TUGboat, Volume 44 (2023), No. 2

A roadmap for universal syllabic
segmentation

Ondfej Sojka, Petr Sojka, Jakub Maca

Abstract

Space- and time-effective segmentation (word hy-
phenation) of natural languages remains at the core
of every document rendering system, be it TEX, web
browser, or mobile operating system. In most lan-
guages, segmentation mimicking syllabic pronuncia-
tion is a pragmatic preference today.

As language switching is often not marked in
rendered texts, the typesetting engine needs univer-
sal syllabic segmentation. In this article, we show
the feasibility of this idea by offering a prototype
solution to two main problems:

A) Using Patgen to generate patterns for several
languages at once; and

B) no wide character support in tools like Patgen or
TEX hyphenation, e.g. internal Unicode support
is missing.

For A), we have applied it to generating univer-
sal syllabic patterns from wordlists of nine syllabic,
as opposed to etymology-based, languages (namely,
Czech, Slovak, Georgian, Greek, Polish, Russian,
Turkish, Turkmen, and Ukrainian). For B), we have
created a version of Patgen that uses the Judy array
data structure and compared its effectiveness with
the trie implementation.

With the data from these nine languages, we
show that:

A) developing universal, up-to-date, high-coverage,
and highly generalized universal syllabic segmen-
tation patterns is possible, with high impact on
virtually all typesetting engines, including web
page renderers; and

B) bringing wide character support into the hy-
phenation part of the TEX suite of programs is
possible by using Judy arrays.

1 Motivation

Justified alignment achieved with a quality hyphen-
ation algorithm is both optically pleasing and saves
time to read, in addition to saving trees. Only quality
hyphenation allows interword spaces to be as uni-
form as possible, close to Gutenberg’s ideal of spaces
of fixed width. A high coverage, space- and time-
effective hyphenation (segmentation) algorithm of
all natural languages is badly needed! as it remains
at the core of every document rendering system, be
it TEX, web browsers supporting HTML with CSS3,

1 bugzilla.mozilla.org/show_bug.cgi?id=672320

doi.org/10.47397/tb/44-2/tb137sojka-syllabic

289

or an operating system providing text rendering for
mobile applications.

In most languages, segmentation mimicking syl-
labic pronunciation is pragmatically preferred today.
As language switching is often not marked in texts,
and cannot be safely guessed from the words them-
selves, language-agnostic orthographic syllabification,
is needed. We call this task universal syllabic seg-
mentation, or in short, the syllabification problem.

The syllabification problem has been tackled
by several finite state [2] or, more recently, ma-
chine learning techniques [1, 11, 14, 22]. Bartlett
et al. [1] uses structured support vector machines
(SVM) to solve syllabification as a tagging problem.
Krantz et al. [6] leverage modern neural network
techniques with long short-term memory (LSTM)
cells, a convolutional component, and a conditional
random field (CRF) output layer, and demonstrated
cross-linguistic generalizability, syllabifying English,
Dutch, Italian, French, Manipuri, and Basque data-
sets together.

From an orthographic viewpoint (hyphenation),
universal language solutions today should reflect the
Unicode standard [21]. Internal support for full Uni-
code, a must in today’s operating systems and appli-
cations, is missing in the TEX family of programs,
e.g. in Patgen and TEX itself. The internal processing
is thus limited by the internal one-byte representa-
tion of language characters and is hardwired into
the optimized code of these programs. Therefore,
processing languages with huge character repertoires
(Chinese, Japanese, Korean) and sets of languages
whose character representations need wide character
support is close to impossible. Special “hacks” are
needed for character and font encodings both on
the input side (package inputenc) and output side
(packages fontenc or fontspec) are not backed by
internal wide character support.

Since both TEX and Patgen have hardwired
8-bit character representations, to develop practically
useable universal syllabic hyphenation, one needs to
overcome these constraints.

In this paper we a) constructively show the fea-
sibility of preparation of universal syllabic patterns,
b) demonstrate a version of Patgen with wide charac-
ter support, and c) discuss further steps to do in the
TEX program suite to make language hyphenation
Unicode-compliant.

The paper is structured as follows. In Section 2
we define the terminology and describe the language
data we have used in our experiments. Section 3 re-
minds the reader about the principles of the hyphen-
ation algorithm in TEX and of Patgen-based pattern
generation and pattern representation possibilities.

