
TUGBOAT

Volume 44, Number 1 / 2023

General Delivery 3 From the president / Boris Veytsman

4 Editorial comments / Barbara Beeton
Donald P. Story, 1946–2022;
Clarification: Interview with Boris Veytsman, TUGboat 43:2;
News from the TEX neighborhood; Accessibility for (LA)TEX;
Accessibility — Something completely different;
An afternoon at the Museum of Printing; Arsenic and old books;
How many TEX documents?

Typography 9 A conversation with type designer Matthew Carter / Frank Romano

21 Prehistory of digital fonts / Jacques André

58 Typographers’ Inn / Peter Flynn

Humanities 60 An artist’s journey on a TUGboat / Tine Wilde

Tutorials 64 The DuckBoat — Beginners’ Pond: No more table nightmares with tabularray! /

Carla Maggi

Electronic Documents 71 Metadata in journal publishing / Joppe Bos, Kevin McCurley

LATEX 77 LATEX anniversaries — A look in two directions / Frank Mittelbach

87 An introduction to expl3 / Marei Peischl

94 LuaCAS: Symbolic computation in LATEX / Timothy All, Evan Cochrane

99 Attributes in Markdown / Vı́t Novotný

Graphics 102 An introduction to automata design with TikZ’s automata library / Igor Borja

108 Styling R ggplot2 graphics with LATEX / Travis Stenborg

Fonts 110 Creating annotated Unicode-like font charts / Janusz S. Bień

115 Production notes / Karl Berry

116 OpenType extensible brace debugging / Hans Hagen, Mikael P. Sundqvist

Software & Tools 117 ConTEXt in TEX Live 2023 / Hans Hagen

Macros 121 Creating macros in OpTEX / Petr Oľsák

127 Reflections on \globaldefs in plain TEX / Udo Wermuth

Methods 133 Preserving the math class of variables / Hans Hagen

134 Storing Unicode data in TEX engines / Joseph Wright

Reviews 137 Book review: Do Not Erase, by Jessica Wynne / Jim Hefferon

139 Book review: Stop Stealing Sheep & Find out how type works,
by Erik Spiekermann / John Lamb

Hints & Tricks 141 The treasure chest / Karl Berry

Abstracts 143 Die TEXnische Komödie: Contents of issues 4/2022–1/2023

143 La Lettre GUTenberg : Contents of issues 47–49 (2022)

145 Zpravodaj : Contents of issue 2022/1–4

Advertisements 145 TEXnology Inc.

146 TEX consulting and production services

TUG Business 2 TUGboat editorial information

2 TUG institutional members

147 TUG 2023 election report

151 TUG financial statements for 2022 / Karl Berry

News 152 Calendar

TEX Users Group

TUGboat (ISSN 0896-3207) is published by the
TEX Users Group. Web: tug.org/TUGboat.

Individual memberships
2023 dues for individual members are as follows:

Trial rate for new members: $30.
Regular members: $105.
Special rate: $75.

The special rate is available to students, seniors, and
citizens of countries with modest economies, as de-
tailed on our web site. Members may also choose to
receive TUGboat and other benefits electronically,
at a discount. All membership options are described
at tug.org/join.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat for
the year in which membership begins or is renewed,
as well as software distributions and other benefits.
Individual membership carries with it such rights
and responsibilities as voting in TUG elections. All
the details are on the TUG web site.

Journal subscriptions
TUGboat subscriptions (non-voting) are available to
libraries and other organizations or individuals for
whom memberships are either not appropriate or
desired. Subscriptions are delivered on a calendar
year basis. The subscription rate for 2023 is $115.

Institutional memberships
Institutional membership is primarily a means of
showing continuing interest in and support for TEX
and TUG. It also provides a discounted member-
ship rate, site-wide electronic access, and other ben-
efits. For further information, see tug.org/instmem
or contact the TUG office.

Trademarks
Many trademarked names appear in the pages of
TUGboat. If there is any question about whether
a name is or is not a trademark, prudence dictates
that it should be treated as if it is.

[printing date: April 2023]

Printed in U.S.A.

Board of Directors

Donald Knuth, Ur Wizard of TEX-arcana
†

Boris Veytsman, President∗

Arthur Rosendahl∗, Vice President
Karl Berry∗, Treasurer
Klaus Höppner∗, Secretary
Barbara Beeton
Johannes Braams
Paulo Cereda
Kaja Christiansen
Ulrike Fischer
Jim Hefferon
Frank Mittelbach
Ross Moore
Norbert Preining
Raymond Goucher (1937–2019),

Founding Executive Director
Hermann Zapf (1918–2015), Wizard of Fonts
∗member of executive committee
†honorary

See tug.org/board for a roster of all past and present
board members, and other official positions.

Addresses

TEX Users Group
P. O. Box 2311
Portland, OR 97208-2311
U.S.A.

Telephone
+1 503 223-9994

Fax
+1 815 301-3568

Web
tug.org

tug.org/TUGboat

Electronic mail

General correspondence,
membership, subscriptions:
office@tug.org

Submissions to TUGboat,
letters to the Editor:
TUGboat@tug.org

TEXnical support,
public mailing list:
support@tug.org

Contact the
Board of Directors:
board@tug.org

Copyright c© 2023 TEX Users Group.

Copyright to individual articles within this publication

remains with their authors, so the articles may not
be reproduced, distributed or translated without the

authors’ permission.

For the editorial and other material not ascribed to a
particular author, permission is granted to make and

distribute verbatim copies without royalty, in any medium,
provided the copyright notice and this permission notice

are preserved.

Permission is also granted to make, copy and distribute
translations of such editorial material into another

language, except that the TEX Users Group must approve
translations of this permission notice itself. Lacking such
approval, the original English permission notice must

be included. An information notice to the TUGboat editors
regarding such redistribution is appreciated.

In 1758, the British mathematician Francis Maseres

professed that negative numbers:

“. . . darken the very whole doctrines of the equations

and make dark of the things which are in their nature

excessively obvious and simple.”

Deyan Ginev

email to the W3C MathML Working

Group, 26 May 2022

COMMUNICATIONS OF THE TEX USERS GROUP

EDITOR BARBARA BEETON

VOLUME 44, NUMBER 1, 2023

PORTLAND, OREGON, U.S.A.

TUGboat editorial information

This regular issue (Vol. 44, No. 1) is the first issue of the
2023 volume year. The deadline for the second issue in
Vol. 44 (the TUG’23 conference proceedings) is July 23,
2023, and for the third (regular) issue, October 15, 2023.
Contributions are requested.

TUGboat is distributed as a benefit of member-
ship to all current TUG members. It is also available
to non-members in printed form through the TUG store
(tug.org/store), and online at the TUGboat web site
(tug.org/TUGboat). Online publication to non-members
is delayed for one issue, to give members the benefit of
early access.

Submissions to TUGboat are reviewed by volun-
teers and checked by the Editor before publication. How-
ever, the authors are assumed to be the experts. Ques-
tions regarding content or accuracy should therefore be
directed to the authors, with an information copy to the
Editor.

TUGboat editorial board

Barbara Beeton, Editor-in-Chief
Karl Berry, Production Manager

Robin Laakso, Office Manager

Boris Veytsman, Associate Editor, Book Reviews

TUGboat advertising

For advertising rates and information, including consul-
tant listings, contact the TUG office, or see:
tug.org/TUGboat/advertising.html

tug.org/consultants.html

2 TUGboat, Volume 44 (2023), No. 1

Submitting items for publication

Proposals and requests for TUGboat articles are grate-
fully received. Please submit contributions by electronic
mail to TUGboat@tug.org.

The TUGboat style files, for use with plain TEX
and LATEX, are available from CTAN and the TUGboat

web site, and are included in TEX distributions. We
also accept submissions using ConTEXt. For deadlines,
templates, author tips, and more, see tug.org/TUGboat.

Effective with the 2005 volume year, submission of
a new manuscript implies permission to publish the ar-
ticle, if accepted, on the TUGboat web site, as well as
in print. Thus, the physical address you provide in the
manuscript will also be available online. If you have any
reservations about posting online, please notify the edi-
tors at the time of submission and we will be happy to
make suitable arrangements.

Other TUG publications

TUG is interested in considering additional manuscripts
for publication, such as manuals, instructional materials,
documentation, or works on any other topic that might
be useful to the TEX community in general.

If you have such items or know of any that you
would like considered for publication, please contact the
Publications Committee at tug-pub@tug.org.

TUG

Institutional

Members

TUG institutional members

receive a discount on multiple

memberships, site-wide electronic

access, and other benefits:

tug.org/instmem.html

Thanks to all for their support!

American Mathematical Society,

Providence, Rhode Island, ams.org

Association for Computing

Machinery, New York, New York,

acm.org

Aware Software,

Newark, Delaware, awaresw.com

Center for Computing Sciences,

Bowie, Maryland

CSTUG, Praha, Czech Republic,

cstug.cz

CTAN, ctan.org

Duke University Press, Durham,

North Carolina, dukeupress.edu

Hindawi Foundation,

London, UK, hindawi.org

Institute for Defense Analyses,

Center for Communications

Research, Princeton, New Jersey

L3Harris, Melbourne, Florida,

l3harris.com

LATEX Project, latex-project.org

MacTEX, tug.org/mactex

Maluhy & Co., São Paulo, Brazil,

maluhy.com.br

Marquette University,

Milwaukee, Wisconsin,

marquette.edu

Masaryk University,

Faculty of Informatics,

Brno, Czech Republic, fi.muni.cz

Nagwa Limited,

Windsor, UK, nagwa.com

Overleaf, London, UK,

overleaf.com

StackExchange,

New York City, New York,

tex.stackexchange.com

TEXFolio, Trivandrum, India,

texfolio.org

Université Laval, Ste-Foy, Québec,

Canada, bibl.ulaval.ca

University of Ontario, Institute

of Technology, Oshawa, Ontario,

Canada, ontariotechu.ca

University of Oslo,

Institute of Informatics,

Blindern, Oslo, Norway, uio.no

VTEX UAB,

Vilnius, Lithuania, vtex.lt

TUGboat, Volume 44 (2023), No. 1 3

From the president

Boris Veytsman

It is not often one is chided by Don Knuth, but I
got this distinction. In the interview with Paulo Ney
I mentioned the program I’ve called Maxima. DEK

wrote to TUGboat,

I’m writing today just to mention a glitch that
I noticed. The transcript of Paulo’s excellent
interview with Boris refers several times on
page 103 to a software system called “Max-
ima”, which Richard Fateman had brought to
Berkeley.

No; that program was called “Macsyma”.
It probably has some historic connection with
the system Boris calls “Maxima” on page 133,
reference [10]; but page 103 (and also page
104) certainly was not about Joel Moses’s
pioneering Macsyma system.

Of course, DEK is right: the system Richard Fate-
man brought to Berkeley is properly called Mac-

syma. However, the story behind the name is rather
complex. It is mentioned on the Maxima pages,
maxima.sourceforge.io. When Macsyma was be-
ing developed (1960s), our ideas about free software
and its licensing were not as clear as today. Thus
while the code became available, its license was not
free. I started to use the program in the mid-1990s,
when it was consecutively sold by several commer-
cial companies, still under the name Macsyma. It
became one of my favorite tools (I think somewhere
in the archives one can still find my bug reports).
Unfortunately the companies folded, and the future
of this wonderful program, with many thousands
of human hours spent in its development, became
questionable. In a stroke of good luck, William Schel-
ter, who had maintained Macsyma since 1982, was
able after years of lobbying to secure the permission
of DOE to release the code under GPL. The prop-
erty rights on the name Macsyma being unclear, the
program was released as Maxima, and this is how
it is known today. Thus Maxima developers state
that Maxima is simply the most recent name for
the branch that started under the name DOE Mac-

syma (maxima.sourceforge.io/faq.html). Rich-
ard Fateman seems to agree with this definition, men-
tioning about his projects [o]ne for which I’ve con-
tributed is the (now public version) of the Macsyma

program, named Maxima. (people.eecs.berkeley.
edu/~fateman/) Thus while the program Richard
Fateman brought to Berkeley was Macsyma, its cur-
rent public version is, due to legal complications,
Maxima.

The reason I have spent some time dwelling
on this story is that we now understand something
which was not clear decades ago: our code may have
a longer life than we envision when we write it. When
I worked at NASA Goddard Space Flight Center a
quarter century ago, I supported a program written
before my birth. I have been told it is still in use.
Maxima itself, despite its age, is very popular. I
use it almost daily. Recently I compared its per-
formance with ChatGPT on symbolic calculation of
integrals. While Maxima always gave me correct
answers, ChatGPT did not. After it produced an-
other wrong result, I tried to help the computer, and
said I think this integral is π. ChatGPT answered,
I apologize for my mistake earlier. You are correct,
the value of the integral is actually π. Then it pro-
duced another page of pompous calculations, ending
with a flourish, so the overall value of the integral
is 4 · 6 + 2 · 1 = π (the final emphasis is by the
computer). What a contrast with the modest and
completely correct output of Maxima!

It seems we are going to use the code base of
Maxima for a long time. We are fortunate that due
to the efforts by William Schelter its code is no longer
under a proprietary license.

We are even more fortunate that DEK under-
stood these issues long ago, and TEX has been free
software from the beginning. This enabled the com-
munity to create this beautiful set of programs com-
monly referred to as TEX and friends. Many of us
in the community spend our time maintaining and
extending them as developers, users, or serving in a
users group.

Which brings me to the last topic of this column.
Since 2017 I have had the privilege to support TEX as
the President of TUG. This year I am stepping down.
Many thanks to Arthur Rosendahl, who decided to
take on this duty. It has been a very interesting
journey, and I am grateful to the community that
trusted me with this office all these years.

One of the most important duties of the Pres-
ident is, in my opinion, writing the letters to the
community: monthly newsletters and columns in
TUGboat. At this time I have written 66 newsletters
and 11 columns, this one being the last (I still have
some newsletters to write until Arthur assumes of-
fice). Rereading them, I feel many were näıve, some
were written in haste, and all could be improved. I
can only sum up by saying they were written without
malice, and to the best of my abilities.

Happy TEXing,

⋄ Boris Veytsman

president (at) tug dot org

doi.org/10.47397/tb/44-1/tb136pres

https://maxima.sourceforge.io
https://maxima.sourceforge.io/faq.html
https://people.eecs.berkeley.edu/withtilde%20fateman/
https://people.eecs.berkeley.edu/~fateman/
https://doi.org/10.47397/tb/44-1/tb136pres

4 TUGboat, Volume 44 (2023), No. 1

Editorial comments

Barbara Beeton

Donald P. Story, 1946–2022

Don Story, an active participant in the LATEX com-
munity, passed away on the last day of 2022, after a
long battle with ALS. A member of the Mathematics
faculty of the University of Akron from 1976 until his
retirement in May 2006, Don’s interest in TEX was
directed mainly toward helping others communicate
mathematics. His presence on CTAN consists of an as-
tounding 62 packages. The most well known of these
is acrotex, the AcroTEX education bundle. This
bundle provides tools based on cooperation between
Adobe Acrobat and TEX “for putting mathematics
on the internet”.1 Its README file shows activity well
into 2021, and ends with the note “Now, I simply
must get back to my retirement.”2

Born 17 December 1946 in El Paso, Texas, Don
didn’t stay there for long. As an “Air Force brat”, he
moved around with his family for 19 years, mostly
in Europe, but ended up at the University of Florida
where he received his Ph.D. in mathematics. In
addition to his position at the University of Akron,
for a time he worked for Adobe, hence his solid
knowledge of Acrobat. After retirement, he moved
to Florida, where he continued to mentor students
and develop his packages at Northwest Florida State
College.

Don’s death was reported to us by his friend and
colleague Tom Price, Professor Emeritus, Mathemat-
ics, at the University of Akron. Tom also reported
that, in their younger years, he and Don were avid
table tennis opponents and their friendship persisted
even though Don invariably won.

1 AcroTEX: Acrobat and TEX Team Up, TUGboat 29:3
(1999), pp. 196–201.

2 ctan.org/pkg/acrotex

———

Clarification: Interview with Boris Veytsman,
TUGboat 43:2

In the subject interview from the TUG 2022 proceed-
ings, the software “Maxima” is referred to several
times on pages 103–104. The references begin with
this statement by Paulo Ney de Souza, the inter-
viewer:

I had just started at the time playing with
Maxima here and Richard Fateman had brought
the Maxima code and had installed it on the
VAXes at Berkeley.

Don Knuth, in a message to me, has pointed out
that the system brought by Fateman to Berkeley was
called “Macsyma”, and further says that

It probably has some historic connection with
the system Boris calls “Maxima” on page 133,
reference [10]; but page 103 (and also page
104) certainly was not about Joel Moses’s
pioneering Macsyma system.

The confusion is cleared up in the section entitled
“History” on the referenced page
(maxima.sourceforge.io/):

Maxima is a descendant of Macsyma, the leg-
endary computer algebra system developed in
the late 1960s at the Massachusetts Institute
of Technology. It is the only system based
on that effort still publicly available and with
an active user community, thanks to its open
source nature.

So the software referred to by Paulo is “Macsyma”,
and later references by Boris are to its open source
descendant “Maxima”.

———

News from the TEX neighborhood

As expected, the TEX Live 2023 pretest was launched
at the beginning of the year. TEX Live 2022 was
frozen just before the release of the new edition on
March 19. Information regarding the release is on
the TUG web pages, at tug.org/texlive; the files
are also on CTAN. There are a few notable changes:

• Windows binaries are now 64-bit (not 32), and
are thus installed in the directory bin/windows

instead of bin/win32.
• The version of ConTEXt is LMTX, based on

the new LuaMetaTEX engine by Hans Hagen;
the MkII format based on pdfTEX is no longer
included (though it may return in some other
guise). Binaries are not provided for all possible
platforms, but a snapshot of how to build them
is present in the TL source tree.

doi.org/10.47397/tb/44-1/tb136beet

https://ctan.org/pkg/acrotex
https://maxima.sourceforge.io/
https://tug.org/texlive
https://doi.org/10.47397/tb/44-1/tb136beet

TUGboat, Volume 44 (2023), No. 1 5

• MacTEX includes the hintview viewer for Mar-
tin Ruckert’s hitex engine/hint output files;
Martin is hoping for useful feedback.

The release has been sent for DVD production, and
the DVDs should be ready to start mailing by the
end of May.

This year’s LATEX update is expected by the end
of June. The third edition of The LATEX Companion,
now in two volumes, is available for order; it will
be published in both print and ebook formats on
May 15, 2023. If you start from the links on latex-

project.org or tug.org, you will get a discount
and the authors will get a small extra commission.

For users of MetaPost, GUTenberg has estab-
lished a site devoted to its uses and examples:
metapost.gutenberg-asso.fr.

The really big news is that, after several years
of enforced isolation, this year’s TUG meeting will
finally, once again, be held in person. It will take
place in Bonn, Germany, the former capital of West
Germany, and Beethoven’s birthplace, from July 14–
16, with a developer’s workshop on “Tagging PDF

documents” the day before. Many thanks are due to
Ulrike and Gert Fischer, residents of Bonn, who have
volunteered to make the local arrangements. By the
time you read this, the dates for obtaining rooms
at the conference hotel and for proposing a talk will
have passed, but it should still be possible to register
to attend. Check the conference web page (tug.
org/tug2023). It’s hoped that it will be possible to
also make the conference sessions available online,
although the schedule will be more “traditional” than
it has been during the COVID lockdown, taking place,
most likely, from 9 a.m. to 5 p.m. Central European
time.

Sadly, the retirement of DANTE’s long-time of-
fice staff and the difficulty of finding a dedicated
replacement has resulted in the inability of DANTE

to hold their accustomed Spring meeting. Instead, a
brief meeting will be held in Bonn on July 13, prior
to the TUG meeting.

A new version of the Lucida font collection has
been released. The most significant changes affect
the math fonts. Details are reported at tug.org/

pipermail/lucida/2023-January/000921.html.
and in a TUGboat article by Hans Hagen and Mikael
Sundquist.3 There’s no additional charge for anyone
who has already purchased a license.

A potential “alternative” to LATEX has appeared:
Typst (typst.app). Developed by two former stu-
dents of the Technical University of Berlin who “were
unhappy with LATEX and how slow and unwieldy it

3 tug.org/TUGboat/tb43-3/tb135hagen-lucida.pdf

was”, they undertook to create a replacement written
in Rust that would be easier to use while produc-
ing output of comparable quality. Not a backslash
in sight. A user-focused talk on Typst has been
submitted to TUG’23.

The introduction to LATEX, “Formatting Infor-
mation” by Peter Flynn, first introduced here in
TUGboat,4 has been updated to incorporate recent
developments. This online book, now in its 8th edi-
tion, is mainly for beginners. The new edition can
be found at http://latex.silmaril.ie/. Peter re-
quests that bugs, comments, and suggestions be sent
to latex@silmaril.ie.

———

Accessibility for (LA)TEX

Accessibility has become a more and more pressing
concern. The LATEX Team and other members of the
TEX community have devoted considerable attention
to the problem,5 as has the W3C MathML Working
Group. To the best of my knowledge, not much effort
has been made to bring this to the notice of the
ordinary scientist, but an article, “Making Accessible
Documents Using LATEX” in the January issue of
the AMS Notices6 made a start at remedying that
situation. Whether this will result in the desirable
changes required from individual authors to make the
mathematical literature readily accessible to those
readers capable of understanding it or trying to learn
the subject matter, is still an unanswerable question,
but at least it’s emerging from the shadows.

A website, Accessible Mathematics,7 created
and maintained by Abbas Jaffary, presents a com-
prehensive overview of the problems associated with
rendering mathematics accurately, whether spoken,
in Braille, or online in visible, non-PDF form. Nota-
tion can be ambiguous, depending on context for the
exact meaning; relevant examples indicate the ex-
tent of the problem. This website addresses not only
(LA)TEX, but also many other tools used to record
math in electronic form. Included is MathML, which
is also being examined in detail for the same purpose.

MathML is the subset of XML dealing specifi-
cally with mathematical notation. For several years,
the MathML Working Group has been addressing the
issues involved in converting files containing MathML

code to forms other than publication on paper or
as PDF. A mailing list adjunct to their “internal”

4 tug.org/TUGboat/tb23-2/tb74flynn.pdf
5 See tug.org/twg/accessibility/
6 www.ams.org/journals/notices/202301/rnoti-

p68.pdf
7 www.accessiblemath.info/accessible_math_

documentation_page.html

https://latex-project.org
https://latex-project.org
https://tug.org
https://metapost.gutenberg-asso.fr
https://tug.org/tug2023
https://tug.org/tug2023
https://tug.org/pipermail/lucida/2023-January/000921.html
https://tug.org/pipermail/lucida/2023-January/000921.html
https://typst.app
https://tug.org/TUGboat/tb43-3/tb135hagen-lucida.pdf
http://latex.silmaril.ie/
https://tug.org/TUGboat/tb23-2/tb74flynn.pdf
https://tug.org/twg/accessibility/
https://www.ams.org/journals/notices/202301/rnoti-p68.pdf
https://www.ams.org/journals/notices/202301/rnoti-p68.pdf
https://www.accessiblemath.info/accessible_math_documentation_page.html
https://www.accessiblemath.info/accessible_math_documentation_page.html

6 TUGboat, Volume 44 (2023), No. 1

communications allows other interested persons to
eavesdrop on their discussions.8 The current topic
is how to communicate “intent” to the tools used
for translation to another form. “Intent” is the in-
formation necessary to correctly translate visual ex-
pressions such as |x| to a contextually appropriate
expression. Although the subject matter of a source
may provide enough information to disambiguate
such expressions, it may be necessary for the author
to provide some direction — and it’s not guaranteed
that all authors will be willing to make the extra
effort.

The arXiv project has issued an accessibility
research report, “A framework for improving the
accessibility of research papers on arXiv.org”.9 This
is a good overview of the current state of affairs.

———

Accessibility—Something completely
different

On a tour of the Operations Center for the Chan-
dra X-Ray Observatory (chandra.si.edu/), I was
surprised to learn about the significant work already
accomplished on trying to make the results of astro-
physical exploration accessible to those with visual
restrictions. Although the wavelengths—short or
long—of astronomical objects may be outside the
normal range of human vision, the usual adjusted
images are still entirely visual.

Two adaptations have been applied to make
these images accessible through touch and sound.
The resolution of the masses of data collected by
Chandra and other orbiting telescopes is exceedingly
high, allowing it to be converted to spatial instruc-
tions that can drive a 3D printer. The result, for the
Cassiopeia A supernova remnant, resembles some-
thing spongelike that might be found on a reef, under-
water.10 The Crab Nebula pulsar, on the other hand,
rather resembles a piece of exercise equipment—a
smooth disc with “handles” emerging from the center
on both sides.11 In the header on the Crab Nebula
page, the word “Explore” links to additional exam-
ples, all with instructions for setting up a 3D printer
to produce the “concrete” object yourself.

