
TUGboat, Volume 35 (2014), No. 2 157

On tracing the trip test with JSBox

Doug McKenna

Abstract

A new TEX language interpreter library (currently
called JSBox) I’ve been writing and debugging can
accurately execute and completely trace the trip

test, including recursive expansion, error interrupts,
alignment table processing, and more. Relying on
the log file that JSBox creates during tracing, this
article explains how JSBox differs from TEX in trac-
ing implementation and formatting philosophy, and
reveals what’s going on in a few of the many delib-
erately puzzling areas of the trip test.

Introduction

As is well-known in the TEX community, Knuth’s
self-described “diabolical” trip test helps validate
any new or extended TEX language interpreter. Ab-
sent some similar test, the trip test is necessary —
though not quite sufficient — to guarantee that one’s
interpreter is faithful to the core TEX language and
the myriad lines of TEX code that have been written
and relied upon for the last three decades. Knuth
deliberately designed his test to be very difficult for
both a non-conforming TEX interpreter and a hu-
man (conforming or not!) to understand.

The TEX code in trip.tex creates 16 pages of
nothing useful typographically. But processing the
convoluted input invokes nearly all the language’s
primitive commands, and most of the code paths
each one depends upon. The test also relies on a
font metric file, trip.tfm, with absurd ligature and
kern programs in it. Many boundary conditions,
where most errors occur, are deliberately triggered.

By design, there is almost no commenting nor
documentation on what the trip test does. Val-
idation generally means finding no non-trivial dif-
ferences between an output log file and a reference
log file. But this means that validation can occur
without really understanding what the test does.

Worse, regardless of the job that TEX is per-
forming, TEX only traces a portion of what’s going
on under its hood anyway. All of which is to say
that the job of creating a conforming TEX language
interpreter is not an easy or pretty one. Nonethe-
less, the trip test is invaluable in ferreting out bugs
in any TEX language interpreter’s implementation.

Tracing vs. hidden state

Basic user-interface theory teaches that modes fos-
ter human error. And all hidden state represents a
mode of some kind. Hence, revealing hidden state —

such as inserting individual temporary print state-
ments in one’s code — is always a key component
of debugging. The TEX virtual machine and its
quite complicated typesetting algorithms represent
a great deal of hidden rules and state. So any TEX
language interpreter must be pre-infused with spe-
cial print statements to reveal (if asked) what is
happening. The purpose of tracing is not only to
create a record of what the macro interpreter has
done on the user’s behalf, but also to reveal what
the machine is not doing that a user thinks it should
be doing, because of some mode-induced user error.

To save code space, in one place (its inner ex-
ecution dispatch loop) TEX generically traces the
meaning of a primitive command that it is about
to execute, on behalf of the upcoming snippet of
code that implements that command. But because
of this, there are still lots of holes in TEX’s tracing
that regularly cause user confusion. For instance,
TEX only traces the first in a sequence of characters
(i.e., a word), because characters after the first are
handled by a separate inner loop looking for liga-
tures. Unfortunately, this violates the user’s idea of
the world, not to mention the reasonable expecta-
tion that if tracing is good enough for one character
it ought to be good for them all.

TEX was designed to output quite short lines,
and to break longer lines at arbitrary points, with-
out regard to content. This in turn means there is no
indentation to indicate in the log file where any sub-
ordinate set of executed commands start and end.
All of which makes reading log files unpleasant. Re-
gardless, often there is ensuing recursive expansion
that is not (or only partially) traced.

Other examples abound: for instance, a large
amount of complex behind-the-scenes processing oc-
curs during any \halign or \valign command, yet
much of it remains hidden during tracing. Many
group contexts are unlabeled, e.g., when typesetting
math formulas. \global definitions are not traced
well, due to the internal design of how the prefix is
processed. The places where a file is not found prior
to being found are important to know when things
go wrong. That missing information is a constant
source of confusion ever-addressed by questions on
various TEX-support web sites or mailing lists.

All of this hidden state represents a significant
cognitive load on anyone reading a job’s log file, be-
cause every lacuna violates the user’s view of things,
which is formed primarily by the sequence of com-
mands and characters in his or her source code.
There have been a variety of extensions made to
TEX’s tracing over the years, but as a relatively

On tracing the trip test with JSBox



158 TUGboat, Volume 35 (2014), No. 2

recent user I find the results unsatisfactory: overly
generic and/or still incomplete.

Redesigning tracing

As a self-defensive tech-support measure, I wanted
my TEX language interpreter to be as communica-
tive as possible to myself and any other user in ex-
plaining what it is doing, or not doing. So my goal
has been to accomplish 100% tracing in a more com-
plete and understandable format than what the clas-
sic TEX (or ε-TEX) engine does, without any signifi-
cant hit on efficiency when not tracing. This means
creating long-lined log files that no longer can be
compared (e.g., with diff) to TEX’s log files. The
downside is that passing the ill-defined trip test
becomes a tedious manual exercise, and either prob-
lematic or impossible, depending on what it means
to be “the same”. I don’t really care, because I’m
willing to label this new interpreter with something
other than “TEX”. The goal is to faithfully execute
TEX source code and get the same typeset results.

