Digitized Brush Trajectories

John Douglas Hobby
Department of Computer Science
Stanford University
Stanford, California 94305

Abstract

We consider the problem of finding a discrete set of pixels that approximates
the envelope of a convex brush shape with respect to a given trajectory. Let the
digitization of a planar region be the set of pixels whose centers lie inside of it.
We develop mathematical models for the width of digitized brush strokes, and
we give a class of polygonal brush shapes such that the width of their envelope
with respect to a given trajectory is accurately reflected by the digitization of
the envelope. Polygonal brush shapes also have the advantage that it is usually
much easier to compute the digitization of the envelope with respect to a given
trajectory.

We present fast algorithms for approximating a given brush shape with an
appropriate polygon so that the digitization of the envelope of the modified brush
will have more accurate and uniform width than the digitization of the exact
envelope would. We also present an algorithm for finding a set of pixels that
represents the envelope of a dynamically changing brush while preserving accurate
and uniform stroke width. This algorithm finds a polygonal path with simple
rational slopes that is digitally equivalent to the given trajectory. Other possible
applications of this polygonal representation include smoothing digitized curves,
data compression, and curve fitting.

This research was supported in part by the National Science Foundation under
grants IST-820-1926 and MCS-83-00984 and by the System Development Founda-
tion.

DIGITIZED BRUSH TRAJECTORIES

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

by
John Douglas Hobby
August 1985

ii

©Copyright 1985
by
John Douglas Hobby

iii

Acknowledgements

I am greatly indebted to my adviser Donald Knuth for creating the research
environment that made this work possible, for creating the METAFONT system,
and for being so receptive to my ideas. His advice and encouragement have proved
invaluable.

I also thank my readers Leo Guibas and Vaughan Pratt for the time and effort
that they have put into this work. Finally I thank Lyle Ramshaw and many others
for stimulating discussions that have helped me to refine my ideas.

iv

Table of Contents

1. Introduction ..ottt it i i e e ettt 1
1.1. The digitization of aregion............cooiiiiiiiiiiiiin., 2
1.2. Aesthetic criteriacoviiiiiniiiiiiii i, 4
1.3. Computing sets of pixels, 6
1.4. Overview of thesiscoviiiiiiiiiiiiii i, 7
2. Measuring stroke weight i i 8
2.1. Apparent width and infinite straight line trajectories 8
2.2. Integer offset vectors and the accuracy of apparent width 10
3. Polygonal penscuiiiiiiiiiiiii i i i it 16
3.1. The polygonal pen theoremcooiiiiiiiii... 16
3.2. Pens and integer offset vectorso il 18
3.3. Equivalence classes of brush shapes................. 19
4. Algorithms for generating polygonal pens............... ...t 22
4.1. Generating symmetrical pens i, 22
4.2. Generating asymmetrical pensoiiiiiii il 37
4.3. Analysis of pen generating algorithms 42
5. Building envelopes with integer offsetso il 53
5.1. Integer offsets for brush strokes of nonuniform width 54
5.2. Digital equivalence and smoothness 58
5.3. Smoothly changing offsets............ ..ol 62
5.4. Choosing integer offsets ...l 75
6. Conclusion and applicationsc.ciiiiiiiiiniiiiiiiinnnnnns 86
6.1. Comparison of methods for finding digitized envelopes 87
6.2. Smoothing the digitized trajectory oo 89
Appendix: Tracings and convolutions.............ooviiiiiiiii it 91
Al Definitions. ..o ve it ittt ittt i i it 91
A.2. Monostrophic pensccoviiiiiiiiiiiii it 96
A.3. Asymmetrical brush shapes and monostrophic pens 100
A.4. Complete polygonizationcovviuiiiiiiiiiiieeen.n. 103
A.5. Smoothing through complete polygonization 107
A.6. Data COMPIeSSIONovviiiin i ennrernnneneeannenoens 110
AT7. Curve fitting oovi it e 111
Index to terminologycvvuuiiiniinr i i e 114
S) 1 L= S PP 116

Chapter 1

Introduction

In computer graphics and other applications it is often useful to describe
shapes as the product of moving a brush along a trajectory. The final output
is usually produced by some kind of raster device such as a CRT screen or a
laser printer, so that the desired shape must be approximated by a set of discrete
pixels. We shall investigate ways to take advantage of the special features of
brush-trajectory descriptions in order to deal with the discreteness.

In the simplest applications, the trajectory represents a line to be drawn and
the brush determines the desired thickness. Of course the discrete raster limits
the set of achievable line thicknesses; e.g., horizontal and vertical lines must be at
least one pixel wide. There are many applications where this minimum possible
width is desirable, and some important work has been done on the problem of
drawing thin lines on raster devices.

Perhaps the most important single work on line drawing is J. E. Bresenham’s
algorithm for drawing thin straight lines {3]. In addition to its speed and sim-
plicity, this algorithm has the advantage that the set of pixels it selects has a
simple mathematical description that leads to superior aesthetic qualities. A gen-
eralization of this idea is Knuth’s “diamond rule” which he used in his original
METAFONT system [13]. The effect of the diamond rule is to ensure that straight
or curved lines with slopes between 1 and —1 contain one pixel from each column
of the raster, and similarly that lines with steeper slopes contain one pixel in each
row. A general treatment of line drawing algorithms that are “optimal” in this
way is given by Sproull in [27].

Other line drawing algorithms include the digital differential analyzer de-
scribed by Armstrong in [1]. A general overview of this and related algorithms
can be found in Newman/Sproull [19]. Generalizations to curved lines include
Lindgard/Moss [17] and Jordan et al. [12]. (See also Belsner [2] and Ramot [23].)
These algorithms have been used successfully in many applications, especially
where speed and simplicity are important, but they do not obey the diamond rule;
hence the thickness of lines produced depends to some degree on parameters other
than the slope. There are other algorithms for drawing curved lines that are much
easier to analyze because they do obey rules similar to the diamond rule. Such
algorithms are given by Bresenham in [4] and by Horn in [11].

For lines of more than the minimum thickness, the approach depends on the
type of output device being used. Some printing devices with limited graphics
capabilities can draw lines of various thicknesses by using fonts containing short
line segments. This technique may have other applications including color CRT

1

2 INTRODUCTION

displays. (See Lucas [16].)

When color and gray scales are available, it is possible achieve complex ef-
fects such as partially transparent brushes Fishkin [6], but the most important
application for gray scales is the technique of “antialiasing” which involves using
gray pixels at the boundaries of lines so as to make them appear smoother. Some
fast antialiasing algorithms are given by Field in [5] and a brief general summary
is given by Foley and Van Dam in [7]. Antialiasing can greatly improve the ap-
pearance of lines, but the technique is applicable only to certain output devices.
Many CRT displays are not capable of displaying gray pixels, and very few printing
devices have this capability.

This leaves the important question of how to cope with raster devices that
cannot display gray pixels. The basic algorithms for doing this are much the same
as the line drawing algorithms given so far. One way to find a discrete version of
a brush-trajectory specification is to determine its boundary, and the process of
finding such boundaries is essentially equivalent to line drawing. Our goal will be
to obtain a description of the desired set of pixels that is sufficient to drive such a
line drawing algorithm. A general purpose plotting algorithm that is well suited
to this application is described by Knuth in [15].

The shape represented by a brush stroke is the envelope of the trajectory T
with respect to the brush B, i.e., the set of all z + z' where z is a point on T
and 2z’ is a point in B. For simple line drawing applications B is usually a circle
or perhaps a rectangle or an ellipse, and the trajectory is a straight line or some
spline curve. In general the brush shape might also be described by spline curves.

Although the definition of envelope makes sense in general, we shall require
T and the boundary of B to be piecewise real analytic. That is, they must be
decomposable into a finite number of sets, each of which is the range of a real
analytic function from a closed interval of R into R?. This ensures that the envelope
of T with respect to B will also have a piecewise real analytic boundary. Some
of our results will also be valid under weaker restrictions, but all commonly used
spline curves are piecewise real analytic. This work is based on the concept of
convolution defined by Guibas, Ramshaw, and Stolfi in [8] and their generalization
to curved tracings [24]. This in turn depends on the restriction to piecewise real
analytic curves.

Since the theory of tracings is not yet widely known, the main body of this
work will be devoted to results that can be understood without that theory. The
appendix gives a brief introduction to the theory of tracings and convolutions,
followed by a variety of interesting results that depend on the theory. Some con-
cepts introduced in the main body are generalized and treated more formally in
the appendix.

1.1. The Digitization of a Region

If a brush stroke or any other shape is to be represented on a raster device
such as a CRT display, a laser printer, or a digital typesetter, it is necessary to
approximate the shape with a set of discrete pixels. This can be done by merely
taking those pixels whose centers lie inside of the shape. We shall refer to this set

INTRODUCTION 3

of pixels as the digitization of the shape. We shall never use any other definition
for the digitization of a region; when a different set of pixels is desired, we shall
adjust the shape before digitizing it. '

The digitization is not difficult to compute, but the exact algorithm depends
on the family of splines used and the representation of pixels. The best approach
is probably to use the generalized concept of digitization described at the end of
this section and to adapt one of the line drawing algorithms mentioned previously.
A complete implementation of such an algorithm is given by Knuth in [15], but
other techniques such as those described by Pratt in [21] are also well suited to the
problem. We shall not be concerned with the particular algorithms for digitization
or with particular families of spline curves.

We now need a formal definition of digitization. Let us begin by choosing our
coordinate system so that pixel centers lie at (m + %, n+ %) for integers m and n.
We shall represent pixels abstractly as unit squares so that the plane R? is divided
into discrete pixels

P(m,n)={(z,y)|m<z<m+landn<y<n+1l} form,nel

A union of such discrete pixels is a digital region. A digital region can be thought
of as an approximation to where the ink will be placed when the corresponding set
of pixels is printed on a raster device. Even though real pixels are seldom uniform
or square, the approximation is usually fairly good when averaged over a significant
area. Some raster devices tend to erode edges and make black areas smaller, but
this distortion is universal and has little effect on comparative analyses of the type
that we shall be doing.

The digitization of a region R with piecewise real analytic boundary B(R) is
the union of all P(m,n) such that

(m+1,n+1)e (R\B(R)) UBL(R)

where BL(R) is a special subset of B(R) that we shall define shortly.

In the neighborhood of any boundary point z, the boundary B(R) consists of
a finite set of real analytic curves leaving z in various directions. There is always
a constant € > 0 such that B(R) either includes or does not intersect the line
segment z + (0, 6) for 0 < § < e. Thus for any point 2z € B(R), either the following
condition holds for § = R, or it holds for § = R, the complement of R: There
must exist €, > 0 such that if 0 < §; < € then there exists e2 > 0 possibly
depending on é; such that

24 (61,—62) € S for 0< 6 < e (1.1.1)

The set BL(R) is exactly those z € B(R) for which (1.1.1) holds for § = R. If Ris
convex, this means that for the purpose of computing the digitization, we include
the left side of R and the all but the rightmost point of the top, but not the right
side or the bottom.

The reason that we have been so careful about the boundary of R is that we
want to be able to talk about what happens to the digitization when a region is

4 INTRODUCTION

shifted, and we must avoid undesirable behavior when pixel centers fall exactly on
the boundary. Such special cases are important in practice and they can consid-
erably detract from the performance of a computer program when they are not
handled correctly. Notice that we have made the digitization of R independent
of which points of B(R) are contained in R. This is necessary because it is not
always possible to select brush shapes whose envelopes will contain the correct
boundary points. We have the following lemma:

Theorem 1.1.1. If R is a finite region bounded by piecewise real analytic curves,
then R can be displaced by some amount (-6,,6,) to yield a region R' with the
same digitization as R, such that there are no pixel centers on the boundary of R'.

Proof. Take the minimum of all ¢; from (1.1.1) for all pixel centers on B(R) and
choose 6; smaller than this. In addition, we also require é; to be smaller than the
minimum distance from B(R) to any pixel center not on B(R). For sufficiently
small 62, we obtain the correct set of boundary pixels without changing the set of
pixels whose centers are strictly interior to B. §

In practice, we often want to compute the digitization of a region R from a
description of its boundary. Let a path be a continuous, piecewise real analytic
function X from some finite interval I to R2. If I = [a,b] where X (a) = X (b),
we say that X is a closed path. The exact correspondence between regions and
closed paths is defined in the appendix, but we can assume that a region R is
represented by a closed path whose range is the boundary B(R). We can extend
the concept of digitization to paths so that if a path X represents a region R then
the digitization of X represents the digitization of R. (See Theorem A.4.1.)

We now define the digization of a path X (¢) = (z(t), y(t)) where ¢ ranges over
an interval [a,b]. Let X, X3, ..., X, be the sequence of points given by

X(®) = ([=(0) - 21, lv(®) + 1))

as ¢ increases. Build a new sequence Y, Y3, ..., Yy by taking each X; in order
except that for each i such that X; = (z;,%) and Xiy1 = (Zi41,¥i41) differ in
more than one coordinate, insert either (z;,yi4+1) or (Zi+1,¥:), whichever has the
smallest z-coordinate. Take a polygonal path that connects Y3, Y3, ..., Yy in
order by line segments.

Note that the case z; # z;41 and y; # yit+1 mentioned in the above definition
is only possible when z;41 — z; = ¥; — ¥i+1 = *1 and X(¢) passes through the
point (X; + Xi41)/2. The choice of the new point to insert ensures that X(¢) is
treated as being to the left of the pixel center through which it passes. (It is not
possible that zi41 — z; = Y41 — ¥ = +1 because X(t) = X(¢) + (-1, 3) when
Xty ez’ +(3,1))

1.2. Aesthetic Criteria

Perhaps the most straightforward way to represent a brush stroke on a raster
device would be to find some mathematical description of the exact envelope and
then to take the digitization. There are two problems with this approach: the

INTRODUCTION 5

computation involved is often quite difficult; and the results are often disappoint-
ing, especially when the size of the brush is not much more than the resolution of
the device. The process of digitization places the edge of the digital region as close
as possible to the edge of the ideal envelope, but it is usually more important to
represent the width of the envelope accurately.

Figure 1 shows two brush envelopes with their digitizations. In each case the
grid lines are pixel boundaries at integer z and y coordinates and the digitization
is delimited by bold lines. Figure 1a shows how parallel segments of the trajectory
can yield lines of markedly different thickness, depending on the placement of the
envelope relative to the pixels.

e
<]
\
V. -
\
Fig. 1a. A digitized envelope of a Fig. 1b. A digitized envelope of a
circular brush of diameter 2.5 circular brush of diameter 2

The asymmetrical appearance of the digitization in Figure 1a could be avoided
by forcing the brush diameter to be an integer, but unfortunately this works only
for horizontal and vertical lines. As Figure 1b shows, the same problem can occur
with circular brushes of integral diameter. One of the legs still comes out half
again as thick as the other, even though the exact envelope is symmetrical.

Fig. 2a. The digitization of a straight Fig. 2b. A similar digitization based
stroke with a circular brush of on a circle of diameter 2.14
diameter 2

Many problems of the type shown in Figure 1 could be avoided by carefully
controlling the position of the trajectory and distorting it slightly if necessary to get

6 INTRODUCTION

all parts positioned correctly. However, there are still more problems: Sometimes
even a straight trajectory can lead to multiple thick and thin spots as shown in
Figure 2a. In this case only the digitization is shown, but if the brush envelope
were repositioned before digitizing, the only effect would be to reposition the thin
spots. The problem is that while integer brush diameters are good for horizontal
and vertical strokes, the circle of diameter 2 is a little bit too small for lines of the
slope shown in Figure 2.

1.3. Computing Sets of Pixels

Now let us consider the computational difficulty of finding an appropriate set
of pixels to approximate a brush stroke. Assume that we do want the digitization
of the exact envelope and consider how the real analytic pieces of the trajectory
and brush boundary can be represented. These curves are usually described either
with an explicit parameter as (z(t),y(t)), or implicitly by f(z,y) = 0, where z(t),
¥(t), and f(z,y) are quadratic or cubic polynomials. Given a brush and trajectory
composed of pieces of this form, we can always find equations g;(z, y) = 0 for the
exact envelope, where each g; is a polynomial in two variables. The minimum
possible degree of g gives us some indication of how hard it is to plot g; directly.
If the brush and trajectory are both conic sections (implicit curves of degree 2),
the polynomial g must have degree 8; in the common case where both brush and
trajectory are parametric cubics, g has to be of degree 11 in general. [24]

Of course the fact that a polynomial equation for a piece of the envelope must
have high degree does not prove that the envelope is very difficult to plot, but it
does indicate that the direct approach is likely be very expensive. It takes O(n?)
arithmetic operations to evaluate a general nth degree polynomial in z and y, and
the calculations may have to be done to a very high precision.

In his original METRFONT system (now called METAFONT 79), Knuth avoided
this problem by using discrete pens composed of pixels [13]. Knuth’s plotting
algorithm had the effect of approximating the trajectory with a sequence of integer
spaced points, placing the discrete brush at each, and blackening all the pixels
so covered. As implemented in METARFONT 79, this takes time quadratic in the
resolution, but it can be done in linear time if the digital output is represented
with run lengths and the pens are suitably restricted [26]. The new METARFONT
system described in [15] uses a simplified version of the algorithm that we shall
develop below, and this in turn can be viewed as a generalization of the algorithm
used in METAFONT 79. In honor of METARFONT we shall refer to the brush shapes
that the algorithm actually uses as “pens”.

Another way to get around the computational difficulties is to approximate
the brush with a polygon. The boundary of the envelope then consists of straight
line segments and shifted pieces of the trajectory, all of which are relatively easy
to digitize. As we shall see, if we choose the polygon carefully, we can get better
results with the polygonal approximation than we could with the original brush,
therefore having the best of both worlds.

INTRODUCTION 7

1.4. Overview of Thesis

We begin our investigation in Chapter 2 by developing criteria for measur-
ing the weight of digitized brush strokes. Then we consider infinite straight line
trajectories and define a class of “good” brush widths. We define an integer off-
set condition on brush envelopes that generalizes the concept of “good width”
to curved trajectories and allows us to obtain good bounds on the accuracy and
uniformity of stroke weight when such envelopes are digitized.

In Chapter 3 we derive a class of polygonal brush shapes or pens that have
good widths and produce envelopes that satisfy the integer offset property. Fur-
thermore, we show that this class is unique in the sense that no other brush shapes
can have good widths in all directions.

In Chapter 4, we develop algorithms for finding pens that approximate an
arbitrary convex brush shape. First we show how to reduce such a brush shape B
to a version B’ that has the same width as a function of direction, but has 180°
degree rotational symmetry. We then present a simple algorithm for approximating
such a symmetrical brush with a polygonal pen, and we show that the results are
nearly optimal. We give two generalizations of the pen finding algorithm to the
asymmetrical case: The first version often performs well in practice, but has no
good error bound; the second version has a good error bound but has practical
disadvantages. A hybrid algorithm combines the advantages of both versions at
the expense of increased running time. The hybrid algorithm is difficult to analyze,
but the other algorithms run in time O(d?/3) and produce polygons with O(d?/3)
vertices, where d is the brush diameter.

In Chapter 5, we consider a more direct approach to the problem of producing
envelopes with integer offsets. The object is to simulate a dynamic brush, i.e., a
line segment of varying length maintained perpendicular to the trajectory. This
requires ways of merging different integer offsets into the same envelope. We give
a method for doing this, and we find properties of the discretized trajectory that
can help to locate points where integer offsets can be changed without producing
unnecessary glitches. Finally, we give an algorithm for deciding which offsets
should be used and exactly where it is best to change offsets.

In Chapter 6, we conclude with a discussion of the results obtained with
polygonal pens and with the dynamic brush simulation algorithm. We also mention
some ideas for smoothing digitized trajectories.

The appendix begins with a brief introduction to the theory of tracings and
convolutions from [8] and [24]. We generalize pens to a special class of mono-
strophic tracings and show how convolution can be used to deal with asymmetric
pens. We also give a generalized method for finding polygonal versions of dig-
itized trajectories. This has many applications including data compression and
curve fitting.

Chapter 2

Measuring Stroke Weight

The examples of Section 1.2 suggest that we should investigate the apparent
width of digitized brush strokes. Since this is a subjective concept, it is not easy
to give exact definitions, but we shall begin with cases where the concept is clear,
and then develop a good general model that tells us what we need to know about
stroke weights.

We first develop conditions that are necessary to obtain appropriate stroke
weights for straight line trajectories. As we shall see in the next chapter, these
conditions alone are very powerful.

2.1. Apparent Width and Infinite Straight Line Trajectories

The easiest case is that of an infinite straight line trajectory. Since the digiti-
zation of a region is independent of which boundary points are included, we shall
assume that the brush is a closed region. For any such brush, the envelope of an
infinite straight line trajectory can always be described by an equation of the form

laz + by — ¢} < d. (2.1.1)

We shall investigate the apparent width of the digitizations of such envelopes. We
want the overall width to be independent of the placement on the raster; i.e., we
want it to be independent of ¢. We also want the apparent width to be close to
the width w; = 2d/+/a? + b2 of the exact envelope.

Intuitively, the apparent width should be the number of pixels per unit of
length along the line. We can find the average apparent width for a section of a
digitized stroke by finding the number of pixels in that section and dividing by its
length. The total pixel weight of the digitization of (2.1.1) between bz — ay = €;
and bz — ay = e, is the area of the intersection of the digital region with the
region between these lines. This is similar to counting the pixels whose centers lie
between the lines except that it does a better job of counting fractional pixels.

The average apparent width of the digitization of (2.1.1) between two lines
bz — ay = e; and bz — ay = e; is the corresponding total pixel weight divided by
their separation |e; — e3| /4/a? + b%. The average apparent width for the entire
infinite stroke is just the limit as e, — —o0 and e2 — o0.

The behavior of the average apparent width of the digitization of the re-
gion (2.1.1) depends on whether the slope a/b is rational or irrational. If b6 = 0
or if a/b is rational we say that (a,d) is a rational pair or a rational direction;
otherwise it is an irrational pair. If (a,b) is a rational pair then we can assume

8

MEASURING STROKE WEIGHT 9

without loss of generality that they are a reduced rational pair, that is that @ and b
are relatively prime integers. Note that if @ = 0 then b = %1, and vice versa.

The following lemma will allow us to determine the behavior of the average
apparent width. Note that the digitization of (2.1.1) may be empty when (a,b) is
a reduced rational pair, even when d > 0.

Lemma 2.1.1. Ifa and b are relatively prime integers, then there are pixel centers
satisfying az + by = c if and only if ¢ + vy(a,b) is an integer, where

0 ifa andb are odd,

7(a,d) = 1

5 otherwise.

Furthermore, if (zo,Yo) is a pixel center such that azo + byo = ¢ then the solution
set is {(z0,%) + n(b,—a) | n € Z}.

Proof. Since z = y = 3 (modulo 1) for pixel centers (z,y), it follows that ¢ = 0
when @ and b are both odd. Otherwise ¢ = 3 since a and b cannot both be even
when gcd(a,b) = 1. Conversely, if ¢ = v(a,b), we know that az + by = ¢ for any
pixel center (z,y). Since there exist integers m and n such that am + bn = 1, we
can achieve az + by = ¢ by adding the appropriate multiple of (m,n) to (z,y).

If az+by = az'+by' = c then (z,y)—(z',y') must be a real multiple of (b, —a).
The previous argument shows that this difference is in Z2, but since (b, —a) is also
reduced, all such multiples of (b, —a) must be integer multiples. This shows that
all solutions must be of the required form. It is clear that adding a multiple of
(b, —a) to a solution (z,y) does not change az + by. W

Corollary 2.1.2. If (a,b) is a reduced rational pair, then the average apparent
width of the digitization of the region described by (2.1.1) is

|le +d + v(a,b)] - le—d+7(a,b)]|/\/a®? +b* ifa<0ora=0<b;
[[e+d+7(a,b)] = [c— d+7(a,b)]|//a? + b ifa>0o0ra=0>b.

Proof. If R is the region described by (2.1.1), then By (R) will be the bounding line
az+by = c+d. Thus the numerator gives the number of lines in (R\B(R))UBL(R)
that satisfy the conditions of Lemma 2.1.1, and the last part of the lemma shows
that each line contributes 1/1/a? + b2 to the average apparent width. N

Corollary 2.1.3. If (a,b) is a reduced rational pair, then the average apparent
width of the digitization of the region described by (2.1.1) is independent of c if
and only if 2d is an integer. W

When (a,b) is a reduced rational pair, Lemma 2.1.1 allows us to break the set

of pixel centers into equivalence classes based on the value of ¢ for which az+by = c.

We can also divide the set of lines perpendicular to (a,b) into equivalence classes
by saying that az + by = ¢ is in class

{Lc+‘y(a,b)_| ifa<Oora=0<b

[e+v(a,b)] ifa>00ra=0>0b

with respect to (a,b). Corollary 2.1.2 tells us that the average apparent width

of (2.1.1) is always an integer multiple of 1/+/a? + b? in this case. Since this basic

unit of width is the width of the equivalence classes determined by (2.1.2), we say
that widths given in terms of this are given in (a,b) classes.

(2.1.2)

10 MEASURING STROKE WEIGHT
2.2. Integer Offset Vectors and the Accuracy of Apparent Width

We have developed conditions on the envelope width that are necessary in
order to ensure that the average apparent width is independent of the trajectory
position, but this does not cover all the aesthetic criteria given in Section 1.2.
We shall now take a closer look at the average apparent width, and determine
additional conditions that are sufficient to guarantee uniform, accurate width.
Rather than just taking the average over an entire infinite stroke, we look at
averages over short sections of the stroke.

To illustrate the need for this refinement, consider what happens when the
slope a/b is irrational in our previous analysis. As we shall see later, the average
apparent width of the digitization is always equal to the width w; of the region
described by (2.1.1) in this case. The situation is entirely different when (a,b)
is perturbed slightly to yield a rational pair, even though a large portion of the
digitization may remain unchanged.

When the average apparent width is measured over finite lengths, it is not
constant, but depends on where the average is taken. When the trajectory slope
is irrational the overall average approaches the ideal width w;, but averages over
finite intervals behave as they do for nearby rational slopes. The appropriate tool
for limiting this unevenness in average apparent width is the integer offset vector.

For rational slope trajectories, the existence of integer offset vectors is a direct
consequence of the discrete possibilities for the average apparent width of infinite
brush strokes. If (a,b) is a rational pair and if the brush has a good width in the
direction (a,b), that is if the width of (2.1.1) is independent of ¢ as required by
Corollary 2.1.3, then there is an integer offset vector (m,n) for (2.1.1) such that
am + bn = 2d. In general, an offset vector of a brush envelope is any vector such
that the boundary of the envelope contains two curves that are identical except
displaced by the offset vector. We shall only be interested in offset vectors where
the two curves in question describe the left and right sides of a brush stroke.
(Corollary 2.2.5 will make this more precise.)

If there is an integer offset vector (m,n) that is roughly perpendicular to the
stroke, we can show that the average apparent width must be nearly constant.
Consider the examples in Figure 3 where (a,b) = (-2,3) and offset vectors are
indicated by bold lines. When the average apparent width is 4/4/13 (Figure 3b)
there is no integer offset vector roughly perpendicular to the stroke, and the stroke
weight appears comparatively uneven; the results are much better when the widths
are 3//13 (Figure 3a) or 5/4/13 (Figure 3c). The following lemma will enable us
to express this phenomenon in terms of average apparent width.

]

[

L]
Fig. 3a. 2d = 3 Fig. 3b. 2d = 4 Fig. 3c. 2d =5

MEASURING STROKE WEIGHT 11

Lemma 2.2.1. Let m and n be fixed integers not both 0; let C be a curve that
intersects each line nx — my = u exactly once; let R be the region bounded by C
and the same curve shifted by (m,n); and let R' be the region u; < nz-my < us.
Then the area of the intersection of R' with the digitization of R is the same as
the area of RN R'.

