TUGDboat, Volume 44 (2023), No. 1

An introduction to expl3
Marei Peischl

Even some long-term IATEX users seem to be scared
of expl3 —the syntax of the IATEX3 programming
layer —and think of the structure as confusing or
even frightening. Perhaps with some justification:

\ExplSyntax0On
\clist_map_inline:nn
\1_tmpa_clist
{ __ptxcd_add_item:n {#1} }
\ExplSyntax0ff

IATEXS is no longer a development for which IATEX
users have been waiting for decades. IA#TEX3 has
been around for a long time and nowadays is used
by all IXTEX users, often without being noticed. The
goal of this tutorial is to demystify expl3.

The IATEX3 programming layer is the foundation
of almost all new IKTEX development in the last years.
It provides unified interfaces that can be used directly
or indirectly by package authors and users to code
complex mechanisms or process content much more
flexibly than with classic IATEX.

Overall, the most important goals of IATEX3 are:

¢ Uniform interfaces for functions and variables
e Modernization of syntax
o Simplification of controlling expansion
and thus provide both much simpler and more pow-
erful ways to program in IWTEX [5].

Programming is useful when a document, de-
pending on settings, should get either a different
layout or a different structure. A typical example
from teaching is the creation of an exam including
solutions within a single file, where solutions can be
hidden. Another use case is the processing of exter-
nal data. A typical example is a list to be converted
to an enumeration:

\ExplSyntaxOn
\begin{enumerate}
\clist_map_inline:nn
{ one, two, three }
{ \item #1 }
\end{enumerate}
\ExplSyntax0ff

1. one
2. two
3. three

The expl3 syntax often seems cryptic to users of
other programming languages. As a combination of

doi.org/10.47397/tb/44-1/tb136peischl-expl3

87

underscores and colons and a bunch of naming con-
ventions form a unique structure, expl3 is a nice way
to remind everyone of the fact that I¥TEX, and thus
expl3, is a pure macro language. Here, tokens are
replaced by their meaning and no actual operations
are performed, as opposed to scripting languages.
Understanding the structure of expl3 therefore
requires a basic understanding of macro expansion
and the concept of category codes. The following
sections explain the basics of these, in addition to
the syntactic structure. If the concepts are already
familiar, the corresponding sections can be skipped.

1 Syntax switching in TEX, IATEX, expl3

When TEX processes input, it not only reads individ-
ual characters, but also assigns a category to each
character. This category determines how the char-
acter should be processed. The assignment is done
using the so-called “category codes” or “catcodes”
for short. Each input character corresponds to a
character code, and each character code is assigned
to a (changeable) category code.

In total, TEX knows sixteen different categories.
The assignments of a character to a category can
change within a document. The most common ex-
ample is language-dependent behavior, such as con-
structed by babel [1]. For German documents, one
can type "a to produce “4”. (In English documents,
each character is processed separately.) This is done
using category 13 “active” Active characters are no
longer simple characters, but commands; in this case,
the command to put an umlaut over the following
character.

The following list shows all available categories
along with explanations and examples, many of which
are familiar to all TEX typists, even if you haven’t
heard of category codes.

0. Escape character (\)
Beginning of group ({)
End of group (})

Math shift ($)

Alignment tab (&)

End of line ((return})
Parameter (#)

Superscript (7)

Subscript (_)

Ignored character ((null))
Space (1)

Letter (non-ASCII only with XgTEX/LuaTEX)
. Other character (@)

. Active character (~)

. Comment character (%)
15. Invalid character ({delete))

© XN OE LN

— = = = =
O)

An introduction to expl3

https://doi.org/10.47397/tb/44-1/tb136peischl-expl3

88

1.1 The @ character in (I2)TEX
macro names

IATEX uses @ to protect internal macros from access
by end users. Usually, internal macros are protected
this way for a reason. So customizations should be
done with caution to avoid unexpected side effects.
While being aware of danger, it is possible to use @
within command names, by changing the category
code of @ to 11 (letter), and back to 12 (other) when
no longer needed:

\makeatletter
\makeatother

A typical example for the use of the @ character
is the definition of “starred” variants for one’s own
commands. For this, two auxiliary macros must be
defined internally, which are often also protected
with an Q:

\makeatletter
\newcommand*{\cmd}

{\@ifstar\@cmdstar\@cmd}
\newcommand*{\@cmd}{without *}
\newcommand*{\@cmdstar}{with *}
\makeatother

Then the macro \cmd has the following output:

