubsection{Helpers for parsing}
 %
-% \begin{macro}[int]{\s_@@_mark, \s_@@_stop}
+% \begin{macro}{\s_@@_mark, \s_@@_stop}
 %   Unexpandable markers for the end of a big integer expression.
 %    \begin{macrocode}
 \@@_scan_new:N \s_@@_mark
@@ -700,7 +700,7 @@
 %    \end{macrocode}
 % \end{macro}
 %
-% \begin{macro}[aux, EXP]{\@@_parse_return_semicolon:w}
+% \begin{macro}[EXP]{\@@_parse_return_semicolon:w}
 %   This very odd function swaps its position with the following
 %   \cs{fi:} and removes \cs{exp_end_continue_f:nw} normally responsible for
 %   expansion.  That turns out to be useful.
@@ -711,7 +711,7 @@
 % \end{macro}
 %
 % ^^A todo: optimize this a bit using custom version of parse_return_semicolon (??)
-% \begin{macro}[rEXP, aux]
+% \begin{macro}[rEXP]
 %   {
 %     \@@_parse_digits_viii:NN ,
 %     \@@_parse_digits_vii:NN  ,
@@ -774,7 +774,7 @@
 %    \end{macrocode}
 % \end{macro}
 %
-% \begin{macro}[aux, EXP]{\@@_type_from_scan:N, \@@_type_from_scan:w}
+% \begin{macro}[EXP]{\@@_type_from_scan:N, \@@_type_from_scan:w}
 %   \begin{syntax}
 %     \cs{@@_type_from_scan:N} \meta{token}
 %   \end{syntax}
@@ -797,8 +797,8 @@
 % \end{macro}
 %
 % ^^A todo: either optimize or combine with fp.
-% \begin{macro}[int, EXP]{\@@_exp_after_array_f:w}
-% \begin{macro}[aux, EXP]{\@@_exp_after_stop_f:nw}
+% \begin{macro}[EXP]{\@@_exp_after_array_f:w}
+% \begin{macro}[EXP]{\@@_exp_after_stop_f:nw}
 %   \begin{syntax}
 %     \cs{@@_exp_after_array_f:w}
 %       \meta{bigint_1} |;|
@@ -818,14 +818,14 @@
 % \end{macro}
 % \end{macro}
 %
-% \begin{macro}[aux, EXP]{\@@_exp_after_o:w}
+% \begin{macro}[EXP]{\@@_exp_after_o:w}
 %    \begin{macrocode}
 \cs_new:Npn \@@_exp_after_o:w
   { \@@_exp_after_f:nw { \exp_after:wN \exp_stop_f: } }
 %    \end{macrocode}
 % \end{macro}
 %
-% \begin{macro}[aux, EXP]{\@@_exp_after_f:nw, \@@_exp_after_f_aux:NNNNNNNN}
+% \begin{macro}[EXP]{\@@_exp_after_f:nw, \@@_exp_after_f_aux:NNNNNNNN}
 %   Expand after many digits using a loop.  \TeX{}'s primitive
 %   \tn{number}, here as \cs{@@_int_value:w} receives a $10$-digit
 %   number starting with $1$.  The loop is stopped by giving
@@ -856,7 +856,7 @@
 %    \end{macrocode}
 % \end{macro}
 %
-% \begin{macro}[aux, EXP]{\@@_use_none_stop_f:n}
+% \begin{macro}[EXP]{\@@_use_none_stop_f:n}
 %   Get rid of the next token (typically~|1|) and stop
 %   \texttt{f}-expansion.
 %    \begin{macrocode}
@@ -877,8 +877,8 @@
 %    \end{macrocode}
 % \end{variable}
 %
-% \begin{macro}[int, EXP]{\@@_parse_do:nn}
-% \begin{macro}[aux, EXP]{\@@_parse_do_aux:w}
+% \begin{macro}[EXP]{\@@_parse_do:nn}
+% \begin{macro}[EXP]{\@@_parse_do_aux:w}
 %   Parse an expression and run some code~|#2| on the result.
