[l2h] alignment/cropping - problem with formulas including \mathbf{}
Ralf Scholl
rasch@skillsonline.de
Mon, 23 Jul 2001 11:13:45 +0200
This is a multi-part message in MIME format.
------=_NextPart_000_006C_01C11368.89B5BCC0
Content-Type: multipart/alternative;
boundary="----=_NextPart_001_006D_01C11368.89B5BCC0"
------=_NextPart_001_006D_01C11368.89B5BCC0
Content-Type: text/plain;
charset="iso-8859-1"
Content-Transfer-Encoding: quoted-printable
Hello,=20
has anybody a hint?
I have a systematic alignment/cropping problem with formulas including =
\mathbf{}.
I'm using latex2html2k with the the options -nomath -version html4.0 =
math .
Even a workaround - how could I improve the output by "cropping by hand" =
would be appreciated as a last resort.
So: can I use the cropping program to crop by hand, and what have I to =
do, to do this?
Or is there a better (automatic) solution?
An example of the problem:
\begin{itemize}
\item[Taylor series] For $\mathbf{x}=3D(x_{1},\ldots ,x_{n})$ and =
$\Delta=20
\mathbf{x}=3D(\Delta x_{1},\ldots ,\Delta x_{n})$ we have the Taylor =
series=20
\begin{equation*}
f(\mathbf{x}+\Delta \mathbf{x})=3Df(\mathbf{x})+\Delta =
\mathbf{x}\frac{d}{dx}f(
\mathbf{x})+\frac{1}{2}\Delta \mathbf{x}\frac{d^{2}}{dx^{2}}f(\mathbf{x}
)\Delta \mathbf{x}{^{\mathrm{T}}}+O(\| \Delta \mathbf{x}\| ^{3}).
\end{equation*}
\end{itemize}
The rendered html is attached as test.html.
The first part is ok (the symbols are cropped to a size of 14 pt and =
used with align=3Dbottom).=20
But as soon, as I use \mathbf{}, the cropping is changed (it's left much =
more space under the symbols) and the alignment of the cropped images is =
changed too (from align=3D bottom to align=3Dmiddle).
The result of this is, that the Delta is aligned as if it were as =
superscript.=20
Help would be much appreciated.
Ralf Scholl
SkillsOnline
Heidelberg
Germany
P.S.: Like you can see, the images all have a grey background. How do I =
get a white background?
Have I to revert from png to gif?
------=_NextPart_001_006D_01C11368.89B5BCC0
Content-Type: text/html;
charset="iso-8859-1"
Content-Transfer-Encoding: quoted-printable
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML><HEAD>
<META content=3D"text/html; charset=3Diso-8859-1" =
http-equiv=3DContent-Type>
<META content=3D"MSHTML 5.00.2614.3500" name=3DGENERATOR>
<STYLE></STYLE>
</HEAD>
<BODY bgColor=3D#ffffff>
<DIV><FONT face=3DArial size=3D2>Hello, </FONT><FONT face=3DArial =
size=3D2></FONT></DIV>
<DIV><FONT face=3DArial size=3D2>has anybody a hint?</FONT></DIV>
<DIV><FONT face=3DArial size=3D2>I have a systematic =
alignment/cropping =20
problem with formulas including \mathbf{}.</FONT></DIV>
<DIV><FONT face=3DArial size=3D2>I'm using latex2html2k with the the =
options -nomath=20
-version html4.0 math .</FONT></DIV>
<DIV> </DIV>
<DIV><FONT face=3DArial size=3D2>Even a workaround - how could I improve =
the output=20
by "cropping by hand" would be appreciated as a last =
resort.</FONT></DIV>
<DIV><FONT face=3DArial size=3D2>So: can I use the cropping program to =
crop by hand,=20
and what have I to do, to do this?</FONT></DIV>
<DIV><FONT face=3DArial size=3D2>Or is there a better (automatic)=20
solution?</FONT></DIV>
<DIV> </DIV>
<DIV><FONT face=3DArial size=3D2>An example of the problem:</FONT></DIV>
<DIV> </DIV>
<DIV><FONT face=3DArial size=3D2>\begin{itemize}<BR>\item[Taylor series] =
For=20
$\mathbf{x}=3D(x_{1},\ldots ,x_{n})$ and $\Delta =
<BR>\mathbf{x}=3D(\Delta=20
x_{1},\ldots ,\Delta x_{n})$ we have the Taylor series=20
<BR>\begin{equation*}<BR>f(\mathbf{x}+\Delta =
\mathbf{x})=3Df(\mathbf{x})+\Delta=20