A roadmap for universal syllabic segmentation

https://en.wikipedia.org/wiki/Wide_character
https://en.wikipedia.org/wiki/Judy_array
https://bugzilla.mozilla.org/show_bug.cgi?id=672320
https://en.wikipedia.org/wiki/Wide_character
https://doi.org/10.47397/tb/44-2/tb137sojka-syllabic

290 TUGboat, Volume 44 (2023), No. 2
Table 1: Language resources and patterns used in pattern development experiments.
All data was converted to UTF-8 and contains lowercase alphabetic characters
only. Alphabet size (# chars) counts characters appearing in the language wordlist
collected. Languages were chosen for diversity of size of patterns and syllables.
Language # words # chars # patterns # syllables pattern source, alphabet
Czech+Slovak (cz+sk) 606,499 47 8,231 2,288,413 [19] correct optimized parameters, Latin
Georgian (ka) 50,644 33 2,110 224,799 [13] tex-hyphen repo, Georgian
Greek (el-monoton) 10,432 48 1,208 37,736 [13] tex-hyphen repo, Greek
Panjabi (pa) 892 52 60 2,579 [13] tex-hyphen repo, Gurmukhi
Polish (pl) 20,490 34 4,053 65,510 [13] tex-hyphen repo, Latin
Russian (ru) 19,698 33 4,808 75,532 [13] tex-hyphen repo, Russian
Tamil (ta) 46,526 48 71 209,380 [13] tex-hyphen repo, Tamil
Telugu (te) 28,849 66 72 125,508 [13] tex-hyphen repo, Telugu
Thai (th) 757 64 4,342 1,185 [13] tex-hyphen repo, Thai
Turkish (tr) 24,634 32 597 103,989 [13] tex-hyphen repo, Latin
Turkmen (tk) 9,262 30 2,371 33,080 [13] tex-hyphen repo, Latin
Ukrainian (ua) 17,007 33 1,990 65,099 [13] tex-hyphen repo, Cyrillic

Section 4 evaluates the experiments with universal
pattern generation. In Section 5 we elaborate on
possible routes towards wide character support in
the typesetting engines and Patgen. As usual, we
sum up and conclude in the final Section 6.

“The concept of the syllable is cross-linguistic, though
formal definitions are rarely agreed upon, even within
a language. In response, data-driven syllabification
methods have been developed to learn from syllabified
examples. ... Syllabification can be considered a
sequence labeling task where each label delineates

the existence or absence of a syllable boundary.” [6]

2 Syllabification

Human beings convey meaning by pronouncing words
as sequences of phonemes. Phonology studies the
structure of phonemes we are able to pronounce as
syllables [10]. Etymologically, a syllable is an Anglo-
Norman variation of Old French sillabe, from Latin
syllaba, from Greek culhoff (syllabe), “that which
is held together; a syllable, several sounds or letters
taken together” to make a single sound. [3]

When we delineate boundaries in the ortho-
graphic representation of words, we speak about
hyphenation of words as sequences of characters.

2.1 Hyphenation as syllabification

There are subtle differences between syllabification
and hyphenation, though. Let us take the Czech
word sestra. The Czech language authorities [23]
allow hyphenations as se-s-t-ra, while agreeing that
there are only two syllables based on Consonant
and Vowel sequencing: either se-stra (CV-CCCV),

Ondfej Sojka, Petr Sojka, Jakub Maca

or ses-tra (CVC-CCV), or sest-ra (CVCC-CV). As
with hyphenation, defining segments for syllabifica-
tion is full of exceptions. The Czech sentence Stré
prst skrz krk or word scvrnkls (CCCCCCCC) contain
consonants-only syllables.

There are also rare cases where word segmen-
tation should differ in different contexts. It may
be necessary within one language (different hyphen-
ation re-cord and rec-ord depending on its part of
speech), or between different languages. When devel-
oping universal syllabic patterns, these theoretically
possible segmentations should not be allowed in the
input hyphenated wordlist used for training. But
this should not matter, as e.g. Liang’s hyphen.tex
patterns do not cover more than 10% of positions [8]
and few complain about this coverage.