Proof. A point (o, o) is in the digitization of R if and only if (z},y}) € R where
R = (R\ B(R))UBL(R) and (z}, y}) is the center of the pixel containing (zo, o).
Since the intersection of R with a line of the form nz — my = u is a segment of
length \/m? + n? that contains exactly one of its endpoints, it follows that there
is a unique integer % such that (z} +1im, y§ +in) € R. Hence for any point (zo, %),
there is a unique integer ¢ such that (zo 4+ ¢m, yo + in) € D(R) where D(R) is the
digitization of R.

If £ is a line of the form nz — my = u, then the intersection £ N D(R) is a
finite number of line segments. Let f be the mapping from £ into £ N R such that
f(z,y) = (z+im, y+in) where i is the unique integer such that (z +im,y+in) €
£N R. If s is a segment of £ such that fis 1 to 1 on s, then the image f(s) is
a set of line segments whose total length is equal to the length of s. Since f is
1 to 1 on £N D(R), the total length of the segments in £ N D(R) is equal to the
length of the segment in the image f(£ND(R)) = £N R. Hence if dR' is the region
u < nz — my < u + du, then the differential areas R N dR' and D(R) N dR' are
equal. Thus the areas RN R’ and D(R) N R’ are also equal. §

If there is an integer offset that is exactly perpendicular to the stroke, then
this lemma shows that the average apparent width of the digitization of (2.1.1)
is always w;. When the integer offset vector is not perpendicular, the average
apparent width can deviate from the ideal value, but we can often show that this
deviation cannot be very large. First, we shall need some tools for limiting the
difference between digitizations and the regions that they are derived from.

Let the maximum cover of a region R be

{(z,y)| -3 <z-2'< Jand -} <y—y' < § where (z',y') € RUB(R) }
(2.2.1)
and let the minimum cover be

{(z,9)|if -3 <z-2'<}and -} <y—y <} then (2,¢') € R\ B(R)}
(2.2.2)
where B(R) is the boundary of R. Note that the difference between the maximum
and minimum covers of R is the envelope with respect to —% <z < %, —% <
y < % of the boundary of R. The definitions immediately imply the following

containment relationship, if we let 2’ = |z] + 1 and 3’ = [y] - 1.

Lemma 2.2.2. The minimum cover of a region R is contained in the digitization
of R, which is contained in the maximum cover.

Lemmas 2.2.1 and 2.2.2 allow us to bound the average apparent width when
there is an integer offset vector. The purpose of the following theorem is to show
that the problems illustrated in Figures 1 and 2 cannot occur when there is a good

12 MEASURING STROKE WEIGHT

enough integer offset vector. Later we can use the extra generality of Lemma 2.2.1
to extend the theorem to curved trajectories of practical importance.

Theorem 2.2.8. If (m,n) is an integer offset vector for (2.1.1), then the average
apparent width of the corresponding digitization between two lines

bz —ay=e and br-ay=e (2.2.3)

separated by a distance s differs from the true width w, by a factor of 1 + €, where
lel < 6,

N2 —)2 T 0 — 2
5= (w1 +)? — max(0, w; — w) tanf = .1_:_ (1+ max(0, @ — w;))tan0,

4sun 4u o

(2.2.4)
w = (|a| +8])//@® + b2, and 6 is the angle between (a,b) and (m, n).

e \w1 + W
-

X~ T X’
< s B
w:\‘”b

Fig. 4. The relationship between total pixel weight and the area from Lemma 2.2.1

N

Proof. Let A and B be the points where the bounding lines (2.2.3) intersect
the center of (2.1.1) as shown with heavy dots in Figure 4, and construct lines
through them parallel to the offset vector. Lemma 2.2.1 shows that the area of
the digitization of (2.1.1) between these lines is sw;. The difference between this
and the total pixel weight between A and B is determined by the area of the
intersection of the digitization of the region in question with the triangles formed
by (2.2.3) and the offset lines just constructed through points A and B. We
can use the minimum and maximum cover to bound the area of the digitization
in the triangles above B and below A minus the area in the triangles above A
and below B. Since w; + % is the width of the maximum cover of (2.1.1) and
max(0, w; — w) is the width of the minimum cover, the area in question is at most
w86 as required. [

Corollary 2.2.4. If (a,b) is an irrational pair, then the average apparent width
of the digitization of the infinite region described by (2.1.1) is w;.

Proof. The theorem shows that the average apparent width is equal to the ideal
width 2d/\/a? + b2 for any d where there is an integer offset (m,n) such that
am + bn = 2d. The set of such widths is dense because we can use continued
fractions to find (m,n) € Z? for which am + bn is arbitrarily small. Since the
apparent width of the given digitization as greater than that of any digital region
it contains and less than that of any that contains it, we can bound the apparent
width arbitrarily close to w;. B

MEASURING STROKE WEIGHT 13

Theorem 2.2.3 can be extended to curved strokes if we extend the definition
of average apparent width. The concept of apparent width depends on being able
to assign a direction to the digitized stroke that relates to the perceived overall
direction rather than directions on the jagged boundaries of digital regions. We
can easily associate such a direction with the digitization of an infinite straight line
since it is consistent with a unique slope, but this no longer holds when we allow
curved lines. One can imagine various schemes for fitting smooth curves to the
boundary of a digital region, but this would not be appropriate for a definition.
We therefore take advantage of the fact that we are dealing with the digitization
of the envelope a brush with respect to a presumably smooth trajectory and make
the definition depend on the envelope.

Let R be a region whose boundary B(R) is composed of piecewise differen-
tiable curves as described in the introduction. Two points A and B on the interiors
of real analytic segments of B(R) are opposite points of R if the segment between
them is contained in R and is perpendicular to the angle bisector of the directions
tangent to B(R) at A and B.

Let A’, B', C', and D' be four points on B(R) such that the lines A'B’
and C'D’ are parallel, and the portion of B(R) between these two lines contains
unique non-intersecting curves connecting A’ to C' and B’ to D'. Thus these
points define a region A’B'D'C’' contained in R. Any region of this form is a
simple subregion of R.

Let (A, B) and (C, D) be two pairs of opposite points of R such that R has a
simple subregion A’B’D'C" for which the following hold: 1) The maximum cover of
the region ABDC must lie entirely between the parallel lines A’B' and C'D’, and
its intersection with R must be contained in A’B'D'C". 2) The lines AB and CD
must not intersect within the maximum cover of A'B'D'C". 3) The points A and C
must lie on the curve A’C’, and B and D must lie on the curve B'D’.

When the above conditions hold, the lines AB and C D divide the plane into at
most four regions, one of which contains ABDC. We call this region Rappc- The
average apparent width of R between A, B, C, and D is the area of the intersection
of R4ppc with the digitization of A’B'D'C’ divided by 2L(AC)+ 3 L(BD), where
L denotes arc length. Similarly, the ideal average width is the area of ABDC
divided by 1L(AC)+ ;L(BD). It can be shown that these definitions of average
width are independent of which simple subregion is chosen, as long as it satisfies
the above conditions.

The following corollary makes use of these definitions. The proof is similar
to that of Theorem 2.2.3. Note that if the curvature is not too large, then the
quantity @ mentioned in the corollary is very close to

max (sl +) [/l + 8 (Jaal +162) [Vara) 2

where (a1,b,) and (az,b;) are vectors parallel to AB and C'D respectively.

Corollary 2.2.5. Let R be a region with piecewise real analytic boundary B(R),
containing eight points A, B, C, D, A’, B', C', D' such that the definition of

14 MEASURING STROKE WEIGHT

average apparent width applies. Assume further that the curves A'C' and B'D’
of the simple subregion A'B'D'C' are identical except shifted by an integer vec-
tor (m, n), and that they intersect no line parallel to (m,n) more than once. Then
the average apparent width differs from the ideal average width by a factor that
lies between 1 — é and 1 + § where § satisfies (2.2.4); wy = min(d(AB),d(CD))
and d denotes Euclidean distance; s = 1L(BC) + 3L(AD); 6 is the angle between
the offset vector and either the line AB or the line C D, whichever is larger; and
W is determined as follows: Construct lines A"B" and C"D" parallel to (m,n)
and bisecting AB and CD, and make W just large enough so that all points be-
tween the lines A'B' and A"B" in the difference between the maximum cover of
A'B'C'D' and the minimum cover are within w/2 of the lines through A and B
perpendicular to AB. Furthermore, w must satisfy a similar property for points

CandD. 1

With this result in mind, let us consider the practical benefits of integer offset
vectors. We are concerned about variations in apparent width along strokes as
in Figure 2 and between one part of a stroke and another as in Figure 1. These
undesirable variations in average apparent width are most noticeable when the
magnitude of the variations are significant fractions of the stroke weights and they
occur over lengths at least comparable to the width of the stroke.

The trivial upper bound on the relative error of the average apparent width
from the ideal is @/w where w is the minimum ideal width in the region in question.
This is independent of the length over which the average is taken. The value of ¥
always lies between 1 (for horizontal or vertical strokes) and +/2 (for diagonal
strokes). Straight strokes that are nearly horizontal or nearly vertical can come
arbitrarily close to this bound for arbitrarily large s and w, and strokes at nearly
45° from the vertical can have similar variations of half this magnitude. When
there is an integer offset vector and w; > w, we have shown that the relative error
is at most (@/s) tan 6 where s is the length over which the average is taken and 6
is the maximum angle by which the offset vector differs from perpendicular to the
stroke. The ratio of this to the trivial upper bound is

(w/s) tané. (2.2.6)

When this is less than 1, it gives an estimate of the benefit of having an integer
offset vector.

The accuracy of this estimate depends on how closely the trivial upper bound
and the bound of Corollary 2.2.5 can be achieved. We have already remarked
that the trivial bound can be closely approached for special stroke directions. The
bound of Corollary 2.2.5 can be closely approached when 6 is small enough so that
wtan@ is on the order of one pixel. We can then expect to find width variations
on the order of w, and by adjusting s it should be possible to make the difference
in pixel weight between the triangular regions considered in Theorem 2.2.3 and
Corollary 2.2.5 close to the bounds obtained there.

The average apparent width can give more precise estimates of the absolute
accuracy of the stroke weight in particular cases. Variations in stroke weight

MEASURING STROKE WEIGHT 15

such as those in Figure 2 are due to variations in average apparent width as one
moves along the stroke. The s-unevenness of a digitized region R is (Wmax —
Wmin)/(Wmax + Wmin) Where wpax and wy;, are the maximum and minimum w
such that there is a subregion of the maximum cover of R of length s over which
the average apparent width is w. By the length s, we mean the average arc length
from the definition of average apparent width.

It is not hard to see that the s-unevenness of a stroke with an integer offset
vector is at most the maximum § given by (2.2.4), but this is often a significant
overestimate. For instance Figure 2b has the integer offset vector (-1,2), and
Theorem 2.2.3 shows that the 4.92-unevenness is at most .085 while in fact it
is .034. Even the upper bound is much better than the unevenness of .213 in
Figure 2a.

Chapter 3

Polygonal Pens

Having seen the advantages of integer offset vectors, it is natural to ask what
conditions on the brush shape are necessary in order to ensure that the envelope
of any sufficiently smooth trajectory will have integer offset vectors of the type
required by Corollary 2.2.5. One condition that is definitely necessary is that the
brush must have a good width in every rational direction. We therefore begin by
considering the consequences of requiring good widths in rational directions. We
then prove a characterization theorem for the class of brush shapes that satisfy
this requirement. Brush shapes that satisfy the characterization theorem are called
pens.

After proving the characterization theorem, we go on to investigate important
properties of pens. The most important such property is that pen envelopes have
integer offset vectors. This makes pens a very important class of brush shapes:
Any brush shape that is not a pen performs badly even for straight lines of rational
slope, while pen envelopes benefit from Theorem 2.2.3 and Corollary 2.2.5, thus
sharply limiting possibilities for the effects described in Section 1.2. Furthermore
as mentioned in Section 1.3, pen envelopes are particularly easy to digitize.

3.1. The Polygonal Pen Theorem

Assume that a convex brush B has good widths in all rational directions. We
shall determine some of the properties of B by using a continuity argument based
on the fact that the rationals are a dense set and B has a piecewise real analytic
boundary. The following lemma encapsulates what we need to know about real
analytic functions:

Lemma 3.1.1. If (z(t), y(2)) is a real analytic curve that intersects a line az+by =
c at t = ty, and if the slope y'(t)/z'(t) is monotonic on some interval to < t < #;
where 2'(t) # 0, then as the slope approaches y'(t1)/z'(t1), the intersection of the
tangent line with az + by = ¢ approaches (z(t1),y(t1)).

Proof. The relation s = y'(t)/z'(t) can be inverted to yield the analytic func-
tion ¢ = f(s). Thus the desired limit is

. c—(az+by), , ,)
————— . 1.1
i) ((:c,y) T by’ (=) (31.1)

Since the slope is not constant, some sufficiently high order derivative of az + by
must be nonzero at ¢ = ¢;. Hence by I’Hospital’s rule, the second term of (3.1.1)
approaches (0,0). B

16

POLYGONAL PENS 17

Our argument will be based on the concept of points of support, as a function
of direction. The points of support of B in some direction (a,b) are where B
intersects its supporting lines parallel to (a,b). Except where the boundary B(B)
contains line segments, there are at most two points of support in each direction
(cos 8,sin §), and we can distinguish them as “left” and “right”. Thus we obtain
two functions of 8, each of which are continuous except where 8 gives the direction
of some line segment contained in B(B).

Lemma 3.1.2. If a convex brush B has a good width in every rational direction,
then the difference between the left and right supporting points in any rational
direction (a,b) not parallel to a line segment of B(B) is an integer vector in Z*.

Proof. Assume without loss of generality that (a,b) is a reduced rational pair.
Then gecd(a,b) = 1 so there exist integers m and n such that ma + nb = 1. Now
let (¢,d) = £(—n,m), choosing the sign so that ac + bd > 0. The directions
(ak,bx) = (c,d) + k(a,b) are all between (a,b) and (¢,d) when k > 0, and they
approach (a,b) as k approaches oo.

Let the supporting lines parallel to (a,b) be bz — ay = w and bz — ay =
u + I; similarly let the supporting lines parallel to (ak,bx) be byz — ary = ux and
bxz — ary = uk + lx. The differences [and Ix must be integers because B has good
widths. Furthermore these supporting lines intersect at

A and A7! utl where A=+ b —a ,
Uk ug + Uk br —ag

and since det A = abr — bay = %1, the difference between the two intersection
points is always an integer vector in Z2. It follows from Lemma 3.1.1 that as k in-
creases, the intersection points approach the points of support in direction (a,b),
hence the difference between these is also an integer vector. N

It is now relatively easy to characterize the set of brush shapes that have
good widths in all rational directions. Since the boundary of B is assumed to be
piecewise real analytic, it contains a finite number of line segments. Between any
two adjacent segment directions, the points of support are continuous functions
of the direction angle, so their difference is also a continuous function. But since
Lemma 3.1.2 shows that the difference is integer valued, it must be constant. We
have proved the following theorem. (Two vertices of a convex polygon are called
opposing vertices if they are the unique points of support in some direction.)

Theorem 3.1.3. A brush B has an integer offset in every direction if and only if
the convex hull of B is a finite polygon such that the difference between any pair
of opposing vertices is in Z%. 1

We shall refer to convex brush shapes that satisfy Theorem 3.1.3 as pens.
Such polygons have edges of rational slope. Furthermore if PP, and P3Py are
opposite edges, then the vector sum (P, — P1) + (Py — P3) is in Z%. An alternative
characterization of pens can be found in the next section.

18 POLYGONAL PENS

3.2. Pens and Integer Offset Vectors

Our characterization of pens has been based on the simple desire for good
widths in rational directions. The purpose of this section is to show that pen
envelopes with respect to curved trajectories have integer offset vectors, and thus
Corollary 2.2.5 can be used to show that digitized pen envelopes have good accu-
racy and uniformity of apparent weight. In other words, the brush shapes that
produce width independent of trajectory position for straight line trajectories also
produce consistent stroke weight for curved trajectories and control variations in
apparent width along a single pen stroke.

Let us first consider ordinary polygonal pens. Figure 5 shows a such a pen
and a set of curves that describe the boundary of the envelope with respect to the
indicated trajectory. The polygonal pen is shown superimposed on an integer grid
to demonstrate the integer difference vectors between opposite vertices. Dashed
lines connect portions of the envelope boundary curves that are identical except
shifted by such an integer vector. Each pair of such identical curves is delineated
by a pair of parallel dashed lines, and together such pairs of curves make up most
of the envelope.

Fig. 5. A polygonal pen and its envelope with respect to a trajectory,
showing regions where integer offset vectors apply.

The rule for determining what pairs of integer offset curves will be contained in
the envelope boundary is best understood via the concept of convolutions discussed
in the appendix, but the basic idea is as follows: First, divide the trajectory
into pieces at the points where it achieves slopes parallel to pen edges. If the
trajectory contains line segments parallel to pen edges, then any point on such
a segment is a suitable break point. Once the trajectory has been broken into
pieces, each can be associated with a pair of opposite supporting points on the pen
boundary so that the chosen points are supporting points in any direction parallel
to any part of the trajectory segment. As the pen moves along the trajectory,
the support points describe shifted portions of the trajectory. It is shown in the
appendix that all curved portions of the envelope boundary lie on such shifted
trajectory segments. Since the difference between opposite vertices must be an
integer vector, the relative displacements between the two corresponding segments
must be integral.

The exact conditions for this are considered later, but for “reasonably well
behaved” pens and trajectories, most of the envelope boundary is composed of
pairs of curves that are identical except for an integer offset. In the example of
Figure 5, about 70% of the boundary is composed of such curves, and most of

POLYGONAL PENS 19

the rest of the boundary belongs to the polygonal pen images at either end of the
stroke.

3.3. Equivalence Classes of Brush Shapes

In order to get a better understanding of pens, we now examine classes of pens
having identical width as a function of angle. The great importance of stroke width
is enough to justify our interest in such classes of pens, but the primary application
for our analysis of width as a function of angle is to simplify the task of pen
construction. This simplification comes from the fact that the equivalence classes
that we shall be dealing with are represented by pens that have 180° rotational
symmetry about the origin. If we are interested only in width as a function of
angle then we can restrict our attention to pens of this form. In fact the appendix
shows that by generalizing the notion of “trajectory,” we can make the results truly
independent of pen shape as long as the width as a function of angle is preserved.

We seek to transform an arbitrary pen P into a canonical version P’ that is
symmetrical about the origin, where the transformation is to be width preserving,
i.e., the width of P in any direction (a,b) is the same as the width of P’ in
that direction. Actually, this transformation can be extended to brushes that are
not pens, and the additional generality will be useful later so we shall deal with
arbitrary convex brushes from now on. Figure 6 shows a convex brush B and the

corresponding symmetrical version F(B), where F is the transformation function
that we shall develop.

a a

Fig. 6a. A brush and its locus of offset Fig. 6b. The corresponding symmetrical
midpoints. brush.

Consider the brush B to be processed and let ¢ and ¢ be the points of support
in the direction (cos#8,sin @) as shown in Figure 6a. Now let b be the midpoint of
the segment connecting a and ¢. As 6 scans a complete circle, the vector a — b
scans the boundary of a symmetrical brush B’. If the boundary of B contains line
segments, then there will be some directions for which unique points a, b, and ¢
cannot be assigned. Instead, we have sets of triples of support points ¢ and ¢
and midpoints b. The resulting vectors a — b form line segments that we can add
to F(B).

More formally, F(B) is the set of points z for which there exist points a =
(24,¥a) and ¢ = (z.,¥.) on the boundary B(B) and a direction (u,v) # (0,0) in

20 POLYGONAL PENS

®? where B is contained in the strip

{(z,9) | uzs + vya < uz + vy < uz, + vy, }

and z = a(a - c) for some a in the interval [0, 1].

It is not hard to show that the boundary of F(B) can be obtained by re-
stricting a = % in the above definition, and that this boundary is piecewise real
analytic. Thus F(B) satisfies our requirements for brush shapes. The following
lemma gives an alternative characterization of F(B).

Lemma 3.3.1. If B is a convex brush then F(B) is the set of all (a - c)/2 for
a,c € B.

Proof. If z € F(B) then z = a(a — ¢) where 0 < a < 7 and {a,c¢} C B. Thus
z = (a - ¢')/2 where ¢' = a + 2a(c — a). Since the point ¢’ is between a and ¢, it
follows by convexity that ¢’ € B.

Conversely let z = (a — ¢)/2 where {a,c} C B. If z = (0,0) then trivially
z € F(B). Otherwise, consider all possible pairs of points (a’,¢’) in B such that
a' —c' = f3z for some real number S, and fix ¢’ and ¢’ so as to maximize B. Clearly
B 2 2, and thus z = a(a’—¢') where @ = 1/8 € (0, 1]. 1t only remains to be shown
that B has a pair of parallel supporting lines containing the points a' and ¢'.

Consider the convex sets

Sar = {(%,v)| @' + €(u,v) € B\ B(B) for some ¢ > 0}
and
Se = {(u,v)] ¢' + €(u,v) € B\ B(B) for some € > 0}.

We shall use the notation p + 5 for the set of all points p + ¢ where p € R?,
S C R?, and ¢ € S. If some point 2 lies in B\ B(B) then z — a’ € S, and
z—c' € Sy; i.e., the interior of B is contained in (a' + Sa) N (¢’ +). We can
also assume that S,; and S, are disjoint because otherwise if (u,v) € S NS,
then a’ +€;(u,v) € B\ B(B) and ¢’ + €;(u,v) € B\ B(B) for some €;,¢; > 0. If we
choose € < min(e,€2) then the two points a” = @' + €(u,v) and ¢ = ¢’ + €(u, v)
in the interior of B satisfy a” — ¢ = o' — ¢/ = iz, contradicting the maximality
of S.

It is well known that for any two disjoint convex sets there must be a sep-
arating line between them so that the two sets lie on opposite sides of the line.
Let £ be such a line separating S, and S.. Since the origin is on the boundaries
of both S, and S., we can assume that (0,0) € £. Thus a’ + £ and ¢’ + £ are the
required supporting lines. N

Theorem 3.3.2. If B is a convex brush then B and F(B) have the same width
as a function of angle.

Proof. Let (u,v) € R? be a nonzero direction vector; and let @ = (z,,¥,) and
¢ = (z.,y.) be two supporting points of B so that

BC{(z,y)|la<uz+vy<lI.}.

POLYGONAL PENS 21

where l, = uz, +vy, and I, = uz,+vy,. If we can show that F(B) has supporting
lines uz + vy = (lo — 1.)/2 and uz + vu = (I, — I;)/2, then it follows that both B
and F(B) have width |l — I.| /{/u? + v? in the (u,v) direction.

To show that F(B) has the desired supporting lines, we first use Lemma 3.3.1
to show that F(B) contains points (e — ¢)/2 on the lines uz + vy = £(l, —I.)/2.
Lemma 3.3.1 shows that an arbitrary point z € F(B) may be written as (a’'—¢')/2,
where {a',c'} C B. If ¢’ = (z4,¥s) and ¢’ = (z,y~) then uz, + vyr and
uzy + vys are both between [, and /.. Thus the dot product of (a' — ¢’)/2
with (u,v) has absolute value less than |l — [.]| /2, and therefore z is between the
lines uz + vy = (I — I.)/2. This shows that uz + vy = £(la — I.)/2 are the
required supporting lines. H

Chapter 4

Algorithms for Generating Polygonal Pens

Now that we have seen the advantages of polygonal pens, it is natural to ask
how one goes about approximating an arbitrary convex brush B with a suitable
pen P. If the brush is not convex, it is necessary to find its convex hull and use
some other algorithm to remove the unwanted parts of the resulting pen. The
theory that we have developed does not apply to non-convex shapes, so there is
no reason to force them to be polygons except for ease of computation. From now
on, we shall assume that all brush shapes are convex.

Before we go any further, we need a way of measuring the quality of the
approximation. Let the error of P in approximating B be

E(P,B) = max(r:lea%(d(z, B), maxd(z, P))

where d(z, S) denotes the distance between z and the closest member of S.

Actually, the process of generating pens is more than just approximation;
another way of looking at it is that the pen P is a version of B with subpixel
corrections to ensure accurate stroke weight. The approximation process has the
effect of determining the width of the envelope as a function of the trajectory
direction. We can choose the width to be as accurate as possible for simple rational
directions where the possibilities are widely separated. In other directions, the
choice is forced but we can still keep the unevenness of digitized envelopes under
control.

We first consider the problem of generating a convex polygonal pen to ap-
proximate a brush that is symmetrical about the origin. This special case is very
important in practice, because the brush shapes tend to have such symmetry.
Even when the brush B is asymmetrical, we can reduce to the symmetrical case
by replacing B with F(B). Section A.3 in the appendix discusses methods for
modifying a pen created to approximate F(B) so that it approximates B.

4.1. Generating symmetrical pens

When B is symmetrical about the origin, we naturally want to approximate
it with a pen P that is also symmetrical. The following lemma shows that we are
justified in restricting our attention to symmetrical P because they always yield
better approximations to B.

Lemma 4.1.1. If B is a symmetrical brush, then E(F(P),B) < E(P,B) for any
pen P.

Proof. The first step is to show that for any point p = (zp,y,) € F(P), there
exists a point g € P such that d(q,B) > d(p, B), where d is the distance function

22

ALGORITHMS FOR GENERATING POLYGONAL PENS 23

used to define E. It is well known that if a point p is a distance § away from a
convex set B, then B has a supporting line that separates p from B and is at a
distance of 6 from p. Let 6 = d(p, B); and let uz + vy = [be such a supporting line
for B, where (u,v) has unit length, [> 0, and uz, + vy, = | + §. By symmetry,
uz + vy = —! is also a supporting line for B, and thus d((:c,y),B) > |luz + vy| -1
for any point (z,¥).

Lemma 3.3.1 allows us to assume that p = (@ — ¢)/2 where {a,c} C P. Hence

(uzq + vye) — (uz, + vy,) = 2(1 + 6),
where a = (z4,¥,) and ¢ = (z,,¥.); and therefore
max (|uz, + vyq|, |luz. +vy:|) > 1+ 6

so that either d(a,B) > é or d(c,B) > 6.

It remains to be shown that d(p, F(P)) < max(d(p,P),d(—p,P)) for any
point p = (zp,yp) € B. As before we can assume that F(P) is contained in the
strip |uz + vy| < I, where uz, 4+ vy, = [+ 6§ and § = d(p, F(P)). Theorem 3.3.2
implies that P is contained in a strip lo+I! < uz+vy < lo—I for some real number [/y.
The dot product of p with (u,v)is £(I+6). If [y < Othenl+6> (lo+1)+6

otherwise —(I+6) < (I—lp) — 6. Thus max(d(p, P),d(~p,P)) > é as required. N

Lemma 4.1.1 allows us to restrict our attention to symmetrical P, and The-
orem 3.1.3 immediately leads to the conclusion that the vertices of P lie in the
set %Zz of half integer pairs. Let us see how this observation relates to the ideas
about stroke width from Chapter 2.

Recall that when (u,v) is a reduced rational pair, a pen P has a good width
in direction (u,v) only when the width is a multiple of 1/4/u? + v2. Therefore it
is most important to select the optimum width in simple rational directions where
the quantization is large.

The best way to scan simple rational directions is to generalize the concept of
a Stern-Peirce tree ([14], exercise 4.5.3—-40) to a “Stern-Peirce wreath” as follows:
Start with four nodes (1,0), (0,1), (—1,0), and (0,—1) arranged in a circle in
that order, and successively add a new node (u+u',v+v') between each pair of
consecutive nodes (u,v) and (u',v’) until some stopping criterion is satisfied.

It is not difficult to prove that consecutive directions (u,v) and (u',v’) on the
wreath always satisfy

wv' —vu' =1 and wu' +vv' >0. (4.1.1)

Thus we see that the vectors (v, —u) and (v', —u’) each span exactly one class with
respect to (u”,v") = (u+u',v+v'); i.e., adding (v, —u) or (v', —u') to a point (z,y)
adds 1 to the class number u"z + v"y.