\mathbf{x}\frac{d}{dx}f(<BR>\mathbf{x})+\frac{1}{2}\Delta=20
\mathbf{x}\frac{d^{2}}{dx^{2}}f(\mathbf{x}<BR>)\Delta=20
\mathbf{x}{^{\mathrm{T}}}+O(\| \Delta \mathbf{x}\|=20
^{3}).<BR>\end{equation*}</FONT></DIV>
<DIV><FONT face=3DArial size=3D2>\end{itemize}</FONT></DIV>
<DIV> </DIV>
<DIV><FONT face=3DArial size=3D2>The rendered html is attached as=20
test.html.</FONT></DIV>
<DIV><FONT face=3DArial size=3D2>The first part is ok (the symbols are =
cropped to a=20
size of 14 pt and used with align=3Dbottom). </FONT></DIV>
<DIV> </DIV>
<DIV><FONT face=3DArial size=3D2>But as soon, as I use \mathbf{}, the =
cropping is=20
changed (it's left much more space under the symbols) and the alignment =
of the=20
cropped images is changed too (from align=3D bottom to =
align=3Dmiddle).</FONT></DIV>
<DIV><FONT face=3DArial size=3D2>The result of this is, that the Delta =
is aligned as=20
if it were as superscript. </FONT></DIV>
<DIV> </DIV>
<DIV><FONT face=3DArial size=3D2>Help would be much =
appreciated.</FONT></DIV>
<DIV> </DIV>
<DIV><FONT face=3DArial size=3D2>Ralf Scholl</FONT></DIV>
<DIV><FONT face=3DArial size=3D2>SkillsOnline</FONT></DIV>
<DIV><FONT face=3DArial size=3D2>Heidelberg</FONT></DIV>
<DIV><FONT face=3DArial size=3D2>Germany</FONT></DIV>
<DIV> </DIV>
<DIV><FONT face=3DArial size=3D2>P.S.: Like you can see, the images all =
have a grey=20
background. How do I get a white background?</FONT></DIV>
<DIV><FONT face=3DArial size=3D2>Have I to revert from png to=20
gif?</FONT></DIV></BODY></HTML>
------=_NextPart_001_006D_01C11368.89B5BCC0--
------=_NextPart_000_006C_01C11368.89B5BCC0
Content-Type: text/html;
name="test.html"
Content-Transfer-Encoding: quoted-printable
Content-Disposition: attachment;
filename="test.html"
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<!--Converted with LaTeX2HTML 2K.1beta (1.55)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>1.3.1 More Theory - The analytical method of function =
minimization </TITLE>
<META NAME=3D"description" CONTENT=3D"1.3.1 More Theory - The analytical =
method of function minimization ">
<META NAME=3D"keywords" CONTENT=3D"wsrscript">
<META NAME=3D"resource-type" CONTENT=3D"document">
<META NAME=3D"distribution" CONTENT=3D"global">
<META HTTP-EQUIV=3D"Content-Type" CONTENT=3D"text/html; =
charset=3Diso-8859-1">
<META NAME=3D"Generator" CONTENT=3D"LaTeX2HTML v2K.1beta">
<META HTTP-EQUIV=3D"Content-Style-Type" CONTENT=3D"text/css">
<LINK REL=3D"STYLESHEET" HREF=3D"wsrscript.css">
<LINK REL=3D"previous" HREF=3D"1_3.html">
<LINK REL=3D"up" HREF=3D"1_3.html">
<LINK REL=3D"next" HREF=3D"1_4.html">
</HEAD>
<BODY >
<P>
</DD>
<DT><STRONG>Taylor series</STRONG></DT>
<DD>For <!-- MATH
$\mathbf{x}=3D(x_{1},\ldots ,x_{n})$
-->
<SPAN CLASS=3D"MATH"><B>x</B> =3D (<I>x</I><SUB>1</SUB>,..., =
<I>x</I><SUB>n</SUB>)</SPAN> and <!-- MATH
$\Delta
\mathbf{x}=3D(\Delta x_{1},\ldots ,\Delta x_{n})$
-->
<SPAN CLASS=3D"MATH"><IMG
WIDTH=3D"15" HEIGHT=3D"14" ALIGN=3D"BOTTOM" BORDER=3D"0"
SRC=3D"img88.png"
ALT=3D"$ \Delta$"><B>x</B> =3D (<IMG
WIDTH=3D"15" HEIGHT=3D"14" ALIGN=3D"BOTTOM" BORDER=3D"0"
SRC=3D"img88.png"
ALT=3D"$ \Delta$"><I>x</I><SUB>1</SUB>,...,<IMG
WIDTH=3D"15" HEIGHT=3D"14" ALIGN=3D"BOTTOM" BORDER=3D"0"
SRC=3D"img88.png"
ALT=3D"$ \Delta$"><I>x</I><SUB>n</SUB>)</SPAN> we have the Taylor =
series=20
<P></P>
<DIV ALIGN=3D"CENTER" CLASS=3D"mathdisplay"><!-- MATH
\begin{equation*}
f(\mathbf{x}+\Delta \mathbf{x})=3Df(\mathbf{x})+\Delta =
\mathbf{x}\frac{d}{dx}f(
\mathbf{x})+\frac{1}{2}\Delta \mathbf{x}\frac{d^{2}}{dx^{2}}f(\mathbf{x}
)\Delta \mathbf{x}{^{\mathrm{T}}}+O(\| \Delta \mathbf{x}\| ^{3}).