2.2 Data preparation

To show the feasibility of universal pattern gener-
ation, we have collected wordlists for a dozen lan-
guages, as shown in Table 1. The chosen languages
a) have a wide diversity in alphabets and syllables
and b) have existing hyphenation patterns as an
approximation for syllable segments. The wordlists
were collected from public sources or provided for
our research as stratified dictionaries from TenTen
corpora [4] by Lexical Computing. We used wordlists
sorted by frequency and cut at below 5% of word
occurrences, to eliminate typos appearing in docu-
ments. Each tenth word was taken into a wordlist —
a stratified sampling technique inspired by Knuth [5]
that was already used successfully in pattern gen-
eration [20]. Wordlists were hyphenated by legacy
patterns, mostly taken from [13].

TUGboat, Volume 44 (2023), No. 2

291

Table 2: Language alphabet overlaps. Cells contain the number of lowercase letters
that overlap between languages. In total, 13 languages contain in total 412 different
lowercase letters, more than Patgen is capable of digesting.

Language cz+sk ka el pa pl ru ta te th tr tk ua
Czech+Slovak (cz+sk) 47 0 0 026 0 0 0 02528 O
Georgian (ka) 033 0 0 0 0 0O OO O 0 O
Greek (el-monoton) 0 04 0 0 0 0 0O 0O 0 0 O
Panjabi (pa) 0 0 052 0 0 0 0 0 0 0 O
Polish (pl) 26 0 0 034 0 0 0 02322 0
Russian (ru) 0 00O 033 0 O0 0 O0 029
Tamil (ta) 0 00 OO 048 0 0 0 0 O
Telugu (te) 0 00 OO 0O 066 0 0 0 O
Thai (th) 0 00O OO O O 064 0 0 O
Turkish (tr) 25 0 0 023 0 0 0 0322 O
Turkmen (tk) 28 0 0 022 0 0 0 02530 O
Ukrainian (ua) 0 0 00 029 0 0 0 0 0 33

Alphabet analysis and statistics are shown in
Table 2. The total number of characters appearing in
all languages exceeds 245, the maximum number of
characters that current Patgen can support. This is
why wide-character representation (Unicode UCS-2)
support in Patgen (and then in the hyphenator li-
brary in a typesetting engine) would be needed to
extend our generation to more languages.

3 Pattern development

The idea of squeezing the hyphenated wordlist into
the set of patterns was originated in the dissertation
of Frank Liang [8], supervised by Donald Knuth. For
the automated generation of patterns from a wordlist,
Liang wrote the Patgen program. Patgen was one of
the very first programs that harnessed the power of
data with supervised machine learning. Programmed
originally to support English and ASCII, it was later
extended to be usable for 8-bit characters and for
wordlists that contain at most 245 characters [9]. It
is capable of efficient lossy or lossless compression of
hyphenated dictionaries, with several orders of mag-
nitude compression ratio. Generated patterns have
minimal length, e.g., the shortest context possible,
which results in their generalization properties.

In general, exact lossless pattern minimization
18 non-polynomial by reduction to the minimum set
cover problem [16]. For Czech, exact lossless pattern
generation is feasible [17], while reaching 100% cov-
erage and simultaneously no errors. Strict pattern
minimality (size) is not an issue nowadays.

This idea and its realization is a programming
pearl. Motivated by space and time constraints,
instead of the classical solution of dictionary problem
in the logarithmic time of dictionary size, the word

hyphenation is computed from patterns in constant
time, where the constant is given by word length.

Space needed for patterns in the packed trie data
structure is typically in tens of kB, which is several
orders of magnitude smaller than the wordlist size.
With fine-tuned parameters of pattern generation in
the so-called levels, one can prepare patterns with
zero errors and almost full coverage of hyphenation
points from the input dictionary.

For practical use, patterns are collected in the
repository maintained by the TEX community [13]. Tt
is no surprise that most if not all leading typesetting
engines deploy this “competing pattern engineering
technology” [15].

3.1 Patterns

The patterns “compete” with each other whether to
split the word at a position, given varying characters
in both side contexts; see Figure 1.

We have shown how effective and powerful the
technique is, and that its power depends on the
parameters of pattern generation [17]. The key is
the proper setting of Patgen parameters for pattern
generation. The idea of universal segmentation with
Patgen has been proposed already in [18]. There,
we demonstrated the techniques for the development
of two languages together, Czech and Slovak, and
developed a joint wordlist and patterns [19].

