
TUGboat, Volume 45 (2024), No. 3 357

A color concept for HiTEX

Martin Ruckert

Abstract

While using colors is expensive in print, it is available
at no cost on screen. Therefore HiTEX and the
HINT file format need support for colors. The design,
its objectives, and specification is described in the
article. The result is illustrated by examples.

1 Designing a programming API

The current design of color primitives in the various
TEX engines is strongly influenced by the available
primitives of pdfTEX. The design space available
when pdfTEX came into being was limited by the
features that the target PDF output format could
provide, which in turn was limited by the capabilities
of the graphics hardware at that time. The graphics
hardware available in the 1990s on personal com-
puters is no match to the capabilities we have now.
Even the capabilities of expensive workstations or
the dedicated hardware of professional digital print-
ers at that time fall short of what we have today
on a mobile phone. The limitations given by the
output format were not negotiable. PDF started as
a proprietary format of Adobe and then evolved into
an international standard. A comparatively small
user community like ours had little to no influence
on the decisions made.

The necessity to design an new color API for
HiTEX offers me a unique opportunity: To design an
API with hardly any restrictions. It starts with the
available graphics hardware which is dimensioned
to handle gaming workloads that far exceed any-
thing that we might need for displaying TEX output.
Further, the graphic cards are programmable for ex-
ample with OpenGL. This puts the raw capabilities
of the hardware at the disposal of the programmer
without the limitations of a predefined API like, for
instance, the Microsoft Windows graphics device
interface (GDI). Since I am the designer and imple-
menter of the viewer applications for HINT files as
well as the HINT file format, I can freely choose what
features the file format should offer. As the designer
and implementer of HiTEX, I can start with designing
its programming API and work my way back from
HiTEX’s requirements to the graphics hardware. To
be honest, I had to do this journey three times before
arriving at the present design. Each time the strug-
gle for an efficient and elegant solution taught me
new insights that convinced me to start over again.

2 Design objectives

Of course the new API should be powerful and flexi-
ble, elegant and easy to use, but at the same time
allow for efficient implementations. Efficiency means
that colors should not take up too much space in
the HINT file, and rendering the HINT file should not
require expensive operations. The efficiency of ren-
dering a HINT file is far more important than the
efficiency of creating a HINT file because the former
might run on a small mobile, battery powered, device
with severe restrictions on memory and energy con-
sumption, while the latter usually runs on a personal
computer with lots of memory and processing power
of a different order of magnitude.

There were two more complex objectives: The
new design should respect the structure and spirit of
TEX, and it should be largely compatible with the
existing designs of TEX color primitives. The latter
is crucial for user acceptance; no one will rewrite
or adapt an existing macro package if the benefits
do not warrant the effort. The former is crucial for
an intuitive use of the primitives: few people read
manuals, most people follow their instincts when
they modify and extend pre-existing documents. So
what the primitives do should be in line with what
users generally expect of TEX.

The most important design decision that fol-
lowed from these objectives was to associate back-
ground colors with boxes, not rules. Rules are colored
with the foreground color so that for example the
fraction line naturally gets the same color as nu-
merator and denominator. Boxes can be stored in
registers and should take their background color with
them when taken out of the register. Boxes can be
nested, and therefore transparent colors must reflect
the nesting of boxes.

3 Use of colors in text

Three different decision makers might determine the
color of any word or glyph: the document author,
the reader of a document, and the rendering appli-
cation. One important design goal of the HINT file
format was to give the document author ultimate
control over the appearance of the document. This
is in contrast to the HTML file format, where the
rendering application, the browser, can decide the
fonts or colors, along with many other aspects of
the document. The browser in turn offers the user
various settings to adapt the appearance to personal
preferences. This leads to a permanent fight between
document designers and document consumers over
how a document should look.