\end{equation*}
-->
<TABLE CLASS=3D"equation*" CELLPADDING=3D"0" WIDTH=3D"100%" =
ALIGN=3D"CENTER">
<TR VALIGN=3D"MIDDLE">
<TD NOWRAP ALIGN=3D"CENTER"><SPAN CLASS=3D"MATH"><I>f</I> (<B>x</B> + =
<IMG
WIDTH=3D"15" HEIGHT=3D"14" ALIGN=3D"BOTTOM" BORDER=3D"0"
SRC=3D"img88.png"
ALT=3D"$\displaystyle \Delta$"><B>x</B>) =3D <I>f</I> (<B>x</B>) + <IMG
WIDTH=3D"15" HEIGHT=3D"28" ALIGN=3D"MIDDLE" BORDER=3D"0"
SRC=3D"img89.png"
ALT=3D"$\displaystyle \Delta$"><B>x</B><IMG
WIDTH=3D"23" HEIGHT=3D"49" ALIGN=3D"MIDDLE" BORDER=3D"0"
SRC=3D"img73.png"
ALT=3D"$\displaystyle {\frac{{d}}{{dx}}}$"><I>f</I> (<B>x</B>) + <IMG
WIDTH=3D"14" HEIGHT=3D"48" ALIGN=3D"MIDDLE" BORDER=3D"0"
SRC=3D"img90.png"
ALT=3D"$\displaystyle {\frac{{1}}{{2}}}$"><IMG
WIDTH=3D"15" HEIGHT=3D"28" ALIGN=3D"MIDDLE" BORDER=3D"0"
SRC=3D"img89.png"
ALT=3D"$\displaystyle \Delta$"><B>x</B><IMG
WIDTH=3D"29" HEIGHT=3D"53" ALIGN=3D"MIDDLE" BORDER=3D"0"
SRC=3D"img82.png"
ALT=3D"$\displaystyle {\frac{{d^{2}}}{{dx^{2}}}}$"><I>f</I> =
(<B>x</B>)<IMG
WIDTH=3D"15" HEIGHT=3D"28" ALIGN=3D"MIDDLE" BORDER=3D"0"
SRC=3D"img89.png"
ALT=3D"$\displaystyle \Delta$"><B>x</B><SUP>T</SUP> + <I>O</I>(|<IMG
WIDTH=3D"15" HEIGHT=3D"28" ALIGN=3D"MIDDLE" BORDER=3D"0"
SRC=3D"img89.png"
ALT=3D"$\displaystyle \Delta$"><B>x</B>|<SUP>3</SUP>).</SPAN></TD>
<TD NOWRAP CLASS=3D"eqno" WIDTH=3D"10" ALIGN=3D"RIGHT">
</TD></TR>
</TABLE></DIV>
<BR CLEAR=3D"ALL"><P></P>Minima and maxima of <SPAN =
CLASS=3D"MATH"><I>f</I></SPAN> satisfy the condition <!-- MATH
$\frac{d}{dx}f(\mathbf{x}
)=3D(0,\ldots ,0){^{\mathrm{T}}}$
-->
<SPAN CLASS=3D"MATH"><IMG
WIDTH=3D"19" HEIGHT=3D"35" ALIGN=3D"MIDDLE" BORDER=3D"0"
SRC=3D"img71.png"
ALT=3D"$ {\frac{{d}}{{dx}}}$"><I>f</I> (<B>x</B>) =3D (0,..., =
0)<SUP>T</SUP></SPAN>, so the Taylor series in an extremal point=20
<!-- MATH
$\mathbf{x}$
-->
<SPAN CLASS=3D"MATH"><B>x</B></SPAN> looks like=20
<P></P>
<DIV ALIGN=3D"CENTER" CLASS=3D"mathdisplay"><A =
NAME=3D"eq:taylor"></A><!-- MATH
\begin{equation}
f(\mathbf{x}+\Delta \mathbf{x})\approx f(\mathbf{x})+\frac{1}{2}\Delta
\mathbf{x}\frac{d^{2}}{dx^{2}}f(\mathbf{x})\Delta =
\mathbf{x}{^{\mathrm{T}}}.