8 Send a message to www-math-request@w3.org with the
subject “subscribe”.

9 info.arxiv.org/about/accessibility_research_

report.html
10 A typical photograph, processed by NASA,

can be seen at solarsystem.nasa.gov/resources/

822/cassiopeia-a-supernova-remnant/. The 3D
image appears toward the bottom of this page:
chandra.si.edu/deadstar/deadstar.html.

11 Near the bottom of the page at chandra.si.edu/

deadstar/crab.html.

“Sonification” is applied to create representa-
tions that can be heard. This project was a response
to the isolation of the Chandra team members during
the coronavirus epidemic, since it allowed them to
work while physically separated. The team includes
individuals with backgrounds in music and sound
engineering as well as astrophysics, and a member
of the blind community who is an accessibility ex-
pert. Instruments and sonic patterns are chosen to
represent elements of an image: gas by drones, indi-
vidual stars or points of light by struck or plucked
instruments, with volume representing brightness,
and pitch, the wavelength or color. A selection of
these sonic images has been linked as YouTube of-
ferings, with the decisions applying to each image
described in clear detail along with the video presen-
tation.12 A collection of the audio selections will be
made available (on vinyl!) with proceeds to go to the
Helen Keller Foundation.

Finally, a typographic note: As we entered the
suite, we were greeted by an impressive identifica-
tion spelled out in relief. The font is a relative of
“Bank Gothic”, designed by Morris Fuller Benton in
the early 1930s for American Type Founders (ATF).
Elegant and appropriate, in my opinion.

———

An afternoon at the Museum of Printing

The Museum of Printing (MoP), located in Haver-
hill, Massachusetts, is a treasure trove of just about
everything to do with the printing tradition. (They
have also agreed to be the repository for my papers
and library dealing with math typography and TEX.)

One event held at MoP in November was a
conversation between Frank Romano, president of
the museum, and Matthew Carter, type designer
extraordinaire. Rather than a formal lecture, this
was an informal interchange, sharing common back-
ground (Romano and Carter were both, for a while in
the 1960s–70s, employed by the Mergenthaler Lino-
type Corporation in New York City), and exploring
Carter’s history and various pursuits in the industry.

Born in England shortly before the Second World
War, Carter shared some early memories of life dur-
ing that period. He wasn’t aware of his father’s
profession (book designer and print historian) until
his basic education was complete, and he was ready

12 chandra.si.edu/sound/

https://chandra.si.edu/
https://www-math-request@w3.org
https://info.arxiv.org/about/accessibility_research_report.html
https://info.arxiv.org/about/accessibility_research_report.html
https://solarsystem.nasa.gov/resources/822/cassiopeia-a-supernova-remnant/
https://solarsystem.nasa.gov/resources/822/cassiopeia-a-supernova-remnant/
https://chandra.si.edu/deadstar/deadstar.html
https://chandra.si.edu/deadstar/crab.html
https://chandra.si.edu/deadstar/crab.html
https://chandra.si.edu/sound/

TUGboat, Volume 44 (2023), No. 1 7

to enter university. But before he headed to Ox-
ford, he spent an intern year at the Enschedé type
foundry in Haarlem, where he learned to cut punches,
the basis for creating molds from which individual
metal types are cast. Having enjoyed this experience,
Carter did not enter Oxford as intended (a decision
approved by his father), but delved into the world of
type design, which at that very moment was moving
away from metal to phototype.

After gaining more experience in London, in-
cluding the use of mylar drafting film as a medium
on which to draw letter images, Carter moved to
New York in 1960, where he joined Mergenthaler
with Mike Parker as a sponsor. Rather than submit-
ting his drawings to the draftsmen who were tasked
with creating the reversed-direction formal drawings
used for the production of the punches and matrices
from which metal type was struck, Carter drew his
letters on drafting film in the right-reading direction,
from which they were transferred to photographic
film using a large graphics camera that was carefully
“insulated” from vibration on a granite bench. (The
complete run of formal drawings, for every metal
font ever produced by Mergenthaler, is in the MoP
archives.)

On November 9, 1965, while Carter was in his
office at Mergenthaler, all the lights went out. He
looked out his window, and there were no lights
anywhere, including at the nearby Brooklyn Navy
Yard. This was the great East Coast blackout, caused
by the failure of a relay at a hydroelectric power
plant near Niagara Falls. A cascade of failures along
the transmission grid caused the lights to go out
over most of the Northeast U.S. and all of Ontario.
Carter named the font he was working on at the time
“Cascade”. (In Rhode Island, I was riding home from
the office on a Vespa when the lights went out; it
was a memorable experience.)

Until the phototype revolution, Mergenthaler
had based its business on hardware. But with pho-
totype, the ability to create fonts became less closely
tied to the hardware, and an effort to persuade the
company to consider fonts as a separate center of ef-
fort failed. Carter and Mike Parker left Mergenthaler
to form Bitstream, which specialized in fonts, mi-
grating from phototype to digital type as typesetting
methods changed, creating new versions of old famil-
iar fonts and developing new ones both for general
use and under commission for such well-known insti-
tutions as the New York Times and Yale University.

Since 1992, Carter has been associated with
Carter & Cone. He is still actively designing type,
an occupation which seems to interest him more
than any hobby. A more detailed biography appears

online in Wikipedia13 and the conversation at MoP
has been recorded and can be viewed on the MoP
channel on YouTube. The transcript, with links,
appears later in this issue.

In addition to this event and the permanent dis-
plays of presses, related hardware, and their printed
products, a topical exhibition at MoP of particu-
lar interest to me was a copy of the first math book
printed in America: Arithmetick Vulgar and Decimal,
by Isaac Greenwood, published in Boston in 1729.
Along with several volumes and leaves from other
early works, a pleasing display occupied a sizeable
table.

A complementary item to the Carter-Romano
conversation, found quite by chance as an internet
posting,14 celebrates Matthew Carter’s Jubilee — 50
years as a type designer. Published in 2005, its
text is bilingual, in Czech and English— TYPO:
typografie.graphický design.vizuální komunikace/ty-
pography.graphic design.visual communication. The
booklet consists of three main parts: an essay by
Margaret Re, “A Typographic Jubilee for Matthew
Carter”; an interview with Carter by Adam Twar-
doch;15 and an illustrated catalog of the fonts de-
signed by Carter. The interview covers the same
territory as the conversation with Romano, perhaps
slanted a bit more toward a European audience. Rec-
ommended reading.

———

13 en.wikipedia.org/wiki/Matthew_Carter
14 twardoch.com/download/TYPO_2005_18_Carter.pdf
15 Adam Twardoch, an active type designer, is currently

president of GUST.

https://en.wikipedia.org/wiki/Matthew_Carter
https://twardoch.com/download/TYPO_2005_18_Carter.pdf

8 TUGboat, Volume 44 (2023), No. 1

Arsenic and old books

The Providence Athenæum, a membership library
established in 1836, sponsors a wide variety of lec-
tures and salons on the general subject of books. On
24 March 2023, the topic was the presence of poi-
sonous materials in 19th century bookbinding and
printing. The presenter, Dr. Melissa Tedone, is Book
& Library Conservator at the Winterthur Museum,
Garden, and Library in Wilmington, Delaware.

Until the mid-19th century, most dyes and col-
orants produced rather subdued hues. Beginning in
the Victorian era, more exuberant coloring agents
became available. These were received avidly by the
growing middle class, whose wealth was also increas-
ing and allowed purchases beyond necessities, like
books. Unfortunately, many of these new colors in-
corporated toxic compounds based on heavy metals —
arsenic, chrome, lead and mercury.

While restoring a bright green book cover, Dr.
Tedone noticed that tiny colored bits were flaking
off, leaving a residue on her hands and the work area.
She stopped work and took a sample of the residue to
the lab for analysis. Tests identified the material as
containing copper acetoarsenite, a dangerously toxic
compound that exceeded the measuring limit of the
lab’s test equipment. The book’s color is known as
“emerald green”, the same compound as “Paris green”,
used to poison rats in the sewers of Paris.

In the 1850s and ’60s, for books published in
England and the U.S., book cloth was coated with
the coloring agent, not dyed. This coating flakes off
readily with use. In France and Germany, from the
1830s through the end of the century, the same toxic
agents colored the inks printed on paste papers used
instead of cloth for covering books. Toxic inks also
colored illustrations within books. Another notable
use of emerald green was in the colorful wallpaper
patterns crated by William Morris.

These toxic compounds were in common use dur-
ing the period: copper acetoarsenite (brilliant green);
mercury (red); chrome and lead (yellow and orange).
It’s recommended that if you find such a brightly
colored 19th century book on your shelves, enclose
it in an airtight plastic bag and seek professional
guidance.

In-person attendees at the Athenæum received a
keepsake, a bookmark printed with green edge strips,
one matching the shade typical of books bound in
book cloth, and the other matching paste-paper bind-
ings. A video16 records the simultaneous Zoom pre-
sentation, and if you want to obtain a copy of the

16 providenceathenaeum.org/media-archives/the-

poison-book-project/

bookmark, the Winterthur wiki17 provides instruc-
tions for how to do so, as well as a wealth of other
information on handling suspect books.

———

How many TEX documents?

A question from Chuck Bigelow might benefit from
wider consideration:

. . . how many mathematics, physics,
economics, engineering, chemistry, biology
papers have been prepared for publication
or distribution (e.g. technical reports,
theses, pdfs) with TEX since 1982?

Or from 1979 to 2023 in any version and
including forks and branches and other
scientific and scholarly disciplines?

Where can we look for relevant information?
I can provide information on the use of TEX by

the American Mathematical Society, where TEX has
been used for published documents since 1982.

Some publishers of scientific books and journals
accept submissions in LATEX, but farm out the files
for conversion to XML, which is the archival medium.
Elsevier and Springer are in this group.

ArXiv, the repository of papers in math, physics,
and other “hard” sciences, reports well over 2 million
items in their holdings. They are probably willing
to divulge what part of this is in TEX form.

Another source of LATEX document preparation
is Overleaf, which is limited strictly to TEX-based ac-
tivity. They will have a sizeable presence at TUG’23,
and I will inquire after their statistics.

Nelson Beebe’s growing collection of bibliogra-
phies includes several that cover the core TEX-related
canon, and other collections for fields that are known
heavy users of TEX. Nelson is also expected at
TUG’23.

This is a bit of a research project, and sugges-
tions for questions to ask and likely candidates to be
asked are welcome. Send your suggestions to me at
TUGboat@tug.org. The results will be presented in
a followup report.

⋄ Barbara Beeton

https://tug.org/TUGboat

17 http://wiki.winterthur.org/wiki/Poison_Book_

Project#Emerald_Green_Color_Swatch_Bookmark

https://providenceathenaeum.org/media-archives/the-poison-book-project/
https://providenceathenaeum.org/media-archives/the-poison-book-project/
http://wiki.winterthur.org/wiki/Poison_Book_Project#Emerald_Green_Color_Swatch_Bookmark
http://wiki.winterthur.org/wiki/Poison_Book_Project#Emerald_Green_Color_Swatch_Bookmark

TUGboat, Volume 44 (2023), No. 1 9

A conversation with type designer
Matthew Carter

Frank Romano

This conversation took place on 12 November 2022
at the Museum of Printing, Haverhill, Massachusetts.
The interviewer, Frank Romano, is President of the
museum. The conversation was recorded in three
parts, which can be viewed on YouTube.1

Frank Romano (FR): We are here with Matthew
Carter, one of the few people I know who has his own
Wikipedia page. [holds up a printout of the page] I
have no written questions. What I’ve decided to do
is essentially go through your Wikipedia page. [both
laugh]

Matthew Carter (MC): I hope it’s accurate.

FR: We can find out.
You were born in England, and as you were

growing up, it was the time of the blitz in England.
Do you have any memory of that?

MC: Um, yes! I do remember bomb craters in the
street. I remember the contrails of . . .

FR: German planes?

MC: Yeah. I don’t remember exactly what they
were, but like dogfights. I remember being warned
not to pick up any interesting-looking thing that
might be in the garden, because it was probably
an incendiary bomb. And I remember my grand-
mother’s house having all its windows blown out by
a doodlebug2 which landed in the front yard. Yeah,
I remember. I remember the feeling that people were
actually trying to kill me and my mother in our own
home.

FR: Your father was away during most of the war?

MC: Most of the war, yes.

FR: So when did you realize what he did?

1 www.youtube.com/watch?v=vXFdNLPEC9s,
www.youtube.com/watch?v=LvOPG5KosiA,
www.youtube.com/watch?v=k60MjUhBeDA

2 In WWII, this is what the English called the German V1
flying (“buzz”) bomb.

MC: What an interesting question. I have no idea.
My dad was not a very anecdotal person. He didn’t
bring his work home. When he was home, he was in
the garden; he was a keen gardener. So he didn’t talk
about his work, at all, really. So I guess it was just
a gradual process of osmosis. I mean, he had books,
of course, at home, which told me what his interests
were, and some of them were very interesting to me
in time. But I don’t remember a sort of lightning-
bolt moment of thinking, oh my God, my dad’s a
typographer. It must have been gradual.

FR: I would assume your education was mostly
traditional, lower school, reading and writing, . . .

MC: That’s right.

FR: What we call high school, and then you went
to college.

MC: No.

FR: So you had no post-secondary education after
that.

MC: No.

FR: You were then apprenticed, to a company in
Amsterdam?

MC: In Haarlem, in the Netherlands, yeah. I left
school in ’55, in the summer. And then it’s Septem-
ber. I started this, we didn’t actually use the term
“intern” in those days, but unpaid trainee at En-
schedé’s. And they had this project, welcoming.
John Miles, a very old friend of mine, was the first
person, I think, to do that. Then I came, and Carl
Dair from Canada, followed. So it was a great scheme
that they had, and Enschedé’s was a very fascinating
place. They’re primarily security printers; they print
stamps and banknotes and so on, but also general
printers. And they had their own type foundry, at
least when I was there.

You know, I was supposed to work my way
around the whole factory. But I started in the
type foundry, and I really sort of stuck there the
whole year, working with punchcutters, learning a
completely obsolescent trade; obsolete, I should say,
trade. But I enjoyed that. It’s true, I was supposed
to go to university at Oxford, but when I went back
after that intermediate year, I couldn’t face going
back into academic life. I expected a problem with
my parents, because my dad was very academic, but,
to my relief, they had no problem with my dropping
out of Oxford before I began. I guess it saved the
fees. [both laugh] So then I kind of started trying
to work.

FR: So this introduced you to the world of type.

MC: Yes.

doi.org/10.47397/tb/44-1/tb136carter-romano

A conversation with type designer Matthew Carter

https://www.youtube.com/watch?v=vXFdNLPEC9s
https://www.youtube.com/watch?v=LvOPG5KosiA
https://www.youtube.com/watch?v=k60MjUhBeDA
https://doi.org/10.47397/tb/44-1/tb136carter-romano

10 TUGboat, Volume 44 (2023), No. 1

FR: You had no knowledge before that.

MC: Well, as I say, my dad had all the books; well,
not all the books, but a lot of the books about type,
and I was interested enough in that, and at school,
I got caught up in the revival of italic handwriting.
And indeed, I taught it for a while; this was at my sec-
ond school, public school as it’s called, private school
in other words. And so I taught italic handwriting.
And so my dad did give me a copy of Edward John-
ston’s Writing & Illuminating, & Lettering ; as you
know, it’s called “the best manual, on any subject,
ever written”.

FR: We have a copy in the library.

MC: I’m sure you do. It would be serious if you
didn’t. [both laugh] So I studied that, as a schoolboy
I was interested in that and I drew some lettering
for the school magazine and so on, and so, I sort of
worked my way into it.

FR: I’m just trying to probe how it all began.

MC: Yeah.

FR: So we have these interesting confluences of
you coming together with type. So now you’re in
Haarlem, and you’ve learned hot metal. Did you
ever make a punch?

MC: Oh yes! I did a few. I did some for the
University Press project. I did a couple for Fritz
Mardersteig, but I don’t think he ever used them. I
did more than punches. I cut binders’ brasses, which
is a very similar thing, and there was more demand
for that, because, you know, once you’ve cut the
brass, you can use it, but if you cut a punch, you
then got to make a matrix. It’s a more elaborate
process. But yes, I did a number of engraving jobs
of one kind or another, but I learned to make type
before I could design it, but I quickly learned I had
to design it, because commissions cutting punches
and brasses and so on were very few and far between.

FR: And how many years did you do that?

MC: Well, I came back from Holland in ’56, and I
worked at my parents’ home for a couple of years,
and then in ’58 I moved to London. And in 1960, I
came on a visit to this country, which changed my life
completely. So, really, when I got back from Holland,
’56, I was trying to earn a living doing lettering and
anything I could find.

FR: So you’re now in the U.S. Who do you visit?

MC: Everybody! It was wonderful! This was the
late spring, early summer of 1960. I got handed
around, you know. I was at Push Pin, and Lubalin,
and everyone, and of course I went to Mergenthaler,
and kind of fell in love.

FR: And who took you around at Mergenthaler?

MC: Well, Mike Parker principally. I had met
him in England because before he went to work
at Mergenthaler, he had had a year’s fellowship at
the Plantin Moretus Museum in Antwerp, doing a
huge amount of work in cataloguing this astonishing
collection of 16th century typographic material which
survives there miraculously, photographing it, and
so on. When he came back, I think in ’59, he went
to work at Linotype as Jackson Burke’s assistant;
Jackson was Director of Typographic Development.
So Mike could work for him, and when I got there
in ’60, Mike . . . I spent a lot of time with Mike and
it was he who showed me around.

FR: The immensity of that building and all the
things that were happening there. The letter-drawing
office was gigantic at that time.

MC: Yes, yes. Yeah, it really fired my imagination.
And they were all very kind to me. I mean, Jackson
was incredibly kind to me, and, I mean, people talk
rather glibly about culture shock, but boy, did I
have a case of that when I got to New York. You
know I’d grown up in a sort of rather cozy situation
because of my dad’s contacts and so on. I knew
Stanley Morison, I knew Beatrice Warde, I knew Jan
van Krimpen, I knew all these people. I thought
I knew everything. I got to New York but I knew
nothing, absolutely nothing. I had to start over.

So that was a shock. And I think my first reac-
tion was rather cowardly. I thought, I’ll just go back
home with my tail between my legs and pretend that
none of this happened. But I really couldn’t do that.
But I sort of let Jackson and Mike know that I would
love to work there, but actually it was a blessing in
disguise. There wasn’t a place for me there then,
and I think that was a very good thing because I
really had nothing to offer at that point, but five
years later I had done some things in London that
did sort of equip me for that very form of experience.

FR: And how did they approach you to retain you?

MC: At Mergenthaler?

FR: Yep.

MC: Well, I’d kept in touch with Mike, and Mike
would periodically come to London on Linotype busi-
ness, and he would come and stay with me in my flat
and the Linotype people were horrified because they
thought he was consorting with the enemy, which he
was, because I was working for Photon/Lumitype,
who were Linotype’s competition in the photocom-
posing world. But Mike and I—those of you who
knew Mike, he liked to talk—and we had a lot of
discussions in those visits to London of his, about the

Frank Romano

TUGboat, Volume 44 (2023), No. 1 11

possibility of my going to Mergenthaler, and indeed,
what I would do when I got there.

So when Jackson retired, in I think ’63, fairly
soon after that the conversations got a little bit more
pointed, and we were working towards my actually
going there. It wasn’t just an idea; that’s what we
were actively planning. And so in the fall of ’65, it
happened, and I moved to Brooklyn. I should say,
this is occasionally . . . I’m having pleasant recollec-
tions.

I should say how it is that Mike got the job of
being Director of Typographic Development. Here’s
what happened. You know, Jackson had had that
job for a long time. He had to go into hospital, I
can’t remember exactly why, and he knew he was
going to be out for a while to recover, and so on. So
of course he told his boss, Jack Keller, that he was
going to be out, that sort of thing. But meanwhile,
he had privately decided not to come back. He didn’t
tell his boss that, so of course when Jackson went
in hospital, Mike started picking up all the work. I
mean anyone who had questions came to Mike. So
as the weeks went by, Mike started doing the work.
And when Jackson finally did say to Jack, “I’m not
coming back. I’m retiring”, they said, “Hey, Mike’s
been doing the job. He might as well have the title
and the office”.

I think if Jackson had not done that sort of
subterfuge, they would have thought that Mike was
too junior; he’d been there three or four years. They
would have gone into the newspaper trade, hired
someone, and we never would have had Helvetica.

FR: There’s a story here. Mike did not have the
title that Jackson Burke had. His title was Type
Designer. And they paid him less than they paid
Jackson Burke. It was very controversial at the time,
by the way, because I was on the inside, and . . .

MC: Yes. When did you get to Mergenthaler?

FR: In ’59.

MC: Aha!

FR: I graduated high school in June, and I went to
my guidance counselor and I said “I need a job”, and
he said, “Oh, there’s this company Mergenthaler.” I
said “What do they do?” and he said “Something
to do with books.” I said, “Sounds interesting.” It
was in the shipping department. But then I worked
my way up through mail boy, clerk, . . .

MC: You were mail boy when I arrived, there, only
a couple of months after I arrived, when I . . .

FR: That’s correct. So you came on my radar
because you had a cubicle on the eighth floor, I
think.

MC: Yes! This was a really, really nice office! It was
a corner office, and it was carved out of the steno
pool and the filing department, beyond which was
the order department and the mail room, by the
way. And it was a very nice office. Mike and I found
some old furniture in a warehouse that we used in
my office.

And it was there, only a couple of months after
I arrived, when I got there, I worked all hours, every
weekend. I stayed with the Parkers and I didn’t find
an apartment for weeks and weeks and weeks and
weeks because I didn’t have a single day off to look
for an apartment. We just worked the whole time.
So I was working one evening about this time of
year— I think it was the 9th of November—when
the lights went out. I thought oh crap, the fuse
is blown or something, so I looked around and the
building seemed to be kind of dark, and I looked
out the window and the Navy Yard down below
was dark, and I looked over to Manhattan midtown
. . . dark. And I thought, hello, this is not a fuse.
[laughter] This was the famous blackout of the whole
Northeast. It went down as far as Maryland, I think,
and Ontario in Canada, caused by what was called
cascading of the electrical grid. You know, one unit
failed; that overloaded the next one, and that failed,
and . . . cascade.

The typeface I was working on when the lights
went out we didn’t have a name for at the time, so
it’s called Cascade. [laughter] And if you can find
. . . naming typefaces is a lot harder than designing
them, so if one falls into your lap like that, you’re
very grateful.

FR: Well, you can copyright the name, you can’t
protect the typeface. That’s the problem in America.

MC: That’s true. Don’t get me started on that.
[laughter]

FR: So you came on my radar when I noticed that
people were going into your office with these big
sheets. [holds up a large sheet of paper on which is
the drawing of a letter]

MC: Yes.

FR: I had no idea what this is. I knew these were
from the London drawing office . . .

MC: Yes.

FR: And so what did you do? What were they
asking you to do?

MC: I never made these drawings. These are what
are called . . .

FR: You didn’t make them, but they asked you
questions about them.

A conversation with type designer Matthew Carter

12 TUGboat, Volume 44 (2023), No. 1

MC: God knows.

FR: Really! Okay, that’s interesting.

MC: No, these were produced by the letter-drawing
department at Mergenthaler, and had been in that
form, not exactly from the foundation of the company,
because we once found some of the original forms . . .

FR: We have all the original ones here, by the way,
and they’re very similar, but not the same.

MC: Yeah. These, they’re like engineering blue-
prints, they’re dimensioned, and so on. In the inter-
vening time between my visit to New York in 1960
and my going down to work in ’65, part of the time
I had spent working at Crosfield Electronics in Lon-
don, who were the manufacturing agents in Britain
for the Photon machine, Lumitype so-called in Eu-
rope. They made the machines, but all the fonts
were made in Paris, by Deberny & Peignot, which
meant, happily for me, I spent about a week out of
every month in Paris, and got to meet and know well
Adrian Frutiger and all the other designers in the
office. And they were not drawing like this. They
were drawing positive. I mean, these are all wrong-
reading, as required in the factory. But at Deberny
& Peignot, we drew right-reading, and we drew a
reasonable scale, maybe caps were four or five inches
high. And originally we used scratchboard, but that’s
not a very good medium; it’s not very stable. So
eventually we discovered a mylar drafting film.

So when I, in these preliminary conversations I
had with Mike, I said I’m not gonna make the things,
because I’ve become very familiar with . . . So Mike
explored in the grid-making department where they
had a number of cameras, specially built cameras.
They were very beautiful things. They were built on
a granite slab, to be dimensionally stable. And they
found one that had been made for a certain purpose,
but it was no longer in use. But it was too big to
get rid of, so it was sitting there in a corner.