The reader of a document has legitimate re-
quirements for the look and feel of a document. It is

doi.org/10.47397/tb/45-3/tb141ruckert-hicolor

A color concept for HiTEX

https://doi.org/10.47397/tb/45-3/tb141ruckert-hicolor

358 TUGboat, Volume 45 (2024), No. 3

common for user interfaces to offer a “Dark” mode
that changes the colors to reflect a dark reading envi-
ronment. Other users might need a “High Contrast”
mode or a “Color Blind” mode. So the HINT file
format is capable of offering various modes. Cur-
rently there are only two modes implemented, “Dark”
mode and “Normal” or “Day” mode; there might
be more modes in the future. The user interface
of the rendering application should enable choosing
between the different modes available to the user.

Also the rendering application might have the
need to make a color change. For example if the
reader uses a search form, the application might
want to highlight all matching words on the page.
Just using a yellow foreground color might work
sometimes but not if the background happens to
be yellow as well. If the background is green, the
highlighting might still be visible, but hard to read,
and incredibly ugly. And what might work in day
mode might no longer work in dark mode. Besides
“highlighting”, the renderer also has the option to
“focus” a part of the document. There might be more
choices for the renderer in future versions.

To give the document author full control over the
colors used, while still allowing the user and renderer
to initiate color changes, a color change in a docu-
ment, as given by the document author, must specify
colors for all possible modes, and for each mode, col-
ors for normal, highlighted, and focus text must be
given. Together this ensures that a document might
use colors in a decent way, that works well with
the user’s choices and the renderer’s necessities. Of
course it is essential that useful default colors ease the
burden of specifying all these colors. While the design
presented here offers some support for default val-
ues, the main responsibility to compute and provide
useful defaults lies with high-level macro packages.

4 The specification

This section tries to give a complete specification of
syntax and semantics of the primitives envisioned
for the color support of HiTEX. To describe the
syntax, I will use the extended Backus-Naur form
(EBNF). For those not familiar with this formalism,
here are a few explanations: A syntactic element is
represented by a “symbol”. I use ⟨ italics ⟩ enclosed
in pointed brackets to denote symbols, and I use
rules to define the meaning of symbols. A rule starts
with the symbol to be defined, followed by a colon
“:”, and then the text that this symbol stands for. A
rule ends with a period “.”. Some symbols refer to
text that is defined as part of standard TEX. These
symbols are explained by an informal description.
For example:

⟨ integer ⟩: an integer as in \penalty⟨ integer ⟩.
⟨number ⟩: a number as in \kern⟨number ⟩pt.

Optional parts of the rule’s text are enclosed in
[square brackets]. Alternatives are separated by a
vertical bar “|”. For text that must occur verbatim
in the TEX source file, I use a typewriter font.

4.1 Single colors

The internal representation of a color in HiTEX as
well as in the HINT file format uses three bytes to
represent a color using the sRGB IEC61966-2.1 color
space specification and a fourth byte for an alpha
channel, which specifies the level of transparency.
The sRGB color space is neither the most modern
nor the one preferred by professional artists, but it
is available (at least approximately) on all computer
monitors and these are the main target for displaying
HINT files. There are alternative external formats
possible, for example using high precision floating
point numbers or alternative color space definitions,
but at the end, every color needs to be rounded to the
best possible internal representation just described.

Now let’s consider the external representation
of a color when using the HiTEX color primitives.

The most common color specification is the spec-
ification of a foreground color. Because we use one
byte for each of the four values that define a color,
it is common to specify the three color components,
red, green, blue, and the transparency component
alpha (in this order) using integer values in the range
0 to 255. Using this representation, a foreground
color can be specified using the following syntax:

⟨ foreground ⟩: FG { ⟨ integer ⟩ ⟨ integer ⟩ ⟨ integer ⟩
[⟨ integer ⟩] }.

For convenience, the alpha value is optional; if
no alpha value is given, the value 255 will be used
and the color is completely opaque.

Here are some examples: FG{255 0 0} and
FG{255 0 0 255} both specify the same plain and
opaque red; FG{0 0 255} is plain blue; FG{255 255

0 127} is a transparent yellow. Because each value
fits in a single byte, the values are often given in
hexadecimal notation. In TEX, hexadecimal values
are written with a " prefix. The same colors as
before are then written FG{"FF 0 0}, FG{"FF 0 0

"FF}, FG{0 0 "FF} and FG{"FF "FF "7F}. Values
greater than 255 or less than 0 are not allowed.