In the JSBox library, each class of related primi-
tives is implemented by a subroutine that is respon-
sible for tracing each variant’s operation, using a
common set of tracing utilities and formatting rules.
The utilities include a stack of output staging buf-
fers in which to construct lines of text. The bottom
buffer in the stack is always used for tracing. Higher
buffer levels can interrupt tracing in the service of
constructing strings, error messages, or other for-
matting. The stack is usually one level deep, and
almost never more than two levels deep.

The start of any line of output from a program
is usually better-defined in both time and space than
the line’s end. This means that it is the responsibil-
ity of any tracing or other output code initially to
flush the last tracing line, then to start a new line,
and to never worry about terminating that line. Dif-
ferent code paths can append to the line as needed,
without being responsible for knowing the line needs
to end. This is not dissimilar to what TEX does, but
in JSBox we allow the end of the current text buf-
fer to be trimmed prior to flushing. As we will see,
interruptions can then be unambiguously formatted
in a nice way. (It also allows JSBox to coalesce se-
quences of input characters so that all characters in
a spacer-separated word are traced in one readable,
delimited group of characters per trace, without do-
ing any internal lookahead.)

Lines in a JSBox log file are not length-limited;
the library can indent tracing to indicate different
execution or nested group context stack levels. So
every trace of a command or character(s) not only
starts with a newline, but is then followed by inden-

tation representing execution, group nesting depth,
or trace-continuation status. (If occasionally inden-
tation gets excessive, it is pinned.) For nearly all
normal execution I find the clarity to be worth it. I
place a high value on vertical alignment and white
space. So a log file is best viewed in a fixed-width
programmer’s font.

The name, not the meaning, of the command
being executed is enclosed by a pair of matching
braces, as in {\indent}. A sequence of letter or
other characters is also collected and placed at the
start of the trace line, e.g., {xyzzy}, even though
each input character is processed one at a time as
it is read. If there is any further information or
commentary about the command, a colon follows,
and a description of what’s going on, any special
meaning, or what any collected argument value is,
is appended next. Extra commentary is placed in-
side a pair of matching brackets. Unicode characters
are presented as is (converted to UTF-8) and usually
with added commentary showing both a base 10 and
a hex integer value (and even more information for
math characters). If a large amount of information
is needed, any number of extra lines can be used in
a single trace. All information on subsequent lines
is indented to the same position as the line’s initial
information, after the announcement of the name of
the primitive being executed or the word of charac-
ters being appended.

Internally, every new (multi-line) trace is as-
signed an integer code that immediately increments
to guarantee uniqueness. If there is any chance that
tracing might be interrupted by expansion, recur-
sion, paragraph/page building output, an error mes-
sage issued, or any sub-system tracing (such as a
macro stack frame popping while looking for the
next token), then the partial trace’s text line has
"..." appended. Later tracing then checks to see
if there was an interruption. If not, the "..." at
the end of the still-unflushed trace text is erased,
and further tracing information is appended to the
current line. But if there was any sub-tracing, er-
ror messages, or other output, then the trace buffer
with its trailing ellipsis was flushed, and we create
a repeated trace continuation line that starts with
an ellipsis and re-traces the command again, at its
usual indentation level, so that newly collected in-
formation can be presented to the user.

This is a lot of work, but clarity, not efficiency,
is the user’s focus during tracing. The TEX lan-
guage’s peculiarities make it really important to “go
the distance” on this. Indeed, a significant portion
of the JSBox library’s code is devoted to tracing its
own operation, in order to reveal hidden state.

Doug McKenna



TUGboat, Volume 35 (2014), No. 2 159

Tracing examples from trip.tex

Consider the following line of nonsense code, from
line 288 of trip.tex, but treated as line 1 here:

\raise1pt\hbox{\special{\the\hangafter} } \penalty-10000

This is a single \raise command, operating on a
horizontal box with “embraced” contents, followed
by a space, and then a \penalty command with its
trailing integer argument. The TEX log file tracing
this would contain (again, changing line 288 to 1):

{\raise}

{entering hbox group (level 2) at line 1}

{restricted horizontal mode: \special}

{blank space }

{end-group character }}

{leaving hbox group (level 2) entered at line 1}

{horizontal mode: blank space }

{\penalty}

This is concise, but unfortunately too concise. Im-
portant information remains confusingly hidden.

Here, on the other hand, is how JSBox traces
the same code:

{\raise}: by 1.0pt ...

{\hbox}

>>> restricted horizontal mode

{{}: entering \hbox group [level 2 at line 1]

{\special} ...

{\the} ...

{\hangafter}: -12 [parameter]

... {\the}: Pushing {-12} [3 chars] onto input

... {\special}: {-12} [appending external command]

{ }: appending font \rip’s inter-word glue [4.0 plus 2.0 minus 1.0]

{}}: leaving \hbox group [level 2 at line 1]

.. {\raise}: appending hbox : [id=581] (0.0 + 0.0) x 4.0 [rigid] [2 items] shifted by -1.0pt [upward]

>> horizontal mode

{ }: appending font \rip’s inter-word glue [4.0 plus 2.0 minus 1.0]

{\penalty}: -10000 [always] [appending to horizontal list]

It’s twice as many (longer) lines of tracing (and
I’ve asked this journal’s editor not to reformat the
above to fit in a narrow column), which helps the
reader discern pretty much everything that’s gone
on. So let’s explain some of the design decisions
that went into formatting the foregoing.