We wanted to extend the technique to other
Slavic and syllabic languages. The bottleneck for
adding new languages was Patgen and TEX’s con-
straint of one-byte character support only for storing
patterns in tries. We thought of using a modern
data structure that would allow wide character trie

A roadmap for universal syllabic segmentation

292

hyphenation

TUGboat, Volume 44 (2023), No. 2

hy-phen-ation — 2 6

key — data
Solution to the dictionary problem:
For key part (the word) to store

pl in a

pl It ion o
P2 n2a t N
p2 2i o

p2 h e2n

p3 h y3p h

p4 hen a4

PS5 henbat

hO0y3pOhOe2nb5a4t2i0o0n

the data part (its division)

Figure 1: Eight patterns “compete” how to hyphenate hyphenation. Winners are
patterns hy3ph and henbat generated at the highest covering level (odd numbers)
generation. The level hierarchy allows for storing exceptions, exceptions to exceptions,

exceptions to exceptions to exceptions, .

representation. That was the task for a bachelor’s
thesis: use a Judy array [12].

3.2 Judy arrays

The Judy array, also known as simply Judy, is a data
structure that implements a sparse dynamic array, al-
lowing for versatile applications such as dynamically-
sized arrays and associative arrays. Judy is inter-
nally implemented as a tree structure, where every
internal node has 256 ancestor nodes. The most
interesting thing about this structure is that it tries
to be as memory-efficient as possible by effectively
using available cache, avoiding unnecessary access
to main memory. As a result, Judy is both fast and
memory-efficient.

The feasibility of utilizing the Judy structure for
storing hyphenation patterns is demonstrated in the
thesis [12]. In Chapter 4, it is shown that Judy has
the potential to be faster and more memory-efficient
compared to the original trie when working with
patterns. Further, Chapter 5 explores the potential
integration of Judy into Patgen and the consequent
impact on Patgen’s generation process. The results
from this chapter indicate that rewriting Patgen with
Judy is possible but would require an almost com-
plete overhaul of Patgen’s code and algorithms. This
redevelopment would yield a Patgen version capable
of handling input of any kind, enabling the gener-
ation of patterns composed of arbitrary alphabets.
However, it is important to note that the generation
process would be approximately four times slower
than the current implementation. This is due to the
hiding of access to the inner nodes of stored tries in
Judy. As this access is not needed in TEX for the
hyphenation of individual words, using some variant
of Judy in a TEX successor would make hyphenation
faster.

Ondfej Sojka, Petr Sojka, Jakub Maca

.., with character contexts as parameters. [8]

3.3 Universal pattern generation

To pursue the idea of universal syllabic pattern gen-
eration, we have checked whether the legacy patterns
hyphenate the same valid word in different languages
differently. The result with a short discussion is in
Table 3. The expectation that syllable-forming prin-
ciples are universal, as phonology theory suggests,
is confirmed. The errors we have found were due to
the difference between hyphenation and syllabifica-
tion caused by inconsistent markup rather than a
principled difference in word morphology, e.g. a com-
pound word segmented in one language, and given
as a single word in the other.?

We removed all colliding words when joining
wordlists into the wordlist universal pattern gener-
ation. As mentioned earlier, we collected words for
nine languages (cz, sk, ka, el, pl, ru, tr, tk, ua).

We generated universal patterns with the same
three sets of Patgen parameters (custom, correct
optimized, and size optimized) as when generating
Czechoslovak patterns. The results are shown in
Tables 4 (custom), 5 (correct optimized) and 6 (size
optimized). The results are comparable with genera-
tion for two languages and confirm the feasibility of
universal pattern development.

We did not pursue 100% coverage at all costs
because the source data is noisy, and we do not want
the patterns to learn all the typos and inconsistencies.
Also, the size of the new languages was rather small,
compared to Czechoslovak.

4 Evaluation

We evaluated the quality of developed patterns by
two metrics. Coverage of hyphenation points in the
training wordlist tells how the patterns correctly

2 Compound words can evolve in perception into single
words even within one language. Examples are the evolution
of e-mail into email or roz-um into syllabic ro-zum in Czech.

TUGboat, Volume 44 (2023), No. 2

293

Table 3: Different word hyphenation overlaps. Cells contain the number of same
words that are segmented differently between languages. Differences are caused
typically by suboptimal coverage patterns used to hyphenate the wordlist (vi-bram
vs. vib-ram, up-gra-de vs. upg-ra-de). We remove the differently hyphenated words
when joining wordlists for the final syllabic generation.

