
192 TUGboat, Volume 44 (2023), No. 2

LATEX News
Issue 37, June 2023 (LATEX release 2023-06-01)

Contents

New functionality offered as part of the

“LATEX Tagged PDF” project 1

New or improved commands 1

Extending hooks to take arguments 1

Generic cmd hooks with arguments 2

Providing copy and show functions for
environments 2

\IfFileAtLeastTF 2

\DeclareLowercaseMapping,
\DeclareTitlecaseMapping and
\DeclareUppercaseMapping 2

\BCPdata . 3

Improve \samepage 3

Groups in \MakeUppercase 3

Extension of the \label command 3

Code improvements 3

Performance in checking file existence 3

doc: Handle \␣ correctly in the index 3

doc: Support the upquote package 3

Default definition for \do 3

New key for filecontents 3

A further hook for shipping out pages 4

Displaying release information in the .log . . . 4

Bug fixes 4

Incompatibility between doc and unicode-math 4

A fix for \hspace 4

Ensure that \cs is defined in ltxdoc 4

Improve spacing at top of minipages 4

A fix for \NewCommandCopy and \ShowCommand 4

Corrections for switching math version 4

Allow par as a filename 4

Correct setting of \endlinechar in +v

arguments 4

Correct handling of hooks with only ‘next’ code 4

Ignoring space after $$ 4

Documentation improvements 5

Updates to the guides 5

Displaying the exact release dates for LATEX . . 5

Fresh from the press: “The LATEX Companion,
third edition” is now in print 5

Changes to packages in the tools category 5

multicol: Better support for CJK languages . . 5

multicol: Fix handling of nested environments . 5

New functionality offered as part of the “LATEX

Tagged PDF” project

We have now enabled new automatic tagging function-
ality for additional LATEX elements, among them most
display environments, standard sectioning commands,
content, figure and table listings, floats and graphics and
bibliographies. This can be activated through

\DocumentMetadata{testphase=phase-III}

At this point in time tagging support is only available for
a restricted set of documents, i.e., those that use one of
the basic document classes (article, report, and book)
and only use commands and environments described in
Lamport’s LATEX manual.

Using other document classes or adding additional
packages in the preamble may work (or may partially
work) but at this stage it is not very likely, at least not
for packages or classes that excessively alter internals of
LATEX.

Also note that there are still several environments and
commands described in the LATEX manual that do not
have tagging support yet, notably tabulars, tabbing, the
various math environment and a few others. They will get
this support as part of phase-III, but some of them will
be delayed until after the June release.

A prototype for math tagging (including support for
the amsmath environments) is already available, but it is
mainly intended for experimentation and feedback and the
resulting tagging is by no means the way we envision it
to be eventually. If you would like to try it out use the
following line:

\DocumentMetadata{testphase={phase-III,math}}

Note that the math tagging code at this point in time will
clash with packages that redefine the $ character (which
then may lead to strange errors) and that packages that
use math mode for non-mathematical constructs may
result in surprising output as far as tagging is concerned.
Feedback on which packages fail with the code in one or
another way would be appreciated.

The latex-lab bundle contains various (still untagged)
documentation files about the new code that can be
accessed with texdoc -l latex-lab.

Feedback is welcome! Please use https://github.com/

latex3/latex2e/discussions/1010.

New or improved commands

Extending hooks to take arguments

Hooks have always been containers for code whose outcome
was entirely dependent on the contents of the hook alone.
If any type of contextual information had to be passed
to the hook, it had to be done by setting some variable
before the hook so that the code in the hook could use

doi.org/10.47397/tb/44-2/tb137ltnews37

LATEX News #37

TUGboat, Volume 44 (2023), No. 2 193

that. But this is somewhat hard to keep track of, clumsy
to implement, and it required the programmer to have
some kind of “hook before the hook” to do that setup.

To make things a bit easier, lthooks was enhanced
to support hooks with arguments. Hooks can now be
declared and used with arguments, then the code added
to these hooks can reference the hook’s arguments using
#1, #2, etc., so now hooks can behave more like macros
than like token lists (using expl3 terminology). Regular
argument-less hooks continue to work exactly like they did
before: this extension is completely compatible with older
documents and packages.