\end{equation}
-->
</BODY>
</HTML>
------=_NextPart_000_006C_01C11368.89B5BCC0
Content-Type: text/css;
name="wsrscript.css"
Content-Transfer-Encoding: 7bit
Content-Disposition: attachment;
filename="wsrscript.css"
/* Century Schoolbook font is very similar to Computer Modern Math: cmmi */
.MATH { font-family: "Century Schoolbook", serif; }
.MATH I { font-family: "Century Schoolbook", serif; font-style: italic }
.BOLDMATH { font-family: "Century Schoolbook", serif; font-weight: bold }
/* implement both fixed-size and relative sizes */
SMALL.XTINY { font-size : xx-small }
SMALL.TINY { font-size : x-small }
SMALL.SCRIPTSIZE { font-size : smaller }
SMALL.FOOTNOTESIZE { font-size : small }
SMALL.SMALL { }
BIG.LARGE { }
BIG.XLARGE { font-size : large }
BIG.XXLARGE { font-size : x-large }
BIG.HUGE { font-size : larger }
BIG.XHUGE { font-size : xx-large }
/* heading styles */
H1 { }
H2 { }
H3 { }
H4 { }
H5 { }
/* mathematics styles */
DIV.displaymath { } /* math displays */
TD.eqno { } /* equation-number cells */
/* document-specific styles come next */
DIV.center { }
PRE.preform { }
SPAN.tt { }
DIV.align { }
TABLE.equation { }
TABLE.equation* { }
DIV.align* { }
DIV.navigation { }
SPAN.textit { font-style: italic }
SPAN.textbf { font-weight: bold }
SPAN.arabic { }
SPAN.textsl { font-style: italic }
#hue11527 { color: #ff0000; }
#hue11528 { color: #ff0000; }
#hue11529 { color: #ff0000; }
#hue11531 { color: #ff0000; }
#hue11532 { color: #ff0000; }
#hue11533 { color: #ff0000; }
#hue11534 { color: #ff0000; }
#hue11535 { color: #ff0000; }
#hue11536 { color: #ff0000; }
#hue11537 { color: #ff0000; }
#hue11538 { color: #ff0000; }
#hue11539 { color: #ff0000; }
#hue11540 { color: #ff0000; }
#hue11541 { color: #ff0000; }
#hue11542 { color: #ff0000; }
#hue11543 { color: #ff0000; }
#hue11544 { color: #ff0000; }
#hue11545 { color: #ff0000; }
#hue11546 { color: #ff0000; }
#hue11548 { color: #00ff00; }
#hue11550 { color: #00ff00; }
#hue11598 { color: #ff0000; }
#hue11599 { color: #ff0000; }
#hue11600 { color: #ff0000; }
#hue11601 { color: #ff0000; }
#hue11603 { color: #ff0000; }
#hue11604 { color: #ff0000; }
#hue11605 { color: #ff0000; }
#hue11606 { color: #ff0000; }
#hue11607 { color: #ff0000; }
#hue11608 { color: #ff0000; }
#hue11609 { color: #ff0000; }
#hue11610 { color: #ff0000; }
#hue11611 { color: #ff0000; }
#hue11612 { color: #ff0000; }
#hue11613 { color: #ff0000; }
#hue11614 { color: #ff0000; }
#hue11615 { color: #ff0000; }
#hue11616 { color: #ff0000; }
#hue11617 { color: #ff0000; }
#hue11618 { color: #ff0000; }
#hue11631 { color: #00ff00; }
#hue11632 { color: #ff00ff; }
#hue11633 { color: #00ff00; }
#hue11634 { color: #ff00ff; }
#hue11635 { color: #00ff00; }
#hue11636 { color: #ff00ff; }
#hue11637 { color: #ff0000; }
#hue11638 { color: #ff00ff; }
#hue11639 { color: #00ff00; }
#hue11640 { color: #ff00ff; }
#hue11641 { color: #0000ff; }
#hue11642 { color: #ff00ff; }
#hue11644 { color: #00ff00; }
#hue11645 { color: #0000ff; }
#hue11646 { color: #00ff00; }
#hue11647 { color: #00ff00; }
#hue11648 { color: #ff00ff; }
#hue11649 { color: #ff00ff; }
#hue11650 { color: #ff00ff; }
#hue11651 { color: #00ff00; }
#hue11652 { color: #0000ff; }
#hue11653 { color: #00ff00; }
#hue11654 { color: #0000ff; }
#hue11655 { color: #00ff00; }
#hue11656 { color: #ff00ff; }
#hue11657 { color: #00ff00; }
#hue11658 { color: #ff00ff; }
#hue11659 { color: #00ff00; }
#hue11660 { color: #ff00ff; }
#hue11661 { color: #00ff00; }
#hue11662 { color: #ff00ff; }
#hue11663 { color: #00ff00; }
#hue11664 { color: #ff00ff; }
#hue11665 { color: #ff0000; }
#hue11666 { color: #ff00ff; }