So Mike figured out what the ratio was between
the object and the end of the proper lens, and so we
did a little math and we came up with a drawing
scale, so we could use this camera which was standing
idle to make the plaques. (I don’t know if you’ve
got a plaque there, perhaps not. This was a sort
of intermediate thing in making Linofilm grids.) So
I was able to continue to draw black ink on mylar
drafting film.

From the minute I got to Brooklyn to Mergen-
thaler, to my huge relief, because I didn’t want to
work in this way [indicates the paper still being held
by FR], and also the drawing office was, of course, a
union shop, and the letter drawers were only allowed
to do two drawings a day, whether they were double-f

ligatures or whether one was a period and one was
a colon. So that was the day’s work. So that was
rather limiting in a way. So I walked into a very
agreeable, amenable, congenial situation at Ryerson
Street, which in a way had been constructed in my
honor, because, as I say, no one had worked in that
way before. But it was quicker, and more direct, for
photocomposition.

Mergenthaler factory building at 29 Ryerson Street,
Brooklyn (before 1920). Additional buildings
were constructed later. archive.org/details/

linotype-factory-brooklyn-pre-1920

FR: So, from these drawings, they would trace them
in a pantograph, and they would create a pattern
plate. And by the way, we found three pattern plates
in the black boxes, and they were M O P, which is
interesting. Then, when they did this, they would
trace it in another pantograph and they would pro-
duce the punch. And that’s what made the matrices
which ran in the Linotype machine.

FR: It was . . . the number of people was gigantic.

MC: Yes.

FR: There was a whole floor of people, then there
was another floor where people did ancillary work.
The whole company was really revolved around these,
because this is where they made their money.

MC: Yes, absolutely.

FR: We processed a hundred thousand of these
[holds up a matrix] every day, and they sold for an
average of 31 cents apiece, and they wore out. I fact,
Ottmar [Mergenthaler] once wrote to the company
and said, “I can make them so they don’t wear out”,
and they said “Nah, never mind.” [laughter]

MC: Yeah, the punch presses shook the building!

FR: Oh, yeah, I was just going to say, when they
were casting, you knew they were casting. They were
punching out stuff.

Frank Romano

https://archive.org/details/linotype-factory-brooklyn-pre-1920
https://archive.org/details/linotype-factory-brooklyn-pre-1920

TUGboat, Volume 44 (2023), No. 1 13

So [picks up the letter drawing] we have all
of these drawings, by the way, in the type vault
in the back. They went to the Smithsonian, and
the Smithsonian didn’t want them, and so we [the
Museum of Printing] wound up with them, and they
are, this is the history of type. Now, no designer of
type ever did these. You gave drawings to the letter-
drawing office, and they produced these drawings.
And the notes on these, some of them are really
interesting. There’ll be little notes that say “per
Mr. Griffith” . . .

MC: Yes.

FR: . . . or “per Mr. Jackson Burke”, and there
were other notes on it. When they converted to
phototypesetting, they read the notes. This is from
1943, and it was designed by Dorothy Abergard.

MC: I don’t remember her.

FR: I don’t know her either.

MC: Each of these, these drawings were all kept in a
folio box, and at the bottom was a sort of cheat sheet
that told you a breakdown of the essential dimensions
and any little bits of history, what Mr. Griffith said
to do, and so on. So they give you a little capsule
history of how this face came into being.

FR: We found phenomenal notes in them. By the
way, it all started about 1917. Chauncey Griffith was
a salesman for Linotype in Kentucky. And he wrote
to the company and said, “Our type is terrible.” And
so they brought him to Brooklyn and said, “You’re
in charge.” He wiped out everything they did before
and started from scratch. And he created a world-
class typographic library. In fact, if you look at the
typefaces we use on a regular basis, they go back to
most of the Linotype typefaces of the 20th century.

He was succeeded by Jackson Burke, and he was
succeeded by Mike Parker. Mike eventually got the
title Director of Typographic Development . . .

MC: Yes.

FR: . . . and he had the best office at Linotype.

MC: Yes.

FR: He had these wonderful built-in bookcases,
and he had all the archives of the company. He
had Ottmar’s notebooks and he had these big white
sheets of paper on his desk. I was delivering the mail
to him one day, and I had read a memo about Claren-
don. And I said, “Mr. Parker, what’s a Clarendon?”
And he clears his desk and he draws the history of
the serif for me. [laughter] He was that kind of a
man. By the way, there’s a picture over there of Matt
and Mike. So, we’re in the hot metal era, but now
you see that they’re getting into phototypesetting.

Matthew Carter and Mike Parker at the Mergenthaler office.

MC: Indeed . . . I think it was, at the moment I
arrived, the letter-drawing department had broken
the back of the work of converting the metal library to
film. They hadn’t finished it, but most of it was done.
And so a lot of the things that Mike and I talked
about before I got there, and obviously after, were
kind of concentrated on, were there styles of type
that had never been made for slug machine use, for
technical reasons—you couldn’t kern, you couldn’t
so—so you had to duplex them. But you could do
it for photocomposition. So that was really, I think,
what got me hired. There was an opportunity to take
advantage, technical advantage, of photocomposition,
in certain respects.

FR: Now, Matthew mentioned duplexing. This
is one of the limitations of the Linotype machine,
because every matrix had two typefaces on it. One
was the regular and one was the bold or the italic,
which meant that the bold or italic had to be modified
to match the width of the regular font. When we
went to phototypesetting, we no longer had that
limitation.

MC: Yes. So much of the work that I just mentioned
that the letter-drawing office did of adapting the

A conversation with type designer Matthew Carter

14 TUGboat, Volume 44 (2023), No. 1

metal library to film was taking the italics off the
same widths as the roman and putting them on
their own natural widths, which obviously greatly
improved the phototypesetting italics.

FR: So when they moved to phototypesetting, they
had to produce the first fonts for film, and that was
the Linofilm machine. [holds up a square grid] And
this is a grid from the Linofilm. And by the way,
these were pricey. You put them in a little unit that
revolved and then picked them up and then put them
in the line for photography and then had a way of
selecting the character and exposing that through a
lens to size it and then exposing photo material, film
or paper. To make these, there was an entire room,
which Matt mentioned, in the basement. And it was
on hydraulic lifts with a granite block, I think. One
end was these plaques. By the way, we don’t have a
plaque; I should find one at some point in time.

MC: Yes.

FR: And each one was a different letter, and it was
high; it was like eight feet high by eight feet wide,
and they would put all these plaques in there. And
there was one for every letter. And at the other end
of the room was a camera where they had film in
it, and they would . . . No, no, it was a glass that
had silver halide coating, and they would expose it.
And that’s how they created these grids, which made
them extremely expensive.

MC: They had to have this room because Ryerson
Street was very close to the Brooklyn–Queens Ex-
pressway, so the vibrations were phenomenal. This
room was called the “floating cloud”, and the whole
room was on the springs.

FR: That’s right.

MC: [takes hold of the grid] Here, let me handle
this. There were four of these on a kind of windmill,
and they were each brought into the path of the light
with a bicycle chain, weren’t they?

FR: That’s correct!

MC: Yes. So, these machines, I mean, they were
full of thermionic valves and clattering relays and
so on, but there was also a mechanical part of them
that was very strange.

FR: By the way, they were later sued for patent
infringement, and paid a million dollars to Photon
over some of the patents involved in all of this. Now,
other companies that were getting into phototype-
setting created artwork in different ways [holds up
several examples] and I’ve got a whole collection here
of some of the different ways they created artwork
for phototypesetting. And again, they would pho-

tograph these in various kinds of cameras. Some of
this comes from Intertype, some from Compugraphic.
They were all different in that regard.

MC: But all more or less the same scale that I was
working at. I mean, this is a very handy scale to work.
Big enough so you can get the edge quality right,
but it’s not too big that you can’t see what you’re
doing. The problem with those ten-inch drawings is,
it’s really hard to visualize what this is going to look
like at eight point . . .

FR: And so they got through the Linofilm, then
they created a cheaper machine called the Linofilm
Quick, which really bombed; it didn’t do very well
at all.

MC: Yes.

FR: But the machine that made Linotype was the
VIP. The VIP—Variable Input Phototypesetter
(and we have one in the back, by the way)—and this
was the font for it. [holds up a smaller, rectangular
film grid] By the way, this was the text one. There’s
another version of this that was bigger for doing dis-
play type. And this is where Linotype really excelled.
This is where they made their money, if you will.

However, there was another guy who made as
much money and his name was Leonard Storch, and
he also made these, and Linotype sued him. and
they lost! [laughter] So he made a fortune making
fake fonts, if you will, but they were cheaper than
Linotype’s.

But this was a phenomenal marketplace, and
this is how I got into publishing. I published a
newsletter for VIP users called VIPPY. [laughter]
And by the way, Linotype didn’t like it, because I
could tell things about the machine that no one else
would tell you. So they sued me for 13 million dollars.
[laughter]

MC: I never heard about that.

FR: It never went to trial because when we did
the discovery phase, they discovered the terrible
mistake they made in suing me, and so they settled
by giving me a lot of money, $80,000, to go away. So
I built an addition on my building and called it the
Mergenthaler wing. So in any case, the VIP to me is
a very special machine in many ways.

MC: It had very significant consequences of a tech-
nical kind. You know, designers are not supposed
to like engineers. You know, there’s supposed to be
one of those sides of the brain problems, but I’ve
always liked engineers enormously and liked working
with them. And one of the best experiences had to
do with the VIP. Without getting technical about
this, the Linofilm, the big Linofilm we called it, the

Frank Romano

TUGboat, Volume 44 (2023), No. 1 15

big blue Linofilm, you could not have a zero-width
character. I could explain why, but I won’t.

On the VIP you could. I’ve never been 100%
sure whether the engineers really understood the
significance of that typographically. The reason was
that the writing prism in the VIP was driven by
something called a stepping motor, which was fallout
from the space program. You could send pulses of
electricity to it and it moved, you know, jerked along,
but you could also not send a pulse, so it stayed still.

Suddenly you could do Greek with accents, you
could do Devanagari, you could do a whole range of
non-Latin scripts (as we called them at that time)
that were really not possible by previous means. So
I had a very nice period of going to Athens a number
of times because a very energetic agent in Greece
realized that this machine was perfect, he could sell
a lot of them, but there were no Greek types. So
I did Helvetica Greek, Baskerville Greek, Century
Schoolbook Greek, . . . [laughter] Hermann [Zapf]
drew Optima Greek at 36 points; he drew everything
at 36 points. (I made the production drawings.) So
this took several nice trips to Athens to do this. And
it was successful. They sold a lot of machines.

So that sort of interaction between the technol-
ogy and the design is something that has always kind
of fascinated me. And I have had several experiences
of that, of working with the engineers or telling the
engineers things that we wanted them to consider,
that would be very advantageous to us typographers
and so on. So that’s always been kind of contrary to
what designers are supposed to . . .

FR: Now when they went to the 54-unit system,
that allowed you to do much finer spacing . . .

MC: Exactly. The big Linofilm was 18 units and
the VIP was 54.

FR: Yeah. That made a big difference.

MC: It did.

FR: You also worked on the 505, I assume.

MC: Yes.

FR: That was a machine invented by Purdy and
McIntosh in England. It was a cathode-ray tube.
The characters were scanned from a grid and exposed
through a cathode-ray tube as sort of an intermediate
approach, but it had a problem in the number of
fonts, and Mike came up with this idea for slanting
the roman to create the italic.

MC: I don’t know, . . . , by the way, just because
we’re recording history here, when I was working at
Crosfield I visited Purdy and McIntosh, and I saw
the very early stages of this machine. And I told
Mike about it and he went and looked at it, and next

thing you knew they bought the whole company. So
I was never given any credit for that. [laughter] But
I claim that.

FR: And the reason they did that was they had de-
veloped a machine with CBS Labs called the Linotron
1010 . . .

MC: Yeah.

FR: Later they named it that, and they sold several.
They sold one, two, to the Government Printing
Office, two to Wright-Patterson Air Force Base. One
was supposed to go to Ford Motor Company, but
they turned it down. And that was it. There were
no other machines. It was too expensive, it was too
big. Later on, the Government Printing Office got
rid of it. I was in charge of the publicity for the
machine. We got on a show that Walter Cronkite
mentioned the machine. It was great publicity, but
they realized it could never be a commercial success,
so that’s why they needed another machine and that
was the 505. So 1010, 505, . . .

MC: Yes.

FR: The numbers tell you nothing about the ma-
chine.

MC: Again, it was a hybrid machine. The reading
end of it was digital, a CRT, but the input end was
scanning, a thing very much like a Linofilm grid. So
the laydown speed was phenomenal. But changing
fonts was again, some sort of windmill thing that
brought another font up into the . . .

FR: The next machine that made them was the
Linotron 202 . . .

MC: Yeah.

FR: . . . which Derek Kyte created in England.

MC: Yes.

FR: And that became a phenomenal success. And
that was a pure digital machine. Your fonts came on
floppy disks . . .

MC: Let me interrupt you, because I haven’t fin-
ished.

FR: I’m sorry!

MC: About the 505. Because the font change was
so slow, people started making electronic versions
of the distortions. It’s like, if you get your TV set
set up wrong, the raster goes to hell. You can do
that under control, so if you do a shear distortion
of the raster, you get an italic. It’s not the italic,
it’s a slanted roman. But people started to do that
just to save the time that it would take from going
from Helvetica roman to Helvetica italic with a font

A conversation with type designer Matthew Carter

16 TUGboat, Volume 44 (2023), No. 1

change. Or, by going wide, stretch the raster and
out it goes, or you condense it, and so on.

So enough of this was going on that Mike came
to me, and he said, you know, Helvetica was not
designed for this; Futura was not designed for this.
Supposing we designed a sans serif where the geom-
etry was specially configured to do some damage
control. In other words, we’re never going to make
it look right; it’s never going to be a true italic, but
maybe it won’t be quite as ugly as slanting. So we
did this, and we made a special typeface, a sans
serif, we called it Video, which was really damage
control, typographic damage control, and it did mit-
igate some of these horrors that came from fooling
around with the raster.

But of course, and this is another parable, no
sooner had we done that than they came out with the
next machine which had an electronic font change.
No loss of time. Video died a death; not for the
first time in my life designers were asked to solve
a problem, an engineering problem. But engineers
are smarter than designers in the end, and they fix
the problem, the engineering problem, and designers
are left with a solution to the nonexistent technical
problem. But you could say that it’s worth doing
things like that because these machines go through
shakedown cruises and . . .

FR: Yes. So you and Mike leave about the time of
the 202 or right after that?

MC: We left in, um, was it ’80 or ’81? One or the
other.

FR: Yeah, the president of Linotype was a guy
named Smith, who was a complete idiot.

MC: Yeah. He came over from the British govern-
ment.

FR: Well, he was an American that somehow ran
the British operation.

MC: Oh, yeah.

FR: No one figured that out at all. And then, after
he left Linotype, he started a company up here in
New England, which he put out of business very
quickly.

MC: Oh, really! I didn’t know that.

FR: Yeah. That’s how we wound up with all the
font libraries from Photon and all those.

MC: Yes, I see.

FR: In any case, you and Mike are now free. Had
you decided to do Bitstream before or after?

MC: Before. Here’s what happened. You know,
during the ’70s, thanks to the VIP, which, by the
way, could set much bigger sizes . . . Linotype had

been a text company, text type company. You could
only go to 36 point on a Linofilm, but the VIP went
up to 72 at least?

FR: On some models, but not very many.

MC: Okay. Anyway, it opened up the prospect of
display typography for Linotype pretty seriously for
the first time. So in combination with the British
company and the German company, they ran this
very energetic, fruitful, type development project
during the ’70s, which was predicated on the very,
very successful sales of the VIP. There was this big
population of machines out there, so we could sell a
lot of type to them, to the owners of the machines.

But toward the end of the ’70s, Linotype’s mar-
ket share started to decline quite noticeably. And
Mike and I almost became concerned that we proba-
bly wouldn’t be able to continue to run as vigorous
a development policy program as we had done for
several years. So we thought, well, how about we
make type its own P&L. Linotype’s business tra-
ditionally [was] 90% equipment, 10% type. Type
was a machine part essentially. Supposing we didn’t
treat it as that. Supposing we made it its own profit
center. But the Linotype management didn’t go for
that.

Then the other thing that happened that had
a very big influence on us was the invention of very
high-end, whole-page digital composing systems. Sci-
tex and Camex, principally. There were others. Sci-
tex was an Israeli company originally in the fabric
business, weaving business. But they were very smart
and they developed these revolutionary machines
that went into Time and Newsweek and places like
that, and they cost millions.

FR: And they emphasized color, which was the key.

MC: Yes, and the whole page. I mean, you didn’t
just set a galley or a line of type, you set the whole
goddamn page with illustrations and diagrams, ev-
erything. So . . . but they had no type. They had
this amazing technology, breakthrough technology,
but no type. So they came to Linotype, then one
went to Monotype, everyone, trying to license a li-
brary of type. But they were turned down again by
the Linotype management who said no, our type is
for our machines, and so on. And Mike and I and
others really thought this was a big mistake because
we thought again, if we made type its own P&L, we
could license the type to these companies and we
would make a lot of money, because we thought they
had a very bright future.

So we really wanted to do a Bitstream from
within Linotype. We wanted to have a type depart-
ment in Linotype that did its own thing and made

Frank Romano

TUGboat, Volume 44 (2023), No. 1 17

good money. But we were stonewalled completely
by the management and we felt so convinced about
the need for this that we decided to do it, regretfully,
I must say, on the outside. And Scitex and Camex
would be, we’d been talking to them and Mike and I
were very sorry that they were turned down. They
kind of gave us a grubstake to get started and a
number of designers joined us, and so on, and so
we started a company in Cambridge. We weren’t
technicians. We started in the shadow of MIT be-
cause we knew we’d want good programmers, good
technical people and so on. We found them. So we
did what we wanted to do within Linotype, outside
of Linotype, as it turned out.

FR: Well, if you’re ever looking for the entire digital
Bitstream library, I once traded them advertising in
TypeWorld magazine for the entire library. I have it
upstairs. It’s on floppy disks. I don’t know how you
read them, but that’s a different story. [laughter]

MC: I have it too.

FR: Okay. And Bitstream was a success. You did
very well with Bitstream.

MC: For a while, yes. I was there for ten years.
I only designed one typeface in the course of that
time. I mean, my time was well spent, but I was
in endless meetings and so on. But the Bitstream
strength was the OEM business, licensing type to
these big companies. But a decision was made to go
into retail. In other words, to go head-to-head with
Adobe in the retail market. And I thought this was
a perfectly fine idea, but I realized that there was
no one at Bitstream who knew anything about the
retail business. We were all OEM people and we were
pretty good at it. Mike was an OEM person, the head
of engineering was an OEM. So the board decided to
go into the retail business, and Mike had meanwhile
resigned and left. So they hired a president from the
OEM business.

We thought, this is crazy, because this is the
wrong guy. We need a retail person. So, there were a
whole lot of things that combined, really, with Cherie
Cone and I decided the time had come. I realized
if I was ever going to design any more type, I really
had to leave, because one typeface in ten years is not
a good batting average.

FR: So you left in ’91, and in ’92 you formed Carter
and Cone.

MC: That’s right.

FR: And where were you based?

MC: In Cambridge.

FR: By the way, Bitstream, when it started, there
was no Adobe, there was no competitor, so they
were way ahead, and they did very well for a while,
but then you get into desktop publishing, the world
starts to change. Yes. So now you are an indepen-
dent company, and you and Cherie, who’s a great
marketer, are doing great things with typography.
What did you learn from all that?

MC: From Bitstream?

FR: No, from your experience with Carter and Cone.

MC: Oh! It’s still going on, I’m happy to say. I’m
learning every day! We started . . .

FR: Do you do every typeface under that name or
do you do anything as just Matthew Carter? Does
it all go through that company?

MC: Yes.

FR: Okay.

MC: Well, we do quite a lot of custom work, so
that would not have the Carter and Cone name on
it. I mean, if I do a font for the New York Times,
it’s New York Times. But for the retail library, the
Carter and Cone faces are Carter and Cone.

FR: Okay.

MC: So the time that we started, ’91, was a good
time, because we were not the first independent
type foundry, by any means. Emigre had been out
there for a while. Our fellow Bitstream employee
David Berlow had started the Font Bureau I think 18
months or so before us. Sumner Stone was starting
out about the same time. But there was a realization
that there was a third-party market for fonts.

If you had a Linotype phototype or a digital ma-
chine, you didn’t have to buy your PostScript fonts
from Linotype; there were other sources of PostScript
fonts, including an increasing number of independent
sources. And frankly, most of the interesting devel-
opment work was coming from independents. And
so this was a good . . . a moment of birth was quite
lucky in the sense that there was a developing in-
terest in independently designed and produced and
manufactured type. And when PostScript Type 1—
originally PostScript Type 3 was the only format
you could make—but when Type 1 came about,
and essentially someone like myself, I could make
a font that technically was the same as an Adobe
font. It was . . . the Type-1 format was fabulous.
And Fontographer had seen this coming and they
produced a new version of Fontographer that did
Type 1 fonts. So there were a whole lot of things
that came together, I think partly by luck, that were
good for us at that time.

A conversation with type designer Matthew Carter

18 TUGboat, Volume 44 (2023), No. 1

FR: You were in the most interesting period in the
history of typography, because in ’81 we’re still in an
analog age, [but] getting into some digital. By the
time you get to desktop publishing, when you get
into the ’90s, now Adobe comes in, PostScript starts
to dominate in most ways. You had the “font wars”,
if you will, and during the font wars Adobe won for
a while, but then Microsoft competes with them and
they settle on some agglomeration of formats. And
so now you’re into sort of a standardized world of
fonts, if you will. You design a font, it could run on
any device out there.

MC: Yes.

FR: So it opens up new markets, and your evolution
is interesting, because you worked in the old world of
cutting a punch by hand, into the Linotype casting
machines, into the old phototypesetting market, into
the digital market. Are you not the last person to
have done that?

MC: [laughs] I don’t really know, Frank. I mean, I
am very old. [laughter]

FR: Welcome to the club! [laughter]

MC: Some people have been very kind and sort of
congratulated me on this, and I’m happy to take
credit for it, but I don’t know what else I could
have done. I mean, if you’re working in the type
business, but it goes digital, I guess I could have gone
and been a hermit and something, but I’ve always
been interested, as I said, in working with engineers,
and with the technical developments, and so I never
wanted to drop out, so to say, of the industrial aspect
of type, which is really what has interested me. I
mean, I would regard myself as an industrial designer,
I’m afraid.

FR: Really!

MC: Oh, yes.

FR: What are you working on right now?

MC: I have some work from the dear old New York
Times, which never seems to stop exactly, but it’s
mostly new weights and widths, new versions of
existing typefaces, and so on. So it’s not the most
fascinating work, but I’m so fond of them by now
that I’m happy to do it. Jordan3 and I were talking
about this. You know, Adobe had announced that, I
think, from the end of this year, PostScript fonts will
no longer work in InDesign, and maybe not in the
Apple operating system. I’m not really sure. And so
a bunch of people who have PostScript fonts have
somehow thought, oh, my God! I’m going to have to

3 Jordan Goffin, head of Special Collections at the
Providence Public Library.

get some OpenType. But this happened to me with
a couple of long-standing clients, including Yale.

Many years ago I was commissioned to design
a typeface for Yale University. And most of the
conversions to OpenType have already been done.
But John Gamble, the printer, woke up the other day
and found that there were some sort of subsidiary
fonts and things they didn’t use all that much, but
obviously they would have to be converted. So I’d
been working on those, and because the OpenType
format is open-ended in terms of character set, I can
combine what used to be a number of different fonts.

I did this also for Galliard. When Cherie and
I started in ’91, the first thing I did was a version
of Galliard which we licensed from Linotype. And
I think if you bought the PostScript font for just
the roman and italic of Galliard, there were actually
11 fonts, because there were old-style figures, there
were modern figures, there were fractions, there were
extras, there were I don’t know what. Now you can
roll that all up into a single OpenType font. So I’ve
been doing a good deal of that, and that’s interesting,
to compile these very big character sets in order to
make these faces usable into the future, instead of,
you know, dying a death on the 31st of December.

FR: Do you have any hobbies?

MC: Not really. I generally carry a camera, um, and
am quite fond of taking snaps; I mean, I don’t take
it very seriously, but I wouldn’t say it was a hobby,
but in this bag of mine there is in fact a camera.

FR: We haven’t seen you use it yet.

MC: No. I haven’t used it yet. But no, I don’t really
have, you know I don’t play golf or so. [laughter] I
don’t have hobbies of that kind.

FR: Do you work every day?

MC: I do some work every day. I have to admit
that my stamina isn’t what it was when I landed at
Ryerson Street and worked long hours every day and
weekends and so on. I don’t work as much as that,
but yeah, I’m still working.

FR: Yeah. What was the last book you bought
about type?

MC: I don’t buy many books about type. I get
given books about type, [laughter] which is very nice.
You know probably better than I do.

FR: I thought maybe you read something about a
book and they didn’t give it to you and you said,
“Oh, I have to have that.”