To declare a hook with arguments, use

\NewHookWithArguments {hook} {num-args}

then, similarly, to use the code in the hook, supposing a
hook declared with 2 arguments, write

\UseHookWithArguments {hook} {2} {arg1 } {arg2 }

Or, if you want to add some code to a hook that takes
arguments, write

\AddToHookWithArguments {hook} [label] {code}

exactly like you would for regular hooks, except that the
⟨code⟩ can use the arguments by referencing #1, #2, etc. In
this case, if you want to add an actual parameter token (#)
to the ⟨code⟩, you have to double it, as usual.

Additionally, if you want to add “regular” code to a
hook with arguments, you can still use \AddToHook — in
that case # tokens are not doubled. This means that a
package author can decide to add arguments to an existing
hook without worrying about compatibility: \AddToHook

will do the right thing and will not mistakenly reference
the newly added arguments.

The commands \NewReversedHookWithArguments,
\NewMirroredHookPairWithArguments,
\AddToHookNextWithArguments,
\UseOneTimeHookWithArguments, and the expl3 counter-
parts of the commands discussed in this section were also
added. The complete documentation can be found in the
lthooks documentation [2].

Generic cmd hooks with arguments: Along with the
possibility of passing arguments to a regular hook as
discussed above, generic cmd hooks can now access the
arguments of the command they are patched into, using
the interface described in the previous section.

For example, if you were to add some code to the \title
command using hooks, you could access the actual title
given in the argument. Thus, to write the title of the
document in the terminal you could use:

\AddToHookWithArguments{cmd/title/before}

{\typeout{Document title: #1}}

As with regular hooks, code added to a cmd hook using
\AddToHook will not be able to access the command’s
arguments. This means that, as with regular hooks, this
change is completely backwards compatible, so previous
usages of cmd hooks will work exactly as they did before.

Providing copy and show functions for environments

To copy a command definition we introduced
\NewCommandCopy in 2022. This even allows you to
copy commands that consist of several internal compo-
nents, such as robust commands or those with a complex
signature. To do the same with environments, e.g., to
define the environment myitemize to be equivalent to
itemize, you can now write

\NewEnvironmentCopy{myitemize}{itemize}

There are also \Renew... and \Declare..., which may
be useful depending on the circumstances.

In addition, we offer a \ShowEnvironment com-
mand, which displays the \begin and \end code
of the environment passed as an argument. E.g.,
\ShowEnvironment{center} results in the following
output:

> \begin{center}=environment:

> ->\trivlist \centering \item \relax .

<recently read> }

l. ...\ShowEnvironment{center}

> \end{center}:

> ->\endtrivlist .

<recently read> }

l. ...\ShowEnvironment{center}

(github issue 963)

\IfFileAtLeastTF

The 2020-10-01 LATEX release introduced the CamelCase
tests \IfClassAtLeastTF and \IfPackageAtLeastTF

for checking class and package dates. We have now
added \IfFileAtLeastTF to allow the same to happen
for generic files which contain a \ProvidesFile line.

(github issue 1015)

\DeclareLowercaseMapping,

\DeclareTitlecaseMapping and

\DeclareUppercaseMapping

The move from a case-changing approach using \lccode

and \uccode data to one where information is stored by
a kernel-managed structure left a gap in the ability of the
user to tune the case changing outcomes. This has now
been addressed by the addition of three commands

• \DeclareLowercaseMapping

• \DeclareTitlecaseMapping

• \DeclareUppercaseMapping

which can be used to customise the outcome for codepoints.
This can be applied generally or to a specific locale (see
also the next section). A small number of pre-defined
customisations have been set up in the kernel where the
outcomes for pdfTEX should be different for those from
Unicode engines. For example

\DeclareUppercaseMapping{"01F0}{\v{J}}

allows J̌ to be produced in 8-bit engines: without this
customisation, an error would occur as there is no pre-
composed J̌ in Unicode. More detail is given in usrguide.

(github issue 1033)

LATEX News #37

194 TUGboat, Volume 44 (2023), No. 2

\BCPdata

Improvements in the Unicode handling for case changing
have highlighted that the kernel has not to-date been
locale-aware. The packages babel and polyglossia provide
comprehensive locale support, but did not have an agreed
unified interface to pass that information back to other
code. Following discussion with the maintainers of those
two bundles, the kernel now defines \BCPdata as a stub (so
it is always defined), and babel and polyglossia will redefine
it to provide the locale data. An agreed set of keywords
mean that \BCPdata can be queried in a structured way
by both the kernel and any other “consumer” packages.