To start, the final (usually first) line of any trace
that is interrupted ends in an ellipsis. And every
trace so interrupted is re-traced (using the same in-
dentation) after the interruption ends, showing the
final information collected by the command’s end.
In the foregoing, the \raise, \special, and \the

commands are interrupted and therefore re-traced
using the latest state and argument information.

Every trace contains the command or a charac-
ter or set of characters, enclosed in braces. The rule
I try to follow is that, whatever the item is, it should

be the same as what is in the user’s original source
code (TEX’s tracing violates this in several ways).

Unlike TEX, we don’t integrate changes to the
layout’s current typesetting mode as a modifier to
the brace-enclosed item being executed or appended
to the layout. Each such change is traced on its own
line, with an indication (e.g., ">>>") of semantic
nest stack depth, which is independent of execution
stack or group context indentation. More impor-
tantly, this makes it easy to find, or easy to ignore,
the state of the layout mode. And it doesn’t vio-
late the rule that the first and only thing executing
is what’s enclosed by a pair of braces at the start
of each trace. That information is more important,
and needed to synchronize source code with log file.

We strive to place a bracketed hint mentioning the
internal meaning of numeric values. A “penalty” of
-10000 is really an (infinite) incentive to “always”
do something. A negative \raise is upward on the
page (unlike, say, PostScript, TEX’s page coordinate
system has its origin near the page top).

When a primitive appends a new item to the
current layout list, it says so. For instance, when
a spacer is processed in a horizontal mode, it ap-
pends a particular glue value, which is announced.
And the \raise command, after all forward-looking
recursive expansion is finished, is left with a hori-
zontal box with two items inside that is appended
to the current layout list after shifting. Another

On tracing the trip test with JSBox



160 TUGboat, Volume 35 (2014), No. 2

hint reminds the user that this particular box can-
not stretch or shrink. The library assigns a unique
ID number to each box it constructs — searching a
log file for a particular box is thus much easier.

There are other subtle formatting issues going
on, in the service of maintaining vertical alignment
of information. For example, the ellipsis in front of
the re-traced \raise command is truncated by one
dot, because there’s one column too few in the in-
dentation area in which to place three dots followed
by a space (here, standard indentation is three col-
umns per level).

Another difference from TEX is that nodes in a
layout list (boxes, ligatures, kerns, penalties, glue,
math, output nodes, etc.) are always described with
a four-character identifier that never begins with a
backslash. This regularizes vertical alignment of lay-
out list dumps, which TEX minimally indents with
visually noisy sequences of dots, sometimes followed
by pseudo-commands (e.g., \glue) that don’t oc-
cur in your source code. So the description of the
box being appended by the \raise command is not
\hbox. It is hbox, followed by a colon. The former
is a command, the latter a type. Notice also that in
talking to the user, we avoid the internal implemen-
tation and graph-theoretical term node. The generic
word item suffices and is more user-friendly.

The trip test essentially consists of two parts.
The first executes if one’s virtual machine is unini-
tialized. The second runs if the interpreter is ini-
tialized from a format file, trip.fmt, created when
the \dump command is issued at the end of the first
part. The second, more substantive, part is where
the trip test does most of its work. Because I desire
this interpreter to be able to avoid using format files,
JSBox currently treats a \dump as a no-op. Fortu-
nately, by virtue of the trickery in trip.tex (see the
definition of \next on line 90), this merely results
in executing both parts of the trip test in one run.

In the first (format-creating) clause, trip.tex
turns tracing off. Only various error or other mes-
sages are issued. Because JSBox can be compiled to
suppress all “turn tracing off” commands that arise
from source code, we can trace all parts of trip.tex
without adding extra trace commands at the start
of the input file.

On line 2 of trip.tex, the very first primitive
is an \immediate command, followed by a \catcode

command. The former’s use is not an error, but is
deliberately incorrect and/or unnecessary. That’s
because \immediate modifies only output-related
commands that follow it (the \catcode command
is not subject to the immediate vs. delayed execu-
tion distinction). An interpreter created by JSBox

can be configured at run-time to comport with the
constraints of a classic TEX82 interpreter, for which
the trip test was designed. But JSBox’s client pro-
gram can enable warnings for situations like this,
because a command that does nothing when mis-
used may still be worthy of the user’s attention. So,
the log file contains both the trace and the warning
message:

{\immediate}: [ignored]

Context : "trip.tex"[Line 2]

Warning : Ignoring \immediate. It only modifies

output-related commands (e.g., \write),

not \catcode.

Line 2 : \immediate\catcode ‘{ = 1 \endlinechar=13

^^^^^^^^^^

Trace lines are usually indented one level from
the left margin, because most jobs start with the in-
clusion of a TEX source file or memory string. This
pushes an input stack frame, to which trace inden-
tation pays attention. While some might consider
this a waste of space, it has the salutary effect of
making non-trace messages (errors, warnings, etc.)
easier to pick up in the log file, where they start at
the left margin. And the extra space leaves room
to signify re-tracing with a (partial) ellipsis, as our
earlier example shows.