Language cz+sk ka el pa pl ru ta te th tr tk nua
Czech+Slovak (cz+sk) 9 0 0 038 0 0 0 0 640 69 O
Georgian (ka) o oo 0o o0 O0O0OOO0O 0 0 o0
Greek (el-monoton) 0 0 0 O 0 0 0 0 O 0 0 0
Panjabi (pa) o 0600 0o O O OO O O 0 o0
Polish (pl) 388 00 0 0 O O O 0 18 9 O
Russian (ru) 0 0o 0 0 O OO O O 0125
Tamil (ta) o 060 0 o0 0O OO O0O 0 0 o0
Telugu (te) o 00 0 o0 0O OO O O 0 o0
Thai (th) o 060 0o O O OO O O 0 o0
Turkish (tr) 640 0 0O 0 18 0 O O O 0 8 O
Turkmen (tk) 69 0 0 0 9 0 O O O 8 0 O
Ukrainian (ua) 0 00 0 0125 0 0 0 0 0 O

predicted hyphenation points used in training. Gen-
eralization means how the patterns behave on unseen
data, on words not available in the data used dur-
ing Patgen training. The methodology is the same
as we used in the development of Czechoslovak pat-
terns [19].

In Table 7, we compare the efficiency of dif-
ferent approaches to hyphenating 2 languages and
9 languages from one pattern set. We see that the
performance of universal patterns is comparable in
size and quality to double- or single-language ones —
there is only a negligible difference. Table 8 shows
that generalization qualities, given the small input
size wordlists, are very good, and comparable to
the fine-tuned Czechoslovak results. Investing in the
purification and consistency of input wordlists (as
we did for Czech and Slovak) would result in near-
perfect syllabic patterns with almost 100% coverage
and no errors.

5 Future work

A natural further step is to merge further languages
where the syllabic principle is used for hyphenation.
For that, one would need a version of Patgen we
provisionally call UniPatgen. This version would
support Unicode not only in I/O but also internally
as a wide character (UCS-2) character encoded in
the pattern representation in either a packed trie
or Judy array. This would allow merging more lan-
guages without increasing the computational com-
plexity of hyphenation, and only a sublinear increase
of pattern size. We believe that coverage may differ

from 100% only by words that should be hyphenated
differently in different languages —our estimate is
in small, single-digit percents, while, as mentioned
above, the widely-used hyphen.tex patterns do not
cover 10+%!

Another possible extension in pattern develop-
ment is the support of a specific hyphenation penalty
for compound word borders. This extension, dis-
cussed already 30 years ago [20], would generate
patterns first for compound words, and only after
fixing them continue with pattern generation for all
other hyphenation points. The TEX engine would
then set the hyphenation penalties depending on
level ranges in patterns found for the hyphenated
word. This extension is orthogonal with support for
universal patterns but might require increasing the
maximal number of levels allowed in patterns to two
digits.

There are several open questions for the TEX
development community:

1. Should the universal syllabic patterns ever be
developed?

2. If so, should the needed internal wide character
representations be added to the TEX suite of
programs? That is, to TEX-based engines not
yet supporting it? and Patgen or UniPatgen.

3. If not, should it be handled by external seg-
menters on TEX’s input, based on Patgen’s pro-
posed successor, UniPatgen?

3 cs.overleaf.com/learn/latex/TeX_primitives_

listed_by_TeX_engine

A roadmap for universal syllabic segmentation

https://cs.overleaf.com/learn/latex/TeX_primitives_listed_by_TeX_engine
https://cs.overleaf.com/learn/latex/TeX_primitives_listed_by_TeX_engine

294

TUGDboat, Volume 44 (2023), No. 2

Table 4: Statistics from the generation of universal patterns for cz+sk, ka, el, pl,
ru, tr, tk, ua with custom parameters and \lefthyphenmin=2, \righthyphenmin=2.
Generation took 33.23 seconds, 11,238 patterns, 77 kB.

Level Patterns Good Bad Missed Lengths Params
1 2,407 2,066,410 280,020 70,588 1 3 1 312
2 2,375 2,025,245 8,866 111,753 2 4 1 1 5
3 4,626 2,118,063 19,213 18935 3 6 1 2 4
4 2,993 2,117,739 5920 19,259 3 7 1 4 2

Table 5: Statistics from the generation of universal patterns for cz+sk, ka,
el, pl, ru, tr, tk, ua with correct optimized parameters and \lefthyphenmin=2,
\righthyphenmin=2. Generation took 35.43 seconds, 29,742 patterns, 219 kB.