(github issue 1035)

Improve \samepage

The \samepage declaration sets various parameters
to 10000 to prevent undesired page breaks. The
\predisplaypenalty parameter has already by default
a value of 10000, and to save space in the past it was
therefore not explicitly set. However, there are a few
classes that change the parameter and as result the user
might experience a page break in front of a display formula
within the scope of \samepage when using such classes.
This has now been corrected and \predisplaypenalty is
also explicitly set to 10000. (github issue 1022)

Groups in \MakeUppercase

Prior to 2022, \MakeUppercase and \MakeLowercase used
a brace group around their argument so providing a scope
for any declarations within the argument. This grouping
has been restored (also for \MakeTitlecase), although the
underlying L3 text case commands do not use grouping.

(github issue 1021)

Extension of the \label command

Previously, in standard LATEX, the \label command wrote
a \newlabel declaration into the .aux file and stored
two values in the second argument of this \newlabel

command: \@currentlabel, which normally contains the
state of the current counter and \thepage for the current
page number.

The packages hyperref and nameref then patched the
\label command to store five values instead. In addition
to the above they saved \@currentlabelname, which
normally contains the current title text and can be
retrieved with \nameref, and \@currentHref, which is the
name of the destination needed to create an active link.
The fifth argument was only used if external references
were loaded with the xr-hyper package.

Starting with this release, the number of values
stored in \newlabel has been unified. \label now writes a
\newlabel command that always contains five values in the
second argument (each in a brace group): \@currentlabel,
\thepage, \@currentlabelname, \@currentHref, and
\@kernel@reserved@label@data (which is reserved for
the kernel).

Additionally, a hook with the name label has been
added. It takes one argument: the label string. Code
added to the hook can refer to this argument with #1.
The hook is executed directly before the \label command
writes to the .aux file but after the \@bsphack command

has done its spacing magic, and it is located inside a group;
thus, its code only affects the write operation.

Code improvements

Performance in checking file existence

The addition of hooks, etc., to file operations had a side
effect of making multiple checks that the file existed.
In larger documents using many files, these file system
operations caused non-trivial performance impact. We
now cache the existence of files, such that these repeated
filesystem calls are avoided.

doc: Handle \␣ correctly in the index

Due to some problems in the code it wasn’t possible to pre-
vent \␣ from showing up in the index—\DoNotIndex{\ },
etc. had no effect. This has now been corrected.

(github issue 943)

doc: Support the upquote package

The default quote and backquote characters in typewriter
fonts are typographical quotes, e.g., the input

\verb/‘prog ’my input’‘/

is rendered as ‘prog ’my input’‘ and not as
`prog 'my input'` as preferred by many program-
mers.

This can be adjusted, for example, with the upquote

package, which results in the second output. However, for
historical reasons doc had its own definition of \verb and
verbatim and as a consequence the two packages did not
cooperate. This has now been fixed and loading upquote

together with doc has the desired effect. (github issue 953)

Default definition for \do

The command \do with its nice public name is in reality
an internal command inherited from plain TEX for list
processing. However, it only got a definition when
\begin{document} was executed, with a result that a user
definition in the preamble was unconditionally overwritten
at this point. To properly alert the user that this command
is not freely available we now make a definition in the
format, so that \newcommand and friends produce a proper
error message instead of allowing a definition that doesn’t
last. (github issue 975)

New key for filecontents

The filecontents environment warns on the terminal
if a file gets overwritten even if that is intentional, e.g.,
when you write a temporary file over and over again.
To make the warning less noisy in this case we added a
new nowarn key that redirects the overwriting warning
to the transcript file. We think that some record of the
action is still required to help with debugging, thus it is
not completely silenced. The warning that nothing gets
written, because the file already exists (and the force key
was not used), is not altered and still shows up on the
terminal. (github issue 958)

LATEX News #37

TUGboat, Volume 44 (2023), No. 2 195

A further hook for shipping out pages

Since October 2020 the shipout process offers a number of
hooks to adjust what is happening before, during, and after
the \shipout. For example, with the shipout/before

hook, packages can reset code they have altered (e.g.,
\catcodes during verbatim-like processing) and with
shipout/background and shipout/foreground material
can be added to the pages. Details are given in [1].