 %    \begin{macrocode}
 \cs_new:Npn \@@_parse_do:nn
@@ -891,8 +891,8 @@
 % \end{macro}
 % \end{macro}
 %
-% \begin{macro}[int, EXP]{\@@_parse:n}
-% \begin{macro}[aux, EXP]{\@@_parse_after:ww}
+% \begin{macro}[EXP]{\@@_parse:n}
+% \begin{macro}[EXP]{\@@_parse_after:ww}
 %   This should be called within \cs{exp:w}.
 %   The \cs{@@_parse_operand:Nw} function will perform
 %   computations until reaching an operation with precedence
@@ -919,8 +919,8 @@
 % \end{macro}
 % \end{macro}
 %
-% \begin{macro}[aux, EXP]{\@@_parse_operand:Nw}
-% \begin{macro}[aux, EXP]{\@@_parse_continue:NwN}
+% \begin{macro}[EXP]{\@@_parse_operand:Nw}
+% \begin{macro}[EXP]{\@@_parse_continue:NwN}
 %   This is just a shorthand which sets up both
 %   \cs{@@_parse_continue:NwN} and \cs{@@_parse_one:Nw} with the same
 %   precedence. Note the trailing \cs{exp:w}. This function should
@@ -941,7 +941,7 @@
 % \end{macro}
 % \end{macro}
 %
-% \begin{macro}[aux, EXP]{\@@_parse_apply_binary:NwNwN}
+% \begin{macro}[EXP]{\@@_parse_apply_binary:NwNwN}
 %   Receives \meta{precedence} \meta{operand_1} |@| \meta{operation}
 %   \meta{operand_2} |@| \meta{infix command}.  Builds the appropriate
 %   call to the \meta{operation}~|#3|.
@@ -958,7 +958,7 @@
 %
 % \subsubsection{Parsing one number}
 %
-% \begin{macro}[aux, EXP]{\@@_parse_one:Nw}
+% \begin{macro}[EXP]{\@@_parse_one:Nw}
 %   This function finds one number, and packs the symbol which follows
 %   in an |infix_| csname.  |#1|~is the previous \meta{precedence}, and
 %   |#2|~the first token of the operand.  We distinguish four cases:
@@ -998,7 +998,7 @@
 %    \end{macrocode}
 % \end{macro}
 %
-% \begin{macro}[aux, EXP]
+% \begin{macro}[EXP]
 %   {
 %     \@@_parse_one_var:NN,
 %     \@@_exp_after_mark_f:nw,
@@ -1065,7 +1065,7 @@
 %    \end{macrocode}
 % \end{macro}
 %
-% \begin{macro}[aux, EXP]
+% \begin{macro}[EXP]
 %   {
 %     \@@_parse_one_register:NN,
 %     \@@_parse_one_register_aux:N,
@@ -1095,7 +1095,7 @@
 %    \end{macrocode}
 % \end{macro}
 %
-% \begin{macro}[aux, EXP]{\@@_parse_one_other:NN}
+% \begin{macro}[EXP]{\@@_parse_one_other:NN}
 %   For this function, |#2|~is a character token which is not a digit.
 %   The only valid cases are |+|, |-|, |"|, |'| and~|`|.  Call
 %   |\__bigint_parse_prefix_|\meta{operator}|:Nw|, but not directly as that
@@ -1112,7 +1112,7 @@
 %    \end{macrocode}
 % \end{macro}
 %
-% \begin{macro}[aux, EXP]
+% \begin{macro}[EXP]
 %   {\@@_parse_prefix:NNN, \@@_parse_prefix_unknown:NNN}
 %   For this function, |#1|~is the operator just seen |#2|~is a control
 %   sequence which implements the operator if it is a known operator,
@@ -1153,7 +1153,7 @@
 %
 % \subsubsection{Parsing a decimal number}
 %
-% \begin{macro}[aux, EXP]{\@@_parse_one_digit:NN}
+% \begin{macro}[EXP]{\@@_parse_one_digit:NN}
 %   A digit marks the beginning of an explicit decimal positive big
 %   integer.  Once it is found, \cs{@@_parse_infix_after_operand:NwN}
 %   receives the precedence |#1|, and the number (as an internal big
@@ -1174,7 +1174,7 @@
 %    \end{macrocode}
 % \end{macro}
 %
-% \begin{macro}[aux, rEXP]{\@@_parse_trim_zeros:N, \@@_parse_trim_end:w}
+% \begin{macro}[rEXP]{\@@_parse_trim_zeros:N, \@@_parse_trim_end:w}
 %   This function is followed by a digit.  It removes any leading zero,
 %   then calls \cs{@@_parse_decimal:N} if the next token is a digit,
 %   and otherwise ends the number (zero).
