
TUGboat, Volume 44 (2023), No. 1 99

Attributes in Markdown

Vít Novotný

Abstract

Markup languages provide only a finite set of ele-
ments, whereas the wants of users are infinite. To
bridge this gap, markup languages allow users to
extend them with attributes.

In this article, we introduce attributes in the
lightweight markup language of Markdown. We also
show how writers can type them and how coders can
style them using the Markdown package for TEX.

Introduction

Markup languages provide only a finite set of ele-
ments to writers. This is especially true in lightweight
markup languages such as AsciiDoc, Org-mode, and
Markdown, which use ASCII punctuation marks and
other non-letter symbols for tags. As a result, writers
are often left unable to express their intent using the
markup language.

In many markup languages, users can add new
elements using syntax extensions. For example, in
the Markdown package for TEX, writers can add ta-
bles using pipeTables and tableCaptions options:

\documentclass{article}
\usepackage[pipeTables, tableCaptions]

{markdown}
\begin{document}
\begin{markdown}
Right | Left | Center

------:|:-----|:------:
12 | 12 | 12

123 | 123 | 123
1 | 1 | 1

: Example table
\end{markdown}
\end{document}

Possible output:
Table: Example table

Right Left Center

12 12 12
123 123 123

1 1 1

Since version 2.17.0 from October 2022, users can
also write their own syntax extensions in Lua [1,
Section 2.2]. However, writing syntax extension is a
costly process that requires advanced coding skills.

Furthermore, in some markup languages, users
can also mix different markup languages. For exam-
ple, in the Markdown package for TEX, writers can
easily mix Markdown with YAML metadata, TEX
commands, and HTML tags:
\documentclass{article}
\usepackage[jekyllData, html,

rawAttribute, texMathDollars]
{markdown}

\begin{document}
\begin{markdown}

title: |

Example Document in YAML, `\TeX`{=tex},
<abbr>HTML</abbr>, and Markdown

author: Vít Novotný
date: 2023-03-24

Introduction
Use YAML for metadata, *Markdown* for text,
`\TeX`{=tex} for $math$ and formatting, and
<abbr>HTML</abbr> for extended markup.
\end{markdown}
\end{document}
However, mixing different markup languages makes
the text more difficult to read, typeset, and less
suitable for multitarget publishing.

Lastly, in most markup languages, users can
attach attributes to elements to denote additional
information. For example, in version 2.22.0 of the
Markdown package for TEX from March 2023, writers
can easily attach attributes to Markdown headings,
text spans and blocks, inline code spans and code
blocks, links, and images:
\documentclass{article}
\usepackage[

bracketedSpans, fencedCode, fencedDivs,
fencedCodeAttributes, headerAttributes,
inlineCodeAttributes, linkAttributes