Level Patterns Good Bad Missed Lengths Params
1 7,188 2,049,375 164,224 87623 1 3 1 5 1
2 4,108 2,042,249 14,094 94,749 1 3 1 5 1
3 15,010 2,134,692 20,544 2,306 2 6 1 3 1
4 6,920 2,133,458 815 3540 2 7 1 3 1

Table 6: Statistics from the generation of universal patterns for cz+sk, ka, el, pl, ru,
tr, tk, ua with size optimized parameters and \lefthyphenmin=2, \righthyphenmin=2.
Generation took 29.75 seconds, 14,321 patterns, 101 kB.

Level Patterns Good Bad Missed Lengths Params
1 1,201 2,092,928 598,321 44,070 1 3 1 220
2 2,695 1,736,372 5,274 400,626 2 4 2 1 8
3 4,835 2,102,803 20,094 34,195 3 5 1 4 7
4 6,508 2,099,607 210 37391 4 7 3 21

4. If UniPatgen was developed, should it be added
to the distribution, together with Unicode pat-
terns included and supported in repositories
like [13]?

5. Should UniPatgen, and LuaTEX, add a depen-
dency on a Judy library, or should a more con-
servative solution be sought and implemented?
With a conservative solution, which data struc-
ture to use for storing patterns? Should the
memory be allocated dynamically, to overcome
the abundant explosion of format size that stores
the patterns, as output by iniTEX?

6. Should UniPatgen (and TEX engines) addition-
ally and orthogonally support patterns and dif-
ferent hyphenation penalty for compound word
borders, currently available in e.g. the German
wordlist [7]?

We would appreciate qualified opinions on these de-
cisions being sent to authors.

Ondfej Sojka, Petr Sojka, Jakub Maca

“All we are saying, give patterns a chance.”
Our paraphrase of John Lennon’s protest song refrain

6 Conclusion

Preparation of language-agnostic, i.e. universal, syl-
labic segmentation patterns could be done! We have
demonstrated this possibility by generating patterns
based on the wordlists of nine languages with current
Patgen. They have superb generalization qualities,
high coverage of hyphenation points (more than most
legacy patterns), and virtually no errors. Their use
could have a high impact on virtually all typesetting
engines including web page renderers.

Supporting wide characters in Patgen is a criti-
cal requirement for adding more languages. We have
shown that bringing wide character support into the
hyphenation part of the TEX suite of programs is
possible by using the Judy array. It will allow gener-
ating and deploying patterns for the whole Unicode
character set. We have discussed a possible roadmap

https://en.wikipedia.org/wiki/Wide_character
https://en.wikipedia.org/wiki/Judy_array

TUGboat, Volume 44 (2023), No. 2

295

Table 7: Comparison of the efficiency of different approaches to pattern generation of
Czechoslovak and of universal patterns. Note that the size of universal patterns grows
sublinearly with the number of languages. The generalization ability of universal
patterns is only slightly worse than that of Czechoslovak ones. The experience from
the development of Czechoslovak patterns shows that performance could be improved

by consistent markup of wordlist data.

Wordlist Parameters Good Bad Missed Size Patterns
Czechoslovak custom 99.87% 0.03% 0.13% 32kB 5,907
Czechoslovak correctopt 99.99% 0.00% 0.01% 45 kB 8,231
Czechoslovak sizeopt 99.67% 0.00% 0.33% 40 kB 7417
Universal custom 99.10% 0.28% 0.90% 77 kB 11,238
Universal correctopt 99.83% 0.04% 0.17% 219 kB 29,742
Universal sizeopt 98.25% 0.01% 1.75% 101 kB 14,321

Table 8: Results of 10-fold cross-validation (learning on 90%, and testing on
remaining 10%). Generalization properties (performance on words not seen during
training) are compared with Czechoslovak patterns. By adding 7 languages, the
generalization abilities of universal patterns are only slightly worse.