\cmd \\ \cmd*

without *
with *

1.2 The expl3 syntax

Since the focus of the expl3 syntax is programming,
IATEX behaves fundamentally differently when coding
a command than when writing text:
e Spaces and newlines in code delimit tokens, but
are otherwise ignored.
o Blank lines are not paragraph breaks.
o Tilde (~) characters are a normal space (catcode
10), not a tie.
o Colon (:) and underscore (_) characters are
part of macro names.
e There is a syntactic difference between functions
and variables.
e It is recommended to put spaces around curly
braces unless they contain only one parameter.
These changes allow us to structure the code quite a
bit better, without changing its meaning. Switching
to (or from) the expl3 programming syntax is done
with these commands:

Marei Peischl

TUGDboat, Volume 44 (2023), No. 1

\ExplSyntax0On
\ExplSyntax0ff

Additionally, most package authors nowadays use
CamelCase for the commands for their users. This
improves the readability of the code even within the
classic N TEX syntax.

2 Naming scheme

Using a naming scheme, expl3 distinguishes at a
glance functions that process content or arguments
from variables that simply store a value. Function
names contain a : character, and variables do not:

Functions:

’ \module_description: arguments|

Variables:

‘ \validity _module_description_datatype |

2.1 Variables

Variables store values. Expl3 provides different data
types for this. The naming scheme is the same for all
types. Technically, this is only a convention. How-
ever, following it ensures that users can understand
the code more easily.

‘ \validity _module_description_datatype |

Validity constant (c), global (g) or local (1).

Internal? Internal variables which are not intended
for end-users separate the validity from the mod-
ule by two underscores. Normal variables have
only one underscore here.

Module Named for the package/bundle to avoid
name conflicts. There is a process to register
module names; see [6].

Description What does the variable store for which
purpose?

Datatype What kind of values are stored in the
variable? How must it be processed?

An example of an internal variable (two underscores)
is the token list (t1):

\1__siunitx_complex_sign_tl

There are a wide variety of data types, each with
its own abbreviation. A small selection is shown in
Table 1. All interfaces are documented in [4].

2.2 Functions

The term “function” is perhaps a bit misleading for
those familiar with other programming languages.
TEX and thus expl3 is a pure macro language, which

TUGDboat, Volume 44 (2023), No. 1

Table 1: Selection of expl3 data types

Type Description

bool boolean (true or false)

box box

clist comma-separated list

coffin “box with handles”, a box with anchor
points for relative placement with respect
to other objects.

dim length (dimension)

fp floating point numbers (double precision)

int integer

prop key /value list (property list)

seq sequence (queue/stack)

skip extensible length (glue)

str string, consisting only of letters, spaces
and category 12 (other) characters

stream input/output streams for reading/writing
external files

tl token list, string with arbitrary catcodes

gives the impression of a function that operates only
by substituting strings. However, functions in expl3
can also be understood to process their contents,
with no return value in the sense of conventional
programming languages. The “return value” is often
left in the “input stream” and thus becomes part of
the document.
The naming convention for functions is:

’ \module_description: argument speciﬁcation|

The module and description for function names are
identical to those for variables. However, the dif-
ference between whether a function acts locally or
globally is recorded in the description. The conven-
tion prefixes a set for a (local) assignment and an
additional “g” for a global assignment: gset. Exam-
ples are the functions for setting integer variables:

\int_set:Nn
\int_gset:Nn

In expl3 syntax, the arguments expected by the func-
tion are specified after the colon. Thus, the two
examples above expect two arguments: one of type
“N” and a second of type “n”. Thus, one can di-
rectly look at a function for the number and types
of expected arguments. This will be important for
controlling the expansion process, but for now, just
N and n are enough to deal with. The letter stands
for “No manipulation” in each case. Thus, the argu-
ment is passed to the function without any further
processing.

89

The difference between the upper and lower case
is whether the function expects a single token or a
grouped argument. Upper case letters stand for to-
kens; lower case for groups. Thus, our argument spec-
ification :Nn above expects a single token followed by
a group. Altogether, the macro \int_set:Nn could
be used as follows:

\int_set:Nn \1_tmpa_int { 5 }

The above example sets an integer variable (the first
argument, here \1_tmpa_int) to the value “5” (spec-
ified in a group).

The function is thus similar to classic KTEX’s
\setcounter, but the argument of \int_set:Nn can
also be used to calculate. The function \int_use:N
returns the value of the given variable, in this case
typesetting it:

\ExplSyntax0On

\int_set:Nn \1_tmpa_int { 5 + 2 * 3 }
\int_use:N \1_tmpa_int

\ExplSyntax0ff

11

2.3 dim: Example of a data type

This section is devoted to the “dim” data type for
lengths. The most common functions are discussed.
Analogous functions exist for other data types. Com-
plete documentation is given in [4].