#hue11667 { color: #00ff00; }
#hue11668 { color: #ff00ff; }
#hue11669 { color: #0000ff; }
#hue11670 { color: #ff00ff; }
#hue11671 { color: #ffff00; }
#hue11672 { color: #00ff00; }
#hue11673 { color: #0000ff; }
#hue11674 { color: #00ff00; }
#hue11675 { color: #00ff00; }
#hue11676 { color: #ff00ff; }
#hue11677 { color: #ff00ff; }
#hue11678 { color: #ff00ff; }
#hue11679 { color: #00ff00; }
#hue11680 { color: #0000ff; }
#hue11681 { color: #00ff00; }
#hue11682 { color: #0000ff; }
#hue11683 { color: #00ff00; }
#hue11684 { color: #ff00ff; }
#hue11685 { color: #00ff00; }
#hue11686 { color: #ff00ff; }
#hue11690 { color: #00ff00; }
#hue11691 { color: #0000ff; }
#hue11692 { color: #ff00ff; }
#hue11693 { color: #ff0000; }
#hue11694 { color: #ffff00; }
#hue11698 { color: #ff0000; }
#hue11699 { color: #ff0000; }
#hue11700 { color: #ff0000; }
#hue11701 { color: #ff0000; }
#hue11703 { color: #ff0000; }
#hue11704 { color: #ff0000; }
#hue11705 { color: #ff0000; }
#hue11706 { color: #ff0000; }
#hue11707 { color: #ff0000; }
#hue11708 { color: #ff0000; }
#hue11709 { color: #ff0000; }
#hue11710 { color: #ff0000; }
#hue11711 { color: #ff0000; }
#hue11712 { color: #ff0000; }
#hue11713 { color: #ffff00; }
#hue11714 { color: #ff0000; }
#hue11715 { color: #ff0000; }
#hue11716 { color: #ff0000; }
#hue11717 { color: #ff0000; }
#hue11718 { color: #ff0000; }
#hue11719 { color: #ff0000; }
#hue11763 { color: #ff00ff; }
#hue11764 { color: #00ff00; }
#hue11765 { color: #ff00ff; }
#hue11766 { color: #00ff00; }
#hue11767 { color: #ff00ff; }
#hue11768 { color: #0000ff; }
#hue11769 { color: #ff00ff; }
#hue11770 { color: #ff0000; }
#hue11771 { color: #ff00ff; }
#hue11772 { color: #0000ff; }
#hue11773 { color: #ff00ff; }
#hue11774 { color: #0000ff; }
#hue11775 { color: #ff00ff; }
#hue11776 { color: #ffff00; }
#hue11777 { color: #ffff00; }
#hue11778 { color: #00ff00; }
#hue11779 { color: #0000ff; }
#hue11780 { color: #00ff00; }
#hue11781 { color: #00ff00; }
#hue11782 { color: #0000ff; }
#hue11783 { color: #ff00ff; }
#hue11784 { color: #ff00ff; }
#hue11785 { color: #ff00ff; }
#hue11786 { color: #00ff00; }
#hue11787 { color: #0000ff; }
#hue11788 { color: #00ff00; }
#hue11789 { color: #0000ff; }
#hue11790 { color: #00ff00; }
#hue11791 { color: #ff00ff; }
#hue11792 { color: #00ff00; }
#hue11793 { color: #ff00ff; }
#hue11794 { color: #00ff00; }
#hue11795 { color: #ff00ff; }
#hue11796 { color: #00ff00; }
#hue11797 { color: #ff00ff; }
#hue11798 { color: #0000ff; }
#hue11799 { color: #ff00ff; }
#hue11800 { color: #ff0000; }
#hue11801 { color: #ff00ff; }
#hue11802 { color: #0000ff; }
#hue11803 { color: #ff00ff; }
#hue11804 { color: #0000ff; }
#hue11805 { color: #ff00ff; }
#hue11806 { color: #ffff00; }
#hue11807 { color: #00ff00; }
#hue11808 { color: #0000ff; }
#hue11809 { color: #00ff00; }
#hue11810 { color: #00ff00; }
#hue11811 { color: #0000ff; }
#hue11812 { color: #ff00ff; }
#hue11813 { color: #ff00ff; }
#hue11814 { color: #ff00ff; }
#hue11815 { color: #00ff00; }
#hue11816 { color: #0000ff; }
#hue11817 { color: #00ff00; }
#hue11818 { color: #0000ff; }
#hue11819 { color: #00ff00; }
#hue11820 { color: #ff00ff; }
#hue11821 { color: #00ff00; }
#hue11910 { color: #00ff00; }
#hue11911 { color: #ff00ff; }
#hue11912 { color: #00ff00; }
#hue11913 { color: #ff00ff; }
#hue11914 { color: #00ff00; }
#hue11915 { color: #ff00ff; }
#hue11916 { color: #ff0000; }
#hue11917 { color: #ff00ff; }
#hue11918 { color: #00ff00; }
#hue11919 { color: #ff00ff; }
#hue11920 { color: #0000ff; }
#hue11921 { color: #ff00ff; }
#hue11922 { color: #ffff00; }
#hue11923 { color: #ffff00; }