The basic idea of the algorithm is to use the Stern-Peirce wreath to generate
simple rational directions, and to choose edges in those directions as close as
possible to the edge of B. Suppose B has width w and height h. We start with a
|lw+3] by |h+1] rectangle and add new edges by slicing off corners. Because of the

24 ALGORITHMS FOR GENERATING POLYGONAL PENS

symmetry we need to represent edges only when v > 0 as we go counterclockwise
around the polygon.

We can associate a class number with each edge in the following manner: An
edge in direction (u,v) has class number c if the current version of P is ¢ units
wide relative to (v, —u) classes. Another way of looking at it is that the edge lies
on the line vz — uy = ¢/2. The beauty of this definition is that we can compute
class numbers very easily as we generate directions with the Stern-Peirce wreath.
If the edge in direction (u,v) has class number ¢ and if the edge in the adjacent
direction (u',v’) has class number ¢’, then their intersection point lies on the line
v"z — u"y = (c + ¢')/2 where (u",v") = (u+u',v+v'). In other words, the class
number of the new edge is the sum of the class numbers of the edges incident on
the corner it cuts off, minus the number of (v”, —u"") classes between the new edge
and the corner.

Consider a closed path Xg(t) = (zs(t),ys(t)) defined on [a,b] such that
X goes counter-clockwise once around the boundary of the convex brush B as ¢
increases from a to b. Let B(u,v) be a function that returns a point in the range
of Xp at which (zi3,ys) is a postive multiple of the direction (u,v). The exact
nature of this function depends on what kind of shape B has and how that shape
is represented, but the computation is usually not difficult. This function is in a
sense the core of the following algorithm. The algorithm also occasionally needs to
find points where the boundary of B intersects a given line £. In counterclockwise
order the two intersections will be called I1(B,£) and I>(B,£).

The algorithm operates on a data structure that consists of a sequence of
edge nodes and vertex nodes, which strictly alternate. If p is a vertex node then
we shall refer to the nodes for the edges incident on p as p; and p,. For each
vertex p we store its coordinates z(p) = (z(p), y(p)); for each edge e, we store a
reduced rational pair w(e) = (u(e),v(e)) giving the direction and two “lengths”
li(e) and ri(e), whose meaning will be explained later. If e is preceded by a vertex
node p and followed by a vertex node g, then 2(q) — z(p) = (li(e) + ri(e)) - w(e).

In a real implementation it may be desirable to store the edge information in
the two adjacent vertex nodes instead of in separate nodes, or perhaps a similar
trick could be used to eliminate the vertex nodes. In addition, it is possible to
save space by deleting the auxiliary information when advancing p in Step 3 below,
since at this point there is no more processing to be done on that vertex.

Any edge e in the data structure determines a directed line segment £(e) as
follows: If p is a vertex node adjacent to e then £(e) is the set of points z(p)+tw(e)
for real numbers ¢, and the direction associated with £(e) is w(e). Let R(e) be
the set of points to the right of {(e), and L(e) be the set of points to the left;
ie., (z,y) € R(e) if v(e)z — u(e)y > v(e)z(p) — u(e)y(p) and (z,y) € L(e) if
v(e)z—u(e)y < v(e)z(p)—u(e)y(p). For convenience, we shall let R(e) = R(e)Uf(e)
and L(e) = L(e) U £(e).

To simplify the following presentation, we introduce functions r(z) = 1|2z +
3] and r4(z) = 1[2z — }] that round to the nearest multiple of 1. (The only
difference between these functions is that r4 rounds downward in ambiguous cases
while 7 rounds upward.) We shall also use the notation ((a:l, n), (z2, yg)) for the

ALGORITHMS FOR GENERATING POLYGONAL PENS 25

dot product z1z2 + y1¥2.

Algorithm 1 (Symmetric brush to symmetric pen).

1) Let (z1,11) = —B(1,0) = B(-1,0) and (z2,y:) = B(0,1) and initialize the
data structure to (ey, vy, €2, v2, €3) where

z(v1) = (r(z2), —r(11)) 2(v2) = (r(22), (31))
w(er) = —w(es) = (1,0) w(ez) =(0,1)
li(ez) = r(y2) + r(11) ri(er) = r(z2) — r(—21)
l(es) =r(z2) +r(-z1) rl(ez) =r(3n) — r(2)-
Finally set p < v; and go on to Step 2.
2) Let (%,9) = w(p) + w(pr) and z2 = B(%,v). If either B(u(p1),v(p1)) or
B(u(p-), v(pr)) belongs to R(p;) N R(p-), then set § — 0 and go on to Step 3.

If z € R(p,) N L(p), then set z — I;(B,p,); otherwise if Z € R(p;) N L(p-),
then set Z «— I(B,p;). The number of (-7, %) classes to cut off at vertex p is

6= min(rl(l’l), ll(Pr)a rd(((_f’v 1_‘)’ zZ - Z(p))))

3) If § > 0 then go on to Step 4. Otherwise advance p to the next vertex and go
to Step 2, but halt if there are no more vertices to advance to.

4) Insert a new vertex ¢ and a new edge ¢; between p and p,. (Thus the edge
that was p’s right neighbor becomes ¢’s right neighbor, and we now call it ¢,.)
Now update the data structure as follows and go on to Step 5.

z(q) < z(p) + 6 - (u(‘Ir)»'U(‘Ir)) U(gr) « l(gr)—6
2(p) — 2(p) = § - (w(m),v(p)) rU(m) — rl(p) = 6
w(‘]l) A (ﬂa 1—’)

5) If ri(p;) = 0 then set li(q) « 0; otherwise if l/(g,) = 0 then set ll(q:;) < §&;

otherwise set o
U(q) —r («“’”)’ £ Z(”))) . (4.1.2)

u? + 2

Now set rl(q;) « 6 — ll(¢;) and go back to Step 2. 1

When this algorithm halts it has computed only half of a polygon. If p;, p2,
..., P are the vertices in the data structure, then the vertices of the pen polygon
are

(Z(pl), Z(p2),) Z(Pk), _'z(pl)a —'z(pZ), ceey _Z(pk))'

Another interesting property of the algorithm is that it deals with null edges; i.e.,
edges e such that ll(e) = rl(e) = 0. This means that it may be necessary to
remove some repeated vertices from the above list.

Figure 7 shows an example of the results of Algorithm 1. The computed pen
is shown as a bold polygon, superimposed on a } unit grid along with the outline
of the brush shape to be approximated. This is the same brush shape as shown in
Figure 6b. It has (z;,y1) = (.48,3.79) and (z2,¥2) = (4.25,1.01).

26 ALGORITHMS FOR GENERATING POLYGONAL PENS

Fig. 7. A polygonal pen generated by Algorithm 1.

Table 1. A trace of Algorithm 1 applied to the example of Figure 7.
wp) ri(p) z(p) Ulpr) wlpy) (4,9 & U(g) ri(q)

(,0) 45 (4.0,-40) 50 (0,1) (1,1) 30 15 15
(L0) 15 (1.0,-40) 15 (1,1) (2,1) 1.0 .5 5
(L,0) 5 (00,-40) 5 (21) (31 5 5 00
(L,0) 00 (-5,-40) .5 (3,1) (4,1) 0.0
(31 00 (1.0,-35) 00 (2,1) (52) 0.0
(21 5 (20,-30) .5 (1,1) (3,2) 0.0
(,1) 15 (4.0,-10) 20 (0,1) (1,2) .5 0.0 5
(L,1) 1.0 (35-15) 00 (1,2) (2,3) 0.0
(L,2) 5 (40, -5 15 (0,1) (1,3 5 .5 00
(1,2) 00 (35-150 .5 (1,3) (2,5) 0.0
(1,3 00 (40, 00) 1.0 (0,1) (1,4) 0.0
(0,1) 30 (40, 40) 35 (-1,0) (-1,1) 20 .5 15
(01) 1.0 (40, 20) .5 (-1,1) (-1,2) 0.0
(-1,1) 15 (20, 40) 15 (-1,0) (-2,1) 1.0 00 1.0
(-1,1) 5 (30, 300 00 (-21) (-3,2) 0.0

(-2.1) 1.0 (1.0, 40) .5 (-1,0) (-3,1) .5 0.0 5
(-2,1) .5 (20, 35) 00 (-3,1) (=52) 0.0
(-3,1) .5 (.5, 40) 0.0 (-1,0) (-4,1) 0.0

Table 1 shows how Algorithm 1 works on this example. The first seven
columns show the state at the end of successive invocations of Step 2 of the algo-
rithm, and the following two lemmas explain the meaning of the point Z that is
used in that step. The first lemma gives a basic property of convex sets, and the
second lemma uses this to show how Zz is placed. Note that 2 is a point of support
of a convex set S in a direction (%, ?) if and only if Z lies on a directed supporting
line for § whose direction is (&, ?).

Lemma 4.1.2. Let S C R? be a convex set; let H be an open halfplane with
boundary B(H); let g be a linear function from R? to R, not constant on B(H);
and let A be a point on S N B(H) where g is maximized. If there exists a point
C € §N H such that g(C) > g(A), then the maximum of g on S\ H occurs at A.

ALGORITHMS FOR GENERATING POLYGONAL PENS 27

If C' can be chosen so that g(C') > g(A) then the maximum of g on S occurs only
at pointsin SN H.

Proof. Let f be a linear function from R? or R such that H = { P | f(P) > 0},
and suppose that there exists a point P € § such that f(P) < 0 and g(P) > g(4).
If there is a point C' € § such that f(C) > 0 and g(C) > g(A), then there is a
point ¢ on the line segment joining P to C such that f(Q) = 0. The linearity of ¢
implies that g(@) > g(A), and the convexity of $ implies that Q € S. Since this
contradicts our choice of A, the maximum of gon SN{P| f(P) <0} =8\ H
must occur at A.

If g(C) > g(A) and the maximum of g on S occurs at D, then g(D) > g(C) >
g(A). Thus by the result just proved, D ¢ S\ H,hence De SN H. |

Lemma 4.1.3. Let L, = L(p;)N L(p,) at the end of Step 2 of Algorithm 1. Then
either Z is a point of support of BN L, in the direction (u,%), or B contains a
point zy on the boundary B(R,) where R, = R(p;) N R(p,). Furthermore, if B
intersects R, then 6 < 0 at the end of Step 2.

Proof. If B(4, %) = z(p), then either we immediately set § < 0 and go on to Step 3,
or we set Z = z(p) and then compute § = 0. Letting 2o = 2(p) satisfies the lemma.

If B(%,%) € Ly \ {z(p)} then B does not intersect R,. Since z € L,, the rest
of Step 2 does not change Z and Z is the required supporting point.

Otherwise we can assume without loss of generality that B(u,7) € R(p,).
If either B(u(p:1), v(p1)) or B(u(p-), v(p-)) belongs to R, or B(%,%) € R,, then
BN R, contains some point z;. Since (0,0) € B\ R,, the convexity of B allows us
to construct a point 29 between (0,0) and 2; such that z, € BN B(R,).

We are left with the case where B(#%, %) € R(p,)NL(p;) and the algorithm does
not immediately skip on to Step 3. Let H = R(p,), and let g(P) = (P, (v, %))
so that maximizing g(P) on a convex set locates a point of support in the direc-
tion (@,v). Thus if we let § = B, Z = I(B, p,) satisfies the requirements for the
point A in Lemma 4.1.2, and B(%, 9) satisfies the requirements for C. Lemma 4.1.2
shows that the maximum of g on B\ R(p,) must occur at z. Hence Z is a point of
support for this set in the direction (%,%). If Z € L, then Z clearly is also a point
of support for BN L,; otherwise z is the point z required by the lemma.

We must now show that § is not set positive when B(%, %) € R(p,) and BN R,
is nonempty. Since ((-%,%),z — 2(p)) < 0 for z € R,, it is sufficient to show
that either B(u(pi),v(pi)) € R, or I1(B,p,) € R,. If B intersects both R, and
L(p-) N R(p:), then it must contain some point on the dividing line £(p,) N R(p:),
and thus I;(B,p,) € £(p,) N R(p)) as required. If B N R(p;) does not intersect
L(p,), then BN R(pi) C R,. Hence B(u(p),v(p)) € Ry as required.

When é > 0 in Step 2 so that a new edge can be inserted, the last two
columns of Table 1 show the “lengths” computed for it in Step 5. Notice that
rl(q1) + ll(q;) = 6 whenever these lengths are given. The meaning of this is that ¢
is the total “length” of the new edge in the sense that the displacement between
opposite ends of the new edge is § - (%,%). The two length fields give similar

28 ALGORITHMS FOR GENERATING POLYGONAL PENS

displacements between the ends of the new edge and a special point ¢(g;) on g;:

(@) - 2(p) = ll(q) - (%,%) and 2(q) - {(a) = ri(q) - (&, D).

The following lemma shows that for any edge e, the point {(e) is actually between
the endpoints of e.

Lemma 4.1.4. For all edges e during the entire course of Algorithm 1, li(e)
and rl(e) are nonnegative integer multiples of %

Proof. The lemma clearly holds after Step 1. When 1(g,) and rl(p;) are updated
in Step 4, 6 is an integer multiple of } no greater than min (!I(p;), rl(gr)). The
only other time the Il and rl fields are updated is in Step 5 where ll(q;) is set to 0
or § unless 0 < 6§ < min(rl(p;), ll(p,)) at end of the previous invocation of Step 2.
In this case |6 — ((-3,%),% - z(p))| < 1 at the end of Step 2, and thus by (4.1.1),
((-%,%),Z—2(p)) < 1in Step 5. Since Lemma 4.1.3 shows that z € L(p))n L(p,)
at the end of Step 2, we have

Az - 2(p)T = (Z) where A= ("”(P:) “(?z)) Ca>0, b<

- 7]

.

Now (4.1.1) shows that det A = 1 and 0 < u(p;)% + v(p;)% < @? + 92, hence

u —u a u(p;) B a2 + 52
(ﬂ,ﬁ)(f—z(p))T=(ﬁ,a)(:_‘ _vgg) (b) > _uUp) :v(p:) 5 :

so that ll(g;) > 0 as required.
A similar argument suffices for

ri(q) = -r ((('7’ ?), 2~ Z(q))) ,

ﬁ2+52

except we use the (—,%) and (—v(g-),u(g-)) components of z ~ z(g) and solve
for the (,%) component. Thus rl(q;) = —r(z) wherez < 1. 1

Corollary 4.1.5. If Step 2 of Algorithm 1 sets zZ and é such that z € L, =
L(p)NL(p,) and § < 0 < min(ri(p1), U(p,)), then |((2,9),Z - 2(p))| < }(a*+2?)
and 0 < [{(-9,2),2 - 2(p))| < §-

Proof. Let wyo(e) denote (—v(e),u(e)) for edge nodes e. Since z € L,, we
have (w,o,,(pl),i - z(p)) > 0 and (w,ot(pr),i - z(p)) > 0. Thus § > 0, where
b0 = ((—9,2),% — 2(p)). The requirement that |6,| < 1 immediately follows from
Td(éo) =6 S 0.

In the proof of Lemma 4.1.4, we showed the following: if ((~9, @), z—2(p)) < }
and (wyoe(p1), 2— 2(p)) > 0, then ((, v),2—2(p)) > ~(#%+%?%)/4; and if (-9, %),
z - 2(q)) < % and (wrot(gr), 2 — 2(g)) > 0, then ((%,%),z — z(q)) < (#? + 9%)/4.
Letting ¢ = p completes the proof of the corollary. §

ALGORITHMS FOR GENERATING POLYGONAL PENS 29

When the algorithm creates a new edge and implicitly places ((g;), this point is
retained on the polygon throughout the rest of the computation. For this reason,
we shall refer to £((¢;) as retention points. The purpose of retention points
is to guarantee that when new edges are added to the polygon, the width in
direction (—7, %) is never allowed to decrease.

In general there is a retention point ((e;) for each edge e; in the data structure,
but some of these points may coincide. Whenever a new retention point is placed
on the (%,7) edge in Step 5, it is placed as close as possible to Z subject to the
constraint that both components must be integer multiples of -;— The following
lemma states some important consequences of this placement strategy.

Lemma 4.1.8. At the end of Step 5 in Algorithm 1, ((~1‘),ﬁ),((qz) -z) < %.
Furthermore if ((q1) ¢ {¢(p),((gr)}, then |((%,7),{(q) — 2)| < (& + #*)/4 and
[{(=%,2), (@) - 2)| < %

Proof. If Step 2 of Algorithm 1 does not set Z, or if at the end of Step 2, z ¢ L,,
where L, is as defined in Lemma 4.1.3, then Lemma 4.1.3 shows that § < 0 and thus
Step 2 is immediately repeated. Otherwise if we let 6§ = r4({(-%,%), Z — 2(p))),
then & < & at the end of Step 2, and either § € {ri(p;), Ul(pr)} or § = 6.

It follows from (4.1.1) that Step 4 causes both endpoints of the new edge to
lie on the line ((—ﬁ,ﬁ),(z,y) - P) = 6§, where P is the vertex z(p) from Step 2.
Hence

((-9,2), (@) - P)=6<6<((-,8),Z2— P) +
and ((—ﬁ,ﬁ),((ql) - 2) < } as required.

Now let A = ({(p;) and B = ((p,) at the end of Step 2, and let C = ((q;) be
the retention point on the newly added edge at the end of the following invocation
of Step 5. If § = ri(p;) after Step 2 then ri(p;) = 0 in Step 5, and thus C' = A4;
otherwise if 6 = ll(p,) after Step 2, then C = B after Step 5. Either way {(q) €
{¢(p1),¢(gr)} at the end of Step 5.

In the remaining case § = 6, and (4.1.2) is used to set ll(g;). Letting P be
the vertex z(p) from Step 2,

((-3,@), (@) - P)=6=82>((-v,u),z— P) — }

and % > ((—ﬁ,ﬁ),((q,) - 2) > —;14-. The lemma also requires |((ﬁ,1‘1),((ql) - 2)| <
(#? + ©%)/4, but this follows immediately from (4.1.2). 1

T

We still need three more lemmas dealing with properties of Algorithm 1. The
first of these gives conditions under which more than one point on an edge must
be retained on the computed pen.

Lemma 4.1.7. Let v; and e be consecutive nodes in the data structure at some
point in the execution of Algorithm 1, such that z; = z(v;) and z, are the endpoints
of the edge e and z,—z = (ll(e)+ri(e))-w(e). If the intersection of B with the line
segment 22, is a segment AB, then the pen P computed from B by Algorithm 1
contains points A' = A + aw(e) and B' = B + bw(e), where |a| < } and |b| < §.

Proof. Let I = ll(e) + rl(e) and choose ag so that A = 2z + apw(e). Clearly
0 < ag < 1. Now let a’ = r(ap), let A’ = z; + a’w(e), and let @ = a’' — ap so that

30 ALGORITHMS FOR GENERATING POLYGONAL PENS

le| < §. Since 0 < r(ap) < I when 0 < ap < I, we know that A is on the edge
denoted by e.

In order to show that A’ € P, it suffices to prove that for ¢ 20,ifpy=e
in Step 2 and A’ — 2(p) = —cw(py), or if p, = e and A’ - 2(p) = cw(p,), then
¢ 2 é. In both cases, either 6§ < 0 or A € BN L, and Lemma 4.1.3 shows that
C(2) < C(A), where C(z) = ((—7,%), z) for all z. Thus

8 <ra(C(2 - 2(p))) < ra(C(A - 2(p)) < C(A-2(p)) +}
=C(A+auw(e) - 2(p)) + L —aC(w(e)) =c+ 1 - aC(w(e)) < c+ 1.

We know that § is an integer multiple of -}; if we can show that c is also, then we
have ¢ > § as required. This is true initially since the difference between A’ and
either endpoint of e is a half integer multiple of w(e). The rest of the algorithm
preserves this invariant because the endpoints of e are only updated in Step 4
where 26 € Z.

Since we have used no properties of A other than that it lies on the seg-

ment AB, the same argument also proves the existence of the required point
B'eP. 1

Lemma 4.1.8. Suppose there is a point (z,y) € B such that |z| > z(vy) and
ly| > y(v2), where (z(v2),y(v2)) is as computed in Step 1 of Algorithm 1. Then
d((z,y),P) < V2/4, where d denotes Euclidean distance and P is the pen com-
puted from B by Algorithm 1.

Proof. Since |z| < 23 < z(v1)+§ = z(v;)+} and [y <1 < y(m)+ 1 = L —y(w)
in Step 1, it follows that (z,y) is at a distance of less than v/2/4 from some
point +2z(v;), where i = 1 or 2. Thus we need only show that z(v;) € P.

We can always choose i and (Zo,%) = +(z,y) so that either i = 1, zo >
z(n1), and yo < y(un), or i = 2, zo > z(v3), and yo > y(vz). If i = 1 then
(z0, %) € BN R, when (%,%) = (1,1). Hence Lemma 4.1.3 shows that p passes v;,
and thus z(v1) € P. If i = 2 then a similar argument shows that z(v;) € P. Ui

Lemma 4.1.9. Consider the state of Algorithm 1 at the beginning of Step 2; let
zq be the vertex following 2z, = z(p); and let AB be the intersection of B and
the segment zp2z,, where A = (z4,y4), B = (zB,yB), and B — A is a positive
multiple of w(p,). Let P be the pen computed from B by Algorithm 1; and let
Hy = {(2,3) | Cplz,v) } and H, = {(2,3) | Cy(2,9) }, where

z>zp ifu(p,)>0;

y<ya ifu(p,)>0; C = i =)
= . ’ = < fw r) = (=1,0);
Cp(z,9) {z >z4 ifu(p,)<0; o(®9) ; > ;: :;the(fwz)'se. ()

If BN R(p,) intersects Hy, then z, € P; if BN R(p,) intersects H,, then z, € P.

Proof. Let H = R(p,), and let g be such that H, = { P | g(P) > 0}; e.g., we
may take g(z,y) = ya — y if u(p,) > 0. Let (uo,v) = (1,0) if u(p,) > 0, and
(u0,v0) = (0,1) if u(p,) < 0, so that the maximum of g on B occurs at B(uo, v).
Applying Lemma 4.1.2 with § = B shows that if B N R(p,) intersects Hy, then
B(uo,v0) € R(pr).

ALGORITHMS FOR GENERATING POLYGONAL PENS 31

If B(uo,v0) ¢ L(pi) then BN R, is nonempty, and thus Lemma 4.1.3 shows
that § < 0 at the end of the current invocation of Step 2. This leaves z, € P as
required.

It remains to be shown that z, € P when B N R(p,) intersects H, and
B(uo,v0) € R(p,) N L(p). The direction (uo,vo) has been chosen so that the
dot products of w(p;) and w(p,) with (uo,vo) and (—vo,uo) are all nonnegative.
Thus B(uo,v0) € R(pr) N L(p:) C (Q + 2p), where

Q = {(z,y) | woz + voy > 0 and — vz +uoy >0}

Let e; be the edge such that w(e;) = (uo,v). Step 1 creates a retention
point ((e;) that is obtained from B(uo,vo) by rounding its coordinates to half
integers. Since z, has half integer coordinates, such rounding maps @ + 2, into a
subset of itself. Thus ¢(e;) € Q + zp. The difference 2z, — ((e;) is a sum of positive
multiples of w(e) for edges e between e; and p,. Since w(e) € @ for all such e, it
follows that z(p) — ((e;) € Q. Hence ((e;) = 2z, and z, € P.

To show that z, € P when B N R(p,) intersects H,, use B in place of A,
modify g so that H, = { P | g(P) > 0}, and redefine (uo,vo) as follows:

(0,1) if u(p,) > 05
(4o, v0) = { (0,-1) if w(p,) = (~1,0);
(-1,0) otherwise.
An argument similar to the above allows us to assume that B(uo,v0) € R(p-) N
L(g,), where g, is the edge following p, in the data structure. (If there is no such
edge, then w(p,) = (—1,0) and we can replace L(g,) with —L(e) where e is the

first edge such that u(e) > 0.) Replacing z, with 2z, in the above argument shows
that z, = ((e;), where w(e;) = (uo,v0). N

We are almost ready to use the above lemmas to get a bound on the error
E(P, B), where P is the pen computed from B by Algorithm 1. The proof will be
based on the fact that if a point P is at a distance d from a convex region S, then
there is a separating line for P and § that is at a distance of at least d from P.
Specifically, there is a directed line £ such that no point of § is to the right of /,
and P is d to the right of £; i.e., P is to the right of £ and the distance between P
and £ is at least d. The line £ is a called a directed d separating line for P and S.
For any point P and convex region S, there is a directed d separating line with
direction (u,v) if and only if P is d to the right of £, where £ is the supporting line £
of § with direction (u,v). Thus the distance from a convex set S to a point P is
the maximum d such that P is d to the right of £ for some directed supporting
line £ of S.

Lemma 4.1.10. Let ¢; and £, be directed supporting lines for the convex hull
of a set of three distinct, non-collinear points {Py, P;,Q} such that £; contains
P; and has direction w; = (ui,v;) for ¢ = 1,2. Suppose that there is a directed
separating line for Q and the segment P, P with some direction w3 = (u3,v3) such
that uyvs > uzv; and uavy > vauy. The direction of any other directed separating

32 ALGORITHMS FOR GENERATING POLYGONAL PENS

line for @ and the segment Py P; must be a nonnegative linear combination of
either wy and w3 or of wy and wj.

Proof. Let (a1,a3,@a3) # (0,0,0) be such that a;w; + asw; + azw; = (0,0) and
a; 2 0. Taking the dot product with (—v3,u3) yields a;a + a28 = 0 where a < 0
and 8 > 0. Thus a; and a; are both positive. (They cannot both be zero because
w3 # (090)°)

If ¢ji = (Pj — Q,(—vi,u;)) for i = 1,2,3 and j = 1,2, then the given infor-
mation can be summarized as follows:

e L0, €12 2 ¢22, c¢13>0,
€1 2¢n1, 2250, 23 > 0. (4.1.3)

Let wy = (u4,v4) = bywy + b3ws be the direction of a separating line for Q
and {P;, P,} so that

bicj1 + bacjs = (Pj — Q,(~vq,uq)) >0 for j=1,2.

wg = bywy + bjw; and by > 0, then bhcyz < 0 and therefore bycez > 0 and b} > 0.
Substituting w; = —(az/a1)w; — (a3/a1)w; shows that by > 0 when b; < 0. Thus
either b1,b3 > 0 or 45,05 > 0. |

If by > 0 then by¢11 < 0, hence b3c;3 > 0 and therefore b3 > 0. Similarly if

Lemma 4.1.11. Let (u,v) and (%,%) be reduced rational directions such that
uv—-vu=1, %v20, »,%>0, and either (u,v) = (1,0) or (& > u and 5 > v).
If (z,y) € R? satisfies —y < ©/4 and oz — Gy < %, and if (v',v') is a nonnegative
linear combination of (u,v) and (4,7%), then

)
v'z uy<\/§

Vo
Proof. Assume without loss of generality that (v',v') = (1 - @) - (%, %) + a - (4, v),
where 0 < a < 1. Thus v’z — v’y = (1 - a)(9z — 4y) + a(vz — uy). Since
B(vz — uy) = v(vz — 4y) + y(vi — ud) = v(vz - 4y) -y < v/4+ B/4,
we have vz — uy < (1 + v/%), and thus

v'z—u'y = (Bz-ay)(1-a)+ (vz-uy)a < }(1-a)+ (1 +v/8)a = 21 +av/?).

It remains to be shown that 1+ av/% < /2\/u + ™.

First consider the case where (u,v) = (1,0) so that 1 + av/5 = 1. We then
need /u? + 92 > 1/+/2, but this follows directly from the fact that v’ + v’ =
l-ea)z+v)+a(ut+v)>1.