However, still missing was a hook that allows a package
writer to manipulate the completed page (with foreground
and background attached) just before the actual shipout
happens. For this we now provide the additional hook
shipout. One use case (sometimes needed in print
production) is to mirror the whole page via \reflectbox

including all the extra data that may have been added into
the fore- or background. (github issue 920)

Displaying release information in the .log

LATEX displays its release information at the very beginning
of the LATEX run on the terminal, and also writes it to the
transcript file if that is already opened at this point. While
this is normally true, it is not the case if the LATEX run
was started passing additional TEX code on the command
line, e.g.,

pdflatex '\PassOptionsToClass{11pt}{article}

\input{myarticle}'

In this case the release information is displayed when
\PassOptionsToClass is processed but the transcript file
is only opened when the output file name is known, i.e.,
after \input has been seen, and as a result the release
information is only shown on the terminal.

To account for this scenario, we now repeat the release
information also at the very end of the transcript file
where we can be sure that it is open and ready to receive
material. (github issue 944)

Bug fixes

Incompatibility between doc and unicode-math

The unicode-math package alters the catcode of | but does
not adjust its value for use in doc, with the result that “or”
modules, i.e., ⟨A|B⟩ are displayed in a strange way. This is
now fixed with some firstaid code that will eventually be
moved into unicode-math. (github issue 820)

A fix for \hspace

The change to \hspace, done in 2020 to make it calc-aware,
had the unfortunate side effect that starting a paragraph
with \hspace would result in the execution of \everypar

inside a group (i.e., any local changes would immediately
be revoked, breaking, for example, wrapfig in that special
situation). This got fixed with the 2022-11 PL1 hotfix, so
was already corrected in the previous release, but is only
now documented in the newsletter. (github issue 967)

Ensure that \cs is defined in ltxdoc

The class ltxdoc defined the command \cs to typeset a
command name with a backslash in front. This definition
was moved to the doc package itself. This meant that
it was suddenly missing when reverting to the old doc

package implementation via the class option doc2. This
has now been corrected. (github issue 981)

Improve spacing at top of minipages

A list and several other document elements add some
vertical space in front of them. However this should not
happen at the beginning of a box (such as a minipage)
and normally it doesn’t, because TEX automatically drops
such space at the start of a vertical list. However, if there
is some invisible material, such as a \color command, a
hyperref anchor, a \write or other such items, then the list
is no longer empty and TEX no longer drops the vertical
space.

With the new paragraph handling introduced in 2021
it is now finally possible to detect and avoid this problem
and apply appropriate counter measures so that from now
on the spacing will always be correct. (github issue 989)

A fix for \NewCommandCopy and \ShowCommand

When copying and showing definitions of (non-expandable)
document commands (a.k.a. commands defined by
\NewDocumentCommand and friends) containing empty or
only m-type arguments, these commands were wrongly
recognized as expandable ones. This is fixed in the present
LATEX release. (github issue 1009)

Corrections for switching math version

Some internal code improvements improve support for
switching math version when nested within an outer math
expression. This will improve \boldsymbol and \bm and
similar commands. (github issue 1028)

Allow par as a filename

\input{par} or \includegraphics{par} could give
spurious errors. This has been fixed by making an internal
command \long. (github issue 942)

Correct setting of \endlinechar in +v arguments

In the particular case of a document command with
a +v-type argument used inside \ExplSyntaxOn/Off,
newlines would be misinterpreted as spaces because
the value of \endlinechar was set too late. This has
been fixed, and now newlines are correctly translated to
“the character ^^M”. (github issue 876)

Correct handling of hooks with only ‘next’ code

When \AddToHookNext was used on a not-yet-declared
hook, that hook would be incorrectly identified as empty
by \ShowHook. Also, if that hook was later declared,
that ‘next’ code would not be executed. This has been
fixed by correctly initializing the hook structure when
\AddToHookNext is used. (github issue 1052)

Ignoring space after $$

Space is normally ignored after a closing $$, but internal
LATEX font handling code could interfere if \eqno was
used. \eqno and \leqno have been redefined to add
\ignorespaces after the math group. (github issue 1059)

LATEX News #37

196 TUGboat, Volume 44 (2023), No. 2

Documentation improvements

Updates to the guides

When LATEX 2ε was released, the team provided docu-
mentation for both document authors and package/class
developers in the two files usrguide and clsguide. Over
time, the team have augmented these documents as new
methods have been added to the kernel. However, they
retained their structure as assuming familiarity with
LATEX 2.09. This meant that for new users, there was
material which is no longer relevant, and less clarity than
desirable regarding the approaches that are recommended
today.