MC: That does happen.

FR: I remember your library was sparse, but inter-
esting.

Frank Romano

TUGboat, Volume 44 (2023), No. 1 19

MC: I know. Again, Jordan and I were talking
about this. People think I will be a big collector
of type specimens and so on. I’m absolutely not. I
have about three. The reason is libraries. I grew up
in London. Bus ride from St Bride Library. Why
would I, careless starter out, go and buy a Caslon
specimen, money I didn’t have, rather than go to St
Bride’s where they’ve got thirty Caslon specimens,
some of them probably unique? So I had no need
of having my own library as I was first starting the
work. I went to libraries, learned to use libraries,
which is a skill, by the way.

FR: Any children in your family taking up the . . .

MC: I have a stepson and a son; neither of them have
the slightest interest in what I do. Never have had.
And when I was showing signs of being interested
in all of this, my dad wanted me to do something
else, because he said conversation at the dinner table
would be more interesting [laughter] if I did some-
thing else. I think he was horrified, and thought of
typographic discussions at home at the dinner table,
which never happened, by the way. He needn’t have
worried. But no, my offspring have no interest at all
in type and typography. I mean, they’re computer
literate, but not . . .

FR: So you work at a computer, I assume it’s Fontog-
rapher?

MC: Yes. Gerard Unger, my dear friend, used to
say that there were only two people left that were
using Fontographer, but Gerard’s dead; I’m probably
the only one. I mean, I do have some other tools,
particularly for generating fonts, but I’m so used
to drawing in Fontographer. I mean, I can do it
without sort of conscious thought, so I do still use
Fontographer. I have to have an old Mac to run it,
because it’s not been supported, so two Macs, side
by side. I draw on one and I do everything else on
the other.

FR: That’s interesting.

MC: Works. An extra airdrop. [laughter]

FR: And I have to ask you this question and I know
it’s ridiculous. What’s your favorite font?

MC: You know, I once read an interview with Mar-
garet Atwood, the novelist. She was asked the same
question about her books, and said, “I can’t say,
because the other ones are listening.” [laughter] So
I don’t have a favorite of my own or anyone else’s
typefaces.

What I do have is favorite uses of type, but they
can change by the day. I can see a book jacket or
something or other using a typeface, and I can say,
that really makes that typeface look good, whatever

the typeface is, or I can pick up a newspaper and see
something, and think, that’s a really good use of that
typeface. So I react very much more to typefaces in
play, in use, that I do in any kind of objective way.
And where any attempt to, I mean, what’s a good
example? I have to say . . . Souvenir is not one of my
favorite typefaces, I suppose. I really was fond of Ed
Benguiat, so if I see Souvenir, I see Ed. You know?
So trying to be objective about typefaces is very
hard for me, because there are so many associations
with people when I see them. I’ve given up trying
to be objective about it.

I’m sorry not to have an answer for you.

FR: No, no.

MC: But that is an honest . . . I’m not being coy.

FR: When you and I lived through that period
of the ’60s, ’70s, ’80s, ’90s, there were a few hun-
dred typefaces that we dealt with, the classics: the
Caslons, the Baskervilles, et cetera. Every day I get
three emails promoting at least a hundred fonts at a
time . . .

MC: Yes.

FR: . . . from Bitstream and other companies. There
are now, I calculate, over a million typefaces out
there, mostly decorative. When you open up Netflix
and look at all the pictures of the movies, they’re all
different fonts, okay?

MC: Yes.

FR: And yet we still use only a handful of text faces,
the classics, more than anything else. How are we
going to deal with a million fonts?

MC: Beats me. I mean, I don’t really know.

FR: I mean, just cataloguing them is an impossible
thing.

MC: I know. I tell you where this is really a problem
in the life of people like me, because occasionally I’m
asked to judge type design competitions.

FR: Ha ha.

MC: Ha ha! [laughter] Usually about four judges
are doing this. And none of us can pretend that we
really know whether an entry in the competition is
genuine, in the sense that it’s not knocked off from
something wrong because we don’t know all those
million typefaces. Nobody does, and so on. So in
those terms, it’s been a problem.

We had a . . . You know I’ve been one of the
judges for the Morisawa competition, and we had a
close call once. I mean, we did select a typeface which
before the results got publicly announced, someone
put their hand up and said, I don’t think this is
right, and it wasn’t. We’d been fooled. We caught

A conversation with type designer Matthew Carter

20 TUGboat, Volume 44 (2023), No. 1

it in time, but the day will come when somebody’s
going to be wrong about that. So that is an actual
problem of having so many typefaces.

You were saying there were so few, and one of
the first jobs that Mike sic’ed on me when I arrived
in Brooklyn was . . . you know there’s the fifty books
of the year and a competition.

FR: Yeah. We always do a press release on the
Mergenthaler fonts that we use.

MC: That’s right! My job was to go over to the
AIGA who did this because when you filled out the
form for your entry, you had to put what the name
of the typeface was. But everyone discovered that a
great many of these were wrong. So my job was to
go and read all of these entries for the 50 winners
and correct the attribution of the typefaces, which
you could do in those days, because . . .

FR: There weren’t that many.

MC: . . . there weren’t that many, and I knew . . .
God forbid I should have to do that now. Oh, I
wouldn’t know.

FR: It’s an impossible task, and of course Bitstream
is, not Bitstream, Monotype Imaging is now the
800-pound gorilla in terms of typefaces.

MC: Yes.

FR: They bought out most of the big libraries.

MC: They sure did.

FR: And there are about a gazillion designers. We
had a graphic designer here the other day and he
gave a talk about how he designed his own font. And
so there are now about 20 programs for designing
typefaces.

MC: Yes. But interestingly enough, maybe it has
to do with a million number. As far as I know,
Monotype let go all their designers.

FR: There are more lawyers working there than
there are other designers. [laughter]

MC: I don’t think there are any real designers.

FR: Yeah, again because there are so many free-
lancers out there who are willing to give them fonts
to sell.

MC: Exactly.

FR: Matthew, this has been phenomenal. When I
proposed this to Matthew, by the way, he said, two
nattering octogenarians, just what we need. [laugh-
ter]

MC: But very, very patient. [laughter]

FR: So we got to understand a different side of
you, and how you evolved, and we appreciate your
support of the Museum, so thank you very much.
[applause]

MC: May I ask a question of the audience?

FR: Sure.

MC: You know I designed this typeface for Yale
University several years ago, and it’s been used a
lot around the University. And John Gamble, the
printer, he sent me an email just the other day and
he said, “There’s a great revival of interest around
Yale in letterpress printing. Students, faculty, alums,
they really are into letterpress. Is there any way of
making actual type”—I mean, what my dad said,
type is something you can pick up and hold in your
hand—“of the Yale typeface?”

Does anyone know of any current method, using
3D manufacturing or something, of making actual
type?

FR: Yes, Ed?

Ed:4 I have a Benton ATF engraver, and I make new
faces in hot metal all the time.

MC: Thank you. This is worth the trip. [laughter]
May I have your card? [laughter] Thank you.

FR: By the way, you may have one of the last
Benton engravers on earth. I think Patrick Goossens
in Antwerp has one, and I don’t know of any others.

Ed: Yeah. Greg Walters has one.

FR: But Greg died.

Ed: Yes, but they’re forming a not-for-profit.

FR: Oh, really.

Ed: And it’s going to stay there, and David McMil-
lan in Wisconsin has another, but they don’t have
all the ancillary equipment which is . . .

MC: It’s one beautiful machine.

Ed: Yeah, isn’t it fabulous?

FR: Well, that’s what made type, when you get
right down to it. Without that . . . the Bentons gave
us a great thing.

MC: Well, thank you. That’s my question for you
all. [laughter]

4 Ed Rayher, Swamp Press, Northfield, Massachusetts.

Frank Romano

TUGboat, Volume 44 (2023), No. 1 21

Prehistory of digital fonts
Jacques André

Abstract
Over the second half of the 20th century, typography
moved from physical metal type to the abstractions
of digital computing. This revolution did not fol-
low a straight path. We examine here some of the
very 昀椀rst attempts to produce printed characters on
computers.

In the 1950s, to satisfy the needs of physicists,
the 昀椀rst vectorized letters (and numbers, signs, . . .)
were made on CRT screens and plotters. In the 1960s,
the dot matrix concept allowed consideration of char-
acters as surfaces, leading to digital phototypesetting.
In the 1970s, thanks to research in computer-aided
design, the way was opened to the fundamentals of
digital letter outlines. The 昀椀rst font formats occurred
in the late 1970s. The innovation of laser printers,
around 1985, marked the beginning of the mature
rendering of digital fonts, and the beginning of the
commercial font wars, where we will leave o昀昀.

1 Introduction
Some people think that digital outline fonts were
invented by Adobe, others say that they occurred
昀椀rst with phototypesetting, while still others say . . .

One reason for this misunderstanding of history
is that there have been no detailed and technical
historical overviews of this subject1 (we hope this
paper could be a 昀椀rst attempt).

Copyright 2023 Adverbum. This article is a translation of His-
toire de l’écriture Typographique – le XXième siècle, tome II/II
– de 1950 à 2000 – Chapitre 5 : Histoire technique des fontes
numériques © 2016 – Adverbum pour les éditions Atelier Per-
rousseaux – France.

Translated and published with permission of the author
and publisher. Translation by Patrick Bideault, with assis-
tance from the author and Charles Bigelow.

Editor’s note: Preparing this original book chapter for
publication required extensive e昀昀orts. We profoundly thank
the author for undertaking the project at all, after his writing
of the original monumental volumes in French [5, 6] (for more
on this series of books, see https://tug.org/books/#andre),
and Patrick Bideault for the translation into English. We
also thank Charles Bigelow for the initial suggestion, and his
invaluable advice and assistance along the way. Christina
Thiele made useful initial translations to get the project o昀昀
the ground. Thanks, everyone.

1 In addition to the many speci昀椀c studies which we will cite
below, let us mention some papers such as Knuth’s TEX his-
tory [79], a master’s thesis by C. Knoth [77], and the historical
introductions of books on digital fonts like Haralambous’s [57]
and Southall’s [117]. Two important studies (although on a
less general topic) have appeared since the French version of
this paper was published: Romano’s study of desktop publish-
ing [110] and Bigelow’s study on the Font Wars [27].

Another, more important, reason is that this
story did not follow a straight path, but rather
formed a set of rays converging towards the same
outcome. At the beginning of the 20th century, book
printing was done by experts, both for commercial
presses and for institutional documents. In parallel,
handwriting became less and less used, while the
typewriter industry grew.

During the second world war, a need for a new
kind of writing arose: Scientists needed to manip-
ulate drawings and annotate them with letters on
brand-new media, such as radar screens. So it was
engineers who drew letters as if they were mathe-
matical 昀椀gures (Bézier, De Casteljau and Karow, for
example, were mathematicians or physicists working
in the industrial 昀椀eld, and were pioneers in this area,
as we’ll see). Some scienti昀椀c developers contacted
prominent typographers, for example Higonnet and
Moyroud (at Lumitype) worked with Frutiger, while
Karow and Knuth worked closely with Zapf. These
昀椀rst research concepts won over the manufacturers,
who thus created a new, popular mass market for
fonts. I personally think that the success of digital
fonts comes from this intimate collaboration of artists
and scientists, although it hasn’t always been easy!

In this article, we will try to show, without
claiming to be exhaustive, many various inventions,
even if some turned out to be dead ends. But let us
be clear, we do not tell the story of digital typeface
designs (even if we happen to cite them), but rather a
history of the technological inventions of digital fonts,
and the tools for manipulating them by computer.
Along the same lines, let’s say that this is a story
of digital fonts, not of text processing (even if TEX
users know that both are related, like METAFONT

and TEX).
For lack of space, and also to avoid making

this a story of computer science, we have forbidden
ourselves to go into many technical details. They can
be found notably in the books by Haralambous [57]
and Rubinstein [111].

Figure 1 shows the main tools or concepts stud-
ied here; it also shows the complexity of this story.
We will therefore follow a chronological approach,
with interludes to bring together some comparable
developments.

2 First computerized characters:
Line segments

Long before computer data processing, o昀케ce oper-
ations were performed with equipment such as tab-
ulators and printers that used impact technology
as typewriters do. Since 1930 two companies were
leaders in this area: IBM and (in Europe) Bull. By

doi.org/10.47397/tb/44-1/tb136andre-prehistory

Prehistory of digital fonts

https://tug.org/books/#andre
https://doi.org/10.47397/tb/44-1/tb136andre-prehistory

22 TUGboat, Volume 44 (2023), No. 1

1955 1960 1965 1970 1975 1980 1985 1990

1955 1960 1965 1970 1975 1980 1985 1990

Presses, impact printers, typewriters
Phototypesetters

Scanning screens, plotters
Low resolution printers/screens

Raster screens/printers
Font format, models, systems

Computer graphics

Encoding standards
Computer world

�
M

ac
Ch

ica
go

�
IT

SY
LF

�
CS

D
�

Ika
rus

�
M

eta
fon

t’7
9

�
M

eta
fon

t’8
4

�
Ty

pe
1

�
Tr

ue
Ty

pe

�
PS

fon
ts

�
Op

en
Ty

pe

�
RU

NO
FF

�
Ru

n l
en

gth
s

�
Lu

cid
a

�
Co

mp
ut

er
M

od
ern

�

Ca
no

n L
BP

-C
X

�
Di

gis
et

�
TR

OF
F

�
RI

P
Lin

otr
on

ic

�
Ca

lco
mp

�
He

rsh
ey

fon
ts

�
AS

CI
I

�
BC

D

�
La

tin
-1

�
Un

ico
de

; I
SO

10
64

6

�
IB

M
65

0
�

Fo
rtr

an

�
DE

C
PD

P-
1

�
IB

M
36

0

�
Un

ix
�

C
lan

gu
ag

e
�

DE
C

VA
X-

11

�
Xe

rox
Pa

rc

�
Su

n
�

Ap
ple

Lis
a

�
M

ac
int

os
h

�
IB

M
PC

�
W

ind
ow

s 3
.0

�
Br

ese
nh

am

�
De

Ca
ste

lja
u

�
Bé

zie
r c

urv
es

�
Fr

ed

�
Po

stS
cri

pt
�

PI
C

�
M

eta
Po

st

Figure 1: Chronology of the concepts and products that led to the birth of digital
fonts during the years 1955–1990.

Figure 2: Computer output printed by impact devices
were not always of high quality. . . Here, comments in a
program [23], 1975.

1945, the 昀椀rst computer outputs were made with
such equipment; impact devices remained in use up
to around 1995 (a few even later) though today, their
printer output may make us smile (昀椀gure 2).

Shortly thereafter, around 1950, cathode ray
screens and then plotter devices allowed drawing of
graphics and letters.

2.1 CRTs and plotters
Invented near the end of the 19th century, cathode
ray tubes saw their 昀椀rst applications (oscilloscope,
radar, television) in the 昀椀rst half of the 20th century.
But it was not until 1946 that they were equipped
with a binary memory that allowed drawings and
then alphanumeric symbols to be drawn on them
(昀椀gure 3). Early displays included EDSAC (1949),
the IBM 740 CRT (1954), and others at Manchester
University, MIT, and General Electric.

0 0 0 % start
0 1 7 % X upper left
1 14 1 % bottom right
0 1 1 % bottom left
1 14 7 % upper right
0 16 2 % A bottom left
...
1 27 2 % 1 bottom right
0 0 0 % return and loop

Figure 3: Cathode ray screen with XY scanning, and
its control program. A spotlight runs along the screen,
following the line segment connecting two consecutive
points whose coordinates are given. This spot can be
lit (thick lines) or switched o昀昀 (dotted lines). The path,
kept in memory, is in a loop which allows the screen to
be refreshed (i.e. redisplayed).

It was on these that the 昀椀rst research was done
for the basis of what is now called CAD or Computer
Aided Design. To control such a screen, it su昀케ces
to have a sequence of triplets of the form (e, x, y),

Jacques André

TUGboat, Volume 44 (2023), No. 1 23

where e is 0 or 1, indicating if the spot is lit, and
(x, y) the coordinates of the next point. It is these
triplets that we will later 昀椀nd in the run lengths of
photocomposition.

Plotters
During the same period, a little after 1950, plot-
ters 昀椀rst appeared, using the same principle of XY
plotting as CRT screens. The CalComp 565 plotter,
developed in 1958 in California, was the 昀椀rst widely
marketed machine and in some ways the archetype of
all these products. Other early plotters widely used
at that time included the Olivetti XY 600 and the
IFELEC 2025 S connected to an IBM 1130 computer.

The CalComp 565 plotter resembles the machine
that Nicolas-Jacques Conté had invented in 1800 to
engrave the plates of the Description de l’Égypte
[4, p. 156] (see 昀椀gure 4) but is electromechanically
and computer-controlled. Its operation is analogous
to that of the CRT, with the light spot replaced by
a pencil that can be lifted or placed on a sheet of
paper. This plotter, and all the others, were thus
driven by commands sent by the computer according
to machine codes speci昀椀c to each. They operated
with only three instructions, quite similar to those
of the CRT XY scan (昀椀gure 3). To get away from
the problem of machine dependency, higher-level
languages, such as FORTRAN (notably the PLOT
procedure), were soon used.

Plotters were 昀椀rst used in industrial drawing to
draw maps for geography, charts for statistics, and
so on. These jobs required additional commands,
such as “draw a circle with center (x, y) and ra-
dius R”. This was done by using routines that broke
the curves into small line segments. In the years
1960–1980 much research took place on the approxi-
mation of curves by line segments (curves of degree
one), then by curves of degree two, etc. This led to
the creation of data-processing languages dedicated
to the drawing of curves such as GPCP (A Gen-
eral Purpose Contouring Program of CalComp) then
HPGL (Hewlett Package Graphic Language) which
became ancestors of the Fred system at Xerox and
from there to PostScript at Adobe (discussed below).

2.2 Drawing letters with lines
Figure 5 shows that the Calcomp had the ability
to draw characters, essential in technical drawing
for legends and markings of all kinds. Characters
are treated as small drawings formed by a series of
line segments (right-hand image). To the characters
originally provided in the CalComp 565 (capitals,
numerals, and “a few special characters”) were grad-
ually added the other characters of various six-bit

Figure 4: Two drawing machines. Top: Conté’s manual
etching machine, 1800 [Courtesy CNAM]; bottom: the
Calcomp 565, the 昀椀rst electronic drawing machine, 1958
[Courtesy Wikipedia]. (These and following images are
grayscaled for print in TUGboat.)

Figure 5: Left: extract of cadastral map drawn and
written with a CalComp [Courtesy University of Denver
Special Collections and Archives]; right: detail of the
drawing of a letter R with line segments by a plotter.
Extract from a Calcomp manual [41].

Prehistory of digital fonts

24 TUGboat, Volume 44 (2023), No. 1

Figure 6: This linear neon tube 昀椀lls the letter R like a
Peano curve. [Courtesy Depositphotos]

binary-coded decimal (BCD) codes of the time, and
then of seven-bit ASCII, then in its infancy. Eventu-
ally, given the extensive use of these symbols, Cal-
Comp “hardwired” the symbol plotting instructions,
making them very fast.

Other plotters were soon created. One example
is the Perthronic plotter from Aristo (Hamburg),
which as early as 1960 was plotting numbers using
so-called “stick digits”, characters drawn with only
straight lines. Today, plotters use standard vector
fonts.

Filling characters with strokes. A 昀椀gure de-
昀椀ned by its outline can be 昀椀lled in by hand with
fairly tight strokes. Foundry catalogs from the 1930s
show designs such as Prisma by Rudolf Koch (1931).
As early as 1925, Fernando Jacopozzi displayed the
letters “Citroën” (the famous French car maker) on
the Ei昀昀el Tower by electric bulbs that were aligned
on wires (not a pixel array). This technique was used
extensively for signs with neon tubes (now in the Las
Vegas Neon Museum) and some letters could even be
昀椀lled in with a single tube using Peano’s curves (昀椀g-
ure 6). At the end of the 1970s, METAFONT79 o昀昀ers
the concept of “double draw” for 昀椀lling in between
curves [80, chapter 6].

Figure 7: First attempts at 昀椀lling letters with interior
tracings: two letters, inspired by Baskerville, from the
Bell system, 1967 [98]. [Courtesy Visible Language]

Bell characters. Under the direction of M. Math-
ews, a team at Bell Telephone (Murray Hill, USA)
studied, shortly after 1965, a character production
system for CRTs producing micro昀椀lms [98]. Charac-
ter outlines were de昀椀ned using line segments with a
keyboard input system that allowed for the de昀椀ni-
tion of several character sizes. Because the plotters’
strokes were thin, the letters were blackened by draw-
ing “inner outlines”, a technique that would be seen
again with Allen Hershey’s typefaces. Figure 7 shows
the principle.

Hershey typefaces. Around 1967, Allen Hershey
developed a series of fonts at the Naval Weapons Lab-
oratory (USA) that could initially be used with the
Calcomp. Well documented — see [61] and [128] —
and virtually copyright-free, they were widely dis-
tributed and used in the graphics world for years in
their native form; they are still used in vector form
today [38].

They were not written directly in the Calcomp
language but in their own format, which made it
easy to port them to other plotters. For Hershey,
a font is a database, whose elements include (in a
language called R-code) a glyph number (e.g. 516 for
P), the number of points describing the design (14
for P), two “abscissae” to deduce the slopes and the
width of the character, and 昀椀nally the coordinates
of the points of the line segments. Each coordinate
was given by an alphanumeric sign according to the
transliterated ASCII type encoding: G = −11, H =
−10, . . . , R = 0, S = 1, . . . , [= 9, \ = 10, and so on;
recall that at that time available memory was very
limited and one had to 昀椀nd tricks to save space.

In general, each character is de昀椀ned in three
modes: simplex (with a single stroke), duplex (two
strokes) and triplex (three strokes) simulating three

Jacques André

TUGboat, Volume 44 (2023), No. 1 25

G H I J K L M N O P Q R S T U V W X Y Z [\

F
G
H
I
J
K
L
M
N
O
P
Q

R
S
T
U
V
W
X
Y
Z
[

516 14G\KFK[RKFTFWGXHYJYMXOWPTQKQ

0,0

K,F

K,[

T,F

W,G
X,H

Y,J

X,M

X,O

W,P
T,QK,Q

Figure 8: Hershey’s P pattern. Above: a detailed plot,
with the R-code of this “P 516” below; the coordinates
are indicated by the letters FGH. . .
Below: the three Hershey simplex, duplex and triplex
P’s have di昀昀erent weights, simulated by the presence of
one, two or three lines. Drawings created after Hershey’s
tables [127].

Figure 9: Examples of Hershey’s characters: round,
blackletter, Cyrillic, CJK — all drawn with straight lines.
Based on [113]. [Courtesy Stewart Russel]

1 setlinewidth
1 setlinecap % rounded ends
0.5 4.5 moveto 4.25 4.5 lineto % top horizontal
4.5 4.25 moveto 4.5 0.75 lineto % right vertical
4.25 0.5 moveto 0.75 0.5 lineto % bottom hor.
0.5 0.75 moveto 0.5 1.5 lineto % left corner
1.75 0.75 moveto 2.75 2.75 lineto % diagonal
stroke

Figure 10: Left: an ‘a’ from Delorme;
right: corresponding PostScript instructions [47];
below: Delorme’s name in his font.

di昀昀erent weights. In addition to these weight varia-
tions, Hershey programmed a series of style variants
(cursive letters, blackletter, etc.), and also non-Latin
characters (including mathematical [128] and chemi-
cal characters, Cyrillic, and Japanese); see 昀椀gure 9.

Micro昀椀lms. The 昀椀rst micro昀椀lm systems were
equipped with a CRT that also produced text, such
as the IBM 228, Alden, Benson, Control Data 280
systems, and others. A special mention to Stromberg-
Carlson who, after a 64-character set for XY scanning,
o昀昀ered their 4600 Micro昀椀lm Recorder model with
112 characters, also using arcs, thin and thick strokes,
thanks to a four-coordinate system in a 4096× 3072
raster [105, p. 172]. These systems clearly in昀氀uenced
the third-generation photocomposers (page 28).

2.3 New line-based typefaces
These line-based typefaces have had little in昀氀uence
on digital fonts (except for the micro昀椀lm technique),
but they have played a vital role in computer science,
especially in CAD (Computer Aided Design), and
they could not be ignored.

Either for fun, or to simulate old fonts dating
back to the 昀椀rst plotters, digital stroked fonts can
still be found nowadays, such as VECTOR BATTLE.
Others are part of the typographic research of the
1980s.

The Delorme typeface. Christian Delorme de-
signed a typeface composed of cardboard strips, rect-
angular and rounded at the ends, allowing for a much
greater weight than that left by the tip of a pencil
(昀椀gure 10). The connection of the segments of these
thick straight lines gave the corners an illusion of
roundness. It was digitized in a PostScript font for-
mat using the so-called PaintType=3, as used for the
initial PostScript Courier (discussed below).