2.3.1 [Initialization: N/n arguments

\dim_new:N
\dim_const:Nn

\dim_new:N is used to create a new variable. It then
exists globally, but can also be assigned locally. Here,
the naming convention is crucial. To create a local
and a global variable for our present tutorial, we do:

\dim_new:N \1_tugboat_test_dim
\dim_new:N \g_tugboat_test_dim

It is thus possible for two variables with the same
description to exist, one of which is to be assigned
locally and one globally.

When defining a constant, its value is also di-
rectly specified:

\dim_const:Nn \c_tugboat_test_dim { 5cm }

For variables, which are changeable, the assignment
is done separately with \dim_set:Nn (or _gset):

An introduction to expl3

90

TUGDboat, Volume 44 (2023), No. 1

\dim_set:Nn \1_tugboat_test_dim { 3cm }
\dim_gset:Nn \g_tugboat_test_dim
{ 1icm + 5mm }

Analogously to what we saw with counters, calcu-
lation is also possible here. Precision is limited to
that of TEX for lengths. The smallest unit is 1sp =
0.000 02 pt. And thus definitely small enough to have
more than sufficient accuracy for print production.

Besides assignments, there are also commands
for addition and subtraction of lengths. The name
structure remains identical here. All details can be
looked up in [4].

2.3.2 Conditionals and loops: T/F/TF
arguments

Another basic part of programming is the ability to
compare values of variables, and create loops based
on such conditions. For lengths, the simplest way to
do this in expl3 is to use the command:

’ \dim_compare:nTF

This macro can be used to compare lengths with
each other. The possible comparisons are:

Equal = or ==
Greater-equal >=
Larger >
Less-equal <=
Smaller <
Unequal 1=

There are other variants of the \dim_compare:
function that allow only some of the operators; they
are processed faster. Here, we discuss only the sim-
plest and most general command. As a complete
example, our just-created and assigned global and
local lengths can be compared with each other:

\ExplSyntaxOn
\dim_compare:nTF { \g_tugboat_test_dim >=
\1_tugboat_test_dim }
{ is~greater~or~equal }
{ is~smaller }
\ExplSyntax0ff

is smaller

The specification TF expects one group or token per
letter according to the previous description. Here,
the “T” stands for “true”, the “F” for “false”.

Expl3 has a special feature here: you are allowed
to specify only the branch that is needed. If the
function should output something only if the query
returns the value “false”; the T argument can simply
be omitted:

Marei Peischl

\ExplSyntaxOn
\dim_compare:nF
{ \g_tugboat_test_dim >
\1_tugboat_test_dim }
{ not~greater }
\ExplSyntax0ff

not greater

2.3.3 Debugging outputs

In more complex programming, it may be necessary
to display values of variables on the fly. Expl3 pro-
vides commands to output the current value of a
variable in the terminal or to write it to the log file.

\dim_show:N
\dim_show:n
\dim_log:N
\dim_log:n

The variants with type “n” arguments expect a length
expression instead of a length variable. Here you can
calculate again or evaluate a macro which contains
for example a centimeter value.

2.4 Argument specifications

In addition to the argument specifications already
mentioned, there are several others, most of which
process arguments differently than in standard argu-
ments in classic I/ TEX. Table 2 shows all of them
and their description.

N and TF have already been explained. Type
¢ follows next, and section 4 will explain the spec-
ifications o, f, x, e, and V. The types p and w are
less common, especially for beginners, and won’t be
discussed here; they’re listed for the sake of com-
pleteness. Explanations can be found in [5].

Table 2: Argument specifications for expl3 functions

Token Description
wN/n No manipulation
TF/T/F True/False
c Csname
V/v Value
expand Once
eXhaustive expansion
e Exhaustive expansion, but the macro
might be expandable
f Full expansion to first unexpandable token
) Parameters as for TEX definitions

w Weird

TUGDboat, Volume 44 (2023), No. 1

3 Csname/Endcsname: c arguments

A fundamental concept of IXTEX is the ability for
macro names to be created dynamically:

[\csname name\endcsname|

One can roughly describe the functionality of this
construction as prefixing a backslash:

\LaTeX{}

\csname LaTeX\endcsname

ITEX = BXTEX

A typical example of practical use is references. Here,
a macro is defined internally that contains the argu-
ment of the \1label command:

\label{frame:csname}
\expandafter\meaning
\csname r@frame:csname\endcsname

macro:->{3}{91}{Csname\slash ~ Endcsname:

\texttt {c} arguments}{section.3}{}

A reference is thus created as a macro containing
the element number —in this case empty because
not numbered —and the page number. For \ref,
the first value is used. \pageref uses the second.
For more information on the topic, including several
examples, see [3].