A common alternative to the color representa-
tion just described is a device-independent notation,
where each value is a real number in the interval
from 0 to 1. To keep both representations unam-
biguous, the device-independent representation (with

Martin Ruckert

TUGboat, Volume 45 (2024), No. 3 359

the smaller numbers) uses the lowercase keyword fg

instead of FG. Here is the syntax:

⟨ foreground ⟩: fg { ⟨number ⟩ ⟨number ⟩ ⟨number ⟩
[⟨number ⟩] }.

Using the new syntax, the colors above are writ-
ten fg{1 0 0}, fg{1 0 0 1}, fg{0 0 1} and fg{1

1 0 0.5}. Values greater than 1 or less than 0 are
not allowed.

The big difference between fg and FG is the pos-
sible range of values. This can be especially confusing
when using the value 1, which belongs to both value
ranges; in the first case 1 is the maximum value, and
in the second, the smallest above zero. So fg{1 1

1} is pure white, while FG{1 1 1} is the darkest pos-
sible gray, which on most devices is indistinguishable
from pure black.

4.2 Color pairs, sets, and specifications

In the HINT file format colors always are given as a
pair: foreground and background.

⟨color ⟩: ⟨ foreground ⟩ [⟨background ⟩].
⟨background ⟩: BG { ⟨ integer ⟩ ⟨ integer ⟩ ⟨ integer ⟩

[⟨ integer ⟩] }.
⟨background ⟩: bg { ⟨number ⟩ ⟨number ⟩

⟨number ⟩ [⟨number ⟩] }.
The rules for the background color mirror the

rules for the foreground. Note that the specification
of the background is optional. Here and in the fol-
lowing, default values are used if optional values are
not given.

Here are some examples: fg{0 0 0} specifies
the foreground color black which is then used for
rules and glyphs. In addition to the foreground color,
you can specify a background color. For example,
black text on white background is specified by fg{0

0 0} bg{1 1 1} or, using hexadecimal, fg{0 0 0}

BG{"FF "FF "FF}.
Colors always come as a color set where a color

set consists of three color pairs: for normal text, for
highlighted text, and for text that has the focus.

⟨color set ⟩: ⟨color ⟩ [⟨color ⟩ [⟨color ⟩]].
The second and third color pair are again optional.

Finally, a call to the \HINTcolor primitive that
is used in HiTEX to change the current color has
the format: \HINTcolor { ⟨color specification ⟩ }. A
⟨color specification ⟩ will comprise colors for all color
modes available to the reader.

⟨color specification ⟩:
⟨color set ⟩ [dark ⟨color set ⟩].
For example, if in dark mode you like white

letters on a deep blue background you can write
\HINTcolor {fg{0 0 0} bg{1 1 1} dark fg{1 1

1} bg{0 0 0.3}}. Such a color specification needs
4 ∗ 2 ∗ 3 ∗ 2 = 48 bytes, and with more modes, even
more bytes. To reduce the memory use for colors,
color specifications are listed in the definition part
of a HINT file and referenced in the content part of
the HINT file by a one byte number. This limits the
number of different color specifications (not colors)
in a single document to 256.

4.3 Colors and boxes

The renderer of a HINT file will render boxes, glyphs,
and rules from left to right and top to bottom (right-
to-left languages are not currently supported in HINT).
The colors given with the \HINTcolor primitive will
have an immediate effect on all boxes, rules, and
glyphs that follow in the direction of rendering. At
any point inside a box there is exactly one current
foreground color and one current background color.

Rules and glyphs are rendered with the fore-
ground color on top of the background color. The
effect of a color change will persist until the next
change of colors or until the end of the box—which-
ever occurs first. Restricting the effect of a color
change to the enclosing box implies a natural nesting
of colors that follows the nesting of boxes: An inner
box is rendered on top of the outer box.

The implementation of the renderer must fol-
low this rendering order. While the rendering of
glyphs and rules in the current foreground color is
simple, rendering the background requires extra ef-
fort because the background must be rendered before
rendering glyphs, rules, and inner boxes on top of it.
A new background color will start where the color
change is found and fills a horizontal box from top
to bottom and a vertical box from left to right.