#hue11924 { color: #00ff00; }
#hue11925 { color: #0000ff; }
#hue11926 { color: #00ff00; }
#hue11927 { color: #00ff00; }
#hue11928 { color: #ff00ff; }
#hue11929 { color: #ff00ff; }
#hue11930 { color: #ff00ff; }
#hue11931 { color: #00ff00; }
#hue11932 { color: #0000ff; }
#hue11933 { color: #00ff00; }
#hue11934 { color: #0000ff; }
#hue11935 { color: #00ff00; }
#hue11936 { color: #ff00ff; }
#hue11937 { color: #00ff00; }
#hue11938 { color: #ff00ff; }
#hue11939 { color: #00ff00; }
#hue11940 { color: #ff00ff; }
#hue11941 { color: #00ff00; }
#hue11942 { color: #ff00ff; }
#hue11943 { color: #00ff00; }
#hue11944 { color: #ff00ff; }
#hue11945 { color: #ff0000; }
#hue11946 { color: #ff00ff; }
#hue11947 { color: #00ff00; }
#hue11948 { color: #ff00ff; }
#hue11949 { color: #0000ff; }
#hue11950 { color: #ff00ff; }
#hue11951 { color: #ffff00; }
#hue11952 { color: #00ff00; }
#hue11953 { color: #0000ff; }
#hue11954 { color: #00ff00; }
#hue11955 { color: #00ff00; }
#hue11956 { color: #ff00ff; }
#hue11957 { color: #ff00ff; }
#hue11958 { color: #ff00ff; }
#hue11959 { color: #00ff00; }
#hue11960 { color: #0000ff; }
#hue11961 { color: #00ff00; }
#hue11962 { color: #0000ff; }
#hue11963 { color: #00ff00; }
#hue11964 { color: #ff00ff; }
#hue11965 { color: #00ff00; }
#hue11966 { color: #ff00ff; }
#hue11968 { color: #ff00ff; }
#hue11969 { color: #ff00ff; }
#hue11970 { color: #0000ff; }
#hue11971 { color: #ff00ff; }
#hue11972 { color: #ff00ff; }
#hue11973 { color: #ff0000; }
#hue11974 { color: #ff00ff; }
#hue11975 { color: #0000ff; }
#hue11976 { color: #ff00ff; }
#hue11977 { color: #ff00ff; }
#hue11978 { color: #ff00ff; }
#hue11979 { color: #00ff00; }
#hue11980 { color: #ff00ff; }
#hue11981 { color: #ff0000; }
#hue11982 { color: #ff0000; }
#hue11983 { color: #ff00ff; }
#hue11984 { color: #00ff00; }
#hue11985 { color: #ff00ff; }
#hue11986 { color: #00ff00; }
#hue11987 { color: #ff00ff; }
#hue11988 { color: #ff00ff; }
#hue11989 { color: #ff0000; }
#hue11990 { color: #00ff00; }
#hue11991 { color: #0000ff; }
#hue11992 { color: #00ff00; }
#hue11993 { color: #0000ff; }
#hue11994 { color: #ff00ff; }
#hue11995 { color: #0000ff; }
#hue11996 { color: #ff00ff; }
#hue11997 { color: #ff00ff; }
#hue11998 { color: #ff0000; }
#hue11999 { color: #ff00ff; }
#hue12000 { color: #0000ff; }
#hue12001 { color: #ff00ff; }
#hue12002 { color: #ff00ff; }
#hue12003 { color: #ff00ff; }
#hue12004 { color: #00ff00; }
#hue12005 { color: #ff00ff; }
#hue12006 { color: #ff0000; }
#hue12007 { color: #ff0000; }
#hue12008 { color: #ff00ff; }
#hue12009 { color: #00ff00; }
#hue12010 { color: #ff00ff; }
#hue12011 { color: #00ff00; }
#hue12012 { color: #ff00ff; }
#hue12013 { color: #ff00ff; }
#hue12014 { color: #ff0000; }
#hue12015 { color: #00ff00; }
#hue12016 { color: #0000ff; }
#hue12017 { color: #00ff00; }
#hue12019 { color: #ff00ff; }
#hue12020 { color: #0000ff; }
#hue12021 { color: #ff00ff; }
#hue12022 { color: #0000ff; }
#hue12023 { color: #00ff00; }
#hue12024 { color: #ff00ff; }
#hue12025 { color: #0000ff; }
#hue12026 { color: #ff00ff; }
#hue12027 { color: #0000ff; }
#hue12028 { color: #ff00ff; }
#hue12029 { color: #ff00ff; }
#hue12030 { color: #00ff00; }
#hue12031 { color: #ff00ff; }
#hue12032 { color: #ff00ff; }
#hue12033 { color: #ff0000; }
#hue12034 { color: #ff00ff; }
#hue12035 { color: #00ff00; }
#hue12036 { color: #ff00ff; }
#hue12037 { color: #ff00ff; }
#hue12038 { color: #00ff00; }
#hue12039 { color: #ff00ff; }
#hue12040 { color: #00ff00; }
#hue12041 { color: #0000ff; }
#hue12042 { color: #00ff00; }
#hue12043 { color: #ff00ff; }
#hue12044 { color: #0000ff; }
#hue12045 { color: #ff00ff; }