@@ -1203,7 +1203,7 @@
 %    \end{macrocode}
 % \end{macro}
 %
-% \begin{macro}[aux, rEXP]{\@@_parse_decimal:N}
+% \begin{macro}[rEXP]{\@@_parse_decimal:N}
 %   This function is called followed by a non-zero digit (with any
 %   catcode).  The goal is to read all following digits.  This cannot
 %   be done all at once, because \cs{@@_int_value:w} (which allows to
@@ -1250,14 +1250,14 @@
 %
 % \subsubsection{Parsing prefix operators}
 %
-% \begin{macro}[EXP, aux]{\@@_parse_prefix_+:Nw}
+% \begin{macro}[EXP]{\@@_parse_prefix_+:Nw}
 %   A unary~|+| does nothing: we should continue looking for a number.
 %    \begin{macrocode}
 \cs_new_eq:cN { @@_parse_prefix_+:Nw } \@@_parse_one:Nw
 %    \end{macrocode}
 % \end{macro}
 %
-% \begin{macro}[aux, EXP]{\@@_parse_apply_unary:NNNwN}
+% \begin{macro}[EXP]{\@@_parse_apply_unary:NNNwN}
 %   Here, |#1| is a precedence, |#2| is some extra data used by some
 %   functions, |#3| is \emph{e.g.}, \cs{@@_sin_o:w}, and expands once
 %   after the calculation, |#4| is the operand, and |#5| is a
@@ -1273,7 +1273,7 @@
 %    \end{macrocode}
 % \end{macro}
 %
-% \begin{macro}[EXP, aux]{\@@_parse_prefix_-:Nw}
+% \begin{macro}[EXP]{\@@_parse_prefix_-:Nw}
 %   The unary~|-| is harder: we parse the operand using
 %   a precedence equal to the maximum of the previous precedence~|##1|
 %   and the precedence of the unary operator, then call
@@ -1296,7 +1296,7 @@
 %    \end{macrocode}
 % \end{macro}
 %
-% \begin{macro}[aux, EXP]
+% \begin{macro}[EXP]
 %   {\@@_parse_prefix_(:Nw, \@@_parse_lparen_after:NwN}
 %   The left parenthesis is treated as a unary prefix operator because
 %   it appears in exactly the same settings.  Commas will be allowed if
@@ -1339,7 +1339,7 @@
 %
 % \subsubsection{Parsing infix operators}
 %
-% \begin{macro}[aux, EXP]{\@@_parse_infix_after_operand:NwN}
+% \begin{macro}[EXP]{\@@_parse_infix_after_operand:NwN}
 %    \begin{macrocode}
 \cs_new:Npn \@@_parse_infix_after_operand:NwN #1 #2;
   {
@@ -1381,7 +1381,7 @@
 %    \end{macrocode}
 % \end{macro}
 %
-% \begin{macro}[aux, EXP]{\@@_parse_infix_mark:NNN}
+% \begin{macro}[EXP]{\@@_parse_infix_mark:NNN}
 %   As an infix operator, \cs{s_@@_mark} means that the next
 %   token~(|#3|) has already gone through \cs{@@_parse_infix:NN} and
 %   should be provided the precedence~|#1|.  The scan mark~|#2| is
@@ -1391,7 +1391,7 @@
 %    \end{macrocode}
 % \end{macro}
 %
-% \begin{macro}[aux, EXP]{\@@_parse_infix_end:N}
+% \begin{macro}[EXP]{\@@_parse_infix_end:N}
 %   This one is a little bit odd: force every previous operator to end,
 %   regardless of the precedence.