Because \immediate can be completely traced
prior to the warning message being issued, there is
no need for any trailing ellipsis: a re-trace wouldn’t
be able to add any new information. But in case
warnings are disabled, the trace still provides a hint
to the user that the command is useless and ignored.

Subsequent lines of interpreter-generated mes-
sages like the above are indented. This makes visual
parsing of the log file much easier. Furthermore, the
message itself is not generic. It has been tailored
to include mention of the command (or character)
which rendered the \immediate worthy of flagging.
Non-generic messages are more work to create, but
they keep the user grounded, preventing bad as-
sumptions. Again, the goal in debugging is to reveal
as much hidden state as possible.

Unlike TEX, the input line (or for longer lines, a
portion thereof) is not broken into two pieces to im-
plicitly show the position of the scanner when the
message was issued. To do so violates the user’s
view of his or her source code, and thereby unnec-
essarily adds to a cognitive load at an inopportune
time. So JSBox’s scanner maintains the starting and
ending position of each item parsed on an input line,
and preserves that information for the benefit of any

Doug McKenna



TUGboat, Volume 35 (2014), No. 2 161

formal message reporters. In the case of writing
the error to a fixed-width format log file, we un-
derscore — as best we can in a fixed-width log file
font — the command (or character) responsible for
the message. This is sometimes difficult to do in a
manner that doesn’t confuse the user, even though
it might be internally accurate. Non-generic error
messages can alleviate the problem somewhat.

Here is another traced snippet from line 4 at the
start of trip.tex that illustrates more of JSBox’s
tracing philosophy and formatting. This code tem-
porarily changes the category code of the math for-
mula shift character ($) inside a group context.

{\catcode}: ‘$ <- 3 [math shift] [no change]

{{}: entering simple group [level 1 at line 4]

{\catcode}: ‘$ <- 13 [active] [was 3 = math shift]

{}}: leaving simple group [level 1 at line 4]

restoring [mapping] \catcode of ‘$ to 3 [math shift]

{ }: [ignored in vertical mode]

In this case, it is now TEX that would trace the
above using nearly twice as many (shorter) lines:

{\catcode}

{reassigning \catcode36=3}

{begin-group character {}

{entering simple group (level 2) at line 4}

{\catcode}

{changing \catcode36=3}

{into \catcode36=13}

{end-group character }}

{restoring \catcode36=3}

{leaving simple group (level 2) entered at line 4}

{blank space }

I invariably can’t recall the implicit (hidden) mean-
ings of numeric codes, such as 36 or 3. So when
JSBox traces the \catcode command, adding com-
mentary (i.e., [math shift]) on the syntactic mean-
ing of the numerical argument 3 saves mental energy
and prevents errors, and the character itself is used,
not just its ASCII code 36. We also note actual
value changes, but unlike TEX, we don’t use two
more lines to accomplish this trace generically. And
in the main trace we strive to inform the user of the
new value prior to what the old value was, because
the new value is what the user is nearly always in-
terested in.

JSBox internally traffics in full 21-bit Unicode
code point integer values, with all of them above
the initial ASCII range initially classified as charac-
ters of type “other”. And any Unicode character
(code point) can have a syntactic catcode assigned
to it. For printable ASCII characters in the initial
7-bit plane, such as the $ above, we don’t output the
character’s integer code (for arbitrary Unicode, we

would). In extended mode (i.e., when not limited
to just TEX82 features) the JSBox library can han-
dle non-UTF-8 Unicode using ^^uxxxx or ^^Uxxxxxx
extended escape sequences to specify Unicode code
points in hex, or via the usual \char command,
which will take any 21-bit integer argument (but
limited to 8-bit values in TEX82 emulation mode).

Notice also that the information about popping
a group context stack frame, and restoring any non-
globally changed values, is properly traced solely by
the recognition of the }. Restoration is indented to
indicate its subordinate status to the closing brace,
and there can be an arbitrarily long list of lines an-

nouncing each restoration. Because it’s hard to dis-
tinguish between various control sequence names, a
hint as to whether a name is a parameter, register,
mapping, etc., is also inserted for good measure.

Finally, by announcing that a space in vertical
mode is ignored, there is no need to label the space
character as a blank space; { }: does a perfectly
fine and unambiguous job.

Here is another example, from line 10 of trip.tex:

\defaulthyphenchar=‘-

JSBox traces this as

{\defaulthyphenchar}: - [was ^^@] [‘- = "2D = 45]

The new character code for the parameter is shown,
followed by bracketed commentary on the parame-
ter’s previous value, which changed. Then further
commentary on the integer and hex value of the new
character is added in case it might be useful. Notice
that the old value was 0, a null. Unlike TEX, JSBox
strives never to write a null byte to a log file or to
the terminal. Programs that display text files do not
treat nulls uniformly. So unless it’s writing a data
file, JSBox converts each null byte to a printable ^^@.

The general philosophy I’m guided by is that
too much information is a lesser evil than too lit-
tle. For commands that expect character code point
values, the numbers are there, but on the right, in
commentary, where it can be easily ignored.