#hue12046 { color: #0000ff; }
#hue12047 { color: #00ff00; }
#hue12048 { color: #ff00ff; }
#hue12049 { color: #0000ff; }
#hue12050 { color: #ff00ff; }
#hue12051 { color: #0000ff; }
#hue12052 { color: #ff00ff; }
#hue12053 { color: #ff00ff; }
#hue12054 { color: #00ff00; }
#hue12055 { color: #ff00ff; }
#hue12056 { color: #ff00ff; }
#hue12057 { color: #ff0000; }
#hue12058 { color: #ff00ff; }
#hue12059 { color: #00ff00; }
#hue12060 { color: #ff00ff; }
#hue12061 { color: #ff00ff; }
#hue12062 { color: #00ff00; }
#hue12063 { color: #ff00ff; }
#hue12064 { color: #00ff00; }
#hue12065 { color: #0000ff; }
#hue12066 { color: #00ff00; }
#hue12068 { color: #ff00ff; }
#hue12069 { color: #0000ff; }
#hue12070 { color: #0000ff; }
#hue12071 { color: #ff00ff; }
#hue12072 { color: #0000ff; }
#hue12073 { color: #00ff00; }
#hue12074 { color: #ff00ff; }
#hue12075 { color: #0000ff; }
#hue12076 { color: #ff00ff; }
#hue12077 { color: #0000ff; }
#hue12078 { color: #ff00ff; }
#hue12079 { color: #ff00ff; }
#hue12080 { color: #00ff00; }
#hue12081 { color: #ff00ff; }
#hue12082 { color: #ff00ff; }
#hue12083 { color: #ff0000; }
#hue12084 { color: #ff00ff; }
#hue12085 { color: #00ff00; }
#hue12086 { color: #ff00ff; }
#hue12087 { color: #ff00ff; }
#hue12088 { color: #00ff00; }
#hue12089 { color: #ff00ff; }
#hue12090 { color: #00ff00; }
#hue12091 { color: #0000ff; }
#hue12092 { color: #00ff00; }
#hue12093 { color: #ff00ff; }
#hue12094 { color: #0000ff; }
#hue12095 { color: #0000ff; }
#hue12096 { color: #ff00ff; }
#hue12097 { color: #0000ff; }
#hue12098 { color: #00ff00; }
#hue12099 { color: #ff00ff; }
#hue12100 { color: #0000ff; }
#hue12101 { color: #ff00ff; }
#hue12102 { color: #0000ff; }
#hue12103 { color: #ff00ff; }
#hue12104 { color: #ff00ff; }
#hue12105 { color: #00ff00; }
#hue12106 { color: #ff00ff; }
#hue12107 { color: #ff00ff; }
#hue12108 { color: #ff0000; }
#hue12109 { color: #ff00ff; }
#hue12110 { color: #00ff00; }
#hue12111 { color: #ff00ff; }
#hue12112 { color: #ff00ff; }
#hue12113 { color: #ff00ff; }
#hue12114 { color: #00ff00; }
#hue12115 { color: #ff00ff; }
#hue12116 { color: #00ff00; }
#hue12118 { color: #ff00ff; }
#hue12119 { color: #00ff00; }
#hue12120 { color: #ff00ff; }
#hue12121 { color: #00ff00; }
#hue12122 { color: #ff00ff; }
#hue12123 { color: #00ff00; }
#hue12124 { color: #ff00ff; }
#hue12125 { color: #ff00ff; }
#hue12126 { color: #00ff00; }
#hue12127 { color: #ff00ff; }
#hue12128 { color: #0000ff; }
#hue12129 { color: #ff00ff; }
#hue12130 { color: #ffff00; }
#hue12131 { color: #ff00ff; }
#hue12132 { color: #ff00ff; }
#hue12133 { color: #ff0000; }
#hue12134 { color: #ff0000; }
#hue12135 { color: #ff00ff; }
#hue12136 { color: #00ff00; }
#hue12137 { color: #ff00ff; }
#hue12138 { color: #0000ff; }
#hue12139 { color: #ff00ff; }
#hue12140 { color: #00ff00; }
#hue12141 { color: #ff00ff; }
#hue12142 { color: #00ff00; }
#hue12143 { color: #ff0000; }
#hue12144 { color: #00ff00; }
#hue12145 { color: #ff00ff; }
#hue12146 { color: #00ff00; }
#hue12147 { color: #ff00ff; }
#hue12148 { color: #00ff00; }
#hue12149 { color: #ff00ff; }
#hue12150 { color: #00ff00; }
#hue12151 { color: #ff00ff; }
#hue12152 { color: #ff00ff; }
#hue12153 { color: #00ff00; }
#hue12154 { color: #ff00ff; }
#hue12155 { color: #0000ff; }
#hue12156 { color: #ff00ff; }
#hue12157 { color: #ffff00; }
#hue12158 { color: #ffff00; }
#hue12159 { color: #ff00ff; }
#hue12160 { color: #ff00ff; }
#hue12161 { color: #ff0000; }
#hue12162 { color: #ff0000; }
#hue12163 { color: #ff00ff; }
#hue12164 { color: #00ff00; }
#hue12165 { color: #ff00ff; }
#hue12166 { color: #0000ff; }