 %    \begin{macrocode}
@@ -1400,7 +1400,7 @@
 %    \end{macrocode}
 % \end{macro}
 %
-% \begin{macro}[aux, EXP]+\@@_parse_infix_):N+
+% \begin{macro}[EXP]+\@@_parse_infix_):N+
 %   This is very similar to \cs{@@_parse_infix_end:N}, complaining about
 %   an extra closing parenthesis if the previous operator was the
 %   beginning of the expression.
@@ -1424,7 +1424,7 @@
 %    \end{macrocode}
 % \end{macro}
 %
-% \begin{macro}[aux, EXP]
+% \begin{macro}[EXP]
 %   {
 %     \@@_parse_infix_+:N, \@@_parse_infix_-:N,
 %     \@@_parse_infix_/:N, \@@_parse_infix_*:N,
@@ -1477,7 +1477,7 @@
 %
 % ^^A todo: make this into an error for big integers
 %
-% \begin{macro}[aux, EXP]+\@@_parse_infix_(:N+
+% \begin{macro}[EXP]+\@@_parse_infix_(:N+
 %   When an opening parenthesis appears where we expect an infix
 %   operator, we compute the product of the previous operand and the
 %   contents of the parentheses using \cs{@@_parse_infix_juxtapose:N}.
@@ -1488,7 +1488,7 @@
 % \end{macro}
 %
 % ^^A todo: can |...(1,2,3)pt| really occur?  If not, simplify.
-% \begin{macro}[aux, EXP]
+% \begin{macro}[EXP]
 %   {\@@_parse_infix_juxtapose:N, \@@_parse_apply_juxtapose:NwwN}
 %   Juxtaposition follows the same scheme as other binary operations,
 %   but calls \cs{@@_parse_apply_juxtapose:NwwN} rather than directly
@@ -1529,7 +1529,7 @@
 %
 % \subsection{Tree structure}
 %
-% \begin{macro}[int]{\@@_tree_dp:n}
+% \begin{macro}{\@@_tree_dp:n}
 %   Receives a (non-zero) multiple of $8$ digits, such that the first
 %   block of $8$ digits is non-zero.  Outputs \meta{depth}.\meta{tree}
 %   where a \meta{tree} is
@@ -1611,7 +1611,7 @@
 %    \end{macrocode}
 % \end{macro}
 %
-% \begin{macro}[int]{\@@_diff_sign:w}
+% \begin{macro}{\@@_diff_sign:w}
 %   Expects \meta{tree_1} |;| \meta{tree_2} |;| of identical depths,
 %   and must be used in
 %   \cs{if_case:w}.  Takes case~$0$ if the numbers are equal, case~$1$
@@ -1647,7 +1647,7 @@
 %    \end{macrocode}
 % \end{macro}
 %
-% \begin{macro}[int, EXP]{\@@_tint_open:w, \@@_tint_open_z:nn}
+% \begin{macro}[EXP]{\@@_tint_open:w, \@@_tint_open_z:nn}
 %   Convert tree to integer (stream of digits) with ``open'' integer
 %   expression which can be closed by anything.
 %    \begin{macrocode}
@@ -1664,7 +1664,7 @@
 %    \end{macrocode}
 % \end{macro}
 %
-% \begin{variable}[int, EXP]{\c_@@_carry_int, \@@_carry:N, \@@:w}
+% \begin{variable}[EXP]{\c_@@_carry_int, \@@_carry:N, \@@:w}
 %   ^^A todo: these should be renamed.