Otherwise w' = u+ (1-a)(t~u) 2 vand v = v+ (1 - a)(¥ — v) > v, s0
that 2 < u? + v? < u? 4+ v"2. Hence

1+ av/3 <2< /2/u? + % < /2\/u? + o7

as required.

ALGORITHMS FOR GENERATING POLYGONAL PENS 33

Theorem 4.1.12. If P is a pen computed by Algorithm 1 to approximate a
symmetrical convex brush B, then E(P,B) < 3.

Proof. We have seen that Algorithm 1 maintains a list of vertices that can be
extended to define a symmetrical convex polygon. At any stage in the computa-
tion, the vertices in the data structure and their negatives (in order) constitute
the vertices of this polygon. The computation defines a sequence of such polygons
P1, Ps, ..., Pi for which Piyy C P; for i < k, and Py is the computed pen P.
Any such polygon P; has directed edges £(e) and —~£(e) for each edge e in the data
structure at the point in computation corresponding to P;. The direction of —¢(e)
is the negative of that of £(e).

Now suppose that there is some point z € B such that d(z,P) > v/2/4, and
consider the first ¢ such that 2 ¢ P;. Either there is a unique directed edge of P;
that z is to the right of, or i = 1 and Lemma 4.1.8 shows that d(z,P) < v2/4,
contradicting the assumption.

Since z is to the right of £(e) if and only if —z is to the right of —£(e) for
any edge e, we may assume that the unique directed edge is {(e) for some edge
node e, where z € R(e) and e is not the first node in the data structure. Let A,
B, A', and B’ be the points on £(e) defined in Lemma 4.1.7, and let £~ and £+ be
the directed edges of P; adjacent to £(e); i.e., their directions should be as close
as possible to w(e). We shall use (v~,v™) for the direction of £, and similarly
(ut,vt) for the direction of £+.

Letting P; and P; be the retention points on £~ and ¢+, and letting Q = z,
Lemma 4.1.10 shows that the direction of any separating line for z and P must be
a nonnegative linear combination of (v~,v~) and w(e), or of w(e) and (u*,v™).

If ¢ = 1 then w(e) = (0,1) or w(e) = (-1,0), and there is clearly no :
separating line for z and £(e) with direction w(e). If i > 1 then Lemma 4.1.3
shows that 2 is to the left of the w(e) directed line through the point z from the
last invocation of Step 2 before edge e is created. Lemma 4.1.6 shows that £(e) is a
distance of less than 1/(41/u(e)? + v(e)?) to the left of the directed line through .
Hence there can be no 1/(4/u(e)? + v(e)?) separating line with direction w(e).

We shall now find a point (zo,0) € £(€) NP such that the following holds for
(z,y) = z: If u(e) > 0 then y > yo — v(e)/4; if u(e) < 0 then = < zo — u(e)/4. If
u(e) > 0 then Lemma 4.1.11 applies to the vector z — (zg, %) and the directions
(v~,v~) and w(e); if u(e) < O then it is necessary to rotate these three vectors 90°
clockwise before applying the lemma. Either way, the lemma allows us to conclude
that there is no v/2/4 separating line for z and {(29, %)} C P with a direction
that is a nonnegative linear combination of (v~,v~) and w(e).

Lemma 4.1.9 determines a point (zo, ¥) that satisfies the above requirements:
If z € Hp then 2, can serve as (g, yo). Otherwise we can let (zo,y0) = A’, because
z ¢ H, and Lemma 4.1.7 shows that A’ — 4 = aw(e), where |a| < I

A similar argument shows that there can be no /2/4 separating line for z and
P with a direction that is a nonnegative linear combination of w(e) and (ut,vt):
If 2 € Hy in Lemma 4.1.9 then let (zo,%) = z,, otherwise let (zo,y) = B'.
Lemma 4.1.11 applies as before except it is necessary to do a more complicated
transformation: If u(e) > 0 then the lemma applies to (u,v), (&,7%), and (z,y)

34 ALGORITHMS FOR GENERATING POLYGONAL PENS

where (ut,v%) = (v,u), w(e) = (3,%), and 2 ~ (z0,%) = (-, ~z);if u(e) <0
then the lemma applies when (ut,vt) = (~u,v) = (-1,0), w(e) = (-4, %), and
z - (zO’ yO) = (i, _y)

We must also show that max,ep d(z,B) < %, or equivalently that P C B’,
where if B’ is the convex set formed by taking the envelope of B with respect to the
circle z2 + 32 < &. We shall show by induction that ¢(e) € B’ for all edges e, and
that 2(p) € B' whenever p advances from a vertex in Step 3. Thus all vertices of
P belong to B’, and hence so does their convex hull. Since P is a convex polygon,
this completes the proof.

Step 1 initializes the retention points to (ra(z1),7(31)), (r(22),7a(32)), and
(r(=z1),7(~1)), all of which are within v2/4 of B and thus belong to B'.

Consider the algorithm in Step 3 when p passes a vertex and 2(p) € B or when
a new retention point is about to be created. Let z be that vertex or retention
point; let & and o be the lengths of (%,%) and w(p); and let § be the angle
between w(p;) and (%, ?) as shown in Figure 8. Lemma 4.1.6 shows that when z is
a retention point, the point Z from Step 2 will differ from z by at most &/4 in its
(@, %) component and 1/(4a) in its (%, &) component. Corollary 4.1.5 shows that
this also holds when z is a passed vertex and z € L,. When z ¢ L,, Lemma 4.1.3
shows that B contains a point 2y € B(R,), where B(R,) is as defined in the lemma.

Fig. 8. A construction for showing why retention points lie close to B.

Consider the case when the absolute values of the (&,%) and (—%,%) com-
ponents of z — z are at most @/4 and 1/(4a) respectively, and suppose there
exists a separating line between 2 and B’. The induction hypothesis implies that
{¢(p1),{(pr)} € B, so that applying Lemma 4.1.10 with £, = £(p;) and £; = £(p,)
shows that any directed separating line for z and B’ must have a direction that is
between w(p;) and w(p,). Assume temporarily that its direction is between w(p;)
and (4,).

Since Z belongs to an @/2 by 1/(2&) rectangle centered on 2, the component
of Z — z perpendicular to the separating line can be at most

cos ¢

16)= 3 (22 +asing)

ALGORITHMS FOR GENERATING POLYGONAL PENS 35

where ¢ is the angle between (4,%) and the separating line. Since @ > 1, this

function is monotone increasing for 0 < ¢ < 45°. Thus f(¢) < f(6), and (4.1.1)
shows that

4 a ;

1 /cos@ 1 _1{y1—-(aa)~? 1
f(@—z(+;)——<“—+)
This is at most % because & > v/2 and a > 1: if a > /2 then both terms are at
most \/5/8; if @ = 1 then the first term is at most 51? and the second term is at
most ;. Thus f(¢) < 2 and the envelope of {Z} with respect to z° +y? < & must
intersect the separating line, contradicting our assumption that z ¢ B'.

If there is a separating line between z and B’ whose direction is between (,?)
and w(p,), then the above argument still applies if we use the length of w(p,) in
place of a. Thus there cannot be such a separating line.

The remaining case is when B contains a point 2z € B (Rp)and z = z(p). Thus
z is on one of the line segments z((p;) and zy¢ (pr), and the induction hypothesis
implies that both endpoints of these line segments lie in B'. By convexity, z € B’
as required. H§

Algorithm 1 has been stripped down about as much as possible while still
retaining the above theorem. It could be speeded up by avoiding null edges in the
data structure, or by not computing B(@,) when B(u(p:), v(p1)) or B(u(p,), v(py))
belongs to R(p;)NR(p,) or when min (rl(p;), li(p,)) = 0. In addition, the quantities
B(u(m), v(p1)), B(u(p,), v(p;)), I2(B, p1), and I (B, p,) could be saved in the data
structure to avoid recomputing them.

It would also be possible to avoid finding I)(B,p,) and I(B,p;) by always
using Z = B(%,?) even when this point is outside of the current pen polygon P;.
This has not been done because this would allow the error E(P, B) to approach 3
as shown in Figure 9. The algorithm works by slicing corners off of the polygon
until it approximates B, and the decision of how much to cut off should be based
only the region P \ B that we wish to remove. Thus Z should be a supporting
point for B N P; rather than a supporting point for B.

o1
"]
"1

Lt

—/ﬁ’—
Fig. 9. A brush shape for which E(P,B) ~ 1 if Step 2 of Algorithm 1 is
simplified.

The most obvious complicating factor remaining in the algorithm is that it
deals implicitly with retention points. Why not just have one “length” field for
each edge, equal to the sum of the !l and ! fields? This would be equivalent

36 ALGORITHMS FOR GENERATING POLYGONAL PENS

to always placing the retention points at the far endpoints of p; and p, when
considering vertex p.

Retention points are necessary because eliminating them can lead to arbitrar-
ily large errors. Consider the infinite class of brush shapes By, By, ..., where B;
is a hexagon whose vertices are

(—g’_g)’ (0"'§)7 '49(0’_';')4'-51(’2&7"%),
£,%), (0,%), and 49(0,%) + .51(-£,1).

Figure 10 shows Bjp and a pen polygon that would be computed from it if Algo-
rithm 1 were modified to avoid retention points as suggested above.

A

Fig. 10. A brush shape and a pen generated from it without using retention
points. Each is superimposed on a half integer grid.

The first edge added in Step 4 would go between (.5, —5) and (5, —.5). Next
the vertex at (.5,—5) would be replaced by an edge of slope 3 from (0,-5)
to (1,—4.5). The vertex at (1,—4.5) is then replaced by an edge of slope £ ending
at (1.5,—4). This process continues with each new vertex displaced by (.5,.5)
from the previous one until there is a line from (0,-5) to (5, —.5). Since this is
followed in the data structure by an edge of length 0 in direction (1,1), the vertex
at (5,—.5) is never removed from the polygon. The error between this polygon
and Bjo is about 1.67 and the general formula for the error in approximating By
is Al(k + 1)/\/1 +)\z/k + /\3/’62 where A\; = .156 and 0 < Az, A3 < .6.

We have seen that Theorem 4.1.12 can fail disastrously if Algorithm 1 is sim-
plified too much, but does the theorem in any sense guarantee that the algorithm
is optimal? Not quite, but the worst case bound of % is nearly optimal. Consider
the class of brushes B;, B, ..., where By is a line segment with endpoints +z,
and 2z = ((2k +1)/4, (2k — 1)/4). In the following theorem, we make use of this
class of “difficult” brushes to show that any pen construction algorithm must have
a worst case error bound of at least v/2/4.

Theorem 4.1.13. For any € > 0, there exists a convex brush B, symmetrical
about the origin, such that E(P,B) > \/2/4 — € for any convex pen P.

Proof. Let By be as defined above. Since limy—o, 1/1/8 + 2/k? = \/5/4, it suffices
to show that for any convex pen P, the error E(P,Bi) > 1/1/8 + 2/k?. Further-
more, we can assume that P is symmetrical about the origin since by Lemma 4.1.1
E(F(P),B) < E(P,B) for any pen P and any symmetrical brush B.

ALGORITHMS FOR GENERATING POLYGONAL PENS 37

Now consider the supporting lines of P perpendicular to the vector (1,1).
They must be of the form z + y = £n/2 for some integer n. If n < 2k — 1 then
d(zx,P) > V2/4; if n > 2k + 1 then any point z on the supporting lines satisfies
d(z,Bk) > V2/4. If n = 2k then P contains a point of the form ((k+35)/2,(k—7)/2)
and of these, (k/2,k/2) is the closest to By and it is 1/4/8 + 2/kZ away. N

4.2. Generating Asymmetrical Pens

The problem of generating a pen P that closely approximates an asymmet-
rical brush B appears to be significantly harder than the analogous problem for
symmetrical brushes discussed in Section 4.1. We can still construct good practical
algorithms analogous to Algorithm 1, but without the 180° rotational symmetry
assumption. However, worst case bounds on the error E(P,B) are not as good
as that of Theorem 4.1.12. The algorithms discussed here have the advantage of
good running time and small typical values for E(P, B).

Our algorithm for finding a pen that approximates a symmetrical brush works
by effectively taking intersections of good width strips of the form |vz — uy| < k/2
for simple rational directions (u,v) and integers k. For asymmetrical brush shapes,
we can simply generalize this to @ — k& < vz — uy < a. For any brush B, it is
always possible to find a real number @ and an integer k so that the supporting
lines of B in the direction (u,v) are within 1/(41/u? + v2) of those of the strip
a—k<vz—uy<a.

In reality there are limitations on the positions of the new edges, so that it
is not always possible to keep the errors less than 1/ (4y/u? + v?). This leads to
an interesting problem: Given real numbers a, b, I, and m with [,m > 0, find «
and f minimizing max(|e — a|,|8 — b|) subject to the constraints

0<a<l, 0Lf<m, and a+pBecl. (4.2.1)

If there is more than one way to do this optimally then we want the one that
minimizes min(|a - a, |8 — b|). We shall call this the pairwise rounding problem.

Once we have decided what a + 8 should be, the problem is fairly easy. The
pair (z,y) minimizing the co-norm distance max(|z — a|, |y — b|) with fixed z + y
is the one where z — y = a — b. In fact the co-norm distance is just

LIz +9) - (@a+)| + |z —v) - (a—b)|)

so it increases linearly as we move away from the point of closest approach. The
possibilities for £ — y form a closed interval and we need only select the value
closest to a — b.

Choosing the best value for o + § is not quite so easy. Figure 11 shows what
regions in (a,3) space have each possible optimum value of a + 8 in a typical
example. The bold diagonal lines represent the possible choices for (a, 3) and the
rectangle shows the bounds of the region 0 < @ <1, 0 < b < m. Thinner diagonal
lines delimit regions of (a, 8) space where particular values of a + 3 are optimal.
These regions can have even more complicated shapes in special cases where [or m
is small.

38 ALGORITHMS FOR GENERATING POLYGONAL PENS

\
N

| |/

IR

Fig. 11. Optimum choices for a + § when ! = 2.375 and m = 2.875

In spite of the complexity it is not hard to find two candidates for o + B, one
of which must be optimal. Let a’ be the point of the interval [0, !] that is closest to
a, and similarly let b’ € [0, m] be as close to b as possible. Then the two candidates
for a + f are |a’ + ¥'| and [a' + b']. For any other pair (e,) satisfying (4.2.1),
there is a similar pair with one of the candidate sums and a strictly closer to a or
B strictly closer to b. Thus, it suffices to just try the two candidate sums and see
which one allows the co-norm to be minimized.

Let us incorporate our ideas into Algorithm 1 by extending the data structures
to store both sides of the polygon being constructed. There are many ways to do
this but the following method involves the least change to Algorithm 1: Each
vertex node p will contain an additional pair of coordinates 2'(p) = (z'(p), ¥'(p)),
and each edge e will contain two more “lengths” ll'(e) and r!'(e). Thus each vertex
node represents two opposite vertices and each edge node represents two opposite
edges. We shall still use B(u,v) = (B.(u,v), By(u,v)) for the point where the
brush boundary attains the direction (u,v).

Each edge e determines two directed lines: If p is a vertex node adjacent to e,
then {(e) is the line of direction w(e) passing through z(p), and £'(e) is the line of di-
rection —w(e) passing through 2'(p). Given two such lines £~ and £+, we can define
a point B(£~, £t 4, %) analogous to the point z computed in Step 2 of Algorithm 1:
Let (u®,v®) be the direction of £%; let I; (B, £%) and I,(B, £*) be the intersection
points of the directed line £* with B ordered so that I;(B, ££) — I;(B, £%) is a non-
negative multiple of (u, v*); and let L(¢*), R(¢£%), and R(£%) be the halfplanes to
the left and right of the directed line £+ analogous to the halfplanes defined for edge
nodes in Section 4.1. If B(x~,v~) € R(£~)N R(¢+) or B(ut,v*) € R(£~) N R(£H)
then B(¢~,¢%,4,%) = B(w,%). If B(g,%) € R(£*) N L(£), then B(L~,€+,%,7) =
Ii(B,£*); if B(4,%) € R(¢) N L(¢*), then B(¢~,£+,a,%) = I,(B,£~). Otherwise
B(t~,t*,,%) = B(a,).

ALGORITHMS FOR GENERATING POLYGONAL PENS 39

Algorithm 2 (Asymmetrical brush to asymmetrical pen).

1) Initialize the data structure to (e1,v1,€3,v2,€3) where

z(v2) + 2'(v2) = B,(0,1) + B,(0,-1), z(v1) = z(vy),
z(v2) — z'(v2) = |B(0,1) — B,(0,-1) + i, Z(m) =2'(v),
y(v2) + ¥'(v2) = By(—1,0) + By(1,0), y(n) = ¢/ (v2),
Y(v2) - ¢'(v2) = [By(=1,0) - By(1,0)+ }], ¢'(w1) = y(v2),
w(er) = —w(e3) = (1,0), w(ez) = (0,1).

2) Use pairwise rounding to find ri(e;) < z(v1)—z'(v1) near z(v1) - B,(1,0) and
rl'(e1) < z(v1)—2'(v;) near B:(-1,0)—z'(v;). Similarly find ri(e;) < y(vy)—
¥(v1) near y(v2) — By(0,1) and rl'(e;) < y(vy) — ¥(v1) near By (0, —1) — y'(v,).
Now set the other “length” fields so that

l(ez) + ri(ex) = ll'(ez2) + rl'(e2) = y(v2) — y(v1),
l(es) = W'(er), I'(es) = li(ey).

Finally set p — v; and go on to Step 3.
3) Let z = B(¢(p1), (pr), %,) and 7' = B(¢'(p), ' (p,), —, ~5), where (4,7) =
w(p) + w(p,). Then use pairwise rounding to find

6 < min(rl(p;), U(p,)) and &' < min (rl'(p;), 1!'(pr))

near ((—9,%), z — z(p)) and ((3,-%), ' — Z'(p)).
4) f 6§ > 0 or § > 0 then go on to Step 5. Otherwise advance p to the next
vertex and go to Step 3, but halt if there are no more vertices to advance to.

5) Insert anew vertex g and a new edge g; between p and p, so that p, becomes g, ;
then set

z(q) < 2(p) + & - w(g,); lU(gr) < U(q,) - 6
z(p) — z(p) — & - w(m); rli(p) < ri(p) - &;
2(q) = 2(p) = 8" w(g); W(g)«— W (g)—6";
2(p) =@+ -wp); '(p) — rl'(p) - &
w(ql) At (ﬂ"‘_))'
6) If ri(p1) = ri'(p) = 0 then set Ul(q) — U'(q) — 0; if U(g,) = U'(g,) = 0

then set ll(q;) «— 6 and ll'(q)) « §'; otherwise use pairwise rounding to find
(q) < 6 and U'(q) < &' near

<(71’ 1_7)3 zZ— z(p)) and ((_ﬁ’ _7_]), Z, - z’(p)) .

ﬁ?+ﬁ2 a2+52

Finally set rl(q;) < 6 — ll(g;) and ri'(q;) « §' — lI'(g;) and go back to Step 3.

40 ALGORITHMS FOR GENERATING POLYGONAL PENS

/

/

Fig. 12. A bad case for Algorithm 2

The above algorithm tends to perform well in practice, but its worst case
error is quite large. Figure 12 shows a brush shape B that is approximated with
an error greater than 1. The figure shows a unit grid and the partially constructed
pen polygon in bold lines superimposed on the brush with retention points shown
as black dots. In Step 1 the height and width of the initial square are rounded
up from 3.52 to 4. Step 2 obtains rl(e;) and rl’(e;) by adjusting the ideal values
of 1.23 and 3.25 to .99 and 3.01; ri(e;) and ri’(e;) are ideally .75 and 2.77 but
are also adjusted to .99 and 3.01. This forces § = §' = .5 in the first execution of
Step 3. Step 6 must then place the retention points for the new edges at opposite
corners either as shown or with ll(g;) = U'(¢)) = .5. In any case, one of the
retention points is about 1.1 units away from B.

This example can be generalized to larger B in such a way that the error
approaches 5/4. Thus the worst case error of Algorithm 2 is more than three
times that of Algorithm 1. In spite of this, Algorithm 2 usually performs well in
practice and we can modify it to obtain a worst case error bound of only twice that
for the symmetrical case. The modified algorithm will be a hybrid that combines
the practical advantages of Algorithm 2 with the good worst case performance of
the following algorithm.

Let us replace the pairwise rounding operations in Steps 2, 3, and 6 of Algo-
rithm 2 with independent rounding operations and call the result Algorithm 2b.
That is, given a, b, [and m, let

o = |max(0,min(e,!)) + | and B = |max(0,min(b,m)) + 1].

This has the effect of doubling the expected error in placement of new edges and
retention points when 0 € a < ! and 0 € b €« m, but it also guarantees that the
Il and rl entries will always be integers so that the limits / and m will always be
integers.

The function B has been carefully designed so that Step 3 of Algorithm 2b
behaves like Step 2 of Algorithm 1. Step 2 of Algorithm 1 is almost exactly equiva-
lent to setting z — B(£(p:), £(p-), &, D) and then setting & as it as stated. The only
difference is that Algorithm 1 sets § «— 0 when B(u(p:), v(p:)) or B(u(p,), v(pr))
belongs to R(p;) N R(p,), while r4({(~9, &), Z — z(p))) might be negative.

ALGORITHMS FOR GENERATING POLYGONAL PENS 41

It is not too hard to see that Algorithm 2b is equivalent to the following
procedure: Take the given brush B and shift it by a vector A so that when Algo-
rithm 2 is applied to B + A, the initial rectangle will be centered on the origin.
Now independently apply Algorithm 1 to the scaled version B’ = 3(B+ A) and
its reflection about the origin —B’. Construct the final pen polygon by appending
the negatives of the vertices found for —B’ to those for B, doubling all of them
and subtracting A. (The brush B’ is not symmetrical about the origin, but Al-
gorithm 1 effectively makes it symmetrical by just looking at the right side and
assuming symmetry.) Theorem 4.1.12 allows us to conclude the following.

Theorem 4.2.1. If P is a pen computed by Algorithm 2b to approximate a
convex brush B, then E(P,B)< 3. I

While this shows that we can avoid disasters such as those of Figures 47
and 12, the bound does not seem to be very good. Algorithm 2b really can
produce errors approaching 2, but such large errors may not be necessary; there
is no known lower bound on worst case error greater than the v/2/4 obtained from
Theorem 4.1.13.

In spite of the relatively poor error bound for Algorithm 2b, the results of
Algorithm 2 can sometimes be improved substantially by replacing some of the
pairwise rounding steps with independent rounding. When 6 or 6’ must be set far
from the ideal values in Step 3, we can backtrack and force some of the previous
6 or Il values to be integers. Typically this leads to quite reasonable errors, not
errors approaching %. In addition, the trouble is usually detected quickly so that
the amount of backtracking is not very large.

The most important new data structure required by the hybrid algorithm is
a special record b that holds the information required to restore the main data
structure to its previous state when it is necessary to back up. Ordinarily, b
contains a vertex v, and two adjacent edges ey and ep, together with pointer to
two vertices vy and v, in the main data structure. To restore the previous state,
we throw way all edges and vertices between vy and v, and replace them with
evls Vp, and ey, in that order.

The backup record is maintained so that vertices vy and vy, are as close
together as possible while still surrounding the current vertex p and having all
I, W, rl, and rl’ fields of ey and ey, guaranteed to be integers. This means
that the edges in directions w(ey) and w(e,,) and all the edges for directions that
are ancestors of w(ey) or w(es,) in the Stern-Peirce wreath were placed using
independent rounding instead of pairwise rounding. If no lengths are guaranteed
to be integers for any directions that are ancestors of w(p;) or w(p,), then b holds
a flag restart to indicate that we must start over using independent rounding to
place retention points on the initial rectangle. Another special flag null identifies
the case when no backup is possible because all edges for directions w(es;) or w(ep)
and their ancestors are guaranteed to have integer lengths.

We also need a special flag force_integers to indicate whether pairwise round-
ing operations are currently being replaced by independent rounding. Here is how
to change Algorithm 2 into the hybrid version, Algorithm 2c: set force_integers

42 ALGORITHMS FOR GENERATING POLYGONAL PENS

to false before returning to Step 3 from Steps 4 or 6; initialize force_integers to
false and b to restart in Step 1; and at the end of Step 3 if b # null then check for
excessive error and backtrack if necessary. The backtracking operation consists of
restoring the main data structures from the information in b, resetting b to null
and force_integers to true, and repeating Step 3. When b is null and force_integers
is false on entry to Step 5, then p, p;, and p, are saved in b. When p is advanced
to v, in Step 4, then b is reset to null. To restore the main data structures when
b = restart, we repeat Steps 1 and 2 with force_integers set to true.
The definition of “excessive error” in Step 3 is that

max(|((-3,2), z - 2(p)) — 8|, |{(3,~%), Z' - 2'(p)) - &'|)

is greater than €y/%? + 9? where € is a parameter that controls the amount of
backtracking. It should be set large enough so that integer lengths are likely to
lead to an improvement, but not large enough to allow unnecessarily large error.
Increasing € tends to reduce the amount of backtracking and thus speed up the
algorithm when this is a factor. The best value for € is probably slightly more
than 2 so that the results are equivalent to those of Algorithm 1 for symmetrical
brush shapes. Algorithm 2c has never been known to give approximation error
greater than € when € > 3.

Another possible refinement to Algorithm 2 is that we might want to use
I(p)) + ri(p:) instead of ri(p;) and U'(p); + ri'(p:) instead of ri'(p;) in Step 3
(except when p; is the first edge in the data structure). That is, we can discard
the retention point on the edge we have just passed if the previous part of the
polygon retains more of that edge than necessary. Relaxing the restrictions on é
and 6’ in Step 3 in this way can only reduce the error. The author has not been
using this refinement so far because it complicates the analysis by introducing a
dependence on scan order and it does not seem to reduce the worst case error.

4.3. Analysis of Pen Generating Algorithms

Let us look at the time and space requirements of Algorithm 1 and the various
versions of Algorithm 2. The input is a brush shape given in terms of a spline
description for the boundary; or if some limited class of shapes is being used, it is
given in terms of a set of parameters. For instance, if our brush shapes are ellipses
centered on the origin, we might be given the major and minor axes and the angle
of rotation. Since the exact time and space requirements are not easily described
in terms of natural properties of this input, we shall relate the requirements to
properties of the pen polygon produced. We can then get reasonable time and
space bounds by relating the pen polygon to the diameter of the brush that it
must approximate.

Let P be a pen polygon computed by Algorithm 1 to approximate a sym-
metrical brush B, and let a be the number of non-null edges in P. (Recall that
the data structures may contain edges of length zero, and we referred to them in
Section 4.1 as “null edges.”) Throughout this analysis we shall assume that the
widths of B in directions (1,0) and (0,1) are > % so that P is non-trivial.

ALGORITHMS FOR GENERATING POLYGONAL PENS 43

Even though it is possible to eliminate null edges, we still need to talk about
the number of them in the data structures of Algorithm 1, and it is desirable
to relate this to the polygon P. To do this, we use the Stern-Peirce wreath
and consider the sequence wg, wy, ..., wys—1 of directions of edges in P where
w; = (uj,v;). Because of the cyclic nature of the pen polygon, we shall consider
the subscripts modulo @ so that w; = w;4, for any integer j. Given any two
adjacent edge directions w; and wj;;,, we can construct a unique sequence of
directions for the null edges that must lie between them in the data structures
after the completion of Algorithm 1.

We can reduce the general case to the case where v; and v;4; are both non-
negative: If v; and v;4; are both < 0, then take the negatives of the null edges
between —w; and —wj41; if v; < 0 and v;41 > 0, then take the negatives of the
null edges between —w; and (—1,0) and append those between (1,0) and w; 1
with exactly one copy of (1,0) in between; if v; > 0 and v;4+1 < 0, then follow the
previous instructions but negate the results.

We shall need to compare edge directions on the basis of “simplicity.” In
general for reduced rational pairs (u,v) and (u',v'), we say that (u,v) is simpler
than (v, v') if and only if |u| < ||, jv] < |v)', and (u,v) # (v,).