On tracing the trip test with JSBox



162 TUGboat, Volume 35 (2014), No. 2

Consider lines 59–60 of trip.tex:

\def\weird#1{\csname\expandafter\gobble\string#1 \string\csname\endcsname}

\message{\the\output\weird\one on line \the\inputlineno}

ε-TEX’s trace of this peculiar code would be

{\def}

{changing \weird=undefined}

{into \weird=macro:#1->\csname \expandafter \gobble \ETC.}

{blank space }

{\message}

\weird #1->\csname \expandafter \gobble \string #1 \string \csname \endcsname

#1<-\one

{\csname}

{\expandafter}

{\string}

\gobble #1->

#1<-\

{\string}

{changing \one \csname=undefined}

{into \one \csname=\relax}

\one \csname on line 60

{blank space }

whereas JSBox can trace the same input as follows:

1 {\def}: \weird#1->\csname \expandafter \gobble \string #1 \string

2 \csname \endcsname

3 { }: [ignored in vertical mode]

4 {\message} ...

5 {\the} ...

6 {\output}: [parameter] ->

7 ... {\the}: Pushing {} [token list] onto input

8

9 Calling \weird #1->\csname \expandafter \gobble \string #1 \string

10 \csname \endcsname

11 #1: \one

12 {\csname} ...

13 {\expandafter}: postponing {\gobble} until after expanding {\string}

14 {\string}: Pushing {\one} [4 chars] onto input

15

16 Calling \gobble #1->

17 #1: \

18 Returning from \gobble [empty body]

19 {\string}: Pushing {\csname} [7 chars] onto input

20 ... {\csname}: 11 characters collected

21 {\endcsname}: \one \csname constructed [=\relax [internal]] [{\one \csname} has a space in it]

22 Returning from \weird, resuming reading from file "trip.tex"

23 {\the} ...

24 {\inputlineno}: 60

25 ... {\the}: Pushing {\one \csname on line 60} [23 chars] onto input

26 .. {\message}: [to "trip.log" and terminal]

27

28 \one \csname on line 60

29

30 { }: [ignored in vertical mode]

Doug McKenna



TUGboat, Volume 35 (2014), No. 2 163

In lines 1–2, we wrap a longer token list onto
a new line without breaking any command name
internally, and we continue the token list indented
to the same column as it started on, just to the
right of the ->. A longer list will be truncated, but
JSBox’s threshold is larger than TEX’s.

Like TEX, we insert a blank line in front of each
macro call, but unlike TEX, we label each macro call
with Calling to distinguish macros from primitives
(or \let-created synonym names). Arguments col-
lected are indented further — their collection is all
part of the same trace of the macro call. We addi-
tionally can trace the end of the macro, when its
stack frame gets popped, and announce later (at
line 22) where the next input will come from (ei-
ther a file, or a previously called macro in which
execution was nested). In between, we’ve entered a
new nested and indented command execution level.

At line 13, the often confusing \expandafter

command is traced non-generically. At line 18, the
\gobble macro expands to nothing, so we add a
commentary hint saying [empty body]. At line 21,
we specifically add commentary for any constructed
control sequence name that (here deliberately) has
a space in it, which can otherwise be very confusing.

Finally, we place a blank line on either side of
any non-tracing text being output to the same des-
tination (log file or terminal) that interleaves with
traces. This sets the output off and makes it much
easier to find by scanning down the page, especially
as most such non-tracing, internally generated mes-
sage output is not indented. (JSBox can insert an
extra blank line automatically between any two dif-
ferent classes of text in log/terminal output.)

Redesigning the \show... commands

Each of the TEX language’s \show... commands
formats and prints the value of some internal vari-
able or list. But TEX re-uses some of its error re-
porting machinery to do so, which I find confusing.
For example, lines 29–30 of trip.tex seem to me
to result in a hard-to-read formatting mess:

> \errorstopmode=\errorstopmode.

l.29 ...=256 \show\errorstopmode

> \rip .

<recently read> \font

l.30 \showthe\font

\showthe\pageshrink \showthe\pagegoal

> 0.0pt.

l.30 ...font \showthe\pageshrink

\showthe\pagegoal

There’s too much extraneous information, and it’s
a cognitive load to be presented with the effect of
the command prior to seeing the command causing
that effect. So JSBox avoids displaying non-relevant
parts of the input line and/or breaking it apart to
show where the scanner is, puts cause and effect
back in order, skips the unnecessary detail about
what was <recently read>, and displays just the
answer on its own line. Also, we label lines with
Line, not l., because of the time-honored principle
that a lowercase l in a fixed-width font will invari-
ably be confused with the digit 1. A new trace of
lines 29–30 “shows” the difference:

{\show}: \errorstopmode

Line 29 | \show \errorstopmode

\errorstopmode

{\showthe} ...

{\font}: \rip

... {\showthe}:

Line 30 | \showthe \font

\rip

{\showthe} ...

{\pageshrink}: 0.0pt

... {\showthe}:

Line 30 | \showthe \pageshrink

0.0pt

Without interleaved tracing, this would simply be:

Line 29 | \show \errorstopmode

\errorstopmode

Line 30 | \showthe \font

\rip

Line 30 | \showthe \pageshrink

0.0pt

The delimiters > and . are not used, because I find
that they add more ambiguity/noise to TEX’s output
than they resolve. Also, JSBox doesn’t insert blank
lines between these similar \show... commands be-
cause it knows that each result fits on one line. For
other \show... commands that result in multiline
answers, such as \showlists or the extended JSBox

\showfont command (which shows the metrics and
all other data of an entire loaded font), blank lines
are used to help the user understand where the com-
mand’s group of output lines ends.