In expl3, this concept is the foundation for
type ¢ arguments—c as in “csname”. Here, we've
seen the first command, \dim_set :Nn, which sets
\1_tmpa_dim to lcm. The second command, using
\dim_set:cn, similarly sets \1_tmpb_dim to 2cm,
but the variable is given as a name instead of a
literal control sequence. The third uses names for
both the variable name and the value.

\dim_set:Nn \1_tmpa_dim { lcm }
\dim_set:cn { 1_tmpb_dim } { 2cm }
\dim_set_eq:cc { 1_tmpa_dim }

{ 1_tmpb_dim }

4 Controlling expansion: o/x/e arguments

Expansion essentially means replacing a command
with its meaning. For classic commands in KTEX, the
expansion of a macro can be seen by the commands

\meaning\command
\show\command

The result can be displayed in the text or output to
the terminal. For example:

91

\newcommand*{\myVariable}{myvalue}

\meaning\myVariable\\

\newcommand*{\myFunction} [1]{/
function with argument (#1)

}

\meaning\myFunction

macro:->myvalue
macro:#1->function with argument (#1)

The macro \myVariable is thus simply replaced by
the string “myvalue”. The macro \myFunction ac-
cepts an argument and places this behind the text
in parentheses.

To implement more complex structures, other
macros are often used within macro definitions. Then,
multi-level expansion is necessary.

4.1 Multiple-level expansion

We use the following definitions as an example to
illustrate how IXTEX handles commands.

\newcommand\one{a}
\newcommand\two{\one,b}
\newcommand\three{\one, \two,c}

Imagine each macro as a box with different content
depending on its definition:

Without expansion, TEX sees only a token. If this is
then to be processed further, the box is unpacked:

Since there is only the word “one” inside this
macro, this process cannot be repeated. The macro
is already fully and exhaustively expanded.

Compared to the once-expandable macro \one,
\three can be expanded multiple times. See Figure 1
for all steps.

Expl3 allows for arguments to explicitly control
how far boxes should be unpacked before further
processing. This allows for exact control.

Accordingly, we can now distinguish the argu-
ment specifications. We see this using an expl3
construct directly: \tl_to_str:n directly prints
the argument, as a string, into the document. To
get variants of the expansion levels, one can use
\exp_args:No or other expansion levels. Here the
first argument is not expanded and the second one
is expanded according to the argument:

An introduction to expl3

92

Before expansion:

Expanded once:

Expanded twice:

After third expansion:

=)
&
=)
a
a

Figure 1: Visualization of expansion steps in boxes

\ExplSyntaxOn

unexpanded:\hfill

\tl_to_str:n { \three } \\
expanded~once:\hfill

\exp_args:No \tl_to_str:n { \three } \\
fully~expanded:\hfill

\exp_args:Nf \tl_to_str:n { \three } \\
exhaustively~expanded~(x)\hfill
\exp_args:Nx \tl_to_str:n { \three } \\
exhaustively~expanded~(e)\hfill
\exp_args:Ne \tl_to_str:n { \three }
\ExplSyntax0ff

unexpanded: \three
expanded once: \one ,\two ,c
fully expanded: a,\two ,c
exhaustively expanded (x) a,a,b,c
exhaustively expanded (e) a,a,b,c

This ability to control exactly in which order ar-
guments of functions should be expanded makes it
possible to look inside boxes before they are finally
processed. Thus, for example, you can check in which
format a date is passed and proceed accordingly:

\cs_new:Nn __tugboattut_parse_date:n {
% split at "-"
\seq_set_split:Nnn \1_tmpa_seq
{ - {#1}
% more than one item
% -> there was a dash

Marei Peischl

TUGDboat, Volume 44 (2023), No. 1

\int_compare:nTF
{ \seq_count:N \1_tmpa_seq > 1 }

{
% assuming ISO format
\seq_item:Nn \1_tmpa_seq { 3 } .
\seq_item:Nn \1_tmpa_seq { 2 } .
\seq_item:Nn \1_tmpa_seq { 1 }

A
% alternative checks possible
#1

}

}

The macro now checks if the argument contains a
hyphen. If it does, the date is interpreted as an
ISO date (YYYY-MM-DD). Otherwise it is assumed
that the date already has the format DD.MM.YYYY.
(Further checking could be done.)