Prehistory of digital fonts

26 TUGboat, Volume 44 (2023), No. 1

Figure 11: These alphabets composed in 1985 only of
horizontal, vertical and diagonal lines were designed
by computer, each line being letters “in the same
spirit”. Excerpt from Douglas Hofstadter, Metamagical
Themas [65, 昀椀gure 24-14]. [Courtesy Perseus Books]

Douglas Hofstadter’s gridfonts. Douglas Hof-
stadter is a professor of cognitive science and com-
puter science, with adjunct appointments in phi-
losophy, comparative literature and other depart-
ments, at Indiana University in Bloomington, Indi-
ana, USA. Most famous for his book Gödel, Escher,
Bach: An Eternal Golden Braid, he is also known for
his research on letterforms, including a long essay in
response to Knuth’s “The concept of a meta-font”
[82], collected in his book Metamagical Themas [65,
ch. 13].

In his work, Hofstadter asks himself the ques-
tion of how to draw automatically (by computer,
using arti昀椀cial intelligence programs) as many ‘a’s
as possible and then create the rest of the alphabets
in such a way that all the letters of a single alpha-
bet (which he calls gridfonts) share “the same spirit”
(昀椀gure 11). His research is more philosophical (what
is “the essence of ‘A’-ness”?; what does “in the same
spirit” mean?; etc.) than technical. But what we
note here is that he uses characters composed only
of strokes.

%FontType=1 PaintType=3 isFixedPitch=true
40 setlinewidth % bold => 80
0 setlinejoin
1 setlinecap
/A{/base currentlinewidth 2 div def

120 545 moveto 325 545 lineto % 1
520 base lineto % 2
280 545 moveto 80 base lineto % 3
30 base moveto 200 base lineto % 4
400 base moveto 575 base lineto % 5
165 210 moveto 440 210 lineto % 6
stroke } def % A

1 23

4 5

6

Figure 12: Adobe’s Courier font in PostScript. Left:
building the capital A with six stroked line segments
(the PostScript instructions are shown), as used in the
initial release of PostScript.
Right: in subsequent PostScript releases, Adobe used
outlines for Courier, as with all other bundled fonts.
(Excerpts from [12]).

Adobe’s Courier, v1. To enter the CAD market,
Adobe included the then-commonly used stroked
fonts in its PostScript language. Fonts supported
a so-called PaintType=3 mode where only stroke
instructions were used to draw the character, with
the fill operation having no e昀昀ect; the thickness
of the strokes could be speci昀椀ed with the linewidth
parameter.

The 昀椀rst version of Adobe’s Courier [12], in-
cluded in the initial release of PostScript, was de-
昀椀ned using only thick strokes with rounded ends. In
subsequent releases of PostScript, Courier, like all
the other included fonts, was de昀椀ned using outlines.
The two are compared in 昀椀gure 12, while 昀椀gure 13
shows a clever use of a 昀椀xed thickness to simulate
the variable thickness of the apostrophe.

3 Initial bitmap concepts
3.1 Screens, bitmaps and scanning
The 昀椀rst screens used XY scanning (page 22) but,
with the cost of memory decreasing, since 1950 CRT
screens with television scanning were in use. TV
scanning consists of 昀椀lling a matrix of points line by

Jacques André

TUGboat, Volume 44 (2023), No. 1 27

a

0

1 2

3

b

Figure 13: Adobe Courier v1 apostrophe construction
(from [12]).

Figure 14: Two scanning methods for screens
(television, computer, etc.): above, XY scanning (direct,
by vectors); below, television scanning. Along white
arrows, the beam blackens the pixels of the screen;
with thin black lines, the beam writes nothing; raster
returns are indicated by a thinner beam. The pixels are
enormously magni昀椀ed as large squares so as to show
the scan.

line (昀椀gure 14): the usable surface of the screen is
scanned from top to bottom, line by line, each one
from left to right, with a step as small as possible.
Some screens had a di昀昀erent scanning direction; for
example, the Digiset scanned vertically (昀椀gure 18).

The “carriage return” of the beam to refresh the
screen is called the “frame return”, the image of the
screen being assimilated to a frame.

3.2 Frame concept
Canvases existed long before computers, as fabrics
appearing in the Western world, as early as the
Neolithic period. These fabrics, when they are thick
and not too tight, de昀椀ne a kind of grid, and are
called canvas. Canvas fabric served as the base for
needlepoint embroideries and tapestries: a thread

Figure 15: Above, excerpt from Belle Prérie by
Le Bé, 1601 [coll. J.A.]; below, school exercise in
cross-stitch embroidery, late 19th century [Credit
Stefano Bianchetti/Les Éditions de l’Amateur].

of wool is passed through this grid, thus de昀椀ning
“points” corresponding to the pixels of our bitmaps.
Cross-stitch embroidery began in the Middle Ages.

As early as 1600, Le Bé shows models of letters
embroidered with a grid of 10 × 14 such “pixels”.
Figure 15 shows that there were already solutions to
problems that we will see again with our computer
bitmaps: the diagonal of the N is not linear (as in
昀椀gure 21) and there are white squares at the junctions
of the letters; these limitations are used for aesthetic
purposes. Around 1750, the Encyclopedia of Diderot
and D’Alembert shows very beautiful alphabets on
a grid of only 7 × 7 pixels [50, Suppl. 3, pl. 4].

In the nineteenth century, with the introduction
of compulsory schooling, the embroidered alphabet
was substantively developed. The teaching of it was
abandoned by 1930.
Woven books. It is well known that Joseph Marie
Jacquard designed at the beginning of the 19th cen-
tury the 昀椀rst mechanical loom using punch tapes
(based on 18th century inventions) and so the 昀椀rst
computer automaton (Charles Babbage was inspired
by it to make his Analytical Engine [53]). Recent
studies [27, 107, 126] pay attention to the fact that
this machine was able not only to design graphics
but also texts, considering letters as a special case
of graphics (as PostScript and METAPOST would

Prehistory of digital fonts

28 TUGboat, Volume 44 (2023), No. 1

Figure 16: Detail of Les Laboureurs by Lamartine,
Lyons, 1878; shown through a lens, scaled ≈ ×3.5.
[Courtesy RIT Cary Graphic Arts Collection]

do a dozen decades later). In the city of Lyons
(France), some manufacturers exhibited their skill by
weaving books in silk on a Jacquard loom. Among
these books, extremely rare today, let us mention
Les Laboureurs by Lamartine, woven in 1878, and Le
Livre des Prières, 1886.

The weft thread behaves, when it is over the
warp thread, like a black rectangular pixel and when
under, like a white pixel. The succession of over/un-
der allows 昀椀lling characters as in 昀椀gures 18 and 54
below. The loom mechanism putting thread over
or under the frame was governed by punched tapes,
according to a bitmap, called “mise en carte”. It is a
paper with a grid of 1 cm square, each one divided in
10×10 pixels. It is not clear exactly how this bitmap
was “programmed”, to use a modern term. But it is
conceivable that the letter images were reproduced
from templates or pre-digitized models.

This Lamartine text (昀椀gure 16) has been com-
posed in body size close to 8 pt. The jewel-like preci-
sion of the book type has a digital resolution compa-
rable to laser printer resolutions of a century later.
As Bigelow says [27], these books show the true 昀椀rst
ancestors of digitized types.
Mosaics. Although the mosaics of the Greek, Ro-
man, early Christian, etc., times often have textual
inscriptions (昀椀gure 17), they are not true raster let-
ters in the sense that there is no regular raster (nei-
ther for the background, nor for the letters). Rather,
they are a construction with completely disordered
pixels, without being a random raster.

3.3 Photocomposers
The photocomposers of the 昀椀rst two generations used
characters photographed on 昀椀lm [6, ch. 1, Photocom-
position]. Generally, these typesetters were driven
by in-house tools. At the beginning of the 1970s,
the Unix group at Bell labs got a Graphic Systems
CAT phototypesetter. Joe Ossanna then wrote a
version of nro昀昀 (a text formatter for typewriters or
impact printers) that would drive it. A few years
later (around 1975) Brian Kernighan adapted tro昀昀
to C programming, to any kind of second genera-

Figure 17: Early Christian inscription (CIL
XIII 11479) in mosaic tesserae discovered
in 1905 in Avenches/Aventicum, Switzerland.
[Courtesy AVENTICVM]

tion typesetter [74], and even to mathematics (eqn
language) [76].

The third generation of photocomposers marks
the beginning of the use of digitized characters. The
昀椀rst digital photocomposer was created in Kiel (Ger-
many) by Dr. Rudolf Hell [59, 117] whose company
specialized in special equipment, photography and
electronics.

Hell was inspired by the technique used for
the 昀椀rst micro昀椀lm systems (page 25). The image
of a typeface is projected onto the screen, with a
television-type scan (昀椀gure 14, but in this case, a
small technical di昀昀erence, the scan is vertical and not
horizontal), then exposed, produced from a matrix
drawn by a typographer.

To do this, it drew (昀椀gure 18) the desired char-
acter on a large layer and marked with 1, or X, the
boxes to be blackened, the others with 0, or left them
empty. A programmer translated this drawing into
commands for the (vertical) scanning: number of the
column, number of the 昀椀rst pixel to be 昀椀lled, number
of pixels. This is what we call run lengths.

3.4 About bitmaps
The grid of screens can be considered a matrix with
each element being 0 or 1. Each such element is
called a pixel (abbreviation of picture element). If
each element is a 0.1 inch square, i.e. if there are
10 pixels in an inch, the resolution of this grid is
said to be 10 dpi (dots per inch) (昀椀gure 19). The
resolution for phototypesetters was very high (often
1200 dpi, sometimes more), resulting in the naked eye
seeing very smooth curves and characters. On the
other hand, the screens of the 昀椀rst microcomputers
or Minitel (see page 33) had a resolution of only

Jacques André

TUGboat, Volume 44 (2023), No. 1 29

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1

1
1
1
1
1
1
1
1

1
1
1
1
1
1

1
1
1
1
1
1
1

1
1
1
1
1

1
1
1
1
1
1

1
1
1
1
1
1

1
1
1
1
1
1
1

1
1
1
1
1
1
1

1
1
1
1
1
1
1

1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

3 3 34
4 3 34
5 3 34
6 3 34
7 3 34
8 3 34
9 3 34

10 13 7
10 27 8
11 12 6
11 29 7
12 12 5
12 30 6
13 11 6
13 30 7
14 11 7
14 30 7
15 11 8
15 29 8
16 11 9
16 28 9
17 11 26
18 11 26
19 12 24
20 13 22
21 14 20
22 15 18
23 17 14

(a) (b) (c)

↓Scan direction

Figure 18: Principle of the Digiset: (a) the binary
matrix conceived “by hand” by the typographer,
(b) code by range (i.e. run-lengths), (c) image provided
by the photocomposer: the bands (here slightly
narrowed to distinguish them) are scanned from top to
bottom (the returns of screen are not indicated); the
gray corresponds to a phase of non-illumination (the
screen and the paper are not exposed) and the black
with a phase of illumination (thus exposed).

1 inch 1 inch

Figure 19: The same triangle rendered as a bitmap at
10 dpi and 20 dpi resolutions.

72 dpi, with resulting “pixelated” mosaic-appearing
characters.

Such a bitmap is a virtual image to be displayed
on screen or printed on paper, resulting in a few
di昀昀erences from the theoretical matrix: the pixels
which should be square are often round, like the trace
left by rays of light (昀椀gure 20); in addition, some
output devices (in particular, the LN printers from
Digital Equipment Corporation (DEC), the Ricoh
printers and some from Xerox, still in use at the end
of the 1980s, and some of the black and white screens
of the time) did not work by blackening a white zone,
but by blackening initially all the paper and by then
writing, by sweeping, the white where it is necessary.
This gave appreciably di昀昀erent results according to
the machine used (昀椀gure 20).

The underlying problem with bitmaps is that we
go from a continuous world to a discontinuous one.
One result in particular is that any slant in relation
to the direction of the pixels presents pixelations
or so-called staircase e昀昀ects. Several methods have
been used to reduce these e昀昀ects; they cannot be

a b c

Figure 20: In昀氀uence of exposure modes: (a) theoretical
form; (b) “white then black” mode; (c) “black then
white” mode (here white is gray). After Pierre
MacKay [92].

a b c
Figure 21: Bresenham’s algorithm (1962).
(a) A line segment drawn directly using the Cartesian
equation y=ax+b with integers; (b) the same line
segment drawn using Bresenham’s algorithm: a slight
shift allows continuity (no breaks as in a); c) another
line segment (with less slant) drawn also using
Bresenham’s algorithm, still ensuring continuity.

eliminated (even when using vector fonts, contrary
to what we sometimes read in the press). First, and
most simply, increase the resolution, i.e. decrease the
size of the pixels (昀椀gure 19).

Second, use a concept of bitmap not based solely
on black and white, but with more subtle possibilities,
such as grayscale screens (昀椀gure 22) that will appear
around 1980, and LCD (Liquid Crystal Displays) at
the end of the 1990s (page 52).

Third, and most generally, researchers found
ways to reduce the artifacts in bitmaps by using
techniques from computer graphics. If we draw a
line y = ax + b by writing a loop giving to x the
integer values 3, 4, . . . , 18 for which we calculate the
corresponding integer value y and then blacken the
box (x, y), we obtain 昀椀gure 21a, which is not satisfac-
tory since the slanted line segment is cut in two. In
1962, an IBM engineer, Jack Elton Bresenham, who
was working on the 昀椀rst Calcomp plotter using bit-
maps, looked at the problem. The Cartesian method
doesn’t work because the rounding done to take the

Prehistory of digital fonts

30 TUGboat, Volume 44 (2023), No. 1

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Figure 22: A line segment, left: expected; middle: with
Bresenham algorithm; right: with Bresenham algorithm
on a grayscale screen at the same resolution.

integer part causes such dropouts. This is correctable,
but the correction method known used operations
on real numbers, which were very time consuming
(especially for computers of that time). Bresenham’s
algorithm starts from the parametric form of the
equation of the line and for each point studies its
neighbors [39]. It thus manages to optimize the plot
by using only integer operations, which is extremely
fast; 昀椀gure 21b shows the result obtained. This al-
gorithm has been improved to deal with borderline
cases and adapted to other curves (including circles)
and even to grayscale screens (昀椀gure 22). This is,
in a way, the archetype of all computer graphics
programs used in typography!

3.5 Bitmap fonts
To these technical problems, type designers brought
an artistic solution: circumvent the problem by using
no or few diagonal lines.

Thus, Adrian Frutiger, who experienced “the
passage from lead to CRT, so greedy in memory, then
to vectorized representations [. . .] then to Bézier
curves” [102, p. 286], says about his Méridien font,
which had already been adapted from lead to Lu-
mitype, “When I saw what the digitization gave,
with all these small stairs, I was horri昀椀ed. [. . .] So I
tried to get around the technical de昀椀ciencies by draw-
ing. It was necessary to avoid the slight curvatures
of the slightly curved solids and the concave serifs,
which would have made the pixelation visible . . . ”
He then drew the Breughel font, which takes these
adaptations into account (昀椀gure 23). His speci昀椀c
recommendations were to avoid the stairstep render-
ing by the absence of oblique lines, in particular, to
昀氀atten the serifs; to increase the curvature of the
curved solids, or on the contrary to 昀氀atten them (left
side and right side of the two stems of the ‘n’); to
prevent the ink traps of the holes by enlarging them,
and so on.

Other type designers for the CRT had the same
problem, for one, Ladislas Mandel with his Galfra
design (昀椀gure 24). Hermann Zapf also studied the
digitization of a subtle typeface design he had de-
signed for lead, Optima, and refrained from complet-

Figure 23: The defects of the Frutiger Meridian scan
(left) were corrected by hand, resulting in the Breughel
design (right) [102, p. 290].

Figure 24: The ‘a’ in Ladislas Mandel’s Galfra typeface
(~1978): left, hand-drawn; right, pre-digitized. [94]

Figure 25: Hermann Zapf preferred not to 昀椀nish this
draft of his Optima typeface for a printer at less than
300 dpi, which could not render the design well [129].

ing this work for printers with less than 300 dpi [129,
p. 103] (昀椀gure 25).

Despite these shortcomings, and the heavy work-
load involved, many fonts were designed character
by character for the three generations of phototype-
setters (昀椀gure 26). Many fonts were marketed for or
sold with photocomposers.

Jacques André

TUGboat, Volume 44 (2023), No. 1 31

Figure 26: Left: ‘a’ of the Videocomp composer (1967)
with scan and frame return diagram, from a newspaper,
1971. Right: one of the 昀椀rst fonts for Hell’s Digiset,
Demos by Gerard Unger, 1975 [Courtesy Gerard Unger].

3.6 Research of new typographies and
imitations of pixelated characters

While designers like Frutiger and Mandel sought to
free themselves from technical contingencies, others
used them as a means of expression.

Crouwel’s New Alphabet. The Dutchman Wim
Crouwel [18, 45] was attracted to digital fonts, which
he discovered thanks to Rudolf Hell. One of the 昀椀rst
fonts he designed, directly in bitmaps for CRTs, is
New Alphabet, in 1967 (昀椀gure 27). Since he could
not solve the problem of curves or even diagonals,
which are always stairstepped in digital rendering,
he decided not to use them. So he adapted his fonts
to the machine, using only horizontals and verticals,
with slightly diagonalized junctions. But then some
characters became unconventional (the A for exam-
ple!). His typeface was not without criticism at the
time. In 1983, Charles Bigelow wrote: “A letter is
something other than a collection of bits. All curves
are eliminated. All shapes are simpli昀椀ed. From a
purely technical point of view, the result is an undeni-
able success: each letter reproduces itself impeccably,
even through the largest frames. This new alphabet
has only one disadvantage: it is unreadable. It is
unacceptable. Without legibility, there is no com-
munication [. . .] Who can distinguish letters from
numbers?” [24]. We also owe to Crouwel the some-
what more customary typeface Claes Oldenburgh
(昀椀gure 28).

In addition, the look of bitmapped mosaic char-
acters inspired graphic designers. In 1982, Michel
Oly昀昀 took up the concept of bitmap by drawing
pixels, by hand, one by one for his famous poster
(昀椀gure 29), inspired by a doily embroidered during
the 昀椀rst world war.

ABCDEFGHijklm

nopqrstuvwxyz

01234567890

Figure 27: New Alphabet is a typeface designed by
Wim Crouwel in 1967, banning all curves and diagonals;
there are no upper/lowercase distinctions. Above, the
digitized version [courtesy The Foundry]. Below, the
original ‘A’ (reprogrammed from [18]).

Crouwell-catalogue
Figure 28: The Foundry’s Architype Catalogue
font, digitized in 2003 from the Claes Oldenburg font
designed in 1970 by Wim Crouwel, which was clearly
inspired by bitmap drawings like those in 昀椀gure 20.
[Courtesy The Foundry]

For its part, the Honeywell-Bull computer com-
pany used very pixelated characters for its poster of
the SICOB computer show in 1982 (昀椀gure 30).

3.7 Matrix printers
The principle of drawing characters by a matrix of
dots has existed since the end of the 19th century;
e.g. the pin points of punches, characters for Smith
typewriters in 1910, and then characters written at
the top of IBM-026 punched cards. It was taken up
by dot matrix printers in Japan in 1968 and spread
to the USA via the LA30 and then LA36 from DEC.

The basic principle is as follows: a print head
comprises a number of vertically-aligned pins allow-
ing the spontaneous generation of a column of points.
They are propelled by electromagnets and, through
a carbon ribbon, print the points of the character
images. The characters are de昀椀ned by a matrix of
points, often 5 × 7 but which, by shifting, in fact
de昀椀ned 9 lines — 昀椀gure 31 shows the principle.

A 5 × 7 matrix does not give good results, so
manufacturers improved the quality of the characters,
while often providing two modes: one of draft quality,

Prehistory of digital fonts

32 TUGboat, Volume 44 (2023), No. 1

Figure 29: Poster by Michel Oly昀昀 (1982) inspired by
the pixels of embroidery and printers. [Courtesy Michel
Oly昀昀]

Figure 30: Poster of the Honeywell-Bull Company for
the SICOB computer show, 1982.

the other of “mail quality”. This higher quality was
generally obtained either by the simultaneous passage
of the reading head with a slight shift in x and y

giving more continuity to the 昀椀nal design, or by using
a larger number of pins, or both (昀椀gure 32).

Figure 31: Principle of dot matrix printing and
construction of characters by overprinting [52].

Figure 32: Above: classic character printing of a
5 × 7 dot matrix with a 9-pin matrix head. Bottom
left: construction of bold on a dot printer using a
superposition of two images slightly o昀昀set in x and y.
Right: result of printing a normal B and a bold B.
[From a Sanders commercial brochure, circa 1980]

Similarly, italics could be simulated by a slant
but also by a more adequate design. Unlike daisy
wheel printing, it was then possible to use several
character styles, weights, etc. in one line without
manual operation. Of course, all these dies were
drawn by hand (today’s character displays on LED-
type lamp panels are made by 昀椀lling in characters
de昀椀ned by their outlines).

Dot matrix printers were used extensively from
the 1970s–1990s as the printers distributed with the
early personal computers. The emblematic exam-
ple remains the 9-pin LaserWriter of the original
Macintosh (昀椀gure 36). They were dethroned in the
mid-1980s by the arrival of laser printers.

Jacques André

TUGboat, Volume 44 (2023), No. 1 33

Figure 33: A typical Minitel screen, the home page of
the French electronic white pages.

3.8 Three historical cases
The screens appearing with the 昀椀rst mass-market
computers had low resolution which, given the enor-
mous size of the pixels forming the characters, gave
typography by computer a bad reputation.

Around 1980, two machines were created which
used these bitmapped characters (for screen only or
with printer), emblematic of this time: in France,
the Minitel and in the United States, the Macintosh.
We add here a third example, that of a font which
was probably the 昀椀rst one designed for such highly
“mosaic” characters, Lucida.

3.8.1 The Minitel
Studies on Minitel started in 1979 at CCETT2 in
Rennes (France). The initial goal was to launch a
videotex network accessible by a low-cost terminal
and then to make an “Electronic Directory” available
to all telephone subscribers, which was a commer-
cial and long-lasting success — it was not completely
ended until 2012 [97, 93].

The Minitel was a passive computer terminal,
consisting only of a keyboard and a screen. The
screen (昀椀gure 33) was a text matrix with a size of 25
lines by 40 columns. A line of text could thus receive
40 characters, of 昀椀xed size as for a typewriter; this
is around 1980.

Each character was formed on a grid of 7 pixels
in width by 10 pixels in height (a little larger than
the 5× 7 of matrix printers). These typefaces were
much criticized at the time. For many people (es-
pecially typographers), it was the 昀椀rst contact with

2 Centre commun d’études de télévision et
télécommunications: Joint Center for Television and
Telecommunications Studies

Figure 34: The Minitel characters had been tested
with several variants, the choice having been made
following readability studies [35, p. 56].

computerized typefaces. However, they had been the
subject of extensive legibility studies (in the spirit
of the work done since Javal, see [26]). Figure 34
shows some of the typeface models used for testing
at CCETT.

3.8.2 The “original” Macintosh
The Macintosh was the 昀椀rst mass-market personal
computer launched by Apple Computer, in January
1984. The project was started at the end of 1978
by Jef Raskin, who wanted to create a computer
that was easy to use and inexpensive, and therefore
accessible to average consumers. He joined forces
with Burrell Smith and then, in 1980, with Steve
Jobs who introduced the mouse (which he had seen
working at PARC, page 47). In some aspects, notably
the graphical user interface, the Macintosh followed
the Apple Lisa computer, released a year earlier.

The Macintosh’s display device was a 1-bit CRT
screen (black and white) with a resolution of 512×342
pixels. The desktop processing (DTP) standard
(which we still 昀椀nd for web images), correspond-
ing to 72 dpi, would come from there. This value is
not insigni昀椀cant. It is close to the 72.27 typographic
points per inch of the Americans: 8 points (pixels)
of the screen measured thus 8 points (typographic);
a character of 12 typographic points was drawn with
12 pixels, including the slope. To this computer, it
was also possible to connect a printer with 9 pins,
the ImageWriter, designed by the Japanese company
Itoh and already in use at Apple. This printer had

Prehistory of digital fonts

34 TUGboat, Volume 44 (2023), No. 1

Figure 35: The 昀椀rst Macs were noted for the quality of
their fonts; for the general public, these were the 昀椀rst
computerized fonts seen! At left, a menu (composed
in Chicago) allowing the user to choose a font, its
variant (bold, italic, etc.) and its body; at bottom,
demonstration of font combinations [Images from the
Guide Marabout du Macintosh, 1984; courtesy Susan
Kare]. At right, the Font Mover icon, by Susan Kare for
the original Macintosh (1982).

a resolution of 144 dpi. A printed text thus had
the same size as its image displayed on the screen,
but with twice the resolution (one screen pixel corre-
sponding to four pixels on paper).