On tracing the trip test with JSBox



164 TUGboat, Volume 35 (2014), No. 2

Tracing alignments

Perhaps the most complicated primitive commands
in the TEX language are \halign and \valign, each
of which converts a one-dimensional stream of com-
mands and text into a two-dimensional table on the
page. Both commands work almost identically, by
swapping horizontal rows with vertical columns. And
they’re recursive, since an element of a table’s cell
can be a sub-table. Material that looks like it might
be executed is recorded, and material that looks like
it might be recorded is executed. Expansion can oc-
cur. There are hidden contexts. The purpose is to
allow the entire power of TEX to be applied to any
cell in a table. Knuth describes them as working
almost magically.

Consider line 120 of trip.tex. It contains a
curious empty table, as part of the \output routine
for the page executed later at line 150:

\globaldefs1\halign{#\tabskip\lineskip\cr}

Among other things, this tests whether one has ex-
ecuted a \tabskip command, with attendant ex-
pansion and implicit global definition, in the align-
ment’s preamble, rather than recording it into the
preamble’s token list(s), as would be nearly all other
commands and characters. TEX82’s trace of this, as
taken from trip.log, is about as minimal as can
be:

{\globaldefs}

{\halign}

ε-TEX does a little better with its tracing extensions
turned fully on, but here’s what’s really going on
under the hood, as traced by JSBox, using its inter-
ruption and indentation rules:

1 {\globaldefs}: 1 [was 0]

2 {\halign}: building successive rows, each containing entries in horizontally tabbed columns ...

3 {{}: entering \halign group [level 3 at line 151]

4 ... {\halign}: [preamble] recording templates for each column ...

5 {#}: end of prefix material for column 1’s template; collecting suffix

6 {\tabskip}: [not recorded in template] ...

7 {\lineskip}: 0.0pt plus 40.0pt [parameter]

8 ... {\tabskip}: changing \tabskip [inter-column glue] to 0.0 plus 40.0 [global]

9 {\cr}: end of column 1’s suffix and template

10 ... {\halign}: preamble has declared template for 1 column ...

11 \tabskip [= 0.0]

12 column 1: [no extra material to insert]

13 \tabskip = 0.0 plus 40.0

14 {column entry}: entering hidden alignment item group [level 4 at line 151]

15 {column entry}: leaving hidden alignment item group [level 4 at line 151]

16 {}}: leaving \halign group [level 3 at line 151]

17 ... {\halign}: [done] appending 0 rows of aligned material

As \halign fires up (see line 2 above), exactly what
is about to happen is announced, because there’s

simply not enough information in the name of the
command to disambiguate what the command does,
should the user not be sure. As processing of input
proceeds, the \halign will retrace itself three more
times (with ellipses as appropriate), at the same
indentation level, even though the execution stack
level is changing up and down at the same time.
Notice that every token in the source code is rep-
resented as the start of a full trace line or lines —
tracing should not break the user’s mental model of
what’s going on. Because there will be one last trace
line announcing the final result of the command, we
indent the opening { and closing } of the \halign

group, to make it easier to scan down the log file
looking for the start of the final trace line.

At line 4, the alignment’s preamble starts being
recorded. When the preamble material ends with
the first \cr, we trace again, and then synopsize the
template material for each column. Unlike TEX’s
opaque and overly mathematical u-part and v -part
terminology, I’ve used the more descriptive and user-
friendly terms prefix and suffix.

TEX processes each column’s material inside a
hidden group context, as if surrounded by a pair of
braces, to prevent changes to registers and parame-
ters from leaking to the following column’s material.
In this example, there is no material at all, so after
all is done and the final } is “executed”, the column
is empty, leaving the table with no rows at all. If
a sub-table is processed, the alignment stack’s cur-
rent level (other than 1) is also traced, which makes
searching for matching traces easier.

If that’s what goes on in an empty table, imag-
ine how important full tracing is in a non-trivial ex-
ample, of which there are many more in trip.tex.

Doug McKenna



TUGboat, Volume 35 (2014), No. 2 165

Tracing synonyms and conditionals

TEX traces the meaning of the executing control se-
quence, not its name. So if the control sequence is a
synonym for a register, or a primitive command, or
other name (e.g., created by a \let), it can get con-
fusing. For example, here’s line 161 from trip.tex:

\dimendef\varunit=222\varunit=+1,001\ifdim.5\mag>0cc0\fi1pt

This defines a name \varunit for the dimension reg-
ister at index 222, and assigns a value to it. The
value’s digits are conditionally expanded using an
\ifdim conditional smack dab in the middle of col-
lecting the value’s digits. The test asks if half of
\mag, whose value is 2000, is greater than 0 (Ci-
cero) points, which is true. But there’s an implicit
conversion from an integer .5\mag (1000) to a fixed-
point dimension (0.01526pt).