A basic property of the sequence of edge directions in the data structures
of Algorithm 1 is that whenever a new edge replaces an existing vertex p, the
directions of the edges p; and p, surrounding p are simpler than the direction of
the new edge. Thus whenever two edges are adjacent in the data structure, either
one is simpler than the other or they are both part of the initial rectangle. We
can now prove the following lemma.

Lemma 4.3.1. For any sequence of edges ey, ey, ..., €x in the data structures
of Algorithm 1 such that ll(e;) = ri(ej) = 0 for 1 < j < k, there exists m such
that w(e;41) is simpler than w(e;) when j < m and w(e;) is simpler than w(e;41)
when j > m.

Proof. First strengthen the hypothesis by appending the surrounding non-null
edges ep and ex4; to the sequence, except do not append eq if it is the first edge
in the data structure and do not append ex4q if it is the last.

After Step 1 of Algorithm 1, the strengthened hypothesis is trivially satisfied
because there are no null edges. Since no edges are ever deleted from the data
structure and newly added edges are always non-null and cannot be adjacent to
edges already of null, the only time that the hypothesis could possibly become false
is when the length of an existing edge becomes 0. Furthermore this can happen
only when § is subtracted from ll(g.) or ri(p;) in Step 4. Either way there is a
newly added edge ¢;, and the null edge is its neighbor and has a simpler direction.

If the null edge had no null edge neighbors then the hypothesis clearly remains
true. Otherwise the null edge was part of a sequence that already satisfied the
hypothesis and we have merely appended ¢; to one end of that sequence. Since
the null edge is simpler than g;, the hypothesis is still true. W

Lemma 4.3.1 gives important information about the directions of the sequence
of null edges between two adjacent non-null edges e; and e;;;. Combining this

44 ALGORITHMS FOR GENERATING POLYGONAL PENS

with the fact that consecutive directions (u,v) and (%', v’) in this sequence sat-
isfy (4.1.1), we can deduce exactly what that sequence must be. This argument is
based on well known facts due to Stern [28], but for clarity we restate them here
as a lemma.

Lemma 4.3.2. If (u,v) is a reduced rational pair then there is a unique reduced
rational pair (u',v') that satisfies (4.1.1) and either is simpler than (u,v) or is one
of the four basic directions (0,+1) or (£1,0).

Proof. If (u,v) is one of the four basic directions mentioned in the lemma, then
(u',v") must also be one of these. It is easy to check that (u’,v') = (—v,u) is the
unique such direction that satisfies (4.1.1).

Otherwise since gcd(u, v) = 1 there are integers u’ and v’ such that uv' —vu' =
1, and it follows immediately from this equation that gcd(%',v') = 1. If uv" —vu" =
1 for some other reduced rational pair (u",v") then u(v' —v") = v(u' - u") so that
v|v'—v"and u | w'—u". In fact uv"—vu" = 1 whenever (4", v") = (¥, v')+k(xu, v)
for any integer k.

The rest of the proof depends on the fact that we have already dealt with
all cases where u = 0 or v = 0. If uv > 0 then choose k so that 0 < v" < v or
v < v < 0; if v < 0 then force 0 < v” < v or v < v" < 0. Either way vu''
is between 0 and uv inclusive, so u” is between 0 and u. Thus (u",v") satisfies
(4.1.1) and is simpler than (u,v). For any other value of k, either uu" + vv" < 0
or (u",v") is not simpler than (u,v). N

In terms of the Stern-Peirce wreath, the pair (u’,v') can be located as follows:
if (u,v) is one of the four basic directions, then take the next such direction; if
(u,v) is the sum of two basic directions, then take the one at its right; otherwise
(u,v) belongs to an ordinary Stern-Peirce tree. If (u,v) is a left son then the
simpler adjacent pair is the father of (u,v), otherwise it is the father’s simpler
adjacent pair.

Lemma 4.3.2 tells us how to find simpler adjacent pairs going counterclockwise
around the wreath. Replacing 1 by —1 in (4.1.1) makes it applicable to adjacent
pairs going around the wreath the other way. Lemma 4.3.2 can easily be adapted
to use this modified version of (4.1.1) and find unique simpler clockwise adjacent
pairs.

To construct the null edge directions between two consecutive non-null edge
directions w; and wj41, begin by constructing a sequence of successively simpler
adjacent directions wj;, wjs, ..., starting from w; = wjo. Construct a similar
clockwise adjacent sequence wj41,-1, Wj4+1,—2, - - -, starting from W41 = Wj41,0-
If none of the four basic directions lie between w; and w;4+1 then these sequences
will meet at the lowest common ancestor of w; and wj41, otherwise they will meet
at the basic direction in between. Thus there will be nonnegative indices m and n
such that the null edges have directions w;,1, wj2, ..., Wjm = Wjt1,-ny Wi+1,1-n,
ceey Wit

Let us construct the sequence of null edge directions that would lie between
consecutive non-null edges of directions (27,19) and (11,25) shown in Figure 13.
Starting from (27,19), we obtain the sequence of successively simpler adjacent

ALGORITHMS FOR GENERATING POLYGONAL PENS 45

(1,1)
(2,1) (1,2)
N
3,1 (3,2) (2,3) (1,3)
(5,3) (4,3) (2,5)
N\
(7,5) (3,7, (3,8)
(10,7)_ (11,8) (4,9 (512
(13,9) (17,12) (7,16)

(27,19) (24,17) (11,25) (10,23)
Fig. 13. Part of a Stern-Peirce tree.

directions (17,12), (7,5), (4,3), (1,1), (0,1), Going backwards from (11, 25),
we obtain (4,9), (1,2), (1,1),(1,0), ... Thus the null edge directions are (17,12),
(7, 5), (4’ 3)5 (17 1)’ (1’2)? (4’9)

Going back to the pen polygon P computed by Algorithm 1 from the sym-
metrical brush B, recall that a is the number of non-null edges in P. Let b be the
total number of null edges whose directions are obtained by applying the above
construction to each pair of adjacent edges in P. Since the data structures actu-
ally contain only the right ‘half of P, the actual number of null edges stored will
be about b/2. The total number of edges in the data structures on completion is
(¢ 4+ b)/2 4+ 1 counting two horizontal edges; the total number of vertices is just
(a +b)/2. Since nothing is ever deleted from the data structures, this is the total
space requirement.

The time requirement of Algorithm 1 is equally easy to analyze. Step 1 is
executed once; Steps 4 and 5 are executed (a + b)/2 — 2 times each, once for each
edge not inserted in Step 1; and Steps 2 and 3 are also executed once for each
vertex of P so that the total is a + b — 2 times.

Now consider modifying Step 4 so that it never allows any null edges into
the data structure. This means that we delete g, if ll(¢,) = ri(g,) = 0, and we
delete p; if ll(p;) = rl(p)) = 0. When g, is deleted, it is necessary to mark the
vertex thus formed to indicate that the pointer p should skip over it. When the
modified algorithm terminates, the data structures contain /2 edges and a/2+ 1
vertices or vice versa. The maximum storage requirement can be larger than this
in unusual circumstances, but the difference is never more than a factor of two.

The only change in the run time of Algorithm 1 due to null edge elimination
is that Steps 2 and 3 are executed (a+ b+ ¢)/2 — 2 times instead of a4+ b — 2 where
¢ < a is the number of vertices of P that do not get marked and skipped over as
described above. Thus the time saving due to null edge elimination is never very
large, but the space saving may be significant if b > a.

These results can be extended to the asymmetric case if we let P’ be a
pen polygon computed by Algorithm 2 or 2b from a not necessarily symmetri-

46 ALGORITHMS FOR GENERATING POLYGONAL PENS

cal brush B'. Its sequence of edge directions wg, wi, ..., w,,_, can be filled out to
another sequence wp, wy, ..., Wg_1 SO that w14/3 = —w; for 0 < i < a/2. That
is if for some ¢ there is no j such that w) = —w{, then insert —w{ and repeat.
We then use the sequence w; to find null edge directions exactly as above and
let b be the number of such directions obtained. Now e < 2a' and we still get
(a +b)/2 4+ 1 edges and (a + b)/2 vertices in the data structures. Steps 1 and 2
are executed once; Steps 3 and 4 are executed a + b — 2 times; and Steps 5 and 6
are executed (a + b)/2 — 2 times. We can eliminate all null edges not required by
the restriction that the data structure contains pairs of opposite edges, and the
effects on time and space requirements can still be expressed as above in terms of
a quantity ¢ < a.

We now need upper bounds on a and b in terms of the size of B or B'. We
shall use the fact that the perimeter P of P or P’ satisfies

P23 > (Julto? (4.3.1)

0<j<a
where (uj,v;) = w; are the non-null edge directions. This is because £+ £' must
be an integer multiple of \/u';’- + v§ when £ and ¢’ are the lengths of the edges with
directions w; and —w;. The perimeter of B or B’ can differ from P by at most a

small additive constant.
We shall say the {w; |0 < j < a}is a circular set of directions whenever

{(u,v) € 2% | ged(u,v)=1and W + v < r} C{w;|0<j<a
i
C {(u,v) € 2% | ged(u,v) =1 and v? + v* < r}.

for some radius r. If we restrict the direction set to be circular, the sum in
(4.3.1) depends only on the cardinality a, and for any given cardinality this sum is
minimized when the direction set is circular. Thus we can define s; to be half of
the value of this sum for any particular cardinality k. It follows that s, < P for any
set of directions satisfying (4.3.1). Furthermore, this bound is the best possible
since we can actually construct a pen polygon with k sides whose perimeter is s
for any k.

In order to estimate si, we need some information about the distribution of
pairs of relatively prime integers in Z%. Let I and J be intervals, and let C(I,J)
be the number of (u,v) € Z? such that gcd(u,v) =1, u € I and v € J. Extending
exercise 4.5.2-10 of [14] as Knuth explains on page 595 of that source shows that

C(le,a+ ¢),[b,0+¢)) = %cz + O(clogc) (4.3.2)

where the constant in the O is independent of a and b. (See also Mertens [18].)

If f,(z) = a|z/a+ 1] is the function that rounds to the nearest multiple of @
then 1/u? + 2 = \/fa(2)? + Ja(v)? + O(c) and there are O(ar) pairs (u,v) € Z?
such that f,(u)? + fa(v)? < r? < u? 4+ v%. Thus

=D \/"2+”"’=(:—s > xffr/k(u)ufr/k(v)z)+0(1/k)

ged(u,v)=1 gcd(u,v):l2 .
ui4vigr? Lopu(u)?+ frpp(v)?<r

ALGORITHMS FOR GENERATING POLYGONAL PENS 47

=(5 T VEFEC(aat k), [a505+ /)) + O1/K), (439

i24j2<k2?

where a; = (i — })r/k and the constant in the O is independent of r. If the above
quantity is p, then (4.3.2) shows that

pe=(om 5 VETT) 1+ 0((/r)loglr/k) + OL/R)

i2+j33k;"

A simple argument similar to that used to derive (4.3.3) shows that

2’"3—/h/r1z2dndo—(1f Y LVEEE) + 03k 4.3.4
= = (& SVETF) 40P R), (43.4)

i2452<k2

hence

1 - - 2r
5 3 VERE=Z4o0/k

i24j2< k2

and p, = 4/7 + O(1/k + (k/r)log(r/k)). Setting k = (r/logr)!/? yields p, =
4/ + O(r~1/210g /% 7).
A similar but somewhat simpler argument shows that

_ 1 _6 —1/21..1/2
&= E =_+ O(r log™/“ 7).
ged(u,v)=1
u2+vzsr

Since s, = 3r°p, when a = r?g,, the inequality s, < P becomes 3r3p, < Por
g, < ¢-(2P/p,)*/3, hence

O(r") = @ < 4:(2P/p) = = P° + O(PHor~1/210g! 2 1)

and r = Q(P'/3) when a > 6P%/3//4x. Thus

a< 6
= Vi
A more careful analysis reduces the error term in (4.3.3) and (4.3.4) to
O(1/k?), thus giving an error bound of O(P*/°log?/® P) in (4.3.5). Actually
-1< k- 652/3/\%4? < 3.44 for s < 600000, so the error term is very small
in practice.
It would be nice to have a bound on b similar to (4.3.5), but unfortunately
b can be Q(P) where P is the perimeter. Consider the class of brush shapes B,
where B, is the parallelogram with vertices (-n,0), (—n, —1), (»,0), and (n, }).
Of course the pens generated will be identical parallelograms. We will have a = 4
for all n, but b = 8n and P = 4n+ 1 4+ O(1/n). The 8n edges of length 0 have
directions (£1,0) and £(k,1), for 4n < k < 1.

P23 4 O(PV?10g!/? P). (4.3.5)

48 ALGORITHMS FOR GENERATING POLYGONAL PENS

When Algorithm 1 processes B, it first sets up the data structures corre-
sponding to a 2n x 1 rectangle. Successive values of (#,%) in Step 2 are (1,1),
(2,1), ..., (4n,1). Each time U(p,) = é§ = % so that the new edge effectively
replaces the edge just added. This is like having one edge and moving it so that
one endpoint stays fixed at (n,0) and the other one moves to the left in steps of 1.

Suppose that at the beginning of Step 4 of Algorithm 1, li(p,) = 6 and
ri(p;) = 0. Instead of immediately inserting an edge of direction (%, %), we want
to place the new edge in its “final position”; i.e., we want to skip all immediately
following iterations of Steps 2-5 in which § = Ui(p,).

Let A = z(p) + 6w(p,); let £ be a w(p;)-directed line through A — Tw(p,);
let A = A+ jw(p); and let By = 2(p) — kll(p,) - w(p;). Successive iterations
of Steps 2-5 would add an edge B; A and then replace it with By A, B3 A, etc.
Now find a supporting line of BN R(p;) that passes through A and a supporting
line of B = BN L(p;) N R(¢) that passes through A. The new edge goes from
By to A, where k is as large as possible subject to the constraints that the line
Bj_1 A must not intersect BN R(p;) and the line through A parallel to B A must
not intersect B. Figure 14 shows this situation with w(p;) = (1,0), w(p,) = (0,1),
and ll(p,) = 1. The dots at intervals of J in the figure show where new edges are
allowed to cut the existing horizontal and vertical edges.

Fig. 14. How to avoid unnecessary iterations of algorithm 1 by finding a supporting
line.

Let £; be the directed line through A and B; with direction wi = kw(p;) +
w(p,). Equation (4.1.1) shows that {(,-%),A — A) = 1 whenever (,%) = wi
and an edge parallel to ¢, is about to be added. Thus Lemma 4.1.3 shows that
the Bx_1A edge is replaced by an edge from By to A if and only if the line ¢
through A with direction A — By does not cut BN L(p;) N L(£x_,), and B does
not intersect R(p;) N R(€x—1). Since £, N L(£x—1) = £x N R(£), the intersection
£, N BN L(p;) N L(£k—1) is nonempty if and only if £, N B is. Letting £(p;) be the
line L(p;)N R(pi), we have £(p)) N R(£x—1) C £(p))NR(Li). Thus £(p;)NR(Lx_1)NB
is empty when R(Z;) N B is. When R(Z;) is empty, BN R(p)) N R(£x_,) is empty
if and only if BN£,_1 N R(p;) is. This shows that the final value of k for which an
edge By A is added is the maximum k such that £x N B and R(£x—1) N (R(p:) N B)
are both empty.

The above strategy is essentially a scheme for finding the maximum value of k
such that

(('—"5’ ﬁ)? B-(Z(p‘)’tlh u, ‘5) - Zk) > u(pr) - %?
where z; = £(p;) N £ and B is the function defined in Section 4.2. To extend this
to Algorithm 2, let £, = £(p,) and £} = ¢'(p,) after k iterations of Steps 3-6. We

ALGORITHMS FOR GENERATING POLYGONAL PENS 49

must find the maximum % such that
‘- ((—‘l_),ﬂ), Bl - zk) +ec2- (('l_), —ﬁ), By — ZL) > c3

where B, = B(f(p[),fk,’t_t,'ﬁ), By = 3([’(1},),[2,-—1‘4,—1‘)), z=Lp)Nt, 2=
¢'(pi) N £, and ¢y, c3, and c3 are arbitrary constants. This would allow us to test
against the thin lines shown in Figure 11.

The complete construction is rather complicated, but when B (Z(pl), b, u, 1')) =
B(@,%) and B(¢'(p,), L}, -1, -9) = B(—1%,—70), we apply a construction like that
of Figure 14 to the curve

C = c1B(sin 0, cos0) — c2B(— sin 6, — cos §)

for some appropriate range of . If C(u,v) denotes the point where C achieves the
direction (u,v), then C(u,v) = ¢1B(u,v) — c2B(—u, —v).

Actually, the above schemes are somewhat impractical because it is usually
rather difficult to find supporting lines of a shape described by a spline description
and it is often difficult to find convolutions. Perhaps a more realistic approach is to
start some kind of binary search procedure if we repeatedly find § = I (pr)+rl(pr)
in Algorithm 1 or if we repeatedly find 6 = ll(p,) + ri(p,) and §' = ll'(p,) + rl'(p,)
in Algorithm 2. That is we can sometimes let (%, %) = kw(p;) +w(p,) where k > 1.
If 6 < U(p,) + rl(p,) or 6’ < UI'(p,) + rI'(p,) then we backtrack and reduce k.

Let us see how the above modification will allow us to replace the parameter b
in the time and space bounds with a new parameter & that is O(P?/3) in the
perimeter P. Recall that b was intended to describe the number of null edges in
the data structures, but it also determines the number of iterations of the main
loops of Algorithms 1 and 2. Consider the sequence of null edge directions that
Lemmas 4.3.1 and 4.3.2 allow us to construct between the directions w; and w4
of two edges that are adjacent in the computed pen polygon. Any subsequence
Wjky Wj k415 - - -, Wj1 all of which are left sons in their Stern-Peirce tree can now be
thought of as a unit. A modification similar to that described above also allows the
consecutive right sons to be thought of as a unit. Let such sequences of left sons
or right sons be represented by their simplest element and let &' be the number
of remaining null edges. Thus the remaining null edge directions between (27, 19)
and (11,25) from Figure 13 are (17,12), (4,3), (1,1), and (4,9).

Now consider the path leading to some edge direction w; from the root of
its Stern-Peirce tree. Let wy be the root and let wy, wy, ..., wi be the left and
right extrema along this path. That is we include all left sons whose successor is
a right son and vice versa. If w; = (27,19) then k = 3, wp = (1,1), w; = (2,1),
wz = (4,3),and w3 = (10, 7). Let A(w;) be the set of w; for even i and B(w;) be the
remaining w;. The set of non-vertical, non-horizontal null edge directions between
two consecutive directions w; and wj;; will be a subset of A(w;) U A(w;41),
A(w;) U B(wj41), B(w;) U A(wjy1), or B(w;) U B(w;41). By showing that

Z VUl + 02 <y fud 492 for § = A(w;) and S = B(wj) (4.3.6)

(u,v)€S

50 ALGORITHMS FOR GENERATING POLYGONAL PENS

and for any reduced rational pair w; = (uj,v;), we can conclude that the total
length of all reduced rational pairs (u,v) representing null edge directions is less
than 2P 4 4 where P is the pen perimeter. Thus we can substitute 2P for P in
(4.3.5) and obtain the result that

6
te O _p2/3 1/21001/2 Py, 3
b < \’/7?P + O(P*/*log™/* P) (4.3.7)
A simple inductive argument suffices to prove (4.3.6). If I € {0,1} we claim
that 35 cicp [@2it1l < fwantr41] = 1/ fwonsa41| where |w;| denotes the Euclidean
length. This is clearly true for n = 0 since 1/ [wi41| < 1/v/5, and the induction
step follows immediately from the fact that |wy,—1| = 1/ |wm-1] + |wm| < |wm+1] =

1/ |wm+1| for all m > 1. The following lemma completes the proof.

Lemma 4.3.3. If (ug,v;) is a Stern-Peirce tree son of (u1,v1) thena—1/a+f <
v —1/y where @ = \/ul + v, B =+/ul + 0%, and vy = /(w1 + u2)? + (v1 + v2)%.

Proof. Let 6 be the angle between (u1,v) and (uz,v;). It follows from (4.1.1)
that afsin @ = u;v; — v1u; = £1. From the law of cosines we have

vt =a® 4+ % +2af cosf = (a + B)* — 4aBsin’(8/2)
> (a+ B) — 4aBsin? 0 = (a + B)? — aiﬂ-. (4.3.8)

In order to show that ¥ > a + 8 — (1/a — 1/v), it is sufficient to have

1 1 1 1\’
2 2 _of1_ 1 2_2) .
7" 2 (a+5) 2(a 7)(a+ﬂ)+(a 7)
We shall show that
1 1 1 1\’ _ 4
-2 -(==2) > = 4.3.9
2(a 7)(a+ﬂ) (a 7) ~af (4.39)
and add this to (4.3.8) to obtain the desired result.
Adding o — 2av to (4.3.8), we obtain
4 4
- a)? 2 - 22> 6 - — > p%-4/V10.
(r=a) > 20" +2a(f =)+ = 25> F' - 5 2 F* —4/VI0

Since B8 > /5, it follows that y — a > /5 - 4/v/10 > 1.9. Now 4/8+ 1/a <
4/V5 +1/v/2 < 2.5, hence 2(y — a) > 4/8 + 1/a and

Thus (4.3.9) holds as required. N

ALGORITHMS FOR GENERATING POLYGONAL PENS 51

We now have a way to modify Algorithms 1 and 2 to limit the parameter b
that determines the number of iterations not directly attributable to pen polygon
edges. With this modification, the new parameter b’ satisfies a bound 2%/3 times
as large as the bound on the number @ of actual pen polygon edges. Hence the
execution counts and space bounds that depend on a + b are all O(P?/3) in the
pen perimeter P. In fact this bound on @ + b is probably pessimistic because pen
polygons that approach the bound on b tend to fall far short of the bound on «a
and vice versa.

On the other hand, our bound on a is fairly tight. One can easily construct k-
vertex pen polygons whose perimeter is s, but it is natural to question how closely
the results of Algorithms 1 and 2 can approach this bound when given a smooth
brush shape B. Figure 15a shows that in fact this bound is closely approached
when B is a circle. The graph was obtained by taking e as a function of diameter
and finding its least monotonic upper bound and its greatest monotonic lower
bound; i.e., the bounds shown are as tight as possible subject to the condition
that they must be monotonic.

100) 100 /

—
A —

f s
1 1

1 10 100 1 10 100
Fig. 15a. The range of a for Fig. 15b. The range of b for circular
circular pens as a function of pens as a function of diameter
diameter with the first term of the with the first term of (4.3.7) for
upper bound (4.3.5) for comparison. comparison.

Figure 15b shows similar bounds on the number of missing edges b for pens
generated by Algorithm 1 to approximate circles. Note that b actually remains
well below our bound on ', and b can be 0 even when the diameter is as large
as 90.5. Thus the modification to replace b with 4’ in the time bounds does not
appear to be necessary for circles of reasonable size.

This modification is seldom likely to be worthwhile in practice because it sig-
nificantly complicates the algorithm and it only pays off in unusual circumstances.
On the other hand it probably is worthwhile to keep null edges out of the data
structures because this significantly reduces the execution counts for Steps 2 and 3
of Algorithm 1 and Steps 3 and 4 of Algorithm 2 while reducing the total number
of nodes in the data structures from a + b + 1 to about a + 1.

52 ALGORITHMS FOR GENERATING POLYGONAL PENS

Since the space needed to represent the pen polygon is proportional to a which
may be much smaller than the upper bound given by (4.3.5), we cannot claim that
the running time is linear in the size of the input plus output even if we use the
modification to reduce b. In fact the running time cannot be bounded by any
function of the input plus output size. On the other hand the running time is
sublinear in the physical size of the output and probably linear in its expected size
over any reasonable probability distribution.

Conspicuously absent from any discussion of running time has been Algo-
rithm 2c. In spite of favorable practical experience, it is very difficult to make any
claims about the amount of backtracking in the algorithm as stated. If guaranteed
performance is desired, it may be necessary to switch to Algorithm 2b at some
point.

Chapter 5

Building Envelopes with Integer Offsets

We have designed pens to produce accurate and uniform stroke weight by
producing envelopes with integer offset vectors. The purpose of this chapter is
to investigate a more direct approach that can sometimes produce better results:
Given a suitable brush-trajectory description, choose a desirable set of offset vec-
tors and use these to construct a digitized version of the envelope. This problem
can be thought of as a generalization of the problem of constructing pen envelopes.

First consider just how desirable the offset vectors obtained from a pen poly-
gon are. Recall that the error bound (2.2.4) in Theorem 2.2.3, which is extended
to curved strokes by Corollary 2.2.5, is proportional to the tangent of the angle
between the offset vector and the normal to the trajectory direction. (We refer to
6 as the offset angle.) As we have seen in Chapter 2, this bound is often achieved
within a small factor when wtan# is small and it can be almost exactly met in
certain circumstances for arbitrarily large widths w.

Since the offset vector for a pen and a particular trajectory direction is the
difference between the points of support in that direction, and since the algorithms
of Chapter 4 were designed to approximate closely the given brush shape B, it
follows that the value of tanf is largely determined by B. In fact the use of
retention points strictly limits the deviation between the actual offset angle and
this ideal value. Thus, long narrow brush shapes result in pens that have a large
value of tan @ for some directions. On the other hand if B is a circle of diameter d,
then the following lemma shows that the maximum of tan over all directions is

o(d-1/?).

Lemma 5.1. Let P be a pen produced by Algorithm 1 from a circle of some
diameter d centered on the origin, and let 8 be the maximum offset angle of P
over all possible trajectory directions. Then

1)< V(24 + 16v2)d + 1

——— < tan .

2V/d+ 1~ - 4d - 2v/2
Proof. First consider the lower bound and let (u,v) be a reduced rational pair
for the edge direction counterclockwise adjacent to (1,0). The length of this edge
must be at least 11/u% + v2, so one of its endpoints must be at a distance of at
least +1/u? + v? from the line uz + vy = 0. Furthermore the edge is at a distance
of at most 3d + 2 from the origin so

/02 1+ 02
tané > —L

2d + 3

53

54 BUILDING ENVELOPES WITH INTEGER OFFSETS

Since P has a vertex at which the exterior angle is at least arctan(v/u), it
must have an offset angle of at least half this much. (A vertex that makes offset
angles of 6; and 6, with respect to directions perpendicular to its adjacent sides
has an exterior angle of 6; + 6,; cf. Figure 16.) Thus tan# is at least

(FER . .
2d+3 T ut+ S tv2)’

To obtain a lower bound on (5.1), observe that each term is monotone increasing
in v and the first term is monotone increasing in » while the second term is
monotone decreasing. Hence we obtain a lower bound by substituting (u,v) =
(V/d,1) and observing that both terms are greater than 1/(2v/d + 1)

(5.1)

0]
A
71N
ARERY
/A
Q I Q
R’ R
P

Fig. 16. A construction for obtaining bounds on tan 4.

Figure 16 illustrates the construction for the upper bound. Let PQ be an
edge of P and let R be the point on this edge closest to the origin O. Similarly let
Q'P be the other edge incident on P and let R’ be the point of closest approach
as shown in the figure. When the offset vector is in the direction of P, the offset
angle is at most POR or POR', whichever is greater. Since the length of OP is at
most 3d + 3 and the lengths of OR and OR' are at least 1d — v/2/4, the lengths
of PR and PR’ are at most

\/(1‘“' §)2 - (-1-d~ ﬁ)z _ V(24 +16v2)d +1

2 8 2 4 8

and hence the result follows. [J

5.1. Integer Offsets for Brush Strokes of Nonuniform Width

We have seen that a polygonal pen stroke has offset angles that are ©(d~1/2)
when the pen is chosen to approximate a circle of diameter d. That is, we can
achieve such offset angles for brush strokes of uniform width d. What must be
done in order to achieve such offset angle for nonuniform width strokes, and when
is this desirable? The main advantage of integer offset vectors is that they produce
envelopes of nearly uniform apparent weight; they are not likely to be beneficial
when the width changes rapidly as a function of arc length along the trajectory.