#hue12167 { color: #ff00ff; }
#hue12168 { color: #00ff00; }
#hue12169 { color: #ff00ff; }
#hue12170 { color: #00ff00; }
#hue12171 { color: #ff0000; }
#hue12172 { color: #00ff00; }
#hue12328 { color: #ffff00; }
#hue12330 { color: #ffff00; }
#hue3469 { color: #ff0000; }
#hue3471 { color: #ff0000; }
#hue3473 { color: #ff0000; }
#hue3475 { color: #ff0000; }
------=_NextPart_000_006C_01C11368.89B5BCC0
Content-Type: image/png;
name="img88.png"
Content-Transfer-Encoding: base64
Content-Disposition: attachment;
filename="img88.png"
iVBORw0KGgoAAAANSUhEUgAAAA8AAAAOBAMAAAF1o2tKAAAALVBMVEUAAACoqKicnJyQkJCEhIR4
eHhsbGxgYGBUVFRISEg8PDwwMDAkJCQYGBizs7OS3l+IAAAAZElEQVR4nGN4xwCFfAxPHRjevQOh
h3wMT/yADBDvZRiQWPc0D8R9ACVe1wGJR3xAYl4YkJB78IDhlYtHAlgHTNmTi1CGx1k5MONx35t7
YIbFu3dnQYzHfe/evbkHZBgwAAHvAwBM1VTqz+PEhgAAAABJRU5ErkJggg==
------=_NextPart_000_006C_01C11368.89B5BCC0
Content-Type: image/png;
name="img89.png"
Content-Transfer-Encoding: base64
Content-Disposition: attachment;
filename="img89.png"
iVBORw0KGgoAAAANSUhEUgAAAA8AAAAcBAMAAAE7vcjaAAAALVBMVEUAAACoqKicnJyQkJCEhIR4
eHhsbGxgYGBUVFRISEg8PDwwMDAkJCQYGBizs7OS3l+IAAAAbklEQVR4nGN4x4AG+RieOjC8ewdF
D/kYnvghuO/egYiXYUBi3dM8KBeDeAAlXtcBiUd8QGJeGJCQe/CA4ZWLRwKyEjzEOxjjyUUow+Os
HJjxuO/NPTDD4t27syDG4753797cAzIMGICAF1U76QwAyCa8RhrB8ZkAAAAASUVORK5CYII=
------=_NextPart_000_006C_01C11368.89B5BCC0
Content-Type: image/png;
name="img82.png"
Content-Transfer-Encoding: base64
Content-Disposition: attachment;
filename="img82.png"
iVBORw0KGgoAAAANSUhEUgAAAB0AAAA1CAAAAAHvAI8eAAAAAnRSTlMA/1uRIrUAAAHXSURBVHic
zZKvl5tAFIW/sDhwFaQ6ePIHxBMTlYh2zaiortiqrdi4FYmqaVRWZDwoTFE1ianKmCowWzN48BUQ
mPw4e86KPacIeJfvzZs7F3oJYHF+y7FgUMte06KwIGhaqrgDTSV3G3oJyncAGwLaibCmlxRRNg6b
ZgN1bywDTFLoJRQ6AAu0bwyt+yQWLEBgEftFARZ9vfWuzzOfrQOkMN+vEOtOzynhS6vTzXp8sb6+
bJgYMqm5FIAU8w02kO9+CtnXIr0DG6QoR5ShIrwyz+Jt+mx9i6v0RP4IVSeLxYMMOunOYqGOo3J3
+d0Yde9l5uQhw9Tct9IDc19ncN3lWUiG52oX1s1qdbRpAQR9gAcZYAMxs9TNRCxUYMF8eiBczpjW
f6TmkDErAbi55ddfqj9aD18L573l+Ud9tRmKmP3XqhH2CVIHfTfCz445n9Ig8h1H0u5m0PxQutm3
/RKiZ+/MVXU/nrLwxXVXkZ6iDiN1Qm9um+Lj7w/JCy8j16RvPO/70jbNjharxbF0R/iZxszK3T0d
yzbNem0+L3gcBrJgIuPP7CdRNClozqsen73q01MA++3mwpUeemyH5XrNdkacdrTJSvlO3ndy1yvK
ARf0Lef9z+k/XjenMQlSZwYAAAAASUVORK5CYII=
------=_NextPart_000_006C_01C11368.89B5BCC0
Content-Type: image/png;
name="img73.png"
Content-Transfer-Encoding: base64
Content-Disposition: attachment;
filename="img73.png"
iVBORw0KGgoAAAANSUhEUgAAABcAAAAxCAAAAAFjs13BAAAAAnRSTlMA/1uRIrUAAAF2SURBVHic
rZChd5tQFMZ/vMSBmwjTief5xWcmKpjVoOLrWpGoRax/QFQnEj8UZqiZ1UyBmQKTmvf8Q9VUJDwg
pOs5XTmHw/d997vf5V4nAUH7zREECMA5qw2epNWcBI5yugWOzEnYR+msqdFxcgcClgaGcP9wFD/V
7YmTsI9gSPkTIsF4YyTdsO7nVOtozC3JdbWxJFDupLEFuO2eVsDakipmEutSwxCMvzWqkLMXhvZJ
2yb6Jr1usBfWuNSroMbXo8L6JTK1mZUa2153fJ4/PF2A40G7c/O7Bgd+7ScmTL0iQsBykTH7FoIA
RVYQGhhc8euR6q9S8rW93oQ7J+3u0nryTN30eyEo/L6/zIxX3J7PqpbZIso+u+f6D7Ugz6b5iQ6u
TuDjnw/JgcPU+/d/isvyu+nNXnpnvl7ye7/DXk651KxksNfM9/EXm5Ovvo+qYkPEgx+xsH4lR+yk
2W7ZhcQp2H3ziVv6bumNtBnT0v97r/fSnwHxzXk78UZPAAAAAABJRU5ErkJggg==
------=_NextPart_000_006C_01C11368.89B5BCC0
Content-Type: image/png;
name="img71.png"
Content-Transfer-Encoding: base64
Content-Disposition: attachment;
filename="img71.png"
iVBORw0KGgoAAAANSUhEUgAAABMAAAAjBAMAAAHzAxzEAAAAMFBMVEUAAACoqKicnJyQkJCEhIR4
eHhsbGxgYGBUVFRISEg8PDwwMDAkJCQYGBgMDAyzs7MqrRJdAAAAq0lEQVR4nGP4/4Hh3weGLx8Y
/kMQwycgBsPfQJ7+B4ZvR4D0fyQsj8ZHwUAAIueDyI76/zCR3+8j9Bn+m83a8R+hBoX8ACe/gMkf
IPKTAoj8AWb/V0ZScx5EmkXsBZJH/q8Hkrs7pn9AMwc3+R8788t5GNM6Lx7K/HbeB6bg87ad/RAm
AxjwQ9R6I0zohDH1FJmcBX7og5gdP9qNO76DRT/p23/5rI/fDXiYAE1BQIDOvle8AAAAAElFTkSu
QmCC
------=_NextPart_000_006C_01C11368.89B5BCC0--