ε-TEX would trace some of the statements of
this line generically as

{\dimendef}

{changing \varunit=undefined}

{into \varunit=\relax}

{changing \varunit=\relax}

{into \varunit=\dimen222}

{\dimen222}

{\ifdim: (level 1) entered on line 161}

{true}

{\fi: \ifdim (level 1) entered on line 161}

{changing \dimen222=0.0pt}

{into \dimen222=1.001pt}

whereas JSBox traces the same code, in both shorter
and more faithful-to-the-source fashion, as

{\dimendef}: \varunit = \dimen222

{\varunit} ...

{\ifdim} ...

{\mag}: 2000 = "07D0 [parameter]

... {\ifdim}: 0.01526 > 0.0 ? true [line 161]

{\fi}: [end of \ifdim on line 161]

.. {\varunit}: \dimen222 = 1.001pt [was 0.0pt]

Notice that the extra definition to an interme-
diate \relax is an arcane internal TEX implementa-
tion detail (see the comments in "tex.web") that is
of no interest to 99.999% of users, but ε-TEX traces
it anyway due to the generic nature of how it reports
changes to interpreter values. JSBox’s focused trac-
ing during name definition elides this extra internal
reference management step.

We announce {\varunit} at the start of its
trace (as opposed to {\dimen222}), because it com-
ports with the source code. When the command
has finished recursively expanding its argument, the
final re-trace shows the value assigned, and the reg-
ister index, and the former value, all in one line.

When JSBox traces a conditional, it shows the
values used in the test as such, followed by a ?, fol-
lowed by the answer, either true or false, all in
one line. A hint can be added, followed by the test’s
line number as final commentary. If a \fi ends a
multi-line conditional, the line range is used.

The only other information that might arguably
be brought to the user’s attention is what happens
to the single character 0 collected as another digit
in the dimension’s value, and the fact that the orig-
inal source tries to present (after the conditional is
through mucking with things) the value 1.00101pt

as \varunit’s value. But the final 1 is insignificant
as there is round-off to 1.001pt, which is what’s
traced.

Line 360 of trip.tex has a crazy \ifcase con-
ditional statement, with nested \ifcases:

\ifcase\iftrue-1a\else\fi

\ifcase0\fi\else\ifcase5\fi\fi

that JSBox traces fairly cogently and concisely as

{\ifcase} ...

{\iftrue}: true [line 360]

.. {\ifcase}: looking for case -1 [only matches

an \else clause, if any] [line 360]

{\else}: false

{\fi}: [end of \iftrue on line 360]

{\ifcase}: looking for case 0 [matched]

[line 360]

{\relax [internal]}

{\fi}: [end of \ifcase on line 360]

{\else}: true [no previous case matched -1]

{\ifcase}: looking for case 5 [line 360]

{\fi}: [end of \ifcase on line 360]

{\fi}: [end of \ifcase on line 360]

[no case matched]

A TEX language interpreter must insert an inter-
nal \relax to enable expansion to parse an inner
nested conditional involved, as here, in constructing
the condition of an outer conditional. The only re-
maining information that might be traced in some
way, but isn’t, is which commands or characters in
the source code are skipped over for false matches,
and why. This would help explain the mysterious
disappearance of the letter ‘a’ when executing the
foregoing code (it ends up being part of the outer
case 0, which is skipped while scanning for case -1).

The trip test has another strange boundary
condition test: what happens to an \if... state-
ment with more than one \else clause. Peculiarly,
sometimes it’s an error, and sometimes it’s not. So

On tracing the trip test with JSBox



166 TUGboat, Volume 35 (2014), No. 2

I had fun ensuring that JSBox’s trace of line 389,
where multiple \elses are not an error,

\ifx T\span\else\par\if\span\else\else\else\fi\fi

would be enlightening to the user:

{\ifx}: T = \span ? [Chr = Cmd] false [line 389]

{\else}: true

{\par}: [building more page]

% t=30.0 plus 42.0 plus 1.0fil minus 8.0 g=16383.99998 b=0 p=0 c=0# [# = best break so far]

{\if}: \span=\relax [internal] ? [neither is a character, treated as equal] true [line 389]

{\else}: false

{\else}: still false [ignoring extra \else clause]

{\else}: still false [ignoring extra \else clause]

{\fi}: [end of \if on line 389]

{\fi}: [end of \ifx on line 389]

Note that when tracing an \else clause, its line
number is suppressed if it is the same as that of its
initial \if... condition. This makes tracing short
conditionals like the above less noisy. And again,
notice in the above trace the paragraph building
data that’s caused by executing the \par command.
When output of a different class is created, we strive
to set it off with blank lines from the surrounding in-
dented trace lines, so as to stand out as non-tracing.

Other tracing niceties

Every hundred or so traces, JSBox inserts a short
context announcement that shows the current set
of included files and the line number in each from
which the scanner is reading. For example, if we
were including trip.tex from another file, such as
test.tex, the announcement might look like:

>> display math mode

{^}: [superscript]

{\mathop}

"test.tex"[Line 4] > "trip.tex"[272]

{b}: letter maps to "7162

[class 7 (inner);

\fam 1 \char "62 = 98 = b]

{\nolimits}

This makes it easier for the reader to under-
stand where nearby tracing in the log file is arising
from in an included source file. It also lessens the
need to include line numbers in individual traces.