Consider the envelope of a noncircular brush B with respect to a slowly curving
trajectory. If the curvature of the trajectory is sufficiently low, then the width of
the envelope at any point is essentially the width of the brush perpendicular to the

BUILDING ENVELOPES WITH INTEGER OFFSETS 55

direction of the trajectory at that point. For simplicity we shall assume that B is
symmetrical about the origin; otherwise the techniques of Section A.3 can be used
to reduce to this case. We wish to approximate the envelope with respect to B
by a dynamic pen envelope as follows: Divide the trajectory into segments and
use a unique integer offset for each segment in such a way as to achieve moderate
offset angles. In Section 3.2, we saw how the envelope of a polygonal pen can be
constructed in this manner.

A dynamic pen envelope may be specified as follows: Let the trajectory be
given by the path (z(t),y(t)) for 0 < t < a where a > 0, and let there be values
to, t1, ..., ty such that ¢ = 0, ¢, = @, and ¢;_; < t; for 1 < 7 < n. Furthermore,
let there be integer offset vectors (u;,v;) for 1 < 7 < n, and let the envelope be
described as follows: For i = 1,2, ..., n, take the curves (z(t)+ Fu;, y(t)+ 3v;) for
ti—1 <t <t;,followed by the curves (z(—t)—%u,’,y(-—t)—-%vi) for —t; <t < —t;_;.
Successive curves must be connected in some way, e.g. by straight lines.

The idealized width of the above dynamic pen envelope with respect to
the given parameterization is a function of ¢t equal to u;sin ¢ — v; cos¢, where
(cos @, sin @) is a unit vector in the direction of (z'(t),3'(t)) and ¢ is chosen so that
ti—1 <t <t;. (The angle ¢ is called the trajectory direction angle.) The purpose
of the requirement that the curvature of the trajectory “must not be too large”
is to ensure that the idealized width of the dynamic pen envelope is a reasonable
approximation to the width of the envelope with respect to B. As the following
lemma shows, it is not possible to ensure that the idealized width will always be
continuous unless some of the offset angles are allowed to become large.

Lemma 5.1.1. Consider a dynamic pen envelope as described above. If there
are t, and tg such that 0 < t, < tg < a; if the trajectory direction angle and
idealized width are continuous, piecewise real analytic functions ¢(t) and w(t)
on ty <t < tg; and if ¢(t) is monotone increasing or monotone decreasing; then
the maximum offset angle is at least

w(tﬁ) - w(ta) '
(¢(ts) — ¢(ta)) - maxe, <e<e, w(t)

arctan

Proof. Assume without loss of generality that ¢(t) and w(t) are real analytic on
each interval [t;_,t]; i.e., subdivide each interval until ¢ and w are real analytic
in each subinterval. Now let Aw = w(ig) — w(ty), A¢ = ¢(tg) — ¢(t»), and
Wmax = MaXy, <i<t, W(t). Whenever 1 < i < nand ¢, <t < ¢, the idealized
width w(t) is l; cos(6(t)) where I; = \/uj + v} and 6(2) is the offset angle |8(2) —
arctan(—u,»/v,-)|. Thus %% = +I; si11(0(t)) and by the mean value theorem, there
must be some ¢t on ¢;_; <t <t; where %{é’- = (w(t;) — w(ti=1)) /(i) — S(ti-1))-
We shall now show that there must be some t on t, <t < tg where ‘fi—‘gl >
|Aw/A¢|. Otherwise there must be some bound b < |Aw/A¢| such that

<b

'w(ti) —w(ti—1)
P(ti) — (ti-1)

56 BUILDING ENVELOPES WITH INTEGER OFFSETS
for 1 < i < n. Thus |w(t;) — w(ti—1)| < b(#(t:) - #(ti-1)) and

Aw< Y |w(ts) - w(tic)| <6 Y @(t:) - d(tioa) < bAS.

a<isp a<igp

Since this contradicts the assumption, we know that there exists a ¢ between to
and tg such that |%—‘£—| > [Aw/A¢|. Now wmax > l; €058, 50 Wmaxtanb > I;sin § =
‘;—'ﬂ > IAw/AgbI and the lemma follows. [

Let B be a noncircular brush with widths w, and wg in two directions ¢,
and ¢p. Now select any suitably straight trajectory 7 whose terminal directions
are perpendicular to ¢, and ¢g, and construct a dynamic pen envelope as described
above. If this envelope can be considered an approximation to the envelope of T
with respect to B then w(a) — w(0) ~ ws — w,. Thus the maximum offset vector
must be nearly as large as the bound given in the lemma, and B can be selected
so as to make this can be arbitrarily large.

We have seen that no matter how straight the trajectory, the offset angle can
approach 90° unless we allow the idealized width to be discontinuous. That is,
there must be glitches where the offset vectors change as shown in Figure 17. The
digitized envelope shown in the figure has three different integer offset vectors:
(1,-1), (2,-2), and (1,-3). The portion of the envelope where each applies is
delimited by dashed lines. When the boundaries between such regions are carefully
placed, the glitches there are not particularly obtrusive even though the change in
width is significant. For instance, the trajectory used to generate the figure was
a line of slope 1/6 and the three offsets have idealized widths of 7/v/37, 14/+/37,

\
\

Ny \
N r—4
v_ﬁ_l | S

N NN
Fig. 17. A digitized envelope constructed from three integer offsets.

If we drop the requirement that the idealized width must be continuous, then
it can be made to approximate any reasonable function. We need only break the
trajectory into a sufficient number of segments so that the desired width function
is nearly constant on each segment. Any piecewise real analytic function can be
approximated in this manner.

We thus define the dynamic brush envelope of a trajectory T with respect to
a width function W as follows: Let T = (z(t), y(t)) be a non-constant, C? contin-
uous, piecewise real analytic function of a parameter ¢ on a real interval 0 < ¢ < a,
and let W be a continuous real analytic function on the same interval. Let the
dynamic brush for T and W at time t be the unique line segment of length W(t)
perpendicular to T at time ¢ with midpoint (z(t),y(t)). The dynamic brush en-
velope is the union of all such dynamic brushes for 0 < ¢t < a.

BUILDING ENVELOPES WITH INTEGER OFFSETS 57

The concept of dynamic brush envelopes is not limited with regard to the
curvature of the trajectory of the rate of change of the width function. The only
problem is that the previously mentioned scheme of using the directional width of
the brush B to define the width function is not the same as taking the ordinary
envelope with respect to B. Figure 18 illustrates this difference in an extreme
case. Figure 18a shows a rectangular brush B and a portion of its envelope with
respect to a parabolic trajectory T’; Figure 18b shows a portion of the dynamic
brush envelope of the same trajectory T' with respect to the directional width of B

perpendicular to 7. The dashed lines give the location of the dynamic brush at
various times.

B
N~
Fig. 18a. The envelope of a rectangular Fig. 18b. A dynamic brush envelope
brush with respect to a parabolic corresponding to Figure 18a.

trajectory

As can be seen from Figure 18b, dynamic brush envelopes can have strange
behavior when the width function changes rapidly. When the width function is
more controlled, the flexibility of dynamic brush envelopes can be used to great
advantage. Thus we shall consider dynamic brush envelopes with no rapid width
variations and attempt to approximate them with dynamic pen envelopes that
have small offset angles.

Just how rapid can these width variations be before integer offset vectors
are no longer beneficial? Consider a straight line trajectory z cos¢ + ysing = ¢
with width function W(t). There will be a set of offset vectors (u,v) for which
the offset angle arctan(v/u) — ¢ is less than some function of the idealized width
u cos ¢ + vsin ¢, and we can just choose whichever offset minimizes the difference
between W (t) and the idealized width. The length of the portion of the trajectory
for which any particular offset is used depends on the rate of change of W(t) and
the separation between adjacent idealized widths. We want these lengths to be
great enough so that the integer offset vectors will have a beneficial effect on the
average apparent weight.

All of this depends on what function of the idealized width is chosen. We
probably want the idealized width to be continuous when W (t) is constant, and
as we shall see in Section A.3 of the appendix, this means that the offset angle
must be Q(w~1/2) in the idealized width w.

Another way of looking at it is that there is a tradeoff between the accuracy
with which the idealized width approximates W(t) and the bound of (w/s) tan 8 on
the relative difference between the average apparent weight and the ideal average
weight. This allows for an absolute error in apparent weight on the order of tan 8

58 BUILDING ENVELOPES WITH INTEGER OFFSETS

when the arc length s is on the order of w. Thus it seems reasonable to make the
bound on tanf approximately equal to the best accuracy we can hope to attain
for the idealized width. This accuracy is severely limited for simple rational slope
trajectories, so we just want tané as small as possible in such cases; increasing the
bound on tan @ only reduces the best possible error in idealized width.

Suppose we require the offset angle 8 to satisfy —¢ < tan 8 < ¢ for some ¢, and
we also require the idealized width to be in some interval [w — Aw,w + FAw).
This forces the integer offset vectors to lie in a trapezoidal region whose area
is 2wcAw. The number of such offset vectors is just the area of the digitization
of a shifted copy of the trapezoid, and Lemma 2.2.2 shows that this is between
(2we — V2)(Aw — v/2) and (2we + V2)(Aw + v/2). Thus the average number of
allowable integer offset vectors per unit change in idealized width is about 2we.

Even if the idealized widths are uniformly distributed, their error in approxi-
mating W(t) will be about 1/(4we) where w is the current value of W(t) and ¢ is
the bound on tané as a function of w. Thus our guess about the optimum point
on the tradeoff is that ¢ = 1/(wc); i.e., ¢ ® 1/\/w. Let us assume that

tanf < v/vw (5.1.1)

for some constant 7.

Then the arc length required for W(t) to change by 1/(4v+/w) is approx-
imately 1/ (47%\/5). This is the minimum average arc length over which we
expect each integer offset to apply. That is if 4;‘% and W remain fairly constant
for long enough then we can expect the average arc length per offset to be at least
this much. In order to gain full advantage from integer offsets this average arc
length should probably be at least on the order of w so that the (@/s) tan bound
on relative error in average apparent weight compares favorably with the difference
between idealized weight and W(t). This happens when &% = O(w=3/2).

On the other hand if the trajectory is nearly vertical or horizontal then each
offset may apply over an arc length of 1/ |4¥| and tan 6 might never exceed 1/w.
In this case we only need (w/s)tané < 1 or Ié‘—i‘-:il < 1. A reasonable compromise

is to require that
aw 1

P 4y2w’

(5.1.2)
so that the average arc length per offset will be at least wtan 8.

5.2. Digital Equivalence and Straightness

Before we can deal with the problem of how to smooth out the glitches where
offsets change, we need a concept of smoothness that is applicable to the edges of
digital regions. We shall take advantage of the fact that digitization is defined on
paths so that the boundary of the digitization of an envelope E can be obtained by
digitizing the boundary B(E). The desired concept of smoothness can be based
on the ability to find a nearly linear path with a matching digitization.

Our concept of smoothness will be based on the intuitive idea that the digital
region representing a brush envelope should be describable as the region bounded

BUILDING ENVELOPES WITH INTEGER OFFSETS 59

by the digitization of a “smooth path.” Given a digitized path &, we wish to
determine how wide a range of directions must be covered by a path 7 that is
digitally equivalent to S.

In general, two paths are digitally equivalent if they have the same digitization.
This is essentially the same idea as was used in Section 2.1 to define equivalence
classes of rational slope lines for use in measuring stroke weight.

We shall proceed by taking the given path and, if it is smooth enough, finding
a digitally equivalent polygonal path for which the smoothness can be evaluated
recursively. These paths will be restricted to have derivative vectors confined to
certain subranges of the positive quadrant. For each k¥ > 1 let X be the set
of paths (z(t),y(t)) whose direction vector (z'(t),y'(t)) is always a nonnegative
linear combination of (k+1,1) and (k,1); and let ¥, be a similar set of paths whose
direction vectors are always nonnegative combinations of (1,k) and (1,k+ 1).

We now define a class of affine transformations T for the purpose of dealing

with paths in Xj:
1 -k z
men=(17) (5h):

The transformation T} maps lines of slope 1/k into vertical lines, and it maps
lines of slope 1/(k + 1) into horizontal lines. We also need to be able to do this for
slope pairs k + 1 and k for integers k, so we define Uy(z,y) = S(T(y,z)) where
S(z,y) = (y, z). For future reference

T (z,y) = (kTI I{) (;) * (g>

and U; Y (z,y) = S(T7 ' (y, 7).

When restricted to the set Z? + (15, %) of pixel centers, each transformation T%
is 1 to 1 and onto. Thus any two regions R and R' contain the same set of pixel
centers if and only if Tx(R) and Ti(R') do. The following lemma is a consequence
of this. The proof is deferred to the appendix because it depends on the precise
statement of the correspondence between the digitizations of regions and boundary
paths. (See Lemma A.4.2.)

Lemma 5.2.1. If£ and {' are infinite paths in X for some integer k, then £ and ¢’
are digitally equivalent if and only if Ty(£) and Ty (£') are; similarly for {€,£'} C Y,
¢ and {' are digitally equivalent if and only if U(£) and Ux(¢') are. 1

The reason for the restriction to infinite paths in the above lemma is that
there could otherwise be differences in the digitizations of the transformed paths
near their endpoints. In other words, it may be necessary to shorten one of the
paths somewhat in order to achieve digital equivalence.

Recall that the digitization of a path X (¢) passes through points obtained by
rounding the coordinates of X (¢) to integers. That is we divide the plane into
squares of the form

Q(m,n):{(z,y)lm—%<1:§m+%andn—%_<_y<n+%}

60 BUILDING ENVELOPES WITH INTEGER OFFSETS

and connect in order the center of each square through which X (t) passes. Paths
formed in this way by connecting points in Z2 by vertical and horizontal line
segments are called digital paths. A digital path X = (z,y) has the property that
for any ¢, either z(t) € Z or y(t) € Z.

If a path X passes through pixel centers, its digitization D(X) may have
vertices (m,n) for which the range of X does not intersect Q(m,n), but it is
true that the range of X must be contained in the union of all Q(m,n) over all
vertices (m,n) of D(X). This union of Q(m,n) is called the digitization region
of D(X). Note that the digitization region is not a digital region because Q(m, n)
is centered on the point (m,), not on a pixel center.

Figure 19 illustrates the point behind Lemma 5.2.1. It shows the digitization
region R of a digital path Q = D(¢) and the image under 77! of the digitization
region R’ of another digital path Q' = D(T}(¢)), where £ is the curve represented
by the dotted line. Observe how the linear transformation distorts the squares
comprising R’ into parallelograms. The properties of the transformation 7} en-
sure that these parallelograms are all contained in R so that if £' is a path digitally
equivalent to Q' then T-1(¢') will be digitally equivalent to a subset of Q. Fur-
thermore T7"!(R') fills up R so that, except for small regions near either end of the
figure, no path in A can have any part of its range in common with R\ T;"}(R').

Fig. 19. A comparison of the digitization region of D(£) and T;! of the
digitization region of D(T(¢)).

If we have an infinite digital path that is the digitization of some path £ € X},
then Lemma 5.2.1 implies that D(Tx(£)) is independent of which such £ is chosen.
We need a way of taking a digital path and determining for what % it is equal to
D(¢) for some £ € X, and if there is such a k, then what is D (Tk(£)).

To simplify the notation in the following lemma, let a nonnegative digital path
be a digital path (z(t),y(t)) such that z'(t) and y'(t) are always nonnegative. In
addition, if Q is a nonnegative digital path define L,(Q) to be the set of all lengths
of horizontal edges in Q, and let L,(Q) be the set of vertical edge lengths.

Let the polygonization of a nonnegative digital path Q be a polygonal path
built from line segments joining the midpoints of each pair of adjacent edges of Q.
For instance Figure 20 shows the polygonization of the path D(¢) from Figure 19.
Removing the first and last edges of the polygonization yields a polygonal path
that connects the centers of the parallelograms that make up the transformed
digitization region in Figure 19. The following lemma makes this relationship
precise.

BUILDING ENVELOPES WITH INTEGER OFFSETS 61

Fig. 20. The digital path D({) from Figure 19 and its polygonization.

Lemma 5.2.2. Let Q be an infinite nonnegative digital path. There exists a path
£ € X such that D(£) = Q if and only if L,(Q) C {k,k+ 1} and L,(Q) = {1},
in which case D(Tx(¢)) = Tk(Q') where Q' is the polygonization of Q. Similarly
there exists £ € Y, with D(£) = Q when L,(Q) C {k,k + 1} and L,(Q) = {1}.
Then D(Ux(£)) = Ux(Q").

Proof. Let (z1,¥1) and (z32,y2) be two points in the range of £. If y, —y; = 1 then
k<zy—z,<k+1whentf€ X,and 0 < z; — z; < 1 when £ € Y,. Applying
this for integer y; and y, shows that L,(Q) must satisfy the required containment
when D(¢) = @Q; a similar argument with 23 — z; = 1 proves the containment
for Ly(Q).

Conversely if L,(Q) and L,(Q) do satisfy the containments then Q' has the
correct digitization and is in A% or Y, as required.

We have just seen that the polygonization Q' is digitally equivalent to Q and £
when Q has the required edge lengths. Hence by Lemma 5.2.1, T (Q') or Ux(Q') is
digitally equivalent to Ti(€) or Ug(£). All that remains is to show that whichever
of Tx(Q') or Ux(Q') we are dealing with is a digital path. The transformations T}
and Ui have been carefully chosen to map edges parallel to those of Q' to vertical
and horizontal segments. When the transformation is T%, the vertices of Q' occur
at the middle of unit length vertical edges and hence have integer z-coordinates
and y-coordinates congruent to 3 (modulo 1); when the transformation is Uy the
unit edges are horizontal and it is the y-coordinates that are integers. Either way,
the transformed vertices lie in Z? as required. B

The paths that we will actually be dealing with are not infinite as required
by the lemmas. We need to determine whether a finite digital path is a subset of
a suitable infinite one. This is not difficult: Let Q be the given digital path and
rotate it to obtain a nonnegative digital path Q;. If this is not possible, then Q
has straightness 0. Now determine whether it is possible to extend the initial and
final edges of Q; so as to obtain a digital path @} so that L(Q}) and L,(Q;)
are as required in Lemma 5.2.2. If at either endpoint there is more than one
way to make such an extension, then that entire edge should be deleted. If the
construction of Q) is successful then Q; is the digitization of some path in A
or Y. Now let Q, be the polygonization of Q) transformed by whichever of T}
or Uy is appropriate.

This process can be repeated indefinitely to produce Q;, Q2, Q3, ... until
at some stage the edge lengths fail to satisfy the constraints. If Q; is that last
successfully produced path in the sequence then the straightness of Q is ¢. If at

62 BUILDING ENVELOPES WITH INTEGER OFFSETS

some point a path of length 0 is obtained, then the process will never terminate
and Q is a subset of the digitization of an infinite straight line. In this case we
say that the straightness is infinite. The problem of recognizing straight lines in
this way is covered extensively by Rothstein and Weiman in [25].

Lemmas 5.2.1 and 5.2.2 guarantee that at each stage, any path that digi-
tizes to Q; can be extended without increasing its range of directions and then
transformed by a linear transformation so as to obtain a path that digitizes to Q.
Hence the above process determines how wide a variation in directions is neces-
sary in order for a path to have Q as its digitization. It could be refined so as to
determine the exact range of directions required rather than just determining how
many times Ty or U can be applied and still keep the directions confined to one
quadrant, but such refinement is not necessary for our purposes.

5.3. Smoothly Changing Offsets

In Section 5.1 we investigated the possibility of breaking the trajectory into
sections and using a different integer offset for each section, but we still have not
decided exactly what to do at the ends of such sections. We now investigate the
possibilities in the light of the straightness criteria of the previous section.

Figure 21a illustrates the basic problem. It shows a portion of an envelope
boundary with an integer offset of (—2,3) on the left and (0,4) on the right. The
trajectory is the dashed line through the center of the figure, and the solid lines
are copies of overlapping portions of the trajectory shifted by d:% times the integer
offset vectors. These overlapping boundaries must be connected together somehow
so that the digitizations of the composite boundaries thus formed will be as smooth
as possible.

Fig. 21a. Undigitized envelope Fig. 21b. A possible approach to
boundaries with different integer smoothing before digitization.
offsets.

Figure 21b shows one possible approach to this problem: Find two points A
and A’ offset by :}:15(—2,3) from the trajectory at the left side of the overlap, and
connect them to two points B and B’ offset by +1(0,4) at the right side of the
overlap. By increasing the distance between A and B and between A’ and B’,
the undigitized boundaries can be made as smooth as desired at the expense of
reducing the range over which the integer offset vectors apply.

It is of course the digitized version of the envelope boundary that should be
as smooth as possible. Figure 22a shows the digitizations of the envelope bound-
aries of from Figure 21a. The original envelope boundaries are shown as dashed
lines superimposed on their digitizations. Portions of the digitized boundaries

BUILDING ENVELOPES WITH INTEGER OFFSETS 63

for the two offsets coincide, but at intervals there are pixels that are inside of the
(0,4) envelope but not the (-2, 3) envelope. This row of “changeable pixels” could
be continued indefinitely if the overlap region were long enough and the trajectory
straight enough.

BI
AI
A
B
Fig. 22a. The digitization of Figure 21a. Fig. 22b. The polygonization of

Figure 22a transformed by Tj.
(Not to scale.)

There is no room to show points 4, B, A’, and B' in Figure 22a, but regardless
of where they are placed there will be two z-values 2 and zg that determine which
changeable pixels will be part of the final digitized envelope: A changeable pixel
centered at (z,y) is part of the envelope if and only if z > z¢ and (z,y) is on the
lower edge of the envelope, or z > 2} and (z,y) is on the upper edge. Figure 22b
shows this more clearly. Note that the extreme nature of the transformation being
applied makes it necessary to show the two sides of the stroke closer together than
they should be, but the neighborhood of each side is drawn to scale. Pixel centers
within the transformed envelope correspond directly to pixel centers in the original
envelope. The centers of the changeable pixels that appear in Figure 22a are shown
as bold dots in Figure 22b. The bold horizontal lines in Figure 22b correspond to
the dotted lines in Figure 22a, while the diagonal lines in Figure 22b correspond
to the connecting lines in Figure 21b.

What we have seen so far can be summarized informally as follows: The
straightness of the digitized envelope depends entirely on which changeable pixels
within the overlap region are included. It is possible to achieve any desired degree
of straightness adding long enough transition lines, but as Figure 23 illustrates,
the cost can be very high.

Figure 23 shows what can happen if we insist on making an offset transition
at a specific point C on the trajectory. If transition points A and B are too close
together as shown in Figure 23a, then there is a nonmonotonicity in the digitized
boundary directly below point C. This can be avoided by moving points A and B
further apart as shown in Figure 23b, but then the width of the digitized envelope
is very uneven. No integer offset vectors apply to the portion of the envelope
between points A and B, and the result can be disastrous when these points are
far apart.

This example shows that extremely long transition lines are very dangerous

64 BUILDING ENVELOPES WITH INTEGER OFFSETS

—
————— C e
-— — -
b — P - -
———— A ""’l"
—
-~ B

Fig. 23a. An unsuccessful attempt at smoothing before digitization.

——i
-
P d

——r
-
—
—
e = Ce L e -

—— =
- A

Fig. 23b. Large unevenness due to smoothing before digitization.

-
-—
s

and sometimes we have no choice but to relocate the transition so as to increase
the straightness. This involves locating the changeable pixels and deciding where
the transition should be made so as to include the right ones. A well placed
abrupt transition can produce smoother, straighter digitized envelope boundaries
than a poorly placed gradual transition. The rest of this section will be devoted
to controlling the placement of abrupt transitions.

To formalize the idea of a transition, let X (¢) be a path defined fora <t < b,
and let (u;,v;) and (u2,v2) be two vectors in Z? such that y'u; —z'v; and y'ug—z'v,
are both positive or both negative for any direction (z’,y') tangent to X(t). We
say that X, (u,v;), and (u2,v;) form an offset change problem. The line segment
whose endpoints are +3(u1,v;) is called the incoming pen, and the line segment
with endpoints :*::12-(11.2,’02) is called the outgoing pen.

Let [c1, ¢2] be a subinterval of [a,b], and for i = 1,2 let ¢; be the line parallel
to (ui,v;) through X(c;). The offset change problem is said to be simple for the
interval [c1,¢p] if the following hold: 1) The curves X(t) + 1(ui,v;) each cross
each of the lines £; exactly onceon a <t < b,for 1 <14,5 < 2. 2) No such curve
may cross any line parallel to ¢; or £, more than once. 3) The lines ¢; and £,
divide R? into at most four regions, and one of these regions R contains segments
of all four curves X(t) & (u;,v;), where each such segment has one endpoint on
f; and one endpoint on ;. 4) None of the curves X (¢) £ (u;,v;) include any
points in common anywhere in R or on the boundary of R. The region R is called
the simplicity region for [c;,cz]. Refer to Figure 24 for an illustration of an offset
change problem that satisfies this definition.

Given an offset change problem as above, let E; be the envelope with respect
to the incoming pen, of X(t) for a < t < b. Similarly let E, be the envelope of
the outgoing pen. (In Figure 24, E; = A} B B[AT and E, = AT Bf By A7.) If
the offset change problem is simple for [c;, ¢2] then Lemma 5.3.1 below shows that
either EyNR C EsNRor E;NR C E;NR, where R is the region described in the
definition. In the former case we say that (ua,v;) is effectively wider on [c;,¢2],
while in the latter case we say that (uy,v;) is effectively wider. Either way, the
difference between E; N R and E; N R is called the difference region of the given

BUILDING ENVELOPES WITH INTEGER OFFSETS 65

Fig. 24. A simple offset change problem where (u1,v1) = (-1,3) and
(’u,g, 'vg) = (1, 2)

offset change problem for the interval [e1,c2]. The difference region is composed
of two disjoint subregions on either side of the trajectory. These are called the
left and right difference regions; i.e., the left difference region lies to our left as we
face in the trajectory direction (z'(t),y'()). In Figure 24 the left difference region
lies between the curves AT By and A; B;, while the right difference region lies
between A} Bf and AF By .

Lemma 5.3.1. Let X, (u1,v1), and (u2,v2) be an offset change problem that is
simple for some subinterval [¢;, ¢2] of [a,], the domain of X . Either E\NR C E,NR
or EsNR C E1NR, where R is the simplicity region for [¢1, ¢3], and where E; is the
envelope of { X(t) | @ <t < b} with respect to the pen { a-(ui,vi) | -3 <a < 3}

Proof. Choose directions w; parallel to £; and w; parallel to 3 such that either
w; and w, are positive multiples of each other, or R is the set of all points I +
ajw; + aswy where I is the intersection point of ¢; and £;. Since E; and E; are
invariant under negation of (u;,v;) and (u2,v2), we may assume that each (u;, v;)
is a negative multiple of w;. Thus if z € R and «;,az > 0 then z + ay(uy,v1) +
ag('u2,’vz) € R.

Now let C’;" and Df’ be the points where X (t) + -12~(u,-, v;) intersects £; and £,
respectively for i = 1,2; let C; and D] be the similar intersection points for
X(t) — (ui,v;). The definition of simple offset change problems states that the
curves CF D} and C} DY and the curves C;” D;” and C; Dy are disjoint for ¢ # j.
Thus it suffices to show that either the segments Cf C1 and D} Dy are contained
in the segments C; C; and DF D3, or vice versa.