This 昀椀rst Mac came with four fonts, all designed
by Susan Kare, to whom we also owe nearly all the
Mac icons (such as the Font Mover icon, 昀椀gure 35).
These fonts were named Chicago, Geneva, New York
and Monaco (昀椀gure 36). Chicago was a special case:
it was the “system” font used to display the Mac’s
commands and which existed only in size 12, deliber-
ately a little bold. These fonts were drawn directly
on screen by Susan Kare, in a grid, using a small
editor designed by Andy Hertzfeld, letter by letter,
size by size. Hertzfeld also wrote small programs
to distort these characters to make several variants
such as bold, italic, shaded, raised, etc. (昀椀gure 35),
each of which can be combined.

These fonts were usable by the Mac’s word pro-
cessing system, MacWrite, which was one of the 昀椀rst
mainstream WYSIWYG applications. Professional
typographers, who obviously didn’t take this new
“typography” seriously, found it hard to accept that
a few years later this same Mac would o昀昀er typefaces
printed with a quality bordering on their tradition.

edp
1

Figure 36: Three of the original Macintosh fonts:
Chicago (12pt), New York (12pt) and Geneva (14pt).
[Courtesy Dafont and Susan Kare]

Figure 37: Bigelow & Holmes showed, with their
Pellucida font initially conceived for the VAXstation,
that even with the low screen resolution of the
original Mac, one could improve the readability of the
characters. [Macworld, 1985]

Chicago ABC XYZ abc xyz
Geneva ABC XYZ abc xyz
Monaco ABC XYZ abc xyz
New York ABC XYZ abc xyz
Figure 38: The four main fonts of the original
Macintosh, redesigned in TrueType by Bigelow &
Holmes using Ikarus, from the original bitmaps by
Susan Kare [29, 66]. The nominal size shown here is
32 pt. [Courtesy Bigelow & Holmes]

Let’s anticipate the rest of this article a bit. . .
These 昀椀rst bitmapped fonts were redrawn in True-
Type by Charles Bigelow and Kris Holmes (昀椀gure 38),
who used a beta version of the IkarusM software, us-
ing only line segments and circular arcs for the curves
(like Renaissance drawings, page 35); these were con-
verted into quadratic splines. TrueType Chicago was
designed to render bit-for-bit the same (except for a
few symbols) as the original Chicago bitmap font, at
the system size; the other TrueType designs diverge
further from the originals [29].

Jacques André

TUGboat, Volume 44 (2023), No. 1 35

Figure 39: Lucida, 昀椀rst released in 1984, was the 昀椀rst
typeface design designed for low-resolution printers. The
image shows the Lucida seri昀昀ed lowercase ‘a’ at three
resolutions corresponding to 8, 10, and 24 point fonts
on a 300 dpi laser printer. The e昀昀ects of undersampling
(insu昀케cient resolution) are evident. At left, the lowest
resolution shows a strongly aliased image with “jaggies”
that disrupt the curved and diagonal letter elements.
At right, the highest resolution still shows noise
along the contours. When these idealized bitmaps
are reconstructed as actual images by a laser printer,
the sharp images of the stairsteps are smoothed, but
some distortion of the forms remain. (Text and images
from [30].)

3.8.3 Lucida
Although it is a font rather than a computer system,
and although it was released later than the previous
examples, let us point out that Lucida by Bigelow
& Holmes was the 昀椀rst font designed speci昀椀cally for
(not adapted to) low-resolution printers, such as the
300 dpi laser printers of the time (昀椀gure 39 and [125]).
They also created (by hand) a companion screen font,
Pellucida (昀椀gure 37).

4 Mathematical character models
It was immediately tempting to have the computer
do the tedious work of preparing the run lengths
previously mentioned, and as early as 1965 computer
scientists began to write such systems. The basic
idea, used almost universally, was to consider that
a character is a mathematical surface (de昀椀ned by
its contours) which is projected onto a bitmap and
which must be 昀椀lled. We will 昀椀rst recall that these
contours have been known since antiquity, then we
will see how they have been improved and adapted
to the needs of typography.

In general, these models were based on the exis-
tence of an already-drawn character that was to be
scanned (Ikarus for example), but some went further
by proposing tools to prepare these outlines (e.g. CSD
with a modular approach, or METAFONT by using
the ductus of calligraphers). Figure 1 showed the
chronological evolution of these systems and tools.

4.1 Models in antiquity
It is known that during Roman antiquity, since at
least the beginning of our era, patterns of lettering

Figure 40: The Roman capitals on the Trajan column
were drawn with a ruler and compass. Study by Edward
Catich, 1968 [42].

Figure 41: Above, the O capital as seen by
Tory, Champ昀氀eury, 1529; below, a trigonometric
interpretation [13].

were already being used with the ruler and compass.
Thus, the capitals of the famous Trajan column (ded-
icated in 113 CE) have been shown to be rigorously
based on straight line segments and arcs of a circle
(昀椀gure 40).

During the Renaissance, various authors pro-
posed models for the letters engraved on the pedi-
ments of public or religious buildings based on the
Roman capitals and using the only constructions

Prehistory of digital fonts

36 TUGboat, Volume 44 (2023), No. 1

Wooden spline

?

Figure 42: Historical tools for complex curve drawing.
Top: French curve used when preparing dies for
Linotype, around 1930; bottom: wooden spline used in
naval carpentry, around 1990 [54].

then known, the ruler and the compass. These mod-
els are those of Damiano de Moile, Felice Feliciano,
Luca Pacioli, Luca Orfei, etc. They were frequently
quoted by typographers [1, 36, 101, 121, 130] or an-
alyzed mathematically [13, 81]. It was Dürer in
Germany and then Tory (昀椀gure 41) in France, in the
sixteenth century, who made the 昀椀rst models sub-
stantively applied to typefaces for printed texts, with
not only capitals but also lowercase letters. This way
of modelling typefaces with a ruler and compass was
long-lasting, since it is found in the eighteenth cen-
tury (e.g. the Romain du roi [15]) and in preparatory
drawings by Eric Gill in 1927.

Many professions (carpenters, marine carpen-
ters, architects, industrial designers, road engineers,
boilermakers, for automobiles and airplane wings,
etc.) have had the problem of drawing harmonious
curves passing through a certain number of points
but which could not be drawn with the compass in
a simple way (that is, without using many arcs of
circles). This was solved manually by using tools
(昀椀gure 42) such as the French curve or the spline (a
word that will soon be found again in this article!).

4.2 Curves, mathematics and approximation
Mathematical studies on curves were initiated by the
Greeks and the Romans and developed at length by
their successors, in particular at the end of the 17th
and the beginning of the 18th century (Euler, Monge,
Cauchy, Legendre, etc.), with the theory developed
further in the 20th century (Hermite, Bernstein, . . .).

When the equation of a curve is not known, it
can be approximated by simpler pieces of curves.
Lines and circles. The simplest curves are line
segments. This is what plotters did, where the curved
body of an R is replaced by 昀椀ve straight line segments
(昀椀gure 5, right). Less simple curves are circles. This
is what Tory did (昀椀gure 41), replacing the vaguely
elliptical lower curve of his O by four arcs of circles
[13].
Conics. For a long time, mathematicians looked
for curves more complex than straight lines and cir-
cles. It turned out that circles belong, together with
the parabola, the hyperbola and the ellipse, to the
class of conics. It is therefore natural that some font
models use conics and in particular parabolas; for ex-
ample, Coueignoux (page 38 and [43]) and TrueType
(昀椀gure 70).
Superellipses and spirals. Some ellipses have
a more rectangular shape, or even the shape of a
rectangle with rounded corners: the superellipses
(called super eggs by the Danish poet–designer Piet
Hein, 1905–1996). Typographers have used them
(昀椀gure 43). But, what interests us most here is that
these curves have also been used to draw pieces of
type outlines, for example in the Itsylf (page 38),
CSD (page 38) and METAFONT [80] systems.

The kinematic study of road layouts, then of rail-
roads and highways, led to the use of special curves
for the connection between two straight segments
(change of direction of a road for example). The most
“comfortable” trajectory is not a circular arc but a
clothoid arc (or Cornu spiral or Euler spiral). These
spirals were used in typography by Purdy for the
Varityper (昀椀gure 44) and some researchers currently
recommend the use of such clothoids [90].
Bézier quadratics and cubics. Shortly after
1950, when computer graphics started developing,
engineers needed to de昀椀ne curves to calculate pro昀椀les
of, for example, automobile body panels. This simu-
lated what marine carpenters used to do, i.e. to use,
as in 昀椀gure 42, physical splines, which 昀椀rst meant
to cut these large curves (now called splines) into
smaller pieces. Of course, the small pieces had to
joined together while keeping the curve smooth. This
is how Pierre Bézier, an engineer at Renault (where

Jacques André

TUGboat, Volume 44 (2023), No. 1 37

Figure 43: Superellipses have been used in type design,
notably for ‘O’. Top: Melior by Hermann Zapf (1952);
middle: Eurostile by Aldo Novarese (1962) [Courtesy
Peter Karow]; bottom: Lucida Grande Mono DK by
Bigelow & Holmes (2014) with, inside, an ellipse with
the same axes [Courtesy Charles Bigelow].

he had already created Unisurf, the archetypal CAD
software), studied the curves that now bear his name
(Bézier curves or B-splines), which are in fact spe-
cial cases of Hermite and Bernstein polynomials. To
be practically usable, these curves had to be easily
and quickly computable. The French mathematician
De Casteljau (at Citroën) discovered a very e昀케cient
algorithm for plotting based on binary divisions.

Let’s just show here the Bézier curves used in
typography and in particular the two most common
models, the quadratic and cubic splines (昀椀gure 45).
Their names derive from “quad” (square, therefore
two) and cube (three), terms with which, since the
Renaissance, mathematicians named the powers of
two and three.

The cubic Bézier curves (昀椀gure 45, bottom) are
de昀椀ned by four points P0, P1, P2 and P3, i.e. by the
two tangents P0–P1 and P3–P2. The curve passes
through the points P0 and P3 and is included in
the parallelogram P0–P1–P2–P3, which gives a 昀椀rst

Figure 44: Approximation of a character via pieces of
spirals. Top: an illustration of the principle (from [70],
with permission of Peter Karow);
bottom: an advertisement by Varityper (appeared in
U&lc, Aug. 1984).

P0

P2

P1

P (t) = P0(1− t)2 + 2P1t(1− t) + P2t
2

Quadratic Bézier spline

P0

P3

P1 P2

P (t) = P0(1− t)3 + 3P1t(1− t)2 + 3P2t
2(1− t) + P3t

3

Cubic Bézier spline

Figure 45: Diagram and formulas of two Bézier curves
frequently used in digital typography.

Prehistory of digital fonts

38 TUGboat, Volume 44 (2023), No. 1

approximation. Introduced in the typographic world
by Xerox, and made widely known by Adobe, they
are used by many font formats.

Quadratics (昀椀gure 45, top) are de昀椀ned by the
triangle P0–P1–P2 and are in fact pieces of parabolas.
They are also used in some font formats, notably
TrueType (see 昀椀gure 70). They ensure the continuity
of tangents at junctions, but not those of curves, and
therefore need to be divided into smaller segments
than cubic curves. Thus, although each quadratic
piece inherently takes fewer points to de昀椀ne than a
corresponding cubic, more pieces are needed. When
converting from quadratics to cubics, the curves are
not quite equivalent.

5 First contour-based fonts
The trial and error period of the 1960s is not well
known. But, thanks to Lynn Ruggles [112], we can
mention a few names.
ITSYLF, the 昀椀rst font generation system, 1968.
Ruggles considers this to be one of the very 昀椀rst sys-
tems speci昀椀cally dedicated to type design, although
it was never made operational. This system, IT-
SYLF [100], developed by Mergler and Vargo, had two
novel features compared to the few existing systems.
First, it used conics, more precisely superellipses (or
Lamé curves), rather than arcs of circles, to approxi-
mate the curves. The arcs of curves are de昀椀ned by
superellipses of the form (X/A)F +(Y /B)F = 1. For
two values of A and B, we can vary F and obtain a
series of more or lesser curved lines passing through
these two points A and B.

Second, it does not de昀椀ne a font, but a family,
thanks to a skeleton and parameters allowing to
re昀椀ne the 昀椀nal shape. These parameters are de昀椀ned
for the E, and then adapted automatically to the
other letters. Figure 46 shows the skeleton of a C
and variations calculated automatically for this C by
varying the parameters. The whole font would thus
always be homogeneous.

This is not far from what will be possible a few
years later with METAFONT (page 41).
CSD, FRANCE and Coueignoux’ works, 1973.
The Frenchman Philippe Coueignoux developed, in
1973 at MIT (USA), what Knuth considers “the 昀椀rst
use of sophisticated mathematics to describe let-
terforms by computer” [82]. His work was mainly
published in his two theses, Compression of Type
Faces by Contour Coding in 1973 and Generation of
Roman printed fonts [43] in 1975, the latter being
widely cited: even though his “academic” research
did not lead directly to industrial developments, his
ideas are found in many later systems.

Figure 46: The ITSYLF system of Mergler and Vargo
(1968). On the left, the schematic of the C, with
indications of the parameters (W, W1, T, V1, . . .).
On the right, top: letters printed by varying these
parameters; bottom: from the basic C, the C of Times
Roman can be de昀椀ned. [Courtesy Visible Language]

Figure 47: Coueignoux’s use (in 1973) of conics:
the curves (in dotted lines) are de昀椀ned by the four
coordinates of the points A and B and by the distance
from C to the curve. Bottom, examples of parameters to
de昀椀ne a character. [43]

Coueignoux [43] describes a model for encod-
ing character outlines, which he developed appar-
ently without knowing the concurrent work of Karow
(which we’ll discuss subsequently). As in ITSYLF
(though without knowing it either), Coueignoux uses
line segments for stems, bars, etc., and conics for
the arcs of terminals and superellipses for bowls.
Similarly, characters are de昀椀ned using parameters.

What is new is that Coueignoux uses a struc-
tured grammar (like those of Chomsky, well known
to academic linguists and computer scientists since

Jacques André

TUGboat, Volume 44 (2023), No. 1 39

Figure 48: Some basic CSD primitives and extracts
from the generic grammar. [43]

Figure 49: The FRANCE software, by Coueignoux in
1975, makes it possible to 昀椀nd the breakpoints of splines
and segments. [43]

about 1965) to de昀椀ne his characters. Primitives form
the basic elements allowing to de昀椀ne characters. This
is an incremental de昀椀nition of characters, of which
we 昀椀nd new attempts since the beginning of our
third millennium [67]. This generic method is associ-
ated with a font production system, CSD (Character
Simulated Design), as shown in 昀椀gure 48, bottom.

Moreover, the FRANCE system (Font Retrieval:
A Natural Coding of Edges) is a program that does
what is now called autotracing (like Ikarus, as we
will see): starting from a character known by its
representation in the form of a matrix of points,
it deduces an algebraic description, using splines
(昀椀gure 49).

Figure 50: The 昀椀rst Ikarus hardware, 1973. [73]

Figure 51: Using the Ikarus “mouse”; here in the
context of the Euler project at Stanford (1983), led by
Bigelow, Knuth, and Southall, with characters designed
by Zapf. [119]

6 Ikarus
URW (named after its 昀椀rst two founders, Rubow and
Weber) was established in 1971 in Hamburg, Ger-
many. Peter Karow joined the company in 1972 and
was responsible for the automation of the production
of fonts for photocomposers. See his background and
his research and development in [68, 71, 72, 73].

Peter Karow’s 昀椀rst “customer” was Walter Bren-
del [73], a type designer who was responsible for fonts
such as Lingwood and Volkswagen and who was then
starting a digital type library for photocomposers
(this was only around 1970; it became the basis of
the “TypeShop Collection” of Elsner+Flake). His
customers wanted modi昀椀cations to his fonts, such as
“blacker”, “spaced out more”, “shaded”, etc., which
could not be done on the bitmaps and had to be
done from the drawings themselves. Karow 昀椀rst
made tests with characters cut from 15 cm high vinyl
plates (quite similar to Frutiger’s scratch cards) and
then understood the interest in digitizing the char-
acters to work with reusable formats.

Prehistory of digital fonts

40 TUGboat, Volume 44 (2023), No. 1

Figure 52: Left: outline of a ‘b’ with its guide points
for Ikarus; right: the same after translation from IK
format to bitmaps, here at low resolution. [70]

Karow substantially started his project at the
end of 1972, in collaboration with Aristo, a CAD
company from Hamburg, who was responsible in
1960 for the Perthronic table which drew stick let-
ters (page 24), and later for the Aristogrid tablet
with cursor. He named it Ikarus in May 1973. The
commercialized system included (昀椀gure 50) a digi-
tizing tablet controlled by a cursor, cousin of the
mouse (昀椀gure 51), and a computer with CRT and
alphanumeric screen, keyboard, etc. Ikarus was writ-
ten in Fortran and was quickly adapted to the VAX
and Sun minicomputers on which many professionals
used it. (These workstations were called “mini” in
comparison to the large computers of the time, but
were still almost entirely used only by companies and
had nothing to do with personal computers.)

Ikarus was, 昀椀rst, a system for digitizing char-
acter drawings. By clicking — with the cursor box
moved over the enlarged character on the tablet —
on a starting point, angles (or corners), points dis-
tributed on the curve (and in particular the ends of
the curves and the points of in昀氀ection) and tangents
(with the help of two points allowing measurement
of the angle) for breaks in continuity, one obtained
a set of coordinates, stored in a format named IK
[68]. The system analyzes these points and deduces
a mathematical description of the contour of this
character using cubic splines. The 昀椀rst applications
of this system were to calculate directly the bitmaps,
or more precisely the run lengths, making it possible
to control a photocomposer and in particular the
Digiset (page 28).

The next applications of this system were for
plotters that only worked with line segments and
arcs (page 23). When using this format to draw the
outline of such a character, the IK format was then
transformed into another format, DI, describing the
outline with vectors and circular arcs. The center

Figure 53: Left: approximation of a ‘b’ by arcs of
circles [56]; right: Bitstream advertisement based on the
construction of a ‘b’ by arcs of circles [U&LC, vol. 12,
no. 4, Feb. 1986].

and radius coordinates were calculated by Ikarus
based on the points of the IK format [68].

Early Ikarus customers also used this DI format,
either locally (e.g. for arches, Bigelow, page 34) or
systematically for all curves (this was the case for
the early Bitstream fonts, 昀椀gure 53 and [6, chap. 6]).

In the 1980s, URW played an important role as
a font vendor and, following the advent of PostScript,
improved Ikarus.

7 Filling, rendering and hinting
7.1 Bitmaps and 昀椀lling
Filling of characters which are de昀椀ned by their con-
tours requires calculating the zones of the bitmap
which will be scanned, line by line, by the laser beam
(which comes back to calculating the run lengths
of the photocomposition, see page 28), taking into
account the theoretical contour. We reuse the scan
conversion techniques developed since the 1960s for
computer graphics. The principle is to follow the
curve line by line and mark the pixels whose centers
are inside the contour delimited by the curve (昀椀g-
ure 54). This method was adapted to characters in
the 1980s by researchers such as Ackland, Bétrisey,
Gonczarowski, Hersch and Pavlidis [60, 109]. Similar
methods are used as well with METAFONT84 and de-
scribed in [57, appendix F.1.4] and [83, chapter 24].

The di昀케culty is to determine the angles (e.g.
vertex of an A) and not to 昀椀ll in extra or omit some
pixels (dropout) because of singularities of the curve.
Bad detection of such points explains why some
printers of the 1980s erroneously drew horizontal
lines across the whole page, the point of a V, for
example, having been badly detected.

These 昀椀lling operations are not independent of
those of rendering and hinting (discussed below)

Jacques André

TUGboat, Volume 44 (2023), No. 1 41

6 6 8

Outer

Inner

Figure 54: Principle of the 昀椀lling of a character by
marking the limits of the internal zones (inner span)
and external (outer span) of the zones to blacken in a
bitmap on which one projects the theoretical curve of
the character [60]. [Courtesy Roger Hersch]

nn n
6 pt 6 pt 8 pt

Figure 55: For the same glyph (with thick black lines),
the blackened pixels depend on the de昀椀nition (here,
pixel size of 6 pt and 8 pt) and on the precise position of
this glyph in the grid.

which allow more precisely re昀椀ning the choice of
the pixels to blacken.

7.2 Rendering improvements, hinting
The 昀椀lling algorithm does its job well, but the results
depend on the resolution (see 昀椀gure 55 for cases
of 6 pt or 8 pt pixels) and also on the position in
the grid (again 昀椀gure 55, the two 6 pt cases, and
昀椀gure 56). Many rendering defects appear in this way,
for example unevenness of descenders, disappearance
of thin parts (serifs, ties, swashes), appearance of
holes, etc.

This phenomenon is only noticeable for small
and medium sizes and low resolutions (< 200 dpi,
which is (commonly) the case for screens and for
the 昀椀rst laser printers). To limit these phenomena,
many fonts have been designed speci昀椀cally for speci昀椀c
screen sizes (e.g. sizes 10 to 12). Let us cite Verdana
by Matthew Carter (1996), the typefaces Base 9 and
Base 12 from Zuzana Licko (1995) and Hachette
Multimédia by Olivier Nineuil (1996).

The Ikarus system, and those that we will see
later on (METAFONT, Fred, etc.), had all the infor-
mation to prepare the bitmaps; the basic idea being
to make (very slight) shifts in the theoretical curve

Figure 56: Examples of needed rendering
improvements (in 1 and 3 the top of the curve is
too close to a pixel border: the result is bad) and, right,
some of the cases studied by Karow since 1981. [68]

←−
δx

↓
δy

Figure 57: Simple example of hinting. Left: the outline
of an H; center: how it would normally be translated
into pixels; right: displacements, downwards for the
bar and backwards for the right stem, give a better
rendering.

so that the 昀椀lling would be more in the spirit of what
is expected (昀椀gure 57). But with the appearance of
PostScript, or rather raster image processors (RIP),
we will see that it is more complicated.

There is no perfect solution to this problem even
today, but many approaches have been made. De-
scriptions of these methods can be found for example
in [57, 60, 70, 109] and, recently, some manufactur-
ers’ websites explain their methods. The di昀케culty
lies in the way to express what one wants to do in
a language (or by a method) accessible to the type
designer, who is the only one competent for these
drawing problems. Hinting methods are thus char-
acteristic of font systems, whether Ikarus, Type 1,
TrueType or OpenType.

8 TEX and METAFONT

Around 1975, the American mathematician Don-
ald Knuth was revising a volume in his magnum

Prehistory of digital fonts

42 TUGboat, Volume 44 (2023), No. 1

Figure 58: The book in which Donald Knuth 昀椀rst
presented (1979) both TEX and METAFONT. [80]

opus, The Art of Computer Programming (in brief,
TAOCP), and realized that the typesetting and print-
ing methods that had become prevalent — not only
the composition of mathematics but also that of
text — were falling far short of the quality of his
earlier editions. He then embarked on the adven-
ture of building himself a typesetting system using
digital fonts for which he also de昀椀ned a construc-
tion tool. This is the TEX+METAFONT “couple”,
with Knuth’s 昀椀rst publications in 1978–79 [78, 80]
(昀椀gure 58), which TUGboat readers know well!

In the 1970s, there were few text editors (see e.g.
[55, 108, 124]) and they were devoted to dedicated
devices with hardwired fonts: typewriter terminals,
line printers, and, rarely, second generation photo-
typesetters (only n/tro昀昀, the Unix documentation
language from Bell Labs, can be cited). Furthermore,
researchers were in the early stages of mathemati-
cally de昀椀ning digital fonts (new tools such as CSD
and Ikarus were still con昀椀dential). So Knuth felt
obliged to create something new! For a general view
of this story, see [22], and let’s mention right away
that Donald Knuth has published extensively about
TEX and METAFONT (see in particular [80], [82] and
[86]). Many practical aspects can also be learned in
Fonts & Encodings by Yannis Haralambous [57].

For his TEX system, originally intended for works
including signi昀椀cant mathematics, Knuth also needed
a font for mathematics. He decided to design such a
font himself and soon realized that he needed a pro-
gram to design not just characters, but entire fonts

and even font families. This is how METAFONT was
born, around 1979.

Since the primary purpose of TEX and META-
FONT was to typeset TAOCP, it was necessary to test
METAFONT output with something better than the
impact printers then in use. Fortunately, Stanford
University had a copy of the 昀椀rst raster printer,
Xerox’s XGP (see section 9.3). As early as 1977,
Knuth was able to use it, thanks to drivers written
by Frank Liang and Michael Plass (two of his Ph.D.
students). Around 1980, David Fuchs (another of his
students) implemented the new concept of device-
independent drivers (DVI), including one for the
new Versatec chemical printer used then in the TEX
project. This was before the 昀椀rst laser printer (see
page 48).