Wordlist

Parameters Good Bad

Missed

Czechoslovak custom
Czechoslovak correctopt
Czechoslovak sizeopt

Universal custom
Universal correctopt
Universal sizeopt

0.14%
0.04%
0.40%
0.95%
0.62%
1.56%

0.22%
0.15%
0.18%
1.06%
1.28%
0.94%

99.64%
99.81%
99.41%
97.99%
98.10%
97.50%

to make this a reality in typesetting engines including
TEX successors.

Acknowledgments

We are indebted to Don Knuth for questioning the
common properties of Czech and Slovak hyphen-
ation during our presentation of [17] at TUG 2019,
which has led us in this research direction. We also
thank everyone on whose shoulders we build our
work, e.g. for wordlists by Lexical Computing, and
to all who commented on our work at TUG 2021 [19]
and TUG 2023.

References

[1] S. Bartlett, G. Kondrak, C. Cherry. Automatic
Syllabification with Structured SVMs for
Letter-to-Phoneme Conversion. In Proceedings
of ACL-08: HLT, pp. 568-576, Columbus,
Ohio, June 2008. Assoc. for Computational
Linguistics.
aclweb.org/anthology/P08-1065

[2] Y. Haralambous. New hyphenation
techniques in Q. TUGboat 27(1):98-103,
2006. tug.org/TUGboat/tb27-1/
tb86haralambous-hyph.pdf

[3] Online etymology dictionary. "syllable".
www.etymonline.com/word/syllable

[4] M. JakubiGek, A. Kilgarriff, et al. The TenTen
Corpus Family. In Proc. of the 7th
International Corpus Linguistics Conference
(CL), pp. 125-127, Lancaster, July 2013.

[5] D.E. Knuth. 3:16 Bible Texts Illuminated.
A-R Editions, Inc., 1991.

J. Krantz, M. Dulin, P.D. Palma.
Language-agnostic syllabification with neural
sequence labeling. CoRR abs/1909.13362, 2019.
arxiv.org/abs/1909.13362

W. Lemberg. A database of German
words with hyphenation information, 2023.
repo.or.cz/wortliste.git

[6]

7]

A roadmap for universal syllabic segmentation

https://aclweb.org/anthology/P08-1065
https://tug.org/TUGboat/tb27-1/tb86haralambous-hyph.pdf
https://tug.org/TUGboat/tb27-1/tb86haralambous-hyph.pdf
https://www.etymonline.com/word/syllable
https://arxiv.org/abs/1909.13362
https://repo.or.cz/wortliste.git

296

18]

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

F.M. Liang. Word Hy-phen-a-tion by
Com-put-er. Ph.D. thesis, Dept. of Computer
Science, Stanford University, Aug. 1983.
tug.org/docs/liang/liang-thesis.pdf

F.M. Liang, P. Breitenlohner. PATtern
GENeration program for the TEX82
hyphenator. Electronic documentation
of PATGEN program version 2.4 on CTAN.
ctan.org/pkg/patgen, 1999.

I. Maddieson. Syllable Structure. In The
World Atlas of Language Structures Online,
M.S. Dryer, M. Haspelmath, eds. Max Planck
Institute for Evolutionary Anthropology,
Leipzig, 2013. wals.info/chapter/12

Y. Marchand, C.R. Adsett, R.I. Damper.
Automatic Syllabification in English:

A Comparison of Different Algorithms.
Language and Speech 52(1):1-27, 2009.
doi.org/10.1177/0023830908099881

J. Maca. Judy, May 2023. Bachelor Thesis
supervised by Petr Sojka and defended at
Masaryk University, Faculty of Informatics.
is.muni.cz/th/kru3j

A. Rosendahl, M. Miklavec. TEX hyphenation
patterns, 2023. Accessed 2023-07-05.
http://hyphenation.org/tex

Y. Shao, C. Hardmeier, J. Nivre. Universal
Word Segmentation: Implementation and
Interpretation. Transactions of the Association

for Computational Linguistics 6:421-435, 2018.

doi.org/10.1162/tacl_a_00033

P. Sojka. Competing Patterns for Language
Engineering. In Proceedings of the Third
International Workshop on Text, Speech and
Dialogue—TSD 2000, P. Sojka, 1. Kopecek,
K. Pala, eds., LNAI 1902, pp. 157-162, Brno,
Czech Republic, Sept. 2000. Springer-Verlag.
doi.org/10.1007/3-540-45323-7_27

P. Sojka. Competing Patterns in Language

Engineering and Computer Typesetting. Ph.D.