We can assume without loss of generality that C; — C{ and Df — DY are
positive multiples of w; and ws respectively, and that C — C; = aw and
Dy — D3 = fw; where a and § are either both positive or both negative. Choose
tso that CF = X(¢)+3 (uo), and let P = X(¢)— 3(u1,v1) and Py = X(e1)—
2(U2,’02) Since P; — C'2 =P; - ct = (ul,vl) - 2(’[1,2,1)2) = oqw; + W,

66 BUILDING ENVELOPES WITH INTEGER OFFSETS

where a;,a; < 0, it follows that {P{,P;y} C R and thus P is on the curve
Ci D fori=1,2. Clearly P — Py = C} - Ct is a positive multiple of w;, and
thus P~ and P; lie on some line £ parallel to £;. Any parallel line £ between 4
and £ must intersect the curves C[P and C; P; at least once, and the definition
states that these curves are disjoint and each intersect ¢’ at most once. Thus if Q1
and Q7 are the intersection points of any such line ¢’ with Cy P;” and C; Py, then
Q1 — Q7 is a positive multiple of w;. In particular, CT ~ C5 has this property
and therefore so does Di” ~ D, . Thus CFCy C C}Cy and DF Dy C D} Dy as
required. (These containments are reversed if we begin by assuming that Cj - ct
and DF — D} are negative multiples of w; and wy.)

For any four values t,, t3, t}, and t} in the interval [a,b], the linear solution
to the above offset change problem is a pair of paths (7, T") defined as follows:
The path T contains the curves X(¢) + }(u1,v) fora <t < 1, X(t) + 3(uz,)
for t; <t < b, and a simple straight line connecting them. The path 7' contains
curves X(t) — 3(uy,v) fora <t < 8}, X(1t) - 2(uz,v2) forth <t < b,and a
similar connecting line.

Given a linear solution to an offset change problem of the above form, the
change envelope is the region bounded by the closed curve consisting of T, T”,
and the line segments whose endpoints are X (a)+ 1(u;,v1) and X (b)+ 2 (ua,v2).
We are primarily interested in cases where this closed curve does not cross itself,
but the region bounded by a self intersecting curve can be defined in terms of the
concept of winding number introduced in the appendix.

A linear solution to an offset change problem is just the pairs of paths obtained
by connecting points on appropriately shifted copies of the trajectory by straight
lines as shown in Figure 21b. Points A, B, A’, and B’ in that figure correspond
to 1, 3, t;, and tj. We shall refer to the shifted copies of the trajectory as the
incoming and outgoing envelope boundaries.

Linear solutions to offset change problems provide a formal description of
the idea of connecting lines. As explained previously, it is desirable to keep the
connecting lines short. A convenient way to do this is to simulate the effect of
suddenly changing the pen at some point X (¢y) on the trajectory, where ¢, € [a, b].
Take the envelope of the incoming pen with respect to the portion of the trajectory
where a < t < ?, and use the outgoing pen for tp < t < b. The brush shape be
thought of as changing smoothly at X (2o) from the incoming pen to the outgoing
pen and covering two triangular regions in the process. The result is shown in
Figure 25.

We can construct such a linear solution for the case shown in the figure when-
ever the offset change problem is simple for some interval [e;,c;] and the points
X(to) £ 3(u1,v1) and X(to) £ 3(u2,v,) are all in the interior of the simplicity
region for [c1,¢3): If (ug,v1) is effectively wider than (uz,v;) on [e;,e¢z], then
the segment whose endpoints are X (o) = 2(u1,v1) cuts each of the two curves
X(t) £ %(ug,vg) exactly once. Let X(t%) + %‘(Uz,vg) and X(t7) — %(ui,v;) be
these two intersection points. If t¥+ > ¢t~ then let (t1,%;,1],%) = (to,t%,%0,%);
otherwise let (t1,12,1],t5) = (to,%0,%0,t7). If (uz,v7) is effectively wider, then let
X(*) + 3(u1,v1) and X(¢7) - 3(u1,v1) be the intersection points of the curves

BUILDING ENVELOPES WITH INTEGER OFFSETS 67

Fig. 25. How a linear solution to an offset change problem can simulate the
action of a dynamic brush.

X ()£ 1(u2,v2) with the segment whose endpoints are X (t)+ 3 (uz, v;). If t+ < ¢~
then let (¢;,1%2,t1,25) = (%, %o, to, to); otherwise let (t1,t2,11,%5) = (to,%0,t,%0)-

This solution is called the standard solution for the offset change problem at
time ?o, and its connecting lines are called the standard connecting lines for time #p.
In Figure 25 the standard connecting lines are shown in bold. Theorem 5.3.2 shows
how the change envelope for the standard solution relates to the intuitive idea of
the brush shape changing at some point X (#5) on the trajectory.

Theorem 5.3.2. Let X, (u1,v1), and (uz,v2) be an offset change problem that
is simple for some subinterval [cy,c3] of [a,b], the domain of X; let (T, T') be
the standard solution at some time to € [c1,¢2]; let £+ be the line segment whose
endpoints are X(to) + %(ug,v;), for i = 1,2; and let £~ be the segment with
endpoints X (to) — 3 (ui, ;). If €+ and £~ are contained in the difference region for
[c1,¢2], then T and T' delimit a subset So U Sy U Sy of the simplicity region R for
[c1, 2], where

So = { X (to) + a(1 — B)(u1,v1) + @f(ug,m) | -3 La < Fand 0K F< 1},
S$1={X@®)+ea(v1,n)| -3 <a<fand e <t <t}
Sy = {X(t)+a(u2,v2)|—% <aX< % and tp <t<e }.

Proof. Assume that (u;,v;) is effectively wider than (up,v;); otherwise we can
swap (u1,v1) with (us,v;), reverse the parameterization of X, and use the same
proof. If t+ and ¢~ are as in the definition of the standard solution, we can assume
that t+ > t~; otherwise the same proof applies if we negate (u1,v1) and (uz,v2).
These assumptions make the situation correspond to Figure 26.

Fig. 26. A construction for Theorem 5.3.2.

68 BUILDING ENVELOPES WITH INTEGER OFFSETS

We shall show that B(So U 51U S2) C B(R)UT UT', where B(S) denotes
the boundary of § for any set § C R%. Except for a segment £, whose endpoints
are X (t*) + 3(u2,v;) and X(to) — 3(u1,v1), all points in B(S;) are contained in
B(R)UT UT'. The points in B(S2) not in B(R)UT UT" consist of a segment £}
with endpoints X(fo) £ 3(u2,v2) and the curve 7" given by X(t) + }(u2, v2) for
to <t <t*. Since B(So)\ (B(R)UT UT') C ¢4 utyuLt, it is suffices to prove
that £5 UL, ULY UT" C I(SoU S US2)UT UT' where I(S) denotes the interior
of the set S.

The definition of simple offset change problems requires that for ¢ = 1,2 and
j = 1,2, any curve (z(t),y(t)) = X(t) £ 1(u;,v;) intersects every line vz(t) —
u;y(t) = c at most once for (z(t),y(t)) £ 3(uj,v;) € R. Thus there are functions
fi(z,y) = 2(v;z —u;y) from R? to R such that f;(z(t),y(t)) is monotonic increas-
ing whenever (z(t),y(t)) € R. The definition of offset change problems requires
that v;2’ —u; 3’ and vz’ — u2y’ have the same sign whenever (z',3') is the tangent
direction for one of the curves X(t) + 1(u;,v;). Thus either fi(z,y) = vz — w1y
and fy(z,y) = v2z — wey or fi(z,y) = —v12 + my and fo(z,y) = —v2z + wpy.
Therefore fi1(ug,v2) = —fa(u,v1).

If E; and E; are as defined in Lemma 5.3.1 then z € I($;)UT U T’ when
fi(X (1)) < fi(2) < fi(X (%)) and z € Ey; similarly z € I(S;)UT U T’ when
f2(X(t0)) < f2(2) < f2(X(c2)) and z € E;. Since T" C R, we know that f;(2) <
fi(X () + (w2, v2)) = fi(X(to)) when z € T", and therefore T” C I($;)UT U
T'. A similar argument applies to £+ and £§ = { X(to) + a(uz,v2) |0 < a < 1}
if we can show that fi(ug,v2) < 0. In this case since fo(u1,v1) = — f1(uz,v2), we
can also conclude that f(2) > f2(X(to)) when z € £F = { X (%) + a(u1,11)]| 0 <
a<1} Thus¢f NE, CI(S)UTUT".

If fi(u2,v2) < 0, we still need to show that for i = 1,2, the segments £; =
£\ £} do not intersect B(Sp U 53 U S,) except on T UT'. Let z = X (o) —
a(uy,v1) be a point on £ where 0 < @ < 3. If 2’ is a point in the immediate
neighborhood of z such that fi(2') < fi(X (%)) = fi(2), then 2’ € §; because
2 = X(to — &) + (o + €2)(u1,v;) for some small ¢; and ¢; where ¢ > 0. If
fi(2") > f1(X (%)) and f2(2') < f2(X(to)), then 2’ € S because 2’ = X (o) +
o'(1 = B')(u1,v1) + a’'B'(uz,v2) for some o’ ~ o and some small positive /. We
can avoid the case f2(z') > f2(X(to)) unless f(z) > f2(X(to)) in which case the
assumption fy(u;,v1) > 0 implies that a = 0 and thus z = X(¢p). In that case
2! = X(to + €1) + €2(uz,v2) € S for some small ¢; and €;, where ¢ > 0.

If z = X(to) — a(uz,v2) is a point on £; where 0 < a < }, then we can argue
as above that any point 2’ in the neighborhood of z either lies in S or lies in Sp,
depending on how fa(2') compares to f2(X(t)).

The above argument shows that {; Ul ULYUT" C I(SoUS; US)UTUT'
when fi(uz,v2) = —fo(u1,v1) < 0. Since X(t) + 3(uz,v2) € R for t between
and t*, it follows that f;(X(f) 4+ 3(u2,v2)) is monotonic increasing for such ¢,
hence so is fi (X (). Similarly f; (X (t)) is monotonic increasing for t between ¢~
and to because X(t) — 1(uz,v;) € R for such t. Thus f(t*) > f1(t™), and since
H(XAY) + H(uz,v2)) = fi(X(t7) = 3(u2,v2)) it follows that fi(uz,v2) < 0.

If fi(uz,v2) = 0 then 7" is the empty set and £;, £, £+ and £~ all lie on

BUILDING ENVELOPES WITH INTEGER OFFSETS 69

some line segment ¢ contained in E,. Since 7 U T’ contains £ N (E; \ I(E2)),
we only need to show that £ N I(E;) C I(S; U .S2 U S3). Since the segment with
endpoints :l:%(ul,vl) contains the segment with endpoints ﬂ:%(ug,vz), we have
E;NR C S;US,. Since the definition of the standard solution requires that
X(to) + %(Uz,'vz) € I(.R),

(NI(E,)) CI(R)NI(E;) =I(RNEy) CI(S1US2).

Thus £, UL, ULt UT" C I(SoUS1US2)UT UT', and therefore B(So US; US3) C
B(R)UTUT'. 1

The standard solution is useful because it produces reasonably short connect-
ing lines, and the concept can be extended to apply to offset change problems that
are not simple: The regions Sy, 51, and S; from Theorem 5.3.2 are well defined
whenever [¢1, ¢2] is in the range of X. We can always just compute the digitizations
of these regions. When the offset angles for the incoming and outgoing envelope
boundaries are small, the standard connecting lines are nearly opposite; i.e., they
both lie near the line perpendicular to the trajectory at X (). In the ideal case
of truly opposite connecting lines, both connecting lines lie on the perpendicular
through X (o).

Restricting our attention to the standard solution removes three degrees of
freedom, but this is seldom harmful because the digitization depends only on where
the connecting lines fall relative to pixel centers in the left and right difference
regions. When the connecting lines are contained in the difference regions as
required by Theorem 5.3.2, each difference region is divided into two connected
sets, one of which is contained in the change envelope E, and one of which is
disjoint to E. The difference regions are usually so thin that the pixel centers
inside of them have a linear ordering zp, 23, 22, ..., such that whenever E is
the change envelope for a linear solution with nearly opposite connecting lines, F
contains exactly those z; where 0 < 7 < k for some k. The choice of the time g at
which the standard solution is taken determines this value of k.

We shall now develop formal conditions under which the above idea of linear
ordering of changeable pixels can be used to find a good solution to an offset change
problem. Let X = (z(t),y(t)), (u1,v1), and (u2,v2) be an offset change problem
that is simple for some interval [c1, ¢3], and let R be the corresponding simplicity
region. This offset change problem is positive simple for [c;,¢;] if the following
hold: 1) It is true that z(f) > 0 and y'(t) > 0 whenever X(t) + 3(ui,v) € R
for i = 1,2. 2) If § is either the left or the right difference region then the
digitization D(S) contains no two pixels P(m,n) and P(m',n') such that m+n =
m'+n'. 3)If such a digitization D(S) contains pixels P(m,n) and P(m+1,n+1),
then D(S) contains neither P(m + 1,n) nor P(m,n + 1).

If the tangent directions do not lie in the first quadrant, then it may be pos-
sible to obtain a positive simple offset change problem by rotating the coordinate
system. It may be necessary to use Theorem 1.1.1 in order to ensure that the
digitization of the rotated change envelope will be a rotated version of the digiti-
zation of the original change envelope. If these techniques suffice to construct an

70 BUILDING ENVELOPES WITH INTEGER OFFSETS

equivalent positive simple offset change problem, we say that the original offset
change problem is positive simple under rotation.

Let X, (u1,v1), and (uz,v;) be an offset change problem that is positive simple
for some interval [c;,cy]; let A and A’ be the right and left difference regions,
respectively; let (T, 7') be the standard solution at some time ¢y € [c;, ¢5); let E be
the corresponding change envelope; and let o = 1if (u;,v;) is effectively wider than
(u2,v2) and 0 = —1 otherwise. If k is an integer such that o(m + n) < ok for all
P(m,n) in the digitization D(ANE) and o(m+n) > ok for all P(m,n) € D(A\E),
then k is a standard right breakpoint for X, (u1,v1), and (u3,v;) at time o with
respect to [c, ¢2]. If similar conditions hold when A is replaced by A’, then k is a
standard left breakpoint. Note that if ¢y € [e1,¢2] C [}, ¢)] and X (to) £ 3 (ui, »)
are interior to the simplicity region for [c;1,¢;], then a standard breakpoint at
time ?o with respect to [c},c}] is necessarily a standard breakpoint with respect
to [e1, ¢2], but not vice versa.

Conversely, given an offset change problem as above that is positive simple
for some interval [c;, ¢;], any pair of integers (k, k') determine a class of digitally
equivalent solutions as follows: Let R, Eq, and E; be as defined in Lemma 5.3.1;
let ¢ be such that E;N R C E3_; N R; let A and A’ respectively be the right and
left difference regions; and let 0 = +1 as above. The class of linear solutions is
those for which

DE)= |J Pmmn)u |J P(mn) u (EinR),
o(m+n)<ok o(m+n)<ok
P(m,»n)CA P(m,n)CA’

where D(FE) denotes the digitization of the change envelope.

In general, there may or may not be standard left and right breakpoints at
any particular time ?p, but the standard breakpoints usually do exist for offset
change problems that appear in practice. If an offset change problem is positive
simple with respect to an interval [¢;, ¢z], and if for all k there exist times ¢ and ¢’
such that k is the standard left breakpoint at ¢ with respect to [c;, ¢;] and k' is the
corresponding standard right breakpoint, then the offset change problem is said
to be infinitely breakable with respect to [c1, ca].

Infinitely breakable offset change problems do not provide complete freedom
in the selection of standard breakpoints because the standard left and right break-
points are not independent of each other. As explained earlier, this is usually not
a serious limitation because it is desirable to choose pairs (k,k’) that determine
classes of solutions with nearly opposite connecting lines. Since the rules that we
shall give for finding good solutions to offset change problems are based on choos-
ing breakpoints, our method will also be useful for finding nonstandard solutions
if desired. The breakpoint selection method to be defined below depends on the
following properties of positive simple offset change problems:

Lemma 5.3.3. Let X, (uy,v1), and (uz,v;) be an offset change problem that is
positive simple for some interval [¢1,cz]; let £, and £, be the lines that bound the
simplicity region R; and let S be either the left or the right diflerence region includ-
ing its boundary. If the digitization D(S) contains pixels P(m,n) and P(m',n')

BUILDING ENVELOPES WITH INTEGER OFFSETS 71

such that m'+n' = m+n+1 then either m = m', or n = n', or both pixel centers
(m+ %,n+ 1) and (m'+ §,n' + 1) are at a distance of < 1 from both £, and 5.

Proof. Theorem 1.1.1 allows us to assume that there are no pixel centers on the
boundary of §. Thus P(4,5) C D(S) if and only if (i + §,5+) € S. Let (u,v) be
a direction such that vu; — uv; and vu — uwv, are both positive or both negative
and u,v > 0. Let f; and f; be linear functions such that f;(z) = 0 if and only
if zis on 41, f;(z) = 0if and only if zis on £, and R = {z € R? | fi(2) >
0 and f2(z) > 0}. Also let

S'=Su{z-a(y,v)|z€ SNt anda >0}
U{z+a(u,v)|]z€ SNty and >0}

sothat § =S8'NRand §' = {(z,y)| f~(z) <y < f*(z)}, where f+ and f~ are
monotone nondecreasing functions defined on R.

If m # m' and n # n' then either m’ < m or n’ < n. First consider the case
when m' < m, and let (m" + 3,n" + 1) be a pixel center such that m' < m"” < m
and n < n"” < n'. (Note that ' —n =14+ m — m’ > 2.) Since S’ contains the
pixel centers (m + ,n + 1) and (m’ + 1,7’ + 1), it follows that

fT"+) < fT(m+3) <n+i<n"+1<n'+1 < fHm' +1) < fH(m" +1).

Thus (m" + 3,n" +) € §".

Since D(S) = D(5'N R) contains no pixels P(m",n") ¢ {P(m,n), P(m',n')}
for which m” + n” € {m + n, m’ + n'}, the pixel centers (m’' + 3,n' —~ 1) and
(m—1%,n+3) cannot belong to S'N R. Thus there must be 7, j € {1,2} such that

film+ 37 +3)>0, fi(m'+Ln'+1)>0,
film+3,n+3)2>0, film+3,n+3)20,
fi(m, + %’n, - %) <0, f](m - %9n+ %) <0 (531)

Furthermore i # j because (m’' + 3,7’ — 1) - (m'+ 3,0’ + 3) = (m+ §,n+ %1) -
(m—3,n+3) and thus fi(m'+ 3,0/ = 3) = fu(m'+ 3,0+ 3) = fu(m+ 3,4 3) -
fe(m — %,n + %) for £ = 1,2. In general the linearity of f; and f, implies that
fi(z +d,y—d) < fi(z,y) and fj(z - d,y + d) < fj(z,y) for d > 0. Thus we have
fi(m+1§,n+%) < fi(m'+3,n'-1) < 0and fim'+i,n'-3) < fi(m-%,n+3) < 0.
Therefore £; passes between (m+ 2,2+ 1) and (m+ 1,n+ 2) and thus within one
unit of (m + %, n+ %), and similarly £; must pass within 1 unit of (m' + %, n' + %)
in order to exclude (m' + 1,n’ — 1) from R.
It is not possible that f;(m'+ 3,n' + §) > 0, because

(0 = n)(m' + 3,0’ = }) = (0 —n—2)(m' + },0' + })
+(m'+ 30"+)+ (m+ 30+ 3)
and therefore
(' —n)fi(m' + 3,0 - }) = (' —n-2)fi(m' + },7' +)
+ fi(m' + 30" +) + film+ 3,n+ 3) 20,

72 BUILDING ENVELOPES WITH INTEGER OFFSETS

contradlctmg (5.3.1); similarly, it is not possible that fJ(m- 7:n+3) > 0 because
fitm+n+t >0, f;(m' + 2,n + 2) >0,and fj(m-%,n+ 2) <0. Thus ¢;
must pass within 1 unit of (m'+ },n'+ }) i m order to exclude (m'+3,n'+1 1), and
£; must pass within 1 unit of (m + 3,7 + }) in order to exclude (m — §,n+)

When n' < n, the digitization D(S’) contains pixels P(m" + 3.n" + 1) with
m < m" < m' and n’ < n” < n. Equation (5.3.1) still holds with ¢ # 7, except the
roles of (m n) and (m',n’) are reversed. The hneanty of f1 and f2 1mphes that
fi(m'-1,n'+1) < film+3,n—-3) < 0and f_,(m+ n+3) < film'-4,n'+3) <o,
so that the dlstance between £; and (m' + 1,n' + 1) and the distance between ¢
and (m + 3,n + 1) are both at most 1. To complete the proof we argue as a,bove
that fi(m + 2,n -) < 0 because

(m,_m)(m+ %’n—%)=(m'—m"2)(m+%vn+%)
t(m+g,m=3)+(m' + 5,0+]),

and similarly f;(m'+ 2,n '+3)<0 because (m —2,n'+3) is a nonnegative linear
combination of (m' + 3, n' + 3 (m' + 10 +2) and (m + Hn+i). 1

Let A be the difference region for a simple offset change problem; and let ¢,
and £; be the lines that bound the simplicity region. If the distance |jz; — 2]| > 2
for any points z; € AN¢; and z; € AN{,, then the offset change problem is said
to be interesting. Lemma 5.3.3 shows that the changeable pixels of an interesting
positive simple offset change problem can be divided into right blocks and left
blocks such that if B; and B; are both right blocks or both left blocks, and if
P(m;,n;) € B; for i = 1,2, then the difference between m; + n; and m, + n, is at
least 2. (Right blocks lie in the digitization of the right difference region and left
blocks come from the left difference region.) In general a block is a set of pixels

{P(m,n)|mg<m<myandny<n<n}

where either mg = m; or ng = ny. If mg = m; then the block is a vertical block;
if ng = n; then the block is a horizontal block.

A right or left block B is said to be broken by a pair of breakpoints (k, k') if
B and the complement of B both have nontrivial intersection with the digitization
of the change envelope for the class of solutions determined by (k,k’). For any
positive simple offset change problem and any pair of breakpoints (k, k'), there is
at most one broken right block and at most one broken left block.

Right and left blocks are also referred to as good or bad depending on how the
straightness of the boundaries of the digitized change envelope is affected when
such blocks are broken. Consider an interesting positive simple offset change
problem X, (u3,v1), (u2,v2). If the us,v;) is effectively wider and if u;y' — v, 2’
and 2y’ — voz’ are positive for trajectory directions (z’,'), then horizontal right
blocks and vertical left blocks are bad and vertical right blocks and horizontal
left blocks are good. Making (u;,v;) effectively wider or making u;y’ — v;z' and
uay' — v2z’ negative reverses the above distinction. Since a block that contains
only one pixel is both horizontal and vertical, it is possible for a block to be good
and bad simultaneously. This is immaterial because such blocks cannot be broken.

BUILDING ENVELOPES WITH INTEGER OFFSETS 73

Figure 27 illustrates the effect of broken good blocks and broken bad blocks
on the digitization of the change envelope. Let (7,7T"') be a solution to a positive
simple offset change problem. When no bad blocks are broken, the digitizations
D(T) and D(T') contain only rightward and upward edges. A downward or left-
ward edge is introduced when a bad block such as the one labelled “A” in the
figure is broken. When block A is broken, the downward edge causes D(7) to
have straightness 0. When a good block such as B is broken, the corresponding
digitized change envelope boundary tends to appear smoother than it does when
there are no broken blocks; i.e., D(T') has infinite straightness when B is broken
in Figure 27.

B
\ \ i ;
\ \
\\ Eézfi Y2
\¢,

Fig. 27. A positive simple offset change problem and good and bad solutions.

In practice we have an offset change problem X(t), (u1,v1) and (u2, v2), where
we want the change to occur near some point X (#5). We try to choose some interval
[e1, c2] for which the problem is simple, where g € [c1, ¢c2]. The size of the interval
should be chosen so as to reflect the range in which we want the offset change to
occur.

Consider a dynamic pen envelope specified by transition times to, £y, ..., tn
and offsets (u1,v1), (u2,v2), ..., (Un,vn), where the offsets ﬂ:%—(u;,vi) are to be
used for t;—; < t < t;. We can produce modified transition times tj, ti, ..., t,
as follows: First let t§ = to, then for ¢ = 1,2,...,n — 1, find the largest possible
interval I for which X(?), (ui-1,vi-1), (ui,vi) is positive simple under rotation
and t; € I C [t!_q,ti+1]. If there is such an interval I for which the offset change
problem is infinitely breakable, then we choose t; € I as close as possible to ?; so
that no bad blocks are broken by the right and left breakpoints at t.. If possible,
we choose a t! € I such that there are no broken bad blocks but there is a broken
good block. In this case, t; should be chosen so that the change envelope divides
the good block as evenly as possible. When all this is done for each ¢, we finally
set t! = t, to complete the modified dynamic pen specification. The envelope to
be digitized is composed of regions like Sp from Theorem 5.3.2 for each transition
time ¢!, together with all points X (t) + a(u;,v;) for —% <a< %—, ti_y <t<t,
and 1 <:< n.

If all the left and right blocks are horizontal, or if all of them are vertical,
then all right blocks will be bad and all the left blocks will be good or vice versa.
Suppose that only the right blocks are bad. Since infinitely breakable offset change
problems provide complete freedom of choice for the standard right breakpoint, it
is always possible to avoid broken bad blocks.

In the rare event that it is not possible to find an interval I containing ¢; for

74 BUILDING ENVELOPES WITH INTEGER OFFSETS

which the offset change problem is positive simple under rotation, then we might
as well just let ¢t} = ¢;. A more likely difficulty is that the offset change problem
might not be infinitely breakable or that the simplicity region may be too small to
contain the standard connecting lines. Under these circumstances, we can either
let ¢! = t; or choose breakpoints other than the standard ones.

The methods discussed so far for adjusting breakpoints have been based on
the idea of broken blocks. When no right or left block contains more than one
pixel, the idea of broken blocks provides no useful guidelines on what breakpoints
to use. Sometimes this means that the digitized change envelope will appear
equally smooth no matter what breakpoints are used, but sometimes the concept of
straightness from Section 5.2 indicates a particular choice. In this case, the method
for selecting breakpoints is a simple application of a transformation T equal to T
or Uy for some k. If t; is the unadjusted transition time, and if the offset change
problem X(2), (i-1,vi-1), (ui,v:) is positive simple for some interval I, then
we choose T so that T(X(t)), T(ui-1,vi-1), T(u;,v;) is positive simple for some
interval J such that t; € J C I. We then set t; so that the transformed problem
has broken good blocks but no broken bad blocks. If the transformed problem
also has only single pixel blocks, then we can try to apply another transformation.
Very few such transformations will be needed before multiple pixel blocks appear
or it becomes impossible to apply further transformations.

Figure 28 shows good and bad solutions to an offset change problem that
corresponds to the one shown in Figure 27. Both offset change problems are
positive simple and infinitely breakable, but the changeable pixels in Figure 28 all
belong to single pixel blocks. Applying T; to this problem yields the offset change
problem of Figure 27 where good and bad solutions become apparent. Figure 28
illustrates good and bad solutions obtained by using the transition times from the
good and bad solutions shown in Figure 27. The digitized envelope boundaries
shown in Figure 27 can be obtained by polygonizing the digitized boundaries in
Figure 28 and transforming them by 7. Thus the digitized boundaries from
Figure 28 all have straightness one more than the corresponding boundaries in
Figure 27. Hence avoiding broken bad blocks in the transformed problem increases
the straightness of the digitized boundaries in the corresponding solution to the
original problem. The fact that few transformation steps are often needed is
merely a consequence of the fact that solutions to offset change problems seldom
have large finite straightness.

We have outlined a method for taking a dynamic pen envelope and modifying
the transition times so as to produce a new envelope whose digitization has more
straightness in the vicinity of the transition points. Our analysis of how to make
a transition between integer offsets is based on cases where some transitions seem
definitely superior to others. We are forced to make somewhat arbitrary decisions
in cases where no particular solution really stands out. For this reason we have
concentrated on the basic concepts rather than on implementation details.