The two files have now been (partially) re-written,
with the versions available previously now frozen as
usrguide-historic and clsguide-historic. More
material has been carried forward in the class/package
guide than in the user guide, but both are worth a re-read
by experienced LATEX users.

Displaying the exact release dates for LATEX

In some situations it is necessary to find out the
exact release dates for older versions of the LATEX
format, for example, when you need to use differ-
ent code in a package depending on the availability
of a certain feature and you therefore want to use
\IfFormatAtLeastTF{⟨date⟩} or the rather horrible con-
struction \@ifl@t@r\fmtversion{⟨date⟩}, if you want to
cater for formats that are older than 2020.

Or you know that your package is definitely not going
to work with a format before a certain ⟨date⟩, in which
case you could use \NeedsTeXFormat{LaTeX2e}[⟨date⟩]
to ensure that users are alerted if their format is too old.

The big problem is knowing the exact ⟨date⟩ to put into
such commands; in the past, that was not that easy to
find. You could have looked in the file changes.txt, but
that is hidden somewhere in your installation and if you
try texdoc -l changes.txt you get more than thirty
results and the right file is by no means the first.

Yukai Chou (@muzimuzhi) kindly provided a patch for
this, so that we now have the exact dates for each LATEX
format listed in an easy to remember place: in ltnews.pdf

and that file conveniently also contains all major features
and changes to LATEX over the years—one of which is most
likely the reason you need the ⟨date⟩ in the first place.

The date is now given in parentheses in the newsletter
title, thus this newsletter tells you that on 2023-06-01 the
command \NewEnvironmentCopy, a new shipout hook,
etc. was made available. And looking into ltnews.pdf

you can now easily find out that the LATEX3 programming
layer was added on 2020-02-02 (because the date was so
nice) and not on the first of the month. (github issue 982)

Fresh from the press: “The LATEX Companion, third edition”

is now in print

The third edition of The LATEX Companion is now
available. This is the result of five years of careful work
and we hope that it will provide our readers with all the
information they need to successfully navigate the LATEX
ecosystem and efficiently produce beautiful documents.

Since the publication of the last edition (2004), a lot has
happened in the LATEX world and thus a complete rewrite

was necessary. All chapters have been thoroughly revised,
and in many cases significantly extended, to describe new
important functionality and features. More than 5,000
add-on packages have been analyzed in detail, out of which
roughly 10% have been chosen for inclusion in The LATEX

Companion. All important aspects of these packages are
described to provide the user once again with a satisfying
one-stop–shop experience for the decade to come.1

To cover what we thought worth describing today, the
book nearly doubled in size. The print edition is therefore
produced as a two-volume set and sold as a bundle. Both
volumes come as hardcover with ribbons to easily mark
pages in the book.

To give you an idea of what is covered in the third
edition you can find some excerpts at

https://www.latex-project.org/news/2023/

03/17/TLC3

The edition is also available as an eBook (Parts I and II
combined) consisting of PDF and ePub format, without
DRM. Finally, the publisher offers the combination of the
printed books and the digital versions at a very attractive
price not available anywhere else.

Changes to packages in the tools category

multicol: Better support for CJK languages

The default minimum depth of each column in a multicols

corresponds to the depth of a “p” in the current font.
This helps to get some uniformity if rules are used
between the columns and makes sense for Latin-based
languages. Until now it was hard-wired, but for CJK
(Chinese/Japanese/Korean) languages it is better to
use a zero depth, because there all characters have the
same height and depth. And even with Latin-based
languages one might want to use the depth of a \strut

or that of a parenthesis. So we now offer a way to adjust
this while maintaining backward compatibility: redefine
\multicolmindepthstring to hold whatever you want
to get measured for its depth (the width is not relevant).

(github issue 698)

multicol: Fix handling of nested environments

If multicols environments have been nested into
each other (the inner one boxed) it could fail if the boxed
environment appeared near a page break. The problem was
that the output routine was called while the \hsize was
still altered to fit the column width of the inner multicols
— thereby messing up the placement of columns of the
page. This has now been fixed. (github issue 1002)

References

[1] Frank Mittelbach, LATEX Project Team:
The ltshipout documentation.
Run texdoc ltshipout-doc to view.

[2] Frank Mittelbach, Phelype Oleinik,
LATEX Project Team: LATEX’s hook management.
Run texdoc lthooks-doc to view.

1Editor’s note: A review of The LATEX Companion,

Third Edition appears in this issue of TUGboat, pp. 322–324.

LATEX News #37