 %    \begin{macrocode}
 \int_const:Nn \c_@@_carry_int { 2 0000 0000 }
@@ -1683,7 +1683,7 @@
 %
 % \subsection{Addition and subtraction}
 %
-% \begin{macro}[int, EXP]{\@@_wrapup:Nw}
+% \begin{macro}[EXP]{\@@_wrapup:Nw}
 %    \begin{macrocode}
 \cs_new:Npn \@@_wrapup:Nw #1
   {
@@ -1700,8 +1700,8 @@
 %    \end{macrocode}
 % \end{macro}
 %
-% \begin{macro}[int, EXP]{\@@_set_sign_o:w}
-% \begin{macro}[aux, EXP]{\@@_set_sign_aux_o:Nw}
+% \begin{macro}[EXP]{\@@_set_sign_o:w}
+% \begin{macro}[EXP]{\@@_set_sign_aux_o:Nw}
 %    \begin{macrocode}
 \cs_new:Npn \@@_set_sign_o:w ? \s_@@ \@@_chk:w #1 . #2 #3 ; @
   {
@@ -1714,7 +1714,7 @@
 % \end{macro}
 % \end{macro}
 %
-% \begin{macro}[int, EXP]{\@@_return_i_o:w}
+% \begin{macro}[EXP]{\@@_return_i_o:w}
 %    \begin{macrocode}
 \cs_new:Npn \@@_return_i_o:w #1 \s_@@ #2 ; \s_@@ #3 ;
   { \@@_exp_after_o:w \s_@@ #2 ; }
@@ -1725,7 +1725,7 @@
 %    \end{macrocode}
 % \end{macro}
 %
-% \begin{macro}[int, EXP]{\@@_+_o:ww, \@@_-_o:ww}
+% \begin{macro}[EXP]{\@@_+_o:ww, \@@_-_o:ww}
 %    \begin{macrocode}
 \cs_new:Npn \@@_set_sign_ii:Nw #1 #2 ; #3 . #4 { #2 ; #3 . #1 }
 \cs_new:Npn \@@_num_swap:www #1 \s_@@ #2 ; \s_@@ #3 ; { #1 \s_@@ #3 ; \s_@@ #2 ; }
@@ -1848,7 +1848,7 @@
 %
 % \subsection{Multiplication}
 %
-% \begin{macro}[int, EXP]{\@@_*_o:ww}
+% \begin{macro}[EXP]{\@@_*_o:ww}
 %   In \pkg{l3fp}, expansions are cleverly nested to avoid passing
 %   arguments around too much.  For the very large numbers that
 %   \pkg{l3bigint} manipulates, this is not a good idea because we
@@ -1915,7 +1915,7 @@
 %
 %
 %
-% \begin{macro}[int, EXP]{\@@_carry_v:N}
+% \begin{macro}[EXP]{\@@_carry_v:N}
 %    \begin{macrocode}
 \cs_new_protected:Npn \@@_carry_v:N #1#2 .
   {
@@ -1931,7 +1931,7 @@
 %    \end{macrocode}
 % \end{macro}
 %
-% \begin{variable}[int]{\c_@@_middle_int}
+% \begin{variable}{\c_@@_middle_int}
 %    \begin{macrocode}
 \int_const:Nn \c_@@_leading_int { 2 }
 \int_const:Nn \c_@@_middle_int { 1 9998 0000 }
@@ -1939,7 +1939,7 @@
 %    \end{macrocode}
 % \end{variable}
 %
-% \begin{macro}[int, EXP]{\@@_topen:w}
+% \begin{macro}[EXP]{\@@_topen:w}
 %   \cs{@@_topen:w} should be followed by (|+|$\mid$|-|) \meta{carry}
 %   |.| \meta{tree} \meta{more~intexpr} |.| It f-expands to
 %   \meta{carry'} |.| \meta{tree'} |+| where the \meta{more~intexpr}
@@ -1969,7 +1969,7 @@
 %    \end{macrocode}
 % \end{macro}
 %
-% \begin{macro}[int, EXP]{\@@_tadd_open:w}
+% \begin{macro}[EXP]{\@@_tadd_open:w}
 %   \cs{@@_tadd_open:w} should be followed by (|+|$\mid$|-|)
 %   \meta{carry_1} |.| \meta{tree_1} |+| \meta{carry_2} |.|
 %   \meta{tree_2} \meta{more~intexpr} |.| It computes the second tree
@@ -2029,7 +2029,7 @@
 %    \end{macrocode}
 % \end{macro}
 %
-% \begin{macro}[int, EXP]{\@@_tmul:w}
+% \begin{macro}[EXP]{\@@_tmul:w}
 %   Assume |depth(tree_1) = depth(tree_2)|, achieved in rest of code by
 %   adding leading |1|.  Given |0.|\meta{tree}|;| |0.|\meta{tree}|;|