There are many ways to choose adjusted transition times ¢}, ¢, ..., t_;
so as to avoid broken bad blocks, and it is not clear what it means to do this
“optimally.” It may be that a more complex adjustment method will yield better

BUILDING ENVELOPES WITH INTEGER OFFSETS 75

AN

23

| [1
Fig. 28. A positive simple offset change problem and good and bad solutions
corresponding to those of Figure 27.

| ‘ »rj?é

results that the one outlined above. Another possible area for improvement is in
choosing breakpoints independently rather than restricting our attention to the
standard solution. When choosing breakpoints is not appropriate, it would be
necessary to resort to some other idea such as digitizing the regions Sy, 57, and
S5 from Theorem 5.3.2.

5.4. Choosing Integer Offsets

We have determined conditions under which discrete integer offsets are advan-
tageous in representing a dynamic brush envelope with some width function W,
and we have determined how to make smooth joins between portions of the en-
velope with different offsets. What remains is to determine an appropriate set of
integer offsets based the width function W and the trajectory directions.

Let U(t) = (2'(¢),¥'(t)) //2"2(t) + y"2(t) be the unit direction vector tangent
to the trajectory (z(t),y(t)). The function U is continuous because the definition
of dynamic brush envelopes requires this. Since both W and U are continuous,
piecewise real analytic functions of the same parameter t, they determine a con-
tinuous, piecewise real analytic curve in a two dimensional space whose points
represent (width, direction) pairs. Thus the relevant information about the dy-
namic brush envelope can be expressed as a parametric curve through this width-
direction space. Since the trajectory may have inflection points, this curve is free
to double back on itself.

The integer offsets to be chosen determine another, identically parameterized
curve through the same width-direction space: Suppose that we choose integer
offsets (r;,s;) for 1 <4 < n and transition times ¢; for 1 <% < n. When t;_; <t <
t;, the idealized width of the dynamic pen envelope will be W(t) = r;v(t) — s;u(t),
where U(t) = (u(t),v(t)). We want to choose the offsets and transition times
so that the width-direction curve (W(t), U(t)) somehow matches (W (t),U(t)) as
closely as possible.

For any fixed integer offset vector, the idealized width W depends only on the
direction U(t). Furthermore, there is a fixed range of directions (u, v) for which the
tangent of the offset angle 8 is less than v/ VIV for some constant 7 as suggested in
Section 5.1. Thus each integer offset vector determines a curve in width-direction
space, and (W (t), U(t)) must always lie on such a curve. This locus of allowable

76 BUILDING ENVELOPES WITH INTEGER OFFSETS

(W(t), U(t)) depends on the constant 7, but the overall character is always similar
to that the example shown in Figure 29. For example if (r,8) = (0,~1), the
idealized width decreases from 1 to 1/v/2 ~ .7 and the offset angle 8 increases
from 0° to 45° as the trajectory slope increases from 0 to 1; this leads to the
bottom curve in Figure 29. If (r,s) = (1,-1), the idealized width W increases
from 1 to v/2 while the offset angle decreases from 45° to 0°; the initial portion of
this curve is not shown because the tangent of the offset angle exceeds 1/ vw.

)
——— —
><\ //
e T ————
4 —< — =
~— T
pumm—— ?
3 — o ————
/T
2 -
—
o sl
0
0 2 4 .6 .8 1

Fig. 29. Idealized width versus trajectory slope for integer offsets (r,s)
where the tangent of the offset angle is < (r? + s2)~1/4,

One way to find a set of integer offsets would be to always use the allowable
offset vector that makes the idealized width as close as possible to the desired
value W(t). That is, take the integer offset vectors sufficiently close to perpendic-
ular to the direction X'(¢) and look at their components perpendicular to X'(t).
The obvious drawback of this approach is that it produces an excessive number of
discontinuities in the idealized width. The direction of every discontinuous change
in the idealized width should agree with the sign of the derivative of W(t), and
the idealized width should be continuous when W (t) is constant.

If the idealized width is to be continuous then it is possible to change offset
vectors only when the widths match, and this can happen only at rational direc-
tions. Thus if the idealized width is continuous, there must be rational directions
(%0, v0), (u1,v1), (u2,v2), ..., (Un,vn) and corresponding times tg, ¢y, ..., ¢, such
that each (—v;,u;) is a positive multiple of U(¢;) and there is a single integer offset
vector (7;, ;) for each range t;_; <t < t;. The following lemma shows that (r;, s;)
is determined by (ui-1,vi—1) and (%, v;) and the idealized widths at ¢;_; and ¢;.
Note that the component of the vector (7;,s;) in any direction (uj,v;) is simply

the idealized width (rju; + siv;)/, /u§ + v}.

BUILDING ENVELOPES WITH INTEGER OFFSETS 77

Lemma 5.4.1. Let (,s) be an integer offset vector and let n and n' be integers. If
(u,v) and (u',v") are reduced rational directions such that uv' — vu' = d # 0 and
the components of (r,s) in these directions are n/\/u? + v? and n'[\/u? + v'2,
then nv' — n'v —nu' + n'u

r=—0 and s= — (5.4.1)
Proof. Since d # 0, the equations ru + sv = n and ru’ + sv’ = n’ have (5.4.1) as
their unique solution. N

In Figure 29, the only slopes at which it is possible to change offsets without
width discontinuities are 0, %, %, and 1. This suggests the following approach:
Declare that a reduced rational direction (u, v) is simple for width w if \/u? + v2 <
f(w) for some monotonic nondecreasing function f to be determined later. We
always consider two such directions that are simple for W(t) and surround the
perpendicular to X'(t). The offset vector chosen is the one whose width in the
two simple directions is as close as possible to W(t). It is shown in the appendix
that when W(t) is constant, this method for choosing offset vectors is equivalent
to using a special generalization of pens.

Figure 30 shows the effective width of relevant offset vectors when the per-
pendicular to the path direction is between the simple directions (0,-1), (1, -3),
and (1,-2). The choice of the offset vector depends on which of the indicated
rectangular regions the point (U(t), W(t)) falls into. For instance, when the per-
pendicular direction is between (0,-1) and (1,-3) and 6.8 < W(t) < 8.5, there
are seven possible integer offsets corresponding to the seven rectangular regions
shown. The ordering of the rectangular regions is identical to that of the seven
width functions shown, but the width functions are not confined to the rectangles.
Instead the dividing lines have been carefully placed so that the effective width of
the chosen offset vector will be as close as possible to W(t) when U(t) is in the
(1,0) direction or in the (3,1) direction.

"]
<
//>
0 .33 5
Fig. 30. Width versus slope for offsets between simple directions.

8.5

W

7.5

6.8

Y

The general rule is that if the simple directions surrounding the perpendicular
to the path are (u,v) and (u',v'), then the components of the chosen offset vector

78 BUILDING ENVELOPES WITH INTEGER OFFSETS

in these two directions should be n/,/u? + v? and n'/\/u” + v where n and n’
are the closest integers to W(t) - \/uZ+ vZ and W(t) - \/uZ + v2. Since the
simple directions will satisfy (4.1.1), (5.4.1) gives a unique integer offset vector.
If the surrounding simple directions are always chosen from some fixed set S as
close as possible to the perpendicular to the trajectory, then any discontinuities
in the idealized width W(t) will be in the direction of W' (t). For example, when
(U(t), W(2)) is the dotted curve in Figure 31, the corresponding (U(t), W(t)) curve
is as shown in bold in the figure. Discontinuities in W (t) come when (U(t), W(t))
crosses one of the horizontal lines shown in the figure. The resulting discontinuity
in (U(t),W(t)) is shown as a vertical segment in the bold curve.

8.5

7.5 :
1——4

6.8

0 .33 .5

Fig. 31. Width-direction curves for a dynamic brush envelope and the
corresponding dynamic pen envelope based on the simple directions of
Figure 30.

There might not always be such a fixed set S since new directions can become
simple when W(t) increases, and directions can lose their simplicity when the width
decreases. In order to keep track of simple directions under such circumstances, we
need a way of finding the rational direction (u,v) that is simple for some width w
and is as close as possible to some direction (z’,y’) subject to some limitation on
the sign of the difference in angle. The direction (u,v) is called the clockwise or
counterclockwise adjacent simple direction to (z’,y') for width w, depending on
the sign of the difference angle.

Adjacent simple directions may easily be found by using the Stern-Peirce
wreath. For instance, to find the counterclockwise adjacent simple direction
of a positive quadrant direction (z',3y'), start with (ug,v) = (0,1) and treat
(1,1) as its left son. To find the simplest direction (;41,%;41) between (z',7')
and (uy,v;), first let (uiy1,vi41) be the left son of (u,v;) and then repeatedly
replace (41, vi41) with its right son until it is on the correct side of (z',y’). The
counterclockwise adjacent simple direction is the (u;,v;) where j is maximized
subject to the constraint that (u;,v;) must be simple for width w.

The algorithm below finds integer offsets and portions of the trajectory X (t) =
(z(t),y(t)) where they should apply in order to approximate the width W(t)

BUILDING ENVELOPES WITH INTEGER OFFSETS 79

for a <t < b. The simple directions are (u,v) and (u',v') where

l=+u2+v? and U'=\/u?+ 02, (5.4.2)

The current offset vector is always given by (5.4.1) with d = 1, where n and n’ are
two integers maintained so that |{- W(t) + 1| = n and [I' - W(2) + 3] =n'. This
always defines an integer offset vector because simple directions can be placed on
a Stern-Peirce wreath so that adjacent directions must satisfy (4.1.1).

The algorithm works by successively finding times ¢t when the dynamic brush
envelope leaves the current rectangle, i.e., the last ¢ such that the perpendicular
to X'(t) is between (—v,u) and (—v', '), and such that

1 1 1 .1, 1
ma.x(n 2 2 2)5W(t)5min("+2 "+2). (5.4.3)

N[P
Algorithm 3 (Choose integer offsets for a dynamic pen envelope).

1) Find (u,v) and (u',v’), the clockwise and counterclockwise adjacent simple
directions to (y'(t), —z'(t)) for width W(a). Now initialize [and I’ according
to (5.4.2) and set n = |I-W(a)+ 3|, n' = [I'-W(a)+ %], and t = a.

2) Find the next time t' > ¢ when the dynamic brush envelope leaves the current
rectangle and set t — t', except set ¢t — b if there is no such t'. Use the offset
given by (5.4.1) until time t. Now if ¢ = b then stop, otherwise go to one of
the following depending on how (W (t), X'(t)) left the envelope.

3) Case X'(t) perpendicular to (u',v'): Set (u,v) « (¥',v'), n < n', and
Il —U'. Let (u/,") be the counterclockwise adjacent simple direction to (u,v),
use (5.4.2) to initialize I, set n’ = |I'- W(¢) + 3], and go to Step 2.

4) Case X'(t) perpendicular to (u,v): Set (u',v") « (u,v), n' — n,and I' « L.
Let (u,v) be the clockwise adjacent simple direction to (u/,v'), use (5.4.2) to
initialize [, set n = [I- W(¢) + 1], and go to Step 2.

5) Case W (t) crosses upper bound in (5.4.3): Set (ug,vo) — (u,v);set (ug,v) «
(u',v"); and repeat Step 1, using ¢ in place of a. If (ug,vp) is between (u,v)
and (u',v") then set (u,v) < (uo,v), n — [I-W(t) + 1], and | « /u? + v¥;
if (ug,vg) is between (u,v) and (u',v') then set (u',v') «— (up,v), n' «
I'-W(t)+ 1], and I' — y/u”? + v"2. Now go to Step 2.

6) Case W(t) crosses lower bound in (5.4.3): Repeat Step 1, using ¢ in place of @
and set n = [I- W(t) — 1], and »’ = [I'- W(t) — 1]. Then go to Step 2.

Lemma 5.4.2. The algorithm maintains the invariant that (u,v) is simple for
width (n + 1)/1, («',v") is simple for (' + })/I', and no direction between (u,v)
and (u',v') is simple for max((n — })/1, (n' = §)/1")

Proof. The initialization in Step 1 ensures that (u,v) and (u',v’) are simple
for W(a) and no direction between (u,v) and (u',v') is simple for W(a). Hence
the monotonicity of f(w) implies that Step 1 preserves the invariant.

If (u,v) is reset at the end of Step 5, then at the beginning of that step (u,v)
was simple for width (n + 1)/I but not for width W(t). Thus W(t) # (n+ 3)/l at
the beginning of Step 5, so that the net effect of Step 5 is to preserve the values of

80 BUILDING ENVELOPES WITH INTEGER OFFSETS

both (u,v) and n. Hence (u,v) remains simple for width (n + 1)/t when (x, 'v) is
reset at the end of Step 5. Similarly (', v') remains simple for width (n’ + D
when it is reset at the end of Step 5. Since the effect of the modifications to (u v)
and (u',v") at the end of Step 5 is to move these directions closer together, any
direction between the modified (u,v) and (', v') will also be between the original
(u,v) and (u',v"). Since Step 1 ensures that no direction between the original (u, v)
and (u',v") is simple for width W(t), this also hold for the modified directions.

The only other steps that change the relevant variables are 3 and 4, but these
ensure that (u,v) and (u',v') are simple for W(t) and no direction between them
is. The monotonicity of f(w) again proves the invariant. [

Since (u + v/, v + v') is not simple for width w — 1, and since by the triangle
inequality /(u + w')? + (v + v")? < 1+ I', it follows that f(w — 1) < I + I’ where
w > 1is the width W(¢). From (4.1.1), we also have sin ¢ = 1/(Il') where ¢ is the
angle between (u,v) and (u',v'). If 8 is the offset angle, then

)

where (r, s)is the offset vector given by (5.4.1). Taking extreme values n = lw+ 1
and n' = l'w+ ! and using 1 - cos ¢ = 25sin?(¢/2) yields an upper bound
(2wll’ + max(1,1")) - sin?(¢/2) + (1 + 1) /2

w-—1

rv' — su'
(w-=1)

—-7rv 4+ su
(w=1)

sinGSmax(

sinf <

!

= 2l'sin?(¢/2)(1 + O(1/w)) + -';—1(1 + 0(1/w)). (5.4.4)
Since ' 2 141" = 1> f(w — 1) — 1, the term 21I'sin?(¢/2) ~ 1/(2!') is at most
1/(2f(w — 1)) + O(f(w = 1)=2). Since I,I' < f(w + 1), the term (I + I')/(2w)
is at most f(w + 1)/w. Thus the tightest bound on the offset angle is obtained
when f(w) ~ \/w/2 so that the offset angle is less than {/2/w+ O(1/w). A more
detailed analysis shows that it is actually better to set f(w) ~ /w and that a
bound of § < 1/\/w + O(1/w) can be obtained.

Let us take f(w) = y/w/a for some constant « so that a reduced rational
direction (u,v) is simple for width w if and only if a(u? + v?) < w. We shall
now find conditions on a that ensure that the idealized width of the offset vector
cannot decrease in Step 5 of the algorithm or increase in Step 6. The following
lemma gives an important fact about simple directions.

Lemma 5.4.3. Let (u,v) and (u',v') be reduced rational directions such that

uw' +vv' > 0;let 12 = (u +)2+ (v+v")?; and let €2 = ((k+)u+ (k' + 1)u’)2 +

((k+1)v+ (K + l)v) , for integers k,k' > 0, not both zero. Then £* — [> 3.

Proof. We immediately have

-1 =20u+) (ku+ k'u') 4 2(v + o) (kv + k') + (ku + k'v')? + (kv + k'v")?
= (2k + k?)(u? + v?) + (2K + E?)(u +) 4 2(k + k' + kK")(ur + vv').

Since (k, k') # (0,0), either 2k + k% > 3 or 2k’ + k' > 3. Since 4% + v? > 1 and
u? 4+ v'2 > 1, the result follows. §

BUILDING ENVELOPES WITH INTEGER OFFSETS 81

The purpose of the next lemma is to show that when the surrounding simple
directions (u,v) and (u',v’') are updated in Algorithm 3, either the new simple
directions are between the old ones or vice versa. The only complicating factors
are the interpretation of betweenness in terms of positive linear combinations and
the need to treat boundary cases carefully.

Lemma 5.4.4. Let {(u,v), («/,v")} and {(uo,v0), (uh,v})} be two bases for R?.
If neither (u,v) nor (u',v') is a positive linear combination of (ug,vg) and (ug, vg),
and if some vector (u3,v;) is a nonnegative linear combination of (u,v) and (', v')
and a positive linear combination of (ug, vo) and (ug, vg), then (ug,vo) and (ug, vg)
are nonnegative linear combinations of (u,v) and (u',v').

Proof. We know that (uj,v1) = a(u,v) + o'(¢',v') for some a,a’ > 0. Thus
vuy — uv; = v(au + o'u') — u(av + o'v') = o'(ve' — wv') and V'uy — vy =
v'(au + a'v') — u'(av + a'v') = a(uv’ — vu') have opposite signs in the sense that
either one is nonnegative and the other is nonpositive, or vice versa. Similarly
vouy — %oV, and vju; — uyv; have opposite signs. Since the given information is
invariant when (u,v) and (u',v') are swapped or when (ug, %) and (ug,vy) are
swapped, we can assume without loss of generality that

vu; —uvy >0 and vou; — ugvy > 0. (5.4.5)

It follows that v'u; — w'v; < 0 and vju; — yyvy < 0.

Since (uy,v1) is a positive linear combination of (up,v9) and (ug,vy), it is
nonzero and it is not a multiple of (ug,vp). Thus there are unique real constants
a and b such that (u,v) = a(ug, vo) + b(u1,v1). If @ = 0 then b # 0 and (uy,v1) =
(u,v)/b. In addition b > 0 because (u;,v;) is a nonnegative linear combination
of (u,v) and (v',v'). This contradicts the given information that (u;,v;) is a
positive linear combination of (ug,vo) and (ug,vy) but (u,v) is not. Thus a # 0,
and therefore (ug,vo) = ¢(u,v) + d(u1,v1) if and only if ¢ = 1/a and d = =b/a.

Since a(ug,vo) and c(u,v) are nonzero, equality cannot hold in either part
of (5.4.5). Thus from

0 < vuy — uvy = (avp + bvr)uy — (aug + bvy)vy = a(vour — upv1)

we can conclude that @ > 0 and therefore that ¢ > 0. It follows that b < 0
since otherwise (u,v) is a positive linear combination of (uo,v) and (u1,v1) and
therefore also of (ug,vo) and (uf,vg), contradicting the given information. Since
d > 0 when b < 0, (ug,%) is a positive linear combination of (u,v) and (u1,v1)
and therefore a nonnegative linear combination of (u,v) and (', v').

A similar argument shows that (u{,v}) is a nonnegative linear combination
of (u,v) and (u',v"): We obtain the equations

0> v'uy — u'vy, 0 > vouy — Uy,
(ulv ’U') = a(ué)’v(,)) + b(u1, 1), (uav v(,)) = C(u,a v’) + d(u1,),

where a,¢ # 0 and b and d are negative multiples of each other. Then 0 >
(avh + bvy)uy — (auh + bur)vy = a(vjuy — ugvy) so that @ > 0 and therefore ¢ > 0.
As above (u},v}) is a nonnegative linear combination of (u,v) and («',7"). W

82 BUILDING ENVELOPES WITH INTEGER OFFSETS

Consider the state of execution when Step 5 is about to start, and W(t) =
(r+ NS (' + H/Vor W(t) = (n' + 3)/U < (n+ 1)/1. Step 5 ensures that at
the end of the step (u,v) and (u', ') can both be expressed as k(uo,vo)+k'(uf, vh)
where k, k' > 0. Let £2 = (u + ') + (v + v")?; let

So = {(u0,%0), (%5,), (wo + uf,vo + v4)};

and suppose that (u,v) ¢ Sy at the end of Step 5. Applying the invariant
of Lemma 5.4.2 at the beginning of Step 5 shows that al? > W(t) - 1. By
Lemma 5.4.3, we also have af? > W(t) — 1. The directions (u,v) and (u',v') are
simple for width W(t), and therefore a/? and af? must both be between W(t) and
W(t) -1 so that « |l2 - £?| < 1. If we choose a > 3 then Lemma 5.4.3 contradicts
the assumption that (u,v) ¢ So, and a similar argument shows that (u',v") € So
at the end of Step 5.

Let no = m, (uo,w) = (u,v), and (u},v)) = (u',v') before Step 6. Then
Lemma 5.4.2 shows that no direction between (o0, v0) and (uf,v}) can be simple
for width W(2); hence letting (u1,v1) = (2(),~%'()) in Lemma 5.4.4, we can
conclude that (uo, vo) and (ug, vy) are between (w,v) and (v' ,v).

Let I§ = uf + v§; let €3 = (uo + uph)? + (v + v})?; and let

So = {(w,0), (', v"), (u+ ', v+ v")}.

If (uo, vo) ¢ S5, then alf and aff are both greater than W (¢) because no direction
between (u,v) and («,v') can be simple for width W(t). Since (40, vp) is simple
for some width (no + 3)/lp < W(t) + 1, and since Lemma 5.4.3 implies that
€ < 13, it follows that both alf and af? are between W(t) and W(t)+ 1. As
above, Lemma 5.4.3 shows that our assumption must be false when a > 1. Thus
(u0,v0) € Sy after Step 6, and by a similar argument (u}, v)) € So-

We have shown that if @ > 1 then the only new simple direction that can be
introduced in Step 5 is (u,v)+ (', v'), and any simple direction removed in Step 6
can be expressed as (u,v) + (u',v') in terms of the new simple directions. If no
new simple direction is added in Step 5 or if no old simple direction is deleted in
Step 6 then n and n’' can only increase in Step 5 and they can only decrease in
Step 6. Since (y/(t), —2'(t)) = a(u,v) + a'(¥', ") for some a,a’ > 0, the idealized
width

an + a'n'

V(au + a'v')? + (av + a'v')?

of the offset vector determined by (5.4.1) at time ¢ is a monotonic increasing
function of n and n'. Thus any discontinuity in the idealized width at time ¢ is in
the direction of W'(¢).

We now consider discontinuities in the idealized width when (u,v) and (u', v')
are updated in Steps 5 and 6. The following lemma simplifies the task of comparing
the idealized width of the offset vector determined by (5.4.1) before and after such
steps.

BUILDING ENVELOPES WITH INTEGER OFFSETS 83

Lemma 5.4.5. Let (r,s) and (7, 5) be integer offset vectors; let (u,v) and (', v")
be reduced rational directions; and let n = ur + vs, n' = u'r + v's, and 7" =
u"'7 + v"8 where (u",v") = (u,v) + (', v'). If 3" > n + n' and uF + v3 > n then
in any direction between (u,v) and (u",v"), the idealized width of (¥,3) is no less
than the idealized width of (r,s); if 3" > n+ n' and w'F + v'5 > n then the same
holds for directions between (u',v') and (u",v").

Proof. Since u"r + v"s = n + n', the idealized widths of (r,s) and (7,3) in a
direction (%, %) = a(u,v) + b(u",v") are

and

N T RN O W+ 02 Ja+ 52

When 72" > n+n' and uF + v3 > n, the latter idealized width is larger as required.
For directions (%, %) = a(u,v) + b(u",v"), the proof is exactly the same except the
roles of (u,v) and (u',v’) are reversed. N

ur+9s an+b(n+n') ar 4+ 95 a(uf + v3) + ba"

Consider the state of execution on entering Step 5, and let (uv”,v") = (u,v) +
(u',v") be the new simple direction that is introduced in that step. If I"? =
u'? + v"%, then the effect of Step 5 is to choose an integer n” such that (" —
D/ < W(L) < (n' + 1)/1" and either to set (u,v,n) « (u”,v",n") or to set
(v, v',n') « (u",v",n"). Either way, the following lemma shows that

(n+n' = 3)/1" <min((rn + 1)/1, (n' + D).

Thus »n"” > n + n', and Lemma 5.4.5 shows that the idealized width of the new
offset vector is at least that of the old.

Lemma 5.4.8. Let (u,v) and (u',v') be rational directions such that uu'+vv' > 0
and |uv' — vu'| = 1. If (u,v) and (v, v') satisfy (5.4.2) and are simple for widths
(n+3)/1 and (n'+1) /1 respectively, where (n'—1)/I' < w = (n+1)/1 < (w'+1)/0,
and if (v",v") = (u,v) + (v, v') has length I" and is not simple for (n — 1)/l or
for (n' = 3)/U, then (n+n' — 3)/I" <wifa < .

Proof. The condition that (u”,v") not be simple for (n — 1)/l is equivalent to
al” > w —1/1. Since n = wl — % and n' < wl' + %, it is sufficient to prove that
wl + wl' — -%— < wl" or that

(™ +1/D)+1-1") < L
By the law of cosines
" = 241" 2l cosp = (1+1')? — 4ll'sin?(¢/2)

where ¢ is the angle between (u,v) and (v/,v'). Since II'sin ¢ = 1 and cos?(¢/2) >
%, it follows that

2 Il'sin® ¢ _ sin ¢ < sin ¢ 1
T T cos2(¢/2) 1-sin’(¢/2) 1-1Llsing W(1- L2’

L+ 1)

84 BUILDING ENVELOPES WITH INTEGER OFFSETS

hence I+ 1' = 1" < (14 1")2 =1"2) /21" < 1/(21'1"(1 - 3(11Y7?)). Since I" <1+ V'
and 1/1" < 1/l', we also have al” + 1/(1l") < a(l + I') + 1/(1l"). Therefore

n, 1Y\ r_oqn N R r gy e+) +1/(U)
(al +”")l (I+0'-1"«< (a(l+l)+”,)l (+-1"< 21l = 1710
and it suffices to show that

3
’ !
a(l+ly <l - Tk (5.4.6)
It is not hard to check that (5.4.6) is satisfied when [= 1 and I’ > /122,
when ! = v/2 and I’ > /13, or when ! and !’ are both > /5. Since the equation is
symmetric in ! and !, this leaves a finite number of cases to check. For each such
case it is a simple matter to check all pairs n, n' for which (n' - 3)/I' < (n+1)/1 <
(n' + 1)/I' and
n- 712' n' - % 9
max (T -———-l,) < Iﬁl .

(The first case that fails when & > & is | = V2,I'=1,n=6,and n' = 5) 1

Lemma 5.4.6 can also be used to show that the idealized width in direction
(¥'(t),—z'(t)) does not increase when (u,v) and (u',v') are updated in Step 6.
Let the directions (u,v) and (u',v') in the lemma be the updated directions from
Step 6, and use (n,n') = (72 — 1,7') where # and #' are the values of the the
variables n and n' after Step 6 of the algorithm. The lemma shows that

(nt 7' =~ D" < (n+ 1)/ = min((n + D/1, (0’ + 1)/V)
and therefore
(R +7 = /1" < (=~ /1 = max((m - P/, & - D).

Thus if for some integer »”, W(t) = (3" — 1)/I" then A" > 2 + #' — 1 and
Lemma 5.4.5 shows that the execution of Step 6 cannot change the offset vector
determined by (5.4.1) in such a way as to increase the idealized width.

If W(t) = (n - 3)/! before Step 6 and (u,) is not changed during that step,
then W(t) = (7 + 1) after Step 6, where # is the new n. Lemma 5.4.6 shows that
if for some integer n”, (n" — 1)/1" < W(t) < (n" + 1)/1" then n" > n + n'. As
before, Lemma 5.4.6 shows that the idealized width does not increase. We have
proved the following theorem.

Theorem 5.4.7. If f(w) = /w/a where } < a < 5%, then any discontinuities
in the idealized width W (t) determined by Algorithm 3 are in the direction of
w'(t). 1

Fig. 32. A digitized envelope resulting from Algorithm 3.

BUILDING ENVELOPES WITH INTEGER OFFSETS 85

Figure 32 shows an example of the results of the algorithm with offset tran-
sitions smoothed as outlined in Section 5.3. Of course much of the work is in
computing the digitizations of the envelope boundaries. Part of the idealized
width function fo<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>