To render the background, the renderer needs
to know where the new background color should
end. There are two choices: searching the document
for the next explicit or implicit color change, or
buffering all rendering activities until the end of the
current background is reached. The first alternative
is easy to implement and since the rendering is always
concerned with a single page the search is quite fast.
The second alternative is more complex to implement,
but possibly much more efficient because transferring
a whole array of rendering data from main memory
to the graphic card tends to be much faster than
writing each item separately.

4.4 HiTEX’s color stack

While the HINT file format can represent nested boxes,
which affects the rendering of colors as just described,
the color model of the HINT file system within a box

A color concept for HiTEX

360 TUGboat, Volume 45 (2024), No. 3

is completely flat. But TEX is a document descrip-
tion where nearly everything can be nested inside
everything else. So having a color stack that allows
the author or macro programmer to say: “return to
the previous color” seems indispensable. So HiTEX
maintains a color stack and a few other features that
allow for more convenient programming.

The \HINTendcolor primitive of HiTEX relies
on this color stack. It will look up the color specifi-
cation that was valid just before the matching use of
\HINTcolor and insert in the HINT file a color change
that returns to this previous color. If there is no
matching \HINTcolor primitive, the \HINTendcolor
primitive is silently ignored. Note that within a single
box, there is at any point only a single background
color: The color stack will switch from one back-
ground color to another background color but will
not overlay an “inner” background color over an
“outer” background color. This is the case only when
multiple boxes are nested as described above.

Further, splitting off the initial part of a vertical
box with \vsplit will insert a color node in the re-
maining part if necessary to keep the color consistent
across the split.

Complications arise from color changes in the
top-level vertical list, which is split into pages in the
HINT file viewer at runtime. Because the page builder
in the viewer has no global information and should
not need global information, HiTEX will insert copies
of the local color information after every possible
breakpoint in the top level vertical list. This will
ensure that page breaks will not affect the colors of
the displayed material.

However, since TEX considers glue (and kerns)
as discardable, it removes such items from the top of
a new page. Because glue and kern items are colored
using the current background color, they might be
visible on a page but disappear when they follow
immediately after a page break. So, if you want the
effect of a colored glue or kern that is not affected
by a page break, you should include it inside a box
or use a colored rule instead.

The line breaking algorithm that is part of
the HINT file renderer also tracks changes in color
within a paragraph and reinserts an appropriate color
change at the start of every \hbox that contains a
new line. In this way local color changes inside a
paragraph can span multiple lines but do not affect
the interline glue or material that is inserted with
\vadjust.

4.5 Colors and links

The most common change in color is caused by the
use of links. To support this changing of colors,

the primitives \HINTstartlink and \HINTendlink

cause an automatic color change. Whenever the
\HINTstartlink primitive is used, its effect on the
colors is equivalent to executing the \HINTcolor

primitive using the current link color, which is set
with the primitive \HINTlinkcolor { ⟨color specifi-
cation ⟩ }. This implies that the color change caused
by \HINTstartlink is local to the enclosing box.

Whenever the \HINTendlink primitive is used,
it will restore the color stack of HiTEX to its state be-
fore the matching \HINTstartlink. It is the respon-
sibility of the TEX source code to keep sequences of
\HINTstartlink, \HINTendlink, \HINTcolor, and
\HINTendcolor properly nested. A sequence like
\HINTstartlink . . . \HINTcolor . . . \HINTendlink
. . . \HINTendcolor is not an error, but will cause
\HINTendlink to restore the colors to those in ef-
fect before the \HINTstartlink. Then, the follow-
ing \HINTendcolor will either restore the color of a
matching \HINTcolor preceding the link in the same
box or it will restore the color in the outer box, or it
will be ignored. In short, color changes inside a link
stay local to the link.

4.6 Color defaults

The HINT file format specifies default values for all
colors. To override these defaults, HiTEX provides
the primitive \HINTdefaultcolor { ⟨color specifica-
tion ⟩ }. This primitive must be used before defining
any custom colors using \HINTcolor.