 %   produces the product as |0.|\meta{tree}|;| The resulting tree has
@@ -2110,7 +2110,7 @@
 %    \end{macrocode}
 % \end{macro}
 %
-% \begin{macro}[aux, EXP]{\@@_tmul_pp:w}
+% \begin{macro}[EXP]{\@@_tmul_pp:w}
 %   This is the crux of Karatsuba's method.  To compute
 %   $(10^{k} a + b)(10^{k} c + d)$, we can compute $ac$ and $bd$ and
 %   compute $ad+bc = $ either as $(a+b)(c+d)-ac-bd$ or as
@@ -2204,8 +2204,8 @@
 % \subsection{Big integer expressions}
 %
 % \begin{macro}[EXP]{\bigint_use:N, \bigint_use:c, \bigint_eval:n}
-% \begin{macro}[int, EXP]{\@@_use:w}
-% \begin{macro}[aux, EXP]{\@@_use_aux:NN}
+% \begin{macro}[EXP]{\@@_use:w}
+% \begin{macro}[EXP]{\@@_use_aux:NN}
 %   Expand the variable or parse the expression with \cs{@@_parse:n}.
 %   Then \cs{@@_use:w}.
 %    \begin{macrocode}
@@ -2234,7 +2234,7 @@
 % \end{macro}
 %
 % \begin{macro}[EXP]{\bigint_abs:n}
-% \begin{macro}[int, EXP]{\@@_abs:w}
+% \begin{macro}[EXP]{\@@_abs:w}
 %    \begin{macrocode}
 \cs_new:Npn \bigint_abs:n
   { \exp_after:wN \@@_abs:w \exp:w \@@_parse:n }
@@ -2258,7 +2258,7 @@
 % \end{macro}
 %
 % \begin{macro}[EXP]{\bigint_max:nn, \bigint_min:nn}
-% \begin{macro}[aux, EXP]{\@@_max:wwN}
+% \begin{macro}[EXP]{\@@_max:wwN}
 %   Parse, compare, and use.
 %    \begin{macrocode}
 \cs_new:Npn \bigint_max:nn #1#2
@@ -2287,7 +2287,7 @@
 % \end{macro}
 %
 % \begin{macro}[EXP]{\bigint_sign:n}
-% \begin{macro}[int, EXP]{\@@_sign:w}
+% \begin{macro}[EXP]{\@@_sign:w}
 %   Parse the expression with \cs{@@_parse:n}, then \cs{@@_sign:w}.
 %    \begin{macrocode}
 \cs_new:Npn \bigint_sign:n
@@ -2449,7 +2449,7 @@
 %
 % \subsection{Big integer conditionals}
 %
-% \begin{macro}[int, EXP]{\@@_compare:ww}
+% \begin{macro}[EXP]{\@@_compare:ww}
 %   Expands to $-1$, $0$, or $1$ like \tn{pdfstrcmp} does.  If the
 %   numbers have different signs, it is easy to find which number is
 %   biggest, by comparing signs |#2| and |#5| (these are $0$, $1$, or
@@ -2499,7 +2499,7 @@
 % ^^A todo: using \exp:w \@@_parse:n would be faster (no removal of leading 0)
 % \begin{macro}[EXP]{\bigint_case:nn}
 % \begin{macro}[EXP, TF]{\bigint_case:nn}
-% \begin{macro}[EXP, aux]{\@@_case:nnTF, \@@_case:nw, \@@_case_end:nw}
+% \begin{macro}[EXP]{\@@_case:nnTF, \@@_case:nw, \@@_case_end:nw}
 %   For integer cases, the first task to fully expand the check
 %   condition. After that, a loop is started to compare each possible
 %   value and stop if the test is true. The tested value is put at the
@@ -2547,7 +2547,7 @@
 % \end{macro}
 %
 % \begin{macro}[EXP, pTF]{\bigint_if_even:n, \bigint_if_odd:n}
-% \begin{macro}[EXP, aux]{\@@_if_odd:w, \@@_if_odd:NNNNNNNN}
+% \begin{macro}[EXP]{\@@_if_odd:w, \@@_if_odd:NNNNNNNN}
 %   A predicate function.  Parse the number.  Then discard digits until
 %   the last, and ask \TeX{} to test its parity.  We make use of the
 %   fact that the number of digits is known to be a multiple of~$8$.