As an example, let’s imagine the date that is
passed at the beginning of the document via \date
for the title line is to be processed with this. Inter-
nally, this value is stored in the command \@date.
However, this macro does not contain a hyphen,
which means that it has to be expanded first.

One way would be to use the \exp_args: com-
mand used above, but expl3 additionally provides a
mechanism to create variants of a base command:

\cs_generate_variant:Nn
__tugboattut_parse_date:n
{x1}

Now the variant __tugboattut_parse_date:x also
exists. This allows the following construct:

\ExplSyntax0On
__tugboattut_parse_date:n { 23.06.2022 }

__tugboattut_parse_date:n { 2022-06-23 }
__tugboattut_parse_date:x

{ \use:c { @date } }
\ExplSyntax0ff
23.06.2022=23.06.2022=23.06.2022

5 Summary/outlook

IYTEX3 or expl3 extends and simplifies the ability to
write more flexible macros despite — or maybe even
because of —its somewhat weird syntax. In addition
to the basic data type of “Token”, structured data
types are introduced, and a differentiation is made
between data processing and data storage. Moreover,
expl3 makes the control of macro expansion much
more transparent.

TUGDboat, Volume 44 (2023), No. 1

It is thus possible to process different contents
automatically and to pack significantly more func-
tionality into a macro depending on the arguments
and their structure. Furthermore, the uniform struc-
ture of the interfaces makes it easier to read and
understand code by other authors.

Very many helper macros, which have been de-
fined in many packages again and again, are obsolete,
since there now are functions within the IXTEX ker-
nel to replace them. Whole groups of packages are
replaced by IXTEX3 standard modules, one of the
most common examples being the key—value pars-
ing packages [2]. In the long run, this—along with
other extensions to the kernel —will reduce conflicts
between packages and thus make the overall INTEX
system even more stable and increase the usability
for the end user.

This article provides only a very small glimpse
of the possibilities. Although more or less anything
could be done in classic TEX, it often required low-
level patches and hacking. Expl3 has made it much
easier for me to do programming tasks directly in
ITEX.

I sincerely hope this article can help to reduce
some confusion and fear, on the road to more expl3.

\prg_do_nothing: or just \relax.

93

References

[1] J.L. Braams, J. Bezos. Babel: Localization and
internationalization. ctan.org/pkg/babel

[2] CTAN. keyval topic. ctan.org/topic/keyval

[3] A. Hendrickson. The joy of \csname. ..
\endcsname. TUGboat 33(2):219-224, 2012.
tug.org/TUGboat/tb33-2/tb104hendrickson.
pdf

[4] WTEX Project. The INTEX3 interfaces.
mirrors.ctan.org/macros/latex/contrib/
13kernel/interface3.pdf

[5] HTEX Project. The expl3 package and INTEX3
programming. mirrors.ctan.org/macros/
latex/contrib/13kernel/expl3.pdf

[6] J. Wright. Registering expl3 module[s]. texdev.
net/2012/11/04/registering-expl3-module/

¢ Marei Peischl
Gneisenaustr. 18
20253 Hamburg
Germany
marei (at) peitex dot de
https://peitex.de

An introduction to expl3

https://ctan.org/pkg/babel
https://ctan.org/topic/keyval
https://tug.org/TUGboat/tb33-2/tb104hendrickson.pdf
https://tug.org/TUGboat/tb33-2/tb104hendrickson.pdf
https://mirrors.ctan.org/macros/latex/contrib/l3kernel/interface3.pdf
https://mirrors.ctan.org/macros/latex/contrib/l3kernel/interface3.pdf
https://mirrors.ctan.org/macros/latex/contrib/l3kernel/expl3.pdf
https://mirrors.ctan.org/macros/latex/contrib/l3kernel/expl3.pdf
https://texdev.net/2012/11/04/registering-expl3-module/
https://texdev.net/2012/11/04/registering-expl3-module/

	Syntax switching in TeX, LaTeX, expl3
	The @ character in (La)TeX macro names
	The expl3 syntax

	Naming scheme
	Variables
	Functions
	dim: Example of a data type
	Initialization: N/n arguments
	Conditionals and loops: T/F/TF arguments
	Debugging outputs

	Argument specifications

	Csname/Endcsname: c arguments
	Controlling expansion: o/x/e arguments
	Multiple-level expansion

	Summary/outlook