thesis, Masaryk University, Brno, Jan. 2005.
researchgate.net/publication/265246931_
Competing_Patterns_in_Language_
Engineering_and_Computer_Typesetting/

Ondfej Sojka, Petr Sojka, Jakub Maca

[17]

[18]

[19]

[20]

[21]

[22]

[23]

TUGDboat, Volume 44 (2023), No. 2

P. Sojka, O. Sojka. The Unreasonable
Effectiveness of Pattern Generation.
TUGboat 40(2):187-193, 2019. tug.org/
TUGboat/tb40-2/tb125so0jka-patgen.pdf

P. Sojka, O. Sojka. Towards Universal
Hyphenation Patterns. In Proceedings of
Recent Advances in Slavonic Natural Language
Processing—RASLAN 2019, A. Horak,

P. Rychly, A. Rambousek, eds., pp. 63-68,
Karlova Studanka, Czech Republic, 2019.
Tribun EU. is.muni.cz/publication/
15685259/71ang=en. nlp.fi.muni.cz/
raslan/2019/paper13-sojka.pdf

P. Sojka, O. Sojka. New Czechoslovak
Hyphenation Patterns, Word Lists, and
Workflow. TUGboat 42(2), 2021.
doi.org/10.47397/tb/42-2/
tb131sojka-czech

P. Sojka, P. Sevecek. Hyphenation in TEX —
Quo Vadis? TUGboat 16(3):280-289, 1995.
tug.org/TUGboat/tb16-3/tb48sojl.pdf

The Unicode Consortium. The Unicode
Standard: Worldwide Character Encoding.
Version 15.0. Unicode, Inc., Mountain View,
CA, USA, 2022.

unicode.org/versions/Unicodel5.0.0

N. Trogkanis, C. Elkan. Conditional Random
Fields for Word Hyphenation. In Proceedings
of the 48th Annual Meeting of the ACL,

pp- 366374, Uppsala, Sweden, July 2010.
ACL. aclweb.org/anthology/P10-1038

Internetova jazykové piirucka (Internet
Language Reference Book), 2023.
prirucka.ujc.cas.cz/7id=135

¢ Ondrej Sojka,

Petr Sojka,
Jakub Maca

Faculty of Informatics, Masaryk University,
Brno, Czech Republic

454904 (at) mail dot muni dot cz,
sojka (at) fi dot muni dot cz,
514024 (at) mail dot muni dot cz

ORCID 0000-0003-2048-9977 ,
0000-0002-5768-4007 ,
0009-0008-1583-3183

https://tug.org/docs/liang/liang-thesis.pdf
https://ctan.org/pkg/patgen
https://wals.info/chapter/12
https://doi.org/10.1177/0023830908099881
https://is.muni.cz/th/kru3j
http://hyphenation.org/tex
https://doi.org/10.1162/tacl_a_00033
https://doi.org/10.1007/3-540-45323-7_27
https://researchgate.net/publication/265246931_Competing_Patterns_in_Language_Engineering_and_Computer_Typesetting/
https://researchgate.net/publication/265246931_Competing_Patterns_in_Language_Engineering_and_Computer_Typesetting/
https://researchgate.net/publication/265246931_Competing_Patterns_in_Language_Engineering_and_Computer_Typesetting/
https://tug.org/TUGboat/tb40-2/tb125sojka-patgen.pdf
https://tug.org/TUGboat/tb40-2/tb125sojka-patgen.pdf
https://is.muni.cz/publication/1585259/?lang=en
https://is.muni.cz/publication/1585259/?lang=en
https://nlp.fi.muni.cz/raslan/2019/paper13-sojka.pdf
https://nlp.fi.muni.cz/raslan/2019/paper13-sojka.pdf
https://doi.org/10.47397/tb/42-2/tb131sojka-czech
https://doi.org/10.47397/tb/42-2/tb131sojka-czech
https://tug.org/TUGboat/tb16-3/tb48soj1.pdf
https://unicode.org/versions/Unicode15.0.0
https://aclweb.org/anthology/P10-1038
https://prirucka.ujc.cas.cz/?id=135

	Motivation
	Syllabification
	Hyphenation as syllabification
	Data preparation

	Pattern development
	Patterns
	Judy arrays
	Universal pattern generation

	Evaluation
	Future work
	Conclusion