The HINT format specifies the following default
colors: Normal text is black FG{0 0 0}, highlight
text is slightly dark red FG{"EE 0 0}, and focus text
is slightly dark green FG{0 "EE 0}. The background
is transparent white bg{1 1 1 0}. In dark mode
the background is transparent black bg{0 0 0 0},
normal text is white fg{1 1 1}, and a lighter red
FG{"FF "11 "11} and green FG{"11 "FF "11} are
used for highlighted and focus text.

For convenience, the HINT file format specifies
default colors for links as well: in normal mode, links
use dark blue FG{0 0 "EE} instead of black; in dark
mode, links use light blue FG{"11 "11 "FF} instead
of white. The primitive \HINTdefaultlinkcolor

{ ⟨color specification ⟩ } can partly or completely
redefine these defaults.

5 Examples

The first example illustrates a common application:
Color is used to emphasize a word and accentuate
selected paragraphs.

\def\redTeX{%

\HINTcolor{fg{1 0 0}}\TeX\HINTendcolor}

\def\note{\HINTcolor{fg{0.3 0.3 0.3}}}

Martin Ruckert

TUGboat, Volume 45 (2024), No. 3 361

Figure 1: Interacting colors Figure 2: Link colors Figure 3: Transparency

\def\endnote{\HINTendcolor}

This is an example showing

the \redTeX\ logo in red color.

\note\ Note: The red \redTeX\ logo is still

red inside this grey note.\endnote

I show the TEX logo in red and use a \note environ-
ment that renders text in light gray. The example
shows how to implement the color changes, and Fig-
ure 1 shows how they interact.

The next example uses \red to change the color
to red and the “Note” environment from the previous
example. It illustrates the interaction with links that
are rendered by default in blue.

\def\red{\HINTcolor{fg{1 0 0}}}

\def\home#1{%

\HINTstartlink goto name {HINT.home}

#1\HINTendlink}

The link \home{follow the \red Flag}

gets you to the ‘‘home’’ page.

\note Note: The link \home{follow the

\red Flag} gets you to the ‘‘home’’ page.

\endnote

Figure 2 shows how the end of the link automat-
ically restores the color that was in effect before the
link and that hyphenation and line breaking interacts
smoothly with color changes.

The last example illustrates the use of transpar-
ent backgrounds.

\def\blue{\HINTcolor

{fg {0 0 0} bg{0 0 1 0.3}}}

\def\red{\HINTcolor

{fg {0 0 0} bg{1 0 0 0.6}}}

\def\green{\HINTcolor

{fg {0 0 0} bg{0 1 0 0.3}}}

\def\TeX{\hbox{\blue T}\kern-.1667em

\lower.5ex\hbox{\red E}%

\kern-.125em\hbox{\green X}}

The colors of \TeX

This defines a TEX logo that uses three different
background colors for the letters, using alpha values.
As seen in Figure 3, the normal kerning and shifting
of the letters in the logo causes the backgrounds
and the glyphs to overlap producing the effect of
overlapping pieces of colored glass.

6 Conclusion

The HiTEX color support is planed to be released
with TEX Live 2025 as an experimental release. It
will require not only a new version of HiTEX but
also an update of the viewer applications for various
operating systems (GNU/Linux, Windows, macOS,
iOS, Android) so there is still a lot of work to do.

To use the color support with LATEX, driver files
need to be written for at least the most important
packages that deal with colors. The help of the LATEX
team and package maintainers would be greatly ap-
preciated. I assume that these activities will result
in new insights that will lead to an improved API

and an improved implementation, which might be
available as soon as the 2026 TEX Live release.

⋄ Martin Ruckert
Hochschule München
Lothstrasse 64
80336 München
Germany
martin.ruckert (at) hm dot edu

A color concept for HiTEX

	Designing a programming API
	Design objectives
	Use of colors in text
	The specification
	Single colors
	Color pairs, sets, and specifications
	Colors and boxes
	HiTeX's color stack
	Colors and links
	Color defaults

	Examples
	Conclusion