Formal error reports are usually preceded by a
full execution stack dump, showing included files,
the macro call stack, and an indication of empty
stack frames, deleted to allow tail recursion.

When executing trip.tex the execution stack
is never very deep when errors are reported. So the
following is an example of a stack dump showing
nested macro calls while executing a test file called
plainstory.tex that relies on footnote macros de-
fined in the plain format, whose non-\dumped source
code is read in at the start of the job:

Context | "plainstory.tex"[Line 112] >> \story >

| \rhubarb > \fubaru > \bar > \foo >

| \testparagraph > \note >> \footnote >

| \vfootnote

The >> indicates that there were empty stack frames
that were deleted during regular stack cleanup (the
last two macro names are defined in plain.tex).

Another nicety in JSBox, tracing the resolution
of input files, is not as demonstrable using the trip

test. JSBox is a system-agnostic library that can be
linked into a client program. The client is respon-
sible for mediating between the interpreter and the
system, and must install a callback function with
which the interpreter asks the client to do various
tasks.

In particular, when JSBox executes the \input

command, it first asks the client to vet each charac-
ter in the file name. This lets the interpreter issue
an error message at precisely the right time for any
illegal or unwanted character. Once the file name
is collected and analyzed a bit more, the interpreter
then asks the client to construct a list of directories
in the client’s file system where to look for that file.
As the list is iterated, a back and forth between the
client and the interpreter allows all the unsuccessful
folders to be traced as well as the final one where
the file is found. To gate this, JSBox implements an-
other integer parameter, \tracingfiles, that can

Doug McKenna



TUGboat, Volume 35 (2014), No. 2 167

be set to 1. For example, when a source file inputs
plain.tex, the trace might look like:

{\tracingfiles}: 1 [was 0]

{\input}: plain.tex

[not found at ./Projects/TUG Article/plain.tex]

[not found at ./JSBox/Projects/plain.tex]

[aha! it’s at ./JSBox/Library/Formats/plain.tex]

Thus, the input resolution strategy is up to each
individual client program, but the interpreter can
reveal and record some of that strategy for the user
at the right time and in the right place. This is
particularly important when, contrary to the user’s
expectation, no file is found, or when an incorrect
file of the same name but with a different path is
found first (e.g., the wrong version of a file).

The complete JSBox trip test trace

The foregoing should give the seasoned TEX log file
tracer/reader a good idea of how the execution of a
piece of TEX source code can be traced in a much
nicer and more useful manner than what the TEX
engine does, even considering the ε-TEX extensions.

The entire and latest complete JSBox trace of
the trip test can be found as a PDF at http://www.
mathemaesthetics.com/JSBox/triplog.pdf. It’s
about 160 landscape pages long. I continue to refine
and add to the library’s tracing, so the log file will be
updated occasionally. Indeed, I tweaked at least one
feature (eliding line numbers in \else traces when
on the same line as the initial \if...) as a result of
creating examples for this article.

Conclusion

Over the course of this multi-year project, I have
perhaps four times re-designed and re-written how
tracing should work, each time realizing that what I
was doing in the previous iteration wasn’t complete
enough. There are still a few indentation bugs in
the code, and some older cruft that deserves to be
re-written or cleaned up.

The JSBox library is a work-in-progress. Over
2000 pages of portable C code, half of it English
comments, it supports plenty of other interesting
features, a description of which can be saved for

another time. The library is not yet ready to be
deployed as a new TEX language engine. When I
started on this project in 2009, I had very little idea
of the complexity of the task of being compatible
with the TEX language, which I barely knew. Its
many quirks as a Turing-complete macro language
seem as closely tied to its program’s implementa-
tion details as they are to any overarching language
syntax specification. And the greater TEX ecosys-
tem is even more complex. Indeed, my goal of com-
plete tracing is to make executing TEX code as self-
documenting as possible.

Debugging the interpreter so that it would ex-
ecute the trip test correctly — i.e., mathematically
and functionally equivalent to what TEX does — re-
quired many months of work. Each bug it revealed
had to be fixed prior to moving on to the next, due
to the cascading nature of layout calculations. In
several cases, I had to completely re-implement how
certain primitives worked internally, after my initial
assumptions proved invalid.

There’s a lot of work left to do. But at the
very least, this interpreter can — in full and gory
detail — now tell the world nearly all of what it’s
doing under the hood. Which is why the chapter on
tracing utilities in JSBox’s source code has the title

Understanding Interpreter Execution

Vanishes Without A Trace!

� Doug McKenna
Mathemæsthetics, Inc.
PO Box 298
Boulder, Colorado 80306, USA
doug at either mathemaesthetics

dot com or dmck dot us

Editor’s note: An overview of JSBox is available
via the slides at http://tug.org/tug2014/slides/
mckenna-JSBox.pdf. We hope to publish additional
related papers on this work as it progresses.

On tracing the trip test with JSBox

http://www.mathemaesthetics.com/JSBox/triplog.pdf
http://www.mathemaesthetics.com/JSBox/triplog.pdf
http://tug.org/tug2014/slides/mckenna-JSBox.pdf
http://tug.org/tug2014/slides/mckenna-JSBox.pdf