8.1 Basic principles of METAFONT

Knuth embarked on an historical study of typog-
raphy. He learned that, unlike the hot metal types
made with a Benton pantograph (and also unlike pho-
totypesetter fonts with optical lenses), traditional
movable types did not use geometric scaling. For
example, the glyph of an A at body size 16 pt is not
just two times larger than the same A at body size
8 pt. Reasons can be due to human vision, printing
details (such as ink spreading), etc. That means that
a model for font has to use mathematical variables to
be general. His study of old type models [81, 86] (as
well as the references cited earlier, page 35) showed
that characters may be mathematically de昀椀ned by
curves. Furthermore, from studying calligraphy, he
discovered the importance of the ductus (the shape
and order of the strokes used to compose letters) to
draw characters, and that a letter can be de昀椀ned as
the trace of a pen moving (along the ductus).

Unlike Ikarus and other products that proposed
tools to digitize existing types (at least as sketches),
Knuth wanted METAFONT to enable creating a char-
acter family from scratch, and without the user hav-
ing to know any underlying mathematics. Typically,
a user says “I would like a nice curve crossing points
(0,0), ..., (6,0)” and METAFONT chooses the
best spline (昀椀gure 59). This is why METAFONT is
categorized as a declarative programming language
(about which we will say nothing further, as beyond
our scope here).

8.2 METAFONT79, and experimentation
Here we appended “79” to METAFONT since Knuth
published the 昀椀rst version of METAFONT in 1979.
(He 昀椀rst produced machine-drawn letters in 1977,
writing directly in the SAIL language.) He developed
METAFONT79 concurrently with the 昀椀rst version

Jacques André

TUGboat, Volume 44 (2023), No. 1 43

9
8
7
6
5
4
3
2
1
0

2cm,2cm

0,0 6cm,0

4cm,2cm

% thick line:
draw (0,0)..(2cm,2cm)..(4cm,2cm).. (6cm,0);
% bunch:
for a=9 step -1 until 0:
draw (0,0)..(2cm,a*.2cm)..(4cm,2cm).. (6cm,0);
endfor

Figure 59: This bunch of curves (top) was produced
by the given METAFONT794 program (below).
(Coordinates are added for readability.)

of his Computer Modern typeface (January 1980)
with the help of renowned calligraphers and typog-
raphers, such as Charles Bigelow, Matthew Carter,
Kris Holmes, Richard Southall, and Hermann Zapf.
Their remarks, as well as those of his computer sci-
ence students (especially John Hobby, who designed
the key algorithms of METAFONT [63]), led Knuth
to completely revise the METAFONT language and
program, which he 昀椀rst released in 1984.

During those years, 1980–1984, all of the above,
along with many others such as Vaughan Pratt, Lynn
Ruggles, John Seybold, Gerard Unger, et al., were
involved with the Stanford Digital Typography Pro-
gram of that time, a set of lectures, seminars, work-
shops, etc., dedicated to a mix of mathematicians
or designers. They strongly in昀氀uenced METAFONT

(see [22, p. 89]). When it’s necessary to distinguish
between METAFONT’s two major incarnations, we
specify METAFONT79 or METAFONT84 below.

The main goal of METAFONT79 was to produce
all the bitmaps of each font of a family, at all expected
body sizes. That implies the strong use of param-
eters and variables. In 昀椀gure 59 you can see that
the abscissa of the second point is de昀椀ned by using a
parameter, a, as a scaling factor (2cm, a*.2cm), i.e.
this abscissa is not a numeric constant but a variable.
In practice, these variables may represent the body
size, boldness, or any other dependencies (for practi-
cal examples of such parameters, see 昀椀gure 63 and
昀椀gure 64). This is immediately clear for program-
mers; however, if you look at any glyph description
in graphical tools such as Fontographer, Fontforge,

4 In this 昀椀gure, and in forthcoming ones, METAPOST has
been used instead of METAFONT79 or METAFONT84: these
languages are, in that case, almost equivalent.

z90 z91

z92

z93

z94

z95

z96

epen ...; %grey:
draw z90--z91--z92..z93..z94..z95..z96;
cpen 20; %black
draw z90--z91--z92..z93..z94..z95..z96;
cpen 2; %white
draw z90--z91--z92..z93..z94..z95..z96;

Figure 60: Three stacked e characters designed with
METAFONT, using the same ductus (the path z90 ..
z96). The black one and the white one are each painted
with a circular pen (a round brush) with diameters of,
respectively, 20 and 2; the grey one uses a more complex
pen (marked here with black double arrows): its length
and orientation depend on the position along the path.

Fontlab, and Glyphs, you’ll see that coordinates of
glyphs are always constant.

One of the characteristics of METAFONT is that
variables may be de昀椀ned with geometrical equations.
For example, the intent in a design that the three
stems of an ‘m’ are equally spaced horizontally might
be expressed as

x2 − x1 = x3 − x2

if points 1, 2, and 3 are at the bottom ends of the
three stems; whereas the intent that they all end on
the same vertical position would be

y1 = y2 = y3.

The principal objects handled by METAFONT

are the splines that the user may de昀椀ne with a draw
instruction, and the points of the plane where the
spline goes; see the example in 昀椀gure 60.

Prehistory of digital fonts

44 TUGboat, Volume 44 (2023), No. 1

Unlike almost all other digital font systems,
METAFONT79 does not o昀昀er the user a way to de-
scribe the characters by their outlines but used only
a pen metaphor for drawing glyphs: it assumes their
de昀椀nition via the ductus of a polygonal or elliptical
pen, as done by calligraphers and the early printers.
Figure 60 shows a nib (white line) which starts from
point z90, goes straight to point z92 and arrives at
point z96 after having drawn a Garamond-like e.

METAFONT79 allows de昀椀ning curves more pre-
cisely, e.g. by de昀椀ning angles at some points. Various
kinds of pens are supported in METAFONT79: circu-
lar with various diameters (e.g. the white and black
curves in 昀椀gure 60), elliptical pens, and more gen-
eral pens that have to be mathematically de昀椀ned.
Erasers are special pens that erase some part of a
previous painted area.

The tools we have just mentioned (curves, pens)
are those from the user’s point of view. Internally,
it was a di昀昀erent situation altogether. Knuth and
his students used sophisticated mathematics to de-
termine the curves 昀椀nally drawn or painted. Let’s
summarize by saying they used polynomial curves, in-
cluding cubics (Knuth does not use the word “Bézier”
in [80] — probably because it was not fashionable at
that time!).

8.3 METAFONT84
As we mentioned earlier, the people testing META-
FONT79 found it was di昀케cult to be used as a design
tool by non-programmers, and Knuth completely
rede昀椀ned METAFONT [82], notably with the help of
John Hobby [63]. Among the new added concepts,
Bézier curves are now intensively used, both inter-
nally and from the user’s point of view. Characters
may be de昀椀ned by their outlines (described with
control points) and related instructions to 昀椀ll the
surface they de昀椀ne. This can be explicitly used by
type designers as in PostScript (see below, page 49):
昀椀gure 61 shows the same e of 昀椀gure 60, but de昀椀ned
with Bézier control points (you may compare the syn-
tax with that used by TikZ, ctan.org/pkg/tikz.)

However, METAFONT always focuses on the use
of pens to draw characters, the creation of Computer
Modern being the primary goal. Thanks to new
procedures (pickup, penstroke, penpos, etc.), it
is possible to de昀椀ne new types of pens, their local
positioning, their paths, etc. The variation of the
pens’ marks, together with the use of parameters,
makes it possible to draw a whole family of charac-
ters at once. For example, 昀椀gure 62 shows that the
arches of an ‘n’ are de昀椀ned (without any reference
to outlines) by variable pen positions, here penpos i.

z0
z1

z2

z3
z4z5

z6

z7

z8

z9
z10

z11

z12

z13
z14

z15

z16z17z18

z19

z20

z21

z24

z27

z0=...; ... z27=...;
fill z0--z1 ..controls z2 and z3 ..z4

..controls z5 and z6 ..z7

..controls z8 and z9 ..z10

..controls z11 and z12 ..z13--z14

..controls z15 and z16 ..z17

..controls z18 and z19 ..z20
--cycle withcolor .7white;

unfill z21 ..controls z22 and z23 ..z24
..controls z25 and z26 ..z27--cycle;

Figure 61: METAFONT84 allows painting a character
from outlines described as Bézier curves. Compare with
昀椀gure 60. (Labelled dots and tangents are added for
convenience.)

More complex examples are in the 昀椀nal Computer
Modern fonts (see section 8.4).

As a programming language, METAFONT o昀昀ers
many possibilities; let’s just quote here the fact that
“de昀椀nitions” (also called “macros”) allow, for exam-
ple, making serifs compatible to each character of
a font, like the incremental primitives of CSD (昀椀g-
ure 48) or like, today, making a serif font with Glyphs
using “corner components”.

8.4 Computer Modern and others
The 昀椀rst large typeface family de昀椀ned using META-
FONT was Computer Modern (also called “cm”); the
design was based on Monotype Modern 8A. It was
created by Donald Knuth himself, with advice and
assistance from Hermann Zapf, Charles Bigelow and
Richard Southall. It was in fact the 昀椀rst “total

Jacques André

https://ctan.org/pkg/tikz

TUGboat, Volume 44 (2023), No. 1 45

3r
3

3l

4r 4 4l

bdc
bdc+oo

88l
8r

8’

9l

9r

9

10l10r
10

11l11r 11

� � � � � �

� � � $ (

, 0 4 8 < ?
weight=(i/63); % weight = function of i
loose=...
z3=...; z4=...; % left stem ends
penpos4(weight,180); % pen # 4
penstroke z3e..{down}z4e; % stroke left stroke
z11=...;
penpos11(weight,180); % pen 11
z8=...; penpos8(loose,angle(...)); % pen 8
y9l=bdc+oo; x9=.68[x8,x10]; % point 9
penpos9(.87[loose,weight],-136); % pen 9
%
penstroke z8e..z9e..z10e---z11e; % arch and stem

Figure 62: METAFONT allows the construction of a
typeface family based on the ductus alone. Above, the
principle; below, a selection of 18 n’s with di昀昀erent
thicknesses and, below, an extract from the METAFONT

program. After Haralambous [57], with kind permission.

cmchar "The letter e";
beginchar("e",7.25u#+max(.75u#,.5curve#),x_height#,0);
italcorr .5[bar_height#,x_height#]*slant+.5min(curve#-
1.5u#,0);
adjust_fit(if monospace: .25u#,.5u# else: 0,0 fi);
numeric left_curve,right_curve;
left_curve=right_curve+6stem_corr=curve if not serifs: -
3stem_corr fi;
...
path testpath; testpath=super_arc.r(2,3) & super_arc.r(3,4);
y1'r=y0r=y0l+.6[thin_join,vair]; y1'l=y0l; x1'l=x1'r=x1;
forsuffixes $=l,r:
x0$=xpart(((0,y0$)--(x1,y0$)) intersectionpoint testpath);
endfor
fill stroke z0e--z1'e; % crossbar
penlabels(0,1,2,3,4,5); endchar;

Figure 63: De昀椀nition of the Computer Modern
character e in METAFONT84 [84]. The variables such
as bar_height, x_height, monospace are de昀椀ned in a
driver 昀椀le, given values as desired for a particular font.

typography pack” [37], since it includes not only
roman, italic and bold combined, but also variants
of (real) small capitals, serif and sans serif typefaces,
昀椀xed width typefaces, and more. Not to mention a
very large number of mathematical symbols [84].

All these typefaces have a family resemblance,
and for good reason: they are de昀椀ned by a single
METAFONT program with many parameters. Knuth
de昀椀ned about sixty parameters (昀椀gure 64) to gener-
ate all these fonts; the entire family is completely
described in a whole book, Computer Modern Type-
faces [84]. Figure 63 shows a part of the de昀椀nition
of the model for the e’s.

Although METAFONT is reputed to have been
little used, hundreds of fonts have been created with
it (an “incredible list” has been compiled by Luc De-
vroye [49]), especially for languages with non-Latin
alphabets (Unicode did not exist for quite a few
years after TEX and METAFONT), and in particular
for ancient languages (including full accented Greek).

Richard Southall used METAFONT again to cre-
ate Colorado (昀椀gure 65) by Ladislas Mandel [116].
This font, intended for the composition of telephone
directories, required character to remain very read-
able even at very small body sizes.

8.5 METAFONT and type design
As we mentioned (section 8.2), many type designers
have evaluated METAFONT, both during its devel-
opment, and after. We previously discussed Hof-
stadter’s answer [65] to Knuth’s “Concept of a meta-
font” [82]; see also, for example, [32, 31]. Here are
some highlights.
Family of fonts, parametrization One of META-

FONT’s strong ideas is to draw a whole family
of fonts and not just one font. To express these
instructions, parameters, etc., the designer must
express them in the METAFONT language, which
is in fact a programming language. And this is
the problem

Some type designers, such as Gerard Unger
[122, 123], did not fail to say “Besides being
a designer, I have no objection to acting as a
system operator; but I don’t want to become a
programmer — let alone a parameterizer.”

WYSIWYG or not Not all designers are ready to
program, as they are used to working on char-
acter images and not on how to obtain these
images. At a low level, let us say that it is easier
for them to drag a dot on a screen and see what
happens to some outline than to change the co-
ordinates of this point in some program, experi-
ment with the e昀昀ect, running the program each

Prehistory of digital fonts

46 TUGboat, Volume 44 (2023), No. 1

Figure 64: The 62 parameters that de昀椀ne Computer Modern, shown via selected characters [57].

Jacques André

TUGboat, Volume 44 (2023), No. 1 47

Figure 65: Specimen of Colorado, a font for telephone directories by Mandel, designed
with METAFONT by Richard Southall [117]. Real size; the 昀椀rst four lines are body size
6 pt, with 0.5 point leading. [Courtesy Kris Holmes]

time, until achieving the desired outline. Rich-
ard Southall [115, 117] and Dave Crossland [44]
have studied this issue extensively.

Curves METAFONT84 uses Bézier curves, namely
cubic splines. It seems Knuth considered these
splines to be, mathematically, nicer than others
(including conics). However some designers (at
least ones used to Ikarus and later TrueType
fonts) prefer to use quadratic splines as they
provide (require) more points to control, and
these points are closer to the expected outline,
so more controllable. See 昀椀gure 70.

Ductus model The ductus model (and the related
concept of pen in METAFONT) is surely good
for calligraphy or Oriental scripts based on sep-
arate strokes. However, this concept was largely
abandoned for type design since the time of Al-
dus Manutius (around 1500), this abandonment
being the precise di昀昀erentiation between calli-
graphic writings and typographical ones. Since
that time, typographers see types as surfaces,
for which outlines are everywhere. Alas, the
surfaces are less suitable for parameterizing, for
example, the boldness of the arches.

9 Xerox PARC
The American company Xerox was founded in 1940
to exploit a new photocopying process, xerography,
and quickly became the world leader in the very
pro昀椀table market of photocopiers. Just before 1970,
the company embarked on an emerging discipline,
that of information technology applied to the “o昀케ce
of the future” (by “o昀케ce”, we mean not only the
work of secretaries, but also the administration of
companies and workshops and research centers with
their technical drawings), a discipline that would
come to be called O昀케ce Automation.

At the end of the 1960s, we were still in the era
of heavy computing, the computer market being held
by IBM, Bull-Honeywell, Control Data, etc. Mini-
computers were also beginning to appear (notably

the PDP series from Digital Equipment Corporation),
especially in the industrial world, and systems such
as Unix (1971), primarily in the academic and re-
search world. But, discreetly, a very di昀昀erent kind
of computing was born, whose pioneers included
Vannevar Bush, who had the 昀椀rst conception of hy-
pertext; Douglas Engelbart, inventor of many of the
modern concepts in the human–machine interface, in-
cluding the mouse; without forgetting the American
military, which funded signi昀椀cant research, including
the ARPAnet, from which the Internet developed.

In 1970, Xerox created a research center in ad-
dition to its headquarters in Rochester (New York),
with a strong focus on physics and chemistry, the
Xerox Palo Alto Research Center (PARC; for its his-
tory, see [88] and [99]), located in California in what
would later be called Silicon Valley. The mission
of Xerox PARC is simple, at least in its statement:
“Invent the o昀케ce of the future.”

9.1 Alto
Thanks to the pro昀椀ciency of the researchers (many
from Stanford and Berkeley), successes came very
quickly: invention of the concept of the personal com-
puter, and a prototype (Alto) with a screen and user
interface with windows, icons, etc., manipulated by a
mouse (it had been invented some years earlier, but
this was the 昀椀rst use of it), invention of prototype
printers, xerographic, chemical (like a modi昀椀ed Ver-
satec) and laser; all were bitmapped, with resolutions
between 300 and 400 dpi.

For the Alto, PARC developed a large variety of
software, mostly o昀케ce tools. These include: Bravo,
the 昀椀rst WYSIWYG (What You See Is What You Get)
text editor; drawing software including Draw, which
allowed curves (actually cubic splines), hand draw-
ings, and text elements to be integrated into a 昀椀g-
ure; Press, a “universal” (or portable, i.e. printer-
independent) page description language (PDL), devel-
oped in 1975 for a complete description of documents
(text and 昀椀gures). This last would be followed by

Prehistory of digital fonts

48 TUGboat, Volume 44 (2023), No. 1

Figure 66: Screen images of the creation of fonts on
the Alto (around 1975). With Fred: placing control
points on a scan and improvements; with Prepress: a
昀椀lled and improved bitmap (shades of gray indicate
corrections, additions or deletions of pixels). [Courtesy
Patrick Baudelaire [19] and Amelia Hugill-Fontanel
(RIT Cary Graphic Art Collection)]

InterPress by Charles Geschke and John Warnock in
1980, and both would serve as a model for PostScript
(see page 49).

9.2 The Alto font model
All Alto software used the same font model, devel-
oped by Bob Sproull and Patrick Baudelaire [20, 118].
The font creation system (昀椀gure 66) included an in-
teractive spline editor and a 昀椀lling program [19].
The 昀椀rst one, Fred, was written by Patrick Baude-
laire (who had already designed the graphic language
Draw, with procedures to draw splines). Fred pro-
jected onto a screen the image of a character to be
digitized and, thanks to the mouse, one could draw
the control points using B-splines (昀椀gure 66).

This Alto system was never commercialized, but
was frequently presented and published in confer-
ences and expert meetings and thus served as a cata-
lyst. The Alto spawned many important successors,
two of which are especially noteworthy:

• In 1978 Apple launched its personal computer
project that would lead to the Macintosh (see

page 33). In 1979, Steve Jobs bought from
Xerox the right to exploit the research done at
PARC, and Apple would bene昀椀t greatly from
these revolutionary concepts.

• In 1982, Charles Geschke and John Warnock,
two members of the PARC team (where they
had developed InterPress based on Fred+Pre-
press), created Adobe, a company specialized in
electronic publishing.

9.3 Birth of laser printers
Xerox was a leader in photocopying, and by 1972 had
produced the 昀椀rst raster printer (XGP, the Xerox
Graphics Printer, had a resolution of 192 dpi) to gain
substantial use by computer scientists (at Carnegie-
Mellon, Stanford, MIT, Caltech, and the University
of Toronto).

Another PARC team worked on laser printers,
led by Gary Starkweather. The 昀椀rst laser printer,
EARS, was built and used with the Alto in 1973–76.
In 1976 came the Dover printer, and in 1977 a color
prototype. The 昀椀rst commercial product resulting
from the work of Xerox PARC was the Xerox 9700
laser printer, inspired by the EARS prototype for
the laser technology (at 300 dpi). It was distributed
starting in 1977 and was a huge success worldwide.

IBM (which had been working on the problem
of replacing impact printers since the 1960s) released
an equivalent machine, the IBM 3800, in 1976. The
Japanese company Canon also tackled the problem
in the early 1970s and joined forces with Hewlett-
Packard to produce a “big” laser printer, the HP
2680. It was not until 1983 that the 昀椀rst desktop
printer, Canon’s 300 dpi LBP-CX, was marketed by
HP as the HP LaserJet. The same LBP-CX engine
would be used in the Apple LaserWriter, the 昀椀rst
commercial printer supporting PostScript.

10 Dissemination of the digital fonts concept
Through the end of the 1970s, research and develop-
ment (technical and commercial) on digital typogra-
phy was mainly carried out by small companies and
university research laboratories. After 1980, thanks
to laser printers, the concept of digital fonts spread
at a very high speed and we have seen the birth and
growth of foundries and development companies to
the point where we are sometimes convinced that
digital fonts were invented by Apple, Adobe, etc. It
should be remembered that all the research, both
earlier and today, could only be spread thanks to the
community of researchers, scienti昀椀c conferences and
publications.

Jacques André

TUGboat, Volume 44 (2023), No. 1 49

Typesetting with photocomposers was followed
in particular by the ATypI conferences, but also re-
vealed by experts like John W. Seybold, who created
a consulting company for the graphic industries in
1963. In 1971, he launched, with his son Jonathan,
the bi-monthly magazine The Seybold Report which
remained for many years the canonical reference mag-
azine for typesetting developments.

On the other hand, knowledge of digital fonts
(apart from photocomposers) spread, initially, more
in university circles and private research laboratories.
This dissemination was made energetically and enthu-
siastically thanks to people interested and capable in
two skills, at 昀椀rst sight mismatched: typography and
data processing. The 昀椀rst attempts probably have
been the Stanford classes, workshop and conferences
organized at the end of the 1970s by Donald Knuth
and his team around METAFONT (see page 42).

Let us quote too, in general: the ACM’s Special
Interest Group on Computer Graphics (SIGGRAPH),
the magazine Visible Language (with articles by
Vargo [100], Unger [122], and many others), the
proceedings of the August 1983 conference of the
ATypI at Stanford University [32, 31], the publica-
tion in 1983 of a “popular science” article by Bigelow
(typographer) and Day (specialist in computer im-
age processing) [28], the conferences Electronic Pub-
lishing and Raster Imaging and Digital Typography
[109], and much more. All these communications
are worthwhile above all because of the contacts
that were made possible. Let us not forget also the
publication of several books accessible by both com-
munities, typographers and scientists, such as those
by Seybold [114], Rubinstein [111], Alison Black [33]
then Jorge De Buen [46], and Yannis Haralambous
[57]. Finally, it is also worth mentioning magazines
specialized in typography (U&lc, Eye, PRINT), etc.
or not (like TUGboat!).

11 Adobe and PostScript
As we have seen, John Warnock and Charles Geschke
worked at Xerox PARC and developed the InterPress
page description language there. Because of the
lack of interest by Xerox to commercially develop its
revolutionary products, they left Xerox and founded
Adobe in 1982.

There, Warnock and Geschke started to develop
PostScript and looked for a desktop printer to mar-
ket this language. For his part, Steve Jobs, at Apple,
was looking to replace the ImageWriter (a dot ma-
trix printer) of the 昀椀rst Macintosh, and discovered
the LBP-CX Canon printer. Jobs then convinced
Warnock to license PostScript to Apple for the Laser-
Writer, which would be marketed by Apple. A third

partner then intervenes: Jonathan Seybold (son of
John W. Seybold) had introduced to Apple another
former PARC sta昀昀 member, Paul Brainerd, who then
founded the Aldus company, which developed Page-
Maker, and was another early PostScript licensee. It
was the beginning of the success of PostScript and
the success of Adobe.

In addition, Seybold’s involvement had impli-
cations for the world of photocomposition — Aldus
also entered this market. Linotype would be the
昀椀rst typesetter company to discover the importance
of PostScript, and in 1984 released a PostScript
raster image processor on its Linotronic 101 pho-
tocomposers, and then on the following model, the
Linotronic 300. These photocomposers with 1270,
2540 and even 3300 dpi showed the very high quality
of the PostScript fonts, which one could only imag-
ine until then because of the relatively low 300 dpi
resolution of the LaserWriter.

PostScript, conceived at the beginning for o昀케ce
automation, thus became the universal language (at
least a portable language) in the world of pre-press
and traditional printing.

Along with the commercial dissemination of
PostScript — the customers being OEM (Original
Equipment Manufacturer) companies in data pro-
cessing and in particular the manufacturers of print-
ers, photocomposers and computers — Adobe made
e昀昀orts to spread knowledge of PostScript program-
ming, which went far to expand its use. The best
known is the publication of three manuals, respec-
tively red (a reference manual), blue (a tutorial book
of “recipes”) and green (more oriented toward docu-
ments); see [7] to [10]. A fourth book (black, on the
Type 1 format) would be published during the font
wars.

We also 昀椀nd e昀昀orts to spread knowledge of Post-
Script in the booklets, sometimes luxurious, dis-
tributed by the branches like Adobe-France, in par-
ticular with font specimens.

11.1 The PostScript language
Based on graphic languages like Draw from PARC,
and even more on InterPress, PostScript is a page
markup language and not a document formatting
language: it is up to the formatter to compose text, to
hyphenate a word at the end of a line, etc. PostScript
is designed to be the output language of typesetting
programs; it is therefore analogous, in a general way,
to the DVI language output by the original TEX.