@@ -2583,7 +2583,7 @@
 % \end{macro}
 %
 % \begin{macro}[EXP, pTF]{\bigint_if_int:n}
-% \begin{macro}[EXP, aux]{\@@_if_int:w}
+% \begin{macro}[EXP]{\@@_if_int:w}
 %   True if the argument's \meta{absolute value} is less than~$2^{31}$,
 %   hardcoded here.  Use string comparison to limit the amount of code
 %   needed.
@@ -2614,7 +2614,7 @@
 % \subsection{Factorization}
 %
 % \begin{macro}[EXP]{\bigint_factor:n}
-% \begin{macro}[EXP, aux]{\@@_factor:w, \@@_factor:n, \@@_factor:nn}
+% \begin{macro}[EXP]{\@@_factor:w, \@@_factor:n, \@@_factor:nn}
 %   This expands to the factorization of its argument, with each factor
 %   enclosed in braces, an item of the resulting token list.  The
 %   factors appear in descending order.  Negative integers have a
@@ -2661,7 +2661,7 @@
 % \end{macro}
 %
 % \begin{macro}[EXP]{\bigint_phi:n}
-% \begin{macro}[EXP, aux]{\@@_phi:, \@@_phi:nnw}
+% \begin{macro}[EXP]{\@@_phi:, \@@_phi:nnw}
 %   Euler's totient function $\phi$.  Start with $1$, then multiply for
 %   each prime factor $p$ by $p$ or $p-1$ depending on whether the
 %   previous prime factor was also $p$.
@@ -2691,7 +2691,7 @@
 % \end{macro}
 %
 % \begin{macro}[EXP]{\bigint_count_divisors:n}
-% \begin{macro}[EXP, aux]{\@@_count_divisors:n, \@@_count_divisors:nnn}
+% \begin{macro}[EXP]{\@@_count_divisors:n, \@@_count_divisors:nnn}
 %   Number of divisors, obtained from the factorization. The auxiliary
 %   \cs{@@_count_divisors:nnn} does most of the work: its first
 %   argument is the number of times the current factor has appeared,
@@ -2727,7 +2727,7 @@
 % ^^A todo: what happens to signs in gcd/lcm?  Just use \bigint_abs:n ?
 %
 % \begin{macro}[EXP]{\bigint_gcd:nn}
-% \begin{macro}[EXP, aux]{\@@_gcd:nn}
+% \begin{macro}[EXP]{\@@_gcd:nn}
 %   First evaluate the expressions.  Then apply Euclid's algorithm: if
 %   an operand is $0$, we're done, otherwise compute |#2| modulo |#1|
 %   and recurse with that and |#1| as arguments.
@@ -2749,7 +2749,7 @@
 % \end{macro}
 %
 % \begin{macro}[EXP]{\bigint_lcm:nn}
-% \begin{macro}[EXP, aux]{\@@_lcm:nn}
+% \begin{macro}[EXP]{\@@_lcm:nn}
 %   Evaluate the two operands.  If either one is zero, this is the
 %   result.  Otherwise, compute $ab/\operatorname{gcd}(a,b)$, minimizing
 %   the operands by first computing $a/\operatorname{gcd}(a,b)$, an





More information about the latex3-commits mailing list