]{markdown}
\begin{document}
\begin{markdown}
Introduction {#introduction}
============
Here is an [important]{color=red} text
that describes the implementation of the
[Quicksort][1] algorithm in Haskell:

~~~~ haskell {.numberLines startFrom=100}
qsort [] = []
qsort (x:xs) = qsort (filter (< x) xs)

++ [x]
++ qsort (filter (>= x) xs)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

[1]: https://wikipedia.org/wiki/Quicksort
{.external-link .wikipedia}

\end{markdown}
\end{document}
In the above example, attributes are written between
pairs of curly braces ({}). When used in modera-
tion, attributes can work around the shortcomings
of markup languages without decreasing readability.

doi.org/10.47397/tb/44-1/tb136novotny-markdown-attr

Attributes in Markdown

https://doi.org/10.47397/tb/44-1/tb136novotny-markdown-attr

100 TUGboat, Volume 44 (2023), No. 1

In this article, we introduce attributes in Mark-
down. In Section 1, we describe the kinds of at-
tributes available in Markdown and how writers can
use them. In Section 2, we show how coders can style
attributes using the Markdown package for TEX. In
Section 3, we discuss the changes to attributes in the
next major version of the Markdown package. We
conclude in Section 4 by summarizing the contribu-
tions of the article.

1 Writer’s workshop

In Markdown, writers can use three different kinds of
attributes: identifiers, class names, and key-values.

Identifiers are the most common type of at-
tributes. Writers can use identifiers to assign a
unique label to an element and refer to it, similar to
the \label and \ref commands in LATEX:
\documentclass{article}
\usepackage[headerAttributes,

relativeReferences]{markdown}
\begin{document}
\begin{markdown}
We conclude in Section <#conclusion>.

Conclusion {#conclusion}
==========
In this paper, we have discovered that most
grandmas would rather eat dinner with their
grandchildren than get eaten. Begone, wolf!
\end{markdown}
\end{document}

Possible output:
We conclude in Section X.

X Conclusion
In this paper, we have discovered that most grandmas would
rather eat dinner with their grandchildren than get eaten.
Begone, wolf!

Unlike identifiers, class names do not uniquely
identify an element. Instead, they place an element
into a category. For example, writers can use a class
name such as fruit to mark all occurrences of fruit:
\documentclass{article}
\usepackage[bracketedSpans]{markdown}
\begin{document}
\begin{markdown}
[Mango]{.fruit} is the king of all fruits.
[Oranges]{.fruit} are full of Vitamin C.
An [apple]{.fruit} a day keeps doctor away.
\end{markdown}
\end{document}
Even if we are undecided how the output should
look, adding the attributes allows us to easily style
all occurrences of fruit in our document later on.

Whereas class names denote coarse-grained cat-
egory membership, key-values describe fine-grained
traits of an element. For example, writers can use
key-values such as width and height for image size:

\documentclass{article}
\usepackage[linkAttributes]{markdown}
\begin{document}
\begin{markdown}

{width=3cm height=2cm}

\end{markdown}
\end{document}

2 Coder’s cubicle

In version 2.22.0 of the Markdown package, writers
can attach three different types of attributes to seven
different types of elements. To prevent a combina-
torial explosion, attributes and element types are en-
coded separately in the abstract syntax tree of a doc-
ument. Consider the following example document:

\documentclass{article}
\usepackage[bracketedSpans, linkAttributes,

inlineCodeAttributes]{markdown}
\begin{document}
\begin{markdown}

[This text]{.red} is so important it glows
red (grayscaled for print). So does this
<https://link>{.red} and this `code`{.red}.

\end{markdown}
\end{document}

The document would produce the following abstract
syntax tree:

\bracketedSpanAttributeContextBegin
\attributeClassName{red}%
This text%

\bracketedSpanAttributeContextEnd{}
is so important it glows red
(grayscaled for print). So is this
\linkAttributeContextBegin

\attributeClassName{red}%
\link{https://link}%

{https://link}%
{https://link}%
{}%

\linkAttributeContextEnd{}
and this
\codeSpanAttributeContextBegin

\attributeClassName{red}%
\codeSpan{code}%

\codeSpanAttributeContextEnd

Vít Novotný

TUGboat, Volume 44 (2023), No. 1 101

This allows us to easily style the class name red
independently on the element that it is attached to:

\ExplSyntaxOn
\markdownSetup {

renderers = {
*ContextBegin = {

\color_group_begin:
},
attributeClassName = {

\str_if_eq:nnT
{ #1 } { red }
{ \color_select:n { red } }

},
*ContextEnd = {

\color_group_end:
},

}
}
\ExplSyntaxOff

Output:
This text is so important it glows
red (grayscaled for print). So does
this https://link and this code.

By contrast, consider the last document from the
previous section, which would produce the following
abstract syntax tree:

\imageAttributeContextBegin
\attributeKeyValue{height}{2cm}%
\attributeKeyValue{width}{3cm}%
\image{}{example-image}{example-image}{}%

\imageAttributeContextEnd

Here, we want to style the key-values width and
height only for images:

\RequirePackage{graphicx}
\ExplSyntaxOn
\markdownSetup {

renderers = {
imageAttributeContextEnd = {

\group_end:
},
imageAttributeContextBegin = {

\group_begin:
\markdownSetup {

renderers = {
attributeKeyValue = {

\setkeys % Pass the key-value
{ Gin } % to graphicx package
{ { ##1 } = { ##2 } }

},
},

}
},

},
}
\ExplSyntaxOff

Output:

Image

3 Developer’s den

For all Markdown elements except headings, the
*AttributeContextBegin and End renderers imme-
diately surround the element in the abstract syntax
tree. By contrast, the headerAttributeContextEnd
renderer is placed after the end of the section implied
by the heading. While this is practical for styling
whole sections [2, Section 2.4], it is inconsistent and
makes other common use cases such as expanding
the attributeIdentifier renderer to the \label
LATEX command more difficult to implement.

In version 2.21.0 of the Markdown package from
February 2023, the sectionBegin and End render-
ers were added, which surround sections implied
by headings regardless of whether attributes are
used. In version 3.0.0 of the Markdown package, cur-
rently scheduled for release around June 2023, the
headerAttributeContextEnd renderer will appear
immediately after headings in abstract syntax tree.

4 Conclusion

Attributes provide a simple bottom-up mechanism
for extending markup languages with new concepts.
In this article, we have shown the types of attributes
that are available in the lightweight markup language
of Markdown. We have also shown how writers can
type attributes in their documents and how coders
can style attributes using the Markdown package for
TEX. With attributes, writers can produce beautiful
documents without littering them with formatting
commands.

References

[1] V. Novotný. Markdown 2.17.1: What’s
new, what’s next? TUGboat 43(3):276–278,
2022. doi.org/10.47397/tb/43-3/
tb135novotny-markdown

[2] V. Novotný, D. Rehák, et al. Markdown
2.15.0: What’s new? TUGboat 43(1):10–15,
2022. doi.org/10.47397/tb/43-1/
tb133novotny-markdown

⋄ Vít Novotný
Studená 453/15
Brno, 638 00
Czech Republic
witiko (at) mail dot muni dot cz
github.com/witiko

Attributes in Markdown

https://link
https://doi.org/10.47397/tb/43-3/tb135novotny-markdown
https://doi.org/10.47397/tb/43-3/tb135novotny-markdown
https://doi.org/10.47397/tb/43-1/tb133novotny-markdown
https://doi.org/10.47397/tb/43-1/tb133novotny-markdown

	Writer's workshop
	Coder's cubicle
	Developer's den
	Conclusion