Graphics supported in PostScript include line
drawings, formed by line segments and Bézier curves
(also supported in PARC’s Fred software). Characters
are only drawings, so in PostScript they become

Prehistory of digital fonts

50 TUGboat, Volume 44 (2023), No. 1

/HH 100 def /H HH 2 div def
newpath
0 H moveto HH 0 rlineto 0 HH rlineto
HH neg 0 rlineto
closepath
.5 setgray fill % gray
HH HH moveto
H neg H rlineto
H neg H 0 HH H H rcurveto
H H HH 0 H H neg rcurveto closepath
1 0 0 setrgbcolor fill % red
0 setgray % black
/Helvetica findfont 50 scalefont setfont
25 HH moveto (TYPO) show

TYPO

Figure 67: Example (typical around 1985) of
PostScript program using Bézier curves (by the
instruction rcurveto) and its result (the yellow grid,
with a step of 50 points, is added).

procedures (routines) to draw them. A font is a
dictionary of procedures for drawing characters, and
their use is limited to two groups of operations: the
selection of a font (with global metric properties and
geometric properties depending on the graphic state)
and the writing of a sequence of characters in this
font. This simplicity of de昀椀nition hides, however, a
whole typographic machinery to which we will return.
The PostScript machinery. While PostScript is
innovative in term of structures and possibilities, its
most important feature is undoubtedly the way in
which it functions. Until now, the drawing or font
software computed bitmaps and sent them to the
printer, but PostScript is more incremental [7]: the
generation of bitmaps is done inside the printer; or,
in front of the photocomposers, in a device called a
Raster Image Processor (RIP).

Without going into details, we give two exam-
ples of PostScript programs. The 昀椀rst, 昀椀gure 10,
shows a letter ‘P’ with line segments used to approx-
imate the curve of the bowl; we can observe that
the instructions there resemble those of plotters and
screens (昀椀gure 3). The other, 昀椀gure 67, uses more
concepts.

11.2 Type 3 and PostScript fonts
The font model de昀椀ned using only the PostScript
language [7] is what is now called Type 3. But in 1984,
this number (3) only corresponded to a completely
general method of generating characters, unlike the
later-known Type 1 format, a less general method
but additionally provided with hinting procedures.
PostScript characters are thus procedures (pro-
grams) describing their contours using line segments
and Bézier curves. Their de昀椀nition is independent of
any particular size: PostScript uses geometric scal-
ing, i.e. computes the coordinates scaled according
to the desired body height, purely mathematically.

The PostScript font machinery is a special case
of the general PostScript machinery, see [7] and [14].
It is important to remember that bitmaps are com-
puted at the time of use; however, a caching mecha-
nism allows these computations to be done only once
per page for a given character, in a given font, at
a given body height, etc. (unless this mechanism is
disabled, see below).

Glyphs and encoding tables. Internally, a Post-
Script font de昀椀nes its characters by their name: the
character ‘e’ corresponds a PostScript procedure
named /e. In fact, a PostScript font mainly con-
sists of glyph-drawing procedures in the sense well-
known today, but practically unknown then, in the
1980s. At the time of selecting a font, the Post-
Script interpreter builds an access table to at most
256 characters of the font, and an encoding vector
to access this table, similar to character access via
the inputenc package of LATEX (in the years before
Unicode). Also, just as TEX uses TFM (TEX Font
Metric) information for typesetting, Adobe de昀椀ned
AFM (A for Adobe) metric information to accompany
PostScript fonts.

With PostScript level 2, in 1991, it would be-
come possible to call a character by its name (e.g.
‘/ffi glyphshow’) even when it is not in the 256
character table. The list of these glyphs gradually
became a standard for numeric fonts (via the so-
called glyphlist 昀椀le) and equivalences with Unicode
names were made shortly before 2000.

Dynamic fonts. PostScript, like METAFONT, al-
lows variables to be used in writing plot instructions,
including characters. If these variables are given, for
example, random values in METAFONT, since the
bitmaps are calculated once when generating the
fonts, before any 昀椀nal print, these values are not re-
evaluated. A typical example is the Punk font [85]
where each occurrence of ‘E’ is the same, though its
form was generated randomly by METAFONT. That
is, if we ran METAFONT again before typesetting the
text, the ‘E’ would be di昀昀erent (昀椀gure 68, top).

By default, it is the same with PostScript since
a cache mechanism avoids recalculating the bitmaps,
for e昀케ciency. However, with Type 3 fonts, the cache
mechanism can be disabled. As a result, using a
Type 3 version of Punk [103], we can get “real” ran-
dom characters (before Beowolf by Erik van Blokland
and Just van Rossum, for example) as shown in 昀椀g-
ure 68, bottom.

Beyond this playful aspect, this mechanism al-
lows generating characters depending on the context
(body, neighborhood, . . .) or on, say, the time of day.
However, few fonts have been developed in Type 3

Jacques André

TUGboat, Volume 44 (2023), No. 1 51

Figure 68: The same text written with Knuth’s
punk font: above with METAFONT [85], below in a
PostScript Type 3 version [103]. In the 昀椀rst line, all
E’s are identical, which is not the case in the second.

format (although see [48, Type 3 Software]), and
even fewer commercialized. The model was too gen-
eral and required training to be able to interact with
the font. Thirty years later, this concept has recently
been rediscovered under the name of variable fonts
and is very fashionable.

11.3 Type 1 fonts
Those who used PostScript at its beginning with
the Type 3 font model with its cache mechanism
thought that Adobe had hidden a “magic bullet” for
fonts, and they were not wrong. Adobe kept more
or less jealously secret a font model allowing faster
and better rendering: Type 1. It was provided to
certain foundries, under restrictive conditions, only
after March 1985, and was not made public until
1990, with the publication of the “black book” at the
time of the font wars [10].

Type 1 PostScript fonts work in essentially the
same way as Type 3 fonts, but di昀昀er from Type 3
in that they are more professional or commercial by
nature and, above all, by the possibility of program-
mable hinting.

Professional aspects. Although Adobe did not
provide any typeface production software, third party
software, such as Fontographer, saved designers from
programming in raw PostScript. Type 1 fonts use
the same Bézier curve contour description procedures
as Type 3, and PostScript in general, but have a few
other lower-level procedures that are particularly well
suited to typography (vertical stems, horizontal lines,
junctions, etc.) and are much more e昀케cient than the
general lineto and curveto operators of Type 3.

Type 1 fonts also o昀昀er a series of controls related
to font secrecy (copyright, identi昀椀cation number) etc.,
and elaborate encryption methods! The encryption
algorithm was disclosed by Adobe in the Type 1 book.

Hinting. More important typographically, hinting
instructions in Type 1 allow giving instructions to
the bitmap rendering procedures to improve the 昀椀-
nal drawing of the characters (see earlier discussion
and examples, page 41). We have seen that Ikarus
proposed them as early as 1983 (昀椀gure 56). Earlier,

G
45 145

vstem
520 605

vstem

575 595
vstem

0 baseline

649 caps-height

471 x-height

660 hstem
630 hstem

290 hstem
265 hstem

14 hstem
-11 hstem

Figure 69: Hinting in Type 1 PostScript fonts is done
through “blue lines”. Here they de昀椀ne various horizontal
(hstem) and vertical (vstem) thicknesses. Following [10].

Fred and METAFONT did not need explicit hinting
because they generated the bitmaps themselves.

The Type 1 hinting operators are complicated.
and are intended primarily to help render fonts at
relatively high (printer) resolutions, not for screens.
The method chosen by Adobe was that of so-called
“blue lines”, entered by the designer to specify con-
straints (昀椀gure 69).

11.4 The Adobe font library
As mentioned above, Adobe did not initially o昀昀er
any tools for writing fonts. Instead, Adobe entered,
if not revolutionized, the font market by digitizing
a huge number of fonts and implementing them in
PostScript. According to Peter Karow [71, p. 269],
the 昀椀rst 250 outline-based fonts distributed by Adobe
were purchased from URW.

12 As a matter of conclusion
With the advent of PostScript and laser printers, the
prehistory of the digital fonts ends. Let us say simply
in a few words what happened next . . .

• The widespread adoption of PostScript with its
cubic Bézier curves, including for printing, had
immediate consequences for other software in the
昀椀eld, which adapted to the current tastes. For
example, TEX quickly supported PostScript with
a new DVI conversion program, dvips; META-
FONT itself was not changed, but a companion
program METAPOST [64] was developed to out-
put encapsulated PostScript instead of bitmaps;

Prehistory of digital fonts

52 TUGboat, Volume 44 (2023), No. 1

Figure 70: The same ‘e’ implemented, on the left,
in TrueType (quadratic splines) and, on the right, in
Type 1 (cubic splines). After Bringhurst [40, p. 184].

in addition, programs such as Metafog were de-
veloped to extract the curves from inside META-
FONT and output Type 1 or Type 3 fonts. Tro昀昀
also had PostScript output early. Ikarus kept
its IK format but made a BE version where the
original conics are translated into cubic Béziers
(the translation is straightforward).

Other conic spline formats were tried. Let us
mention in particular the F3 format of Vaughan
Pratt for Sun [106, pp. 144, 331].

• But Adobe kept to itself the rights to the Type 1
format and machinery, so other manufacturers,
notably Apple, later joined by Microsoft, de-
veloped an alternative. This led to the birth
of the TrueType format and to the release by
Adobe to the public of the Type 1 format, in
1989. Each model, Type 1 and TrueType, has
its own partisans defending the superiority of
their hints or their particular splines, according
to the needs of type designers (昀椀gure 70 has a
comparison).

• The various font formats and new encodings, in
particular Unicode, provided for portability of
fonts, and their use for languages with di昀昀erent
character sets.

• In the late 1970s, screens were developed with
pixels that are not black or white, but grayscale.
At the end of the 1990s, liquid crystal displays
appeared where pixels could be divided into sub-
pixels. In the 2000s, three sub-pixel renderers
were in use: Adobe’s CoolType, Apple’s ATSUI
(Type Services for Unicode Imaging, using the
Quartz2D engine), and Microsoft’s ClearType.
All have been signi昀椀cantly enhanced and/or re-
placed in the years since.

• A whole collection of font creation systems were
developed (FontForge, Fontlab, Fontographer,
FontStudio, Glyphs, etc.). Many of them were

developed by individuals (such as Von Ehr, Yuri
Yarmola, and George Williams) before being
taken over by larger companies.

• The most important point of this period is what
is called “the font wars” opposing TrueType and
Type 1 supporters (see Bigelow [27]). Although
the background was technical (choice of conics
or cubics and especially method of hinting), it
played out mainly with commercial connotations.
TrueType and Type 1 eventually converged with
OpenType (1993).

• At the time of the original “movable types”, a
cast was a set of classi昀椀ed types, possibly with
the mechanical composition (e.g., the Monotype
machines). With the second generation photo-
typesetters we see appear side information: the
width tables. These then also existed for digi-
tal Hershey fonts. In the Ikarus formats, TEX
and METAFONT, and PostScript fonts accom-
panied these width tables with information on
ligatures and kerning (TFM and AFM respec-
tively). OpenType has taken over and consid-
erably increased this mechanism of side tables
(gpos, etc.). Its strength is thus based on the
experience of all the preceding work.

• It seems to us personally that the evolution
of the future fonts will be based on the side
tables by increasing their content (in particular
by the use of variables) but also by using these
tables not just at the time of their loading, but
also during composition (these will then be real
variable fonts).
Finally, we would like to point out that all the

tools (except tentatively METAFONT) that we have
shown are more manufacturing tools — the drawing
of a character that already exists, even if only in the
form of a sketch, than creation (from scratch). As
yet, we have no answer to the philosophical questions
of Douglas Hofstadter (What is the essence of a-
ness?) or Richard Southall (Are the shape and the
appearance of a character identical?).

By way of 昀椀nal words, I’d like to conclude with
an homage to Southall by quoting these words by
Gerry Leonidas [89]:

Richard’s ideas about “models” and “pat-
terns” in type design are the de昀椀nitive starting
point for any discussion of typemaking, and —
with some adjustments for terminology — ab-
solutely essential in any review of typeface
design processes with digital tools. In fact,
the growth of rendered instances of typeforms
across many devices make his ideas more rel-
evant than ever, and prove that his approach

Jacques André

TUGboat, Volume 44 (2023), No. 1 53

provides the key ideas for discussing typeface
design across type-making technologies. To-
gether with some texts by Robin Kinross, his
writings [for a list, see [16]], are amongst the
very few indispensable texts for any theoreti-
cal discussion of typeface design.

Acknowledgments
The author would like to thank the many people who
provided illustrations for this article, and also the
people who helped him in the drafting of this text and
then its revision, in particular Patrick Baudelaire,
Charles Bigelow, Yannis Haralambous, Roger Hersch,
Vania Jolobo昀昀, Peter Karow, Christian Laucou, and
Alan Marshall.

For this publication in TUGboat, he would also
like to thank Patrick Bideault for his English trans-
lation, and Barbara Beeton and Karl Berry for their
deep proofreading and remarkable work as editors.

References
[1] Histoire de l’écriture typographique –

De Gutenberg au xviie siècle, by
Yves Perrousseaux.
Atelier Perrousseaux éd./Adverbum, 2004.

[2] Histoire de l’écriture typographique –
Le xviiie siècle, tome I/II, by
Yves Perrousseaux.
Atelier Perrousseaux éd./Adverbum, 2010.

[3] Histoire de l’écriture typographique –
Le xviiie siècle, tome II/II, by
Yves Perrousseaux.
Atelier Perrousseaux éd./Adverbum, 2010.

[4] Histoire de l’écriture typographique –
Le xixe siècle français, by Jacques André
and Christian Laucou.
Atelier Perrousseaux éd./Adverbum, 2013.

[5] Histoire de l’écriture typographique –
Le xxe siècle, de 1900 à 1950, collective
work under the direction of Jacques André.
Atelier Perrousseaux éd./Adverbum, 2016.

[6] Histoire de l’écriture typographique –
Le xxe siècle, de 1950 à 2000, collective
work under the direction of Jacques André.
Atelier Perrousseaux éd./Adverbum, 2016.

[7] Adobe Systems Inc., PostScript Language
Reference Manual, 昀椀rst edition, Reading, MA:
Addison-Wesley, 1985; second edition, 1991.

[8] Adobe Systems Inc., PostScript Language
Tutorial and Cookbook, Reading, MA:
Addison-Wesley, 1985.

[9] Adobe Systems Inc., PostScript Language
Program Design, Reading, MA: Addison-Wesley,
1988.

[10] Adobe Systems Inc., The Type 1 Format
Speci昀椀cation, Reading, MA: Addison-Wesley,
1990.

[11] Jacques André, Création de fontes en typographie
numérique, Mémoire d’HDR, Université Rennes I,
29 sept. 1993, 124 pp. theses.hal.science/tel-
00011218/file/andre.pdf

[12] Jacques André, Courier – Histoire d’un caractère
– De la machine à écrire aux fontes numériques,
éd. du Jobet, 1993.
jacques-andre.fr/fontex/courier.pdf

[13] Jacques André, De Pacioli à Truchet : trois
siècles de géométrie pour les caractères, 4 000 ans
d’histoire des mathématiques : les mathématiques
dans la longue durée – 13e colloque Inter-IREM
d’épistémologie et histoire des mathématiques,
IREM-Rennes, mai 2000,
pp. 1–38. hal.inria.fr/inria-00000956

[14] Jacques André and Justin Bur, Métrique des
fontes PostScript, Cahiers Gutenberg, n° 8 (1991),
pp. 29–50.
http://numdam.org/item/CG_1991___8_29_0/

[15] Jacques André and Denis Girou,
Father Truchet, the typographic point, the
Romain du roi, and tilings, TUGboat, Vol. 20
(1999), No. 1, pp. 8–14.
tug.org/TUGboat/tb20-1/tb62andr.pdf

[16] Jacques André and Alan Marshall,
Richard Southall: 1937–2015, TUGboat,
Vol. 36 (2015), No. 2, pp. 100–102.
tug.org/tugboat/tb36-2/tb113southall.pdf

[17] Jacques André and Moncef Mlouka (eds.),
Workshop on Font Design Systems, INRIA-Sophia,
May 1987. See also [109], 1989.

[18] Augustin, Wim Crouwel, Index Gra昀椀k, 7 avril
2014. http://indexgrafik.fr/wim-crouwel/

[19] Patrick Baudelaire, The Fred User’s Manual,
Internal Report, Xerox Palo Alto Research
Center, Palo Alto, California, 1976.

[20] Patrick Baudelaire, The Xerox Alto Font
Design System, in [31].

[21] Patrick Baudelaire and M. Stone, Techniques
for Interactive Raster Graphics, SIGGRAPH 80
Proceedings, Computer Graphics, Vol. 14, No. 3,
1980.

[22] Barbara Beeton, Karl Berry and David
Walden, TEX: A Branch in Desktop Publishing
Evolution, Part 1, IEEE Annals of the History
of Computing, Vol. 40, No. 3, Jul./Sept. 2018,
pp. 78–93. ieeexplore.ieee.org/document/
8509554/

[23] Yves Bekkers, Daniel Herman, and Michel
Raynal, Conception et réalisation d’une
machine-langage de haut niveau adaptée à
l’écriture de systèmes, Ph.D. thesis, Rennes
University, 24 sept. 1975.

[24] Charles Bigelow, Les caractères rationalisés,
in La manipulation de documents (Jacques
André, ed.), INRIA-Centre de Rennes, mai 1983,
pp. 15-27.
jacques-andre.fr/japublis/manip83.pdf

Prehistory of digital fonts

https://theses.hal.science/tel-00011218/file/andre.pdf
https://theses.hal.science/tel-00011218/file/andre.pdf
https://jacques-andre.fr/fontex/courier.pdf
https://hal.inria.fr/inria-00000956
http://numdam.org/item/CG_1991___8_29_0/
https://tug.org/TUGboat/tb20-1/tb62andr.pdf
https://tug.org/tugboat/tb36-2/tb113southall.pdf
http://indexgrafik.fr/wim-crouwel/
https://ieeexplore.ieee.org/document/8509554/
https://ieeexplore.ieee.org/document/8509554/
https://jacques-andre.fr/japublis/manip83.pdf

54 TUGboat, Volume 44 (2023), No. 1

[25] Charles Bigelow, Review and Summaries
of The History of Typographic Writing —
The 20th century. Originally published in three
parts in TUGboat Vol. 38 (2017); combined:
tug.org/books/reviews/tv38bigelow.pdf

[26] Charles Bigelow, Typeface Features and
Legibility Research, Vision Research, Vol. 165,
Dec. 2019, pp. 162–172.
doi.org/10.1016/j.visres.2019.05.003

[27] Charles Bigelow, The Font Wars, Parts 1
and 2, IEEE Annals of the History of Computing
(Special issue: History of Desktop Publishing),
Vol. 42, No. 1, Jan./Mar. 2020, pp. 7–40.
doi.org/10.1109/MAHC.2020.2971202
doi.org/10.1109/MAHC.2020.2971745

[28] Charles Bigelow and Donald Day, Digital
Typography, Scienti昀椀c American, Vol. 249, No. 2,
pp. 106–119, Aug. 1983.

[29] Charles Bigelow and Kris Holmes, Notes
on Apple 4 Fonts, Electronic Publishing,
Vol. 4, No. 3, Sept. 1991, pp. 171–181.
http://cajun.cs.nott.ac.uk/compsci/epo/
papers/volume4/issue3/ep050cb.pdf

[30] Charles Bigelow and Kris Holmes, The Design
of Lucida: An Integrated Family of Types for
Electronic Literacy, in Text Processing and
Document Manipulation (J.C. van Vliet, ed.),
Cambridge University Press, 1986.

[31] Charles Bigelow and Kevin Larson (eds.),
Visible Language (Special issue: Re昀氀ecting on 50
Years of Typography, Vol. 50, No. 2, Aug. 2016.
journals.uc.edu/index.php/vl/issue/view/
461

[32] Charles Bigelow and Lynn Ruggles (eds.),
Visible Language (Special issue: The Computer
and the Hand in Type Design), Vol. 19, No. 1,
Winter 1985. journals.uc.edu/index.php/vl/
issue/view/369

[33] Alison Black, Typefaces for Desktop Publishing:
A User Guide, London: Architecture Design and
Technology Press, 1990.

[34] Lewis Blackwell, 20th-Century Types, Lawrence
King Publishing, 2004.

[35] Gérard Blanchard (coordinated by), L’écriture
télématique, années zéro, Les Cahiers de Lure,
1985.

[36] Gérard Blanchard, L’eredita Gutenberg,
Gianfranco Altieri Editore, 1989.

[37] Gérard Blanchard, Aide au choix de la
typo-graphie – Cours supérieur, Atelier
Perrousseaux éd., 1998.

[38] Paul Bourke, Hershey Vector Font based
on the Hershey character set, Oct. 1977.
http://paulbourke.net/dataformats/hershey/

[39] Jack E. Bresenham, Algorithm for computer
control of a digital plotter, IBM Systems

Journal, Vol. 4, No. 1, Jan. 1965, pp. 25–30.
doi.org/10.1147/sj.41.0025

[40] Robert Bringhurst, The Elements of
Typographic Style, Hartley & Marks publishers,
4th edition, 2015.

[41] CalComp Software Reference Manual,
California Computer Products Inc.,
Oct. 1976. archive.org/details/bitsavers_
calcompCalceManualOct76_6872751

[42] Edward M. Catich, The Origin of the Serif:
Brush Writing and Roman Letters, Davenport, IA:
The Cat昀椀sh Press, 1968.

[43] Philippe J.M. Coueignoux, Generation
of Roman Printed Fonts, Ph.D. thesis,
Massachusetts Institute of Technology, Dept.
of Electrical Engineering and Computer Science,
1975. dspace.mit.edu/bitstream/handle/1721.
1/27408/02149218-MIT.pdf

[44] Dave Crossland, “Why didn’t METAFONT

catch on?”, TUGboat, Vol. 29 (2008), No. 3,
pp. 418-420.
tug.org/TUGboat/tb29-3/tb93crossland.pdf

[45] Typographic Architectures typographiques, texts
by Wim Hendrik Crouwel, Catherine de Smet
and Emmanuel Bérard, Editions fsept F7, Paris,
2007.

[46] Jorge De Buen, Manual de diseño editorial,
Santilano, Mexico, 2000,

[47] Christian Delorme and Jacques André,
Le Delorme, un caractère modulaire et dépendant
du contexte, Communication et langages,
Vol. 86 (1990), pp. 64–76. www.persee.fr/web/
revues/home/prescript/article/colan_0336-
1500_1990_num_86_1_2261

[48] Jean-Luc Devroye, Type Design, Typography,
Typefaces and Fonts: An encyclopedic treatment
of type design, typefaces and fonts. Web page
closed on May 6, 2022. http://luc.devroye.
org/fonts.html

[49] Jean-Luc Devroye, METAFONT links, in [48].
http://luc.devroye.org/metafont.html

[50] Diderot & D’Alembert, Encyclopédie, ou
Dictionnaire Raisonné des Sciences, des Arts et
des Métiers, 1751–1772.
encyclopedie.uchicago.edu

[51] Albrecht Dürer, Of the just shaping of letters.
www.zigzaganimal.be/elements/just_shaping_
scan.pdf

[52] Jean-Jacques Eltgen, Techniques d’impression
d’images numérisées, Techniques de l’ingénieur,
art. E-5-670, 1992.

[53] James Essinger, Jacquard’s Web: How a hand
loom led to the birth of the information age.
Oxford, U.K.: Oxford University Press, 2004.

[54] Bernard Ficatier and Hugues Roche, Concevoir,
relever et dessiner des plans de voiliers classiques
et traditionnels, Douarnenez: Chasse-marée, 2004.

Jacques André

https://tug.org/books/reviews/tv38bigelow.pdf
https://doi.org/10.1016/j.visres.2019.05.003
https://doi.org/10.1109/MAHC.2020.2971202
https://doi.org/10.1109/MAHC.2020.2971745
http://cajun.cs.nott.ac.uk/compsci/epo/papers/volume4/issue3/ep050cb.pdf
http://cajun.cs.nott.ac.uk/compsci/epo/papers/volume4/issue3/ep050cb.pdf
https://journals.uc.edu/index.php/vl/issue/view/461
https://journals.uc.edu/index.php/vl/issue/view/461
https://journals.uc.edu/index.php/vl/issue/view/369
https://journals.uc.edu/index.php/vl/issue/view/369
http://paulbourke.net/dataformats/hershey/
https://doi.org/10.1147/sj.41.0025
https://archive.org/details/bitsavers_calcompCalceManualOct76_6872751
https://archive.org/details/bitsavers_calcompCalceManualOct76_6872751
https://dspace.mit.edu/bitstream/handle/1721.1/27408/02149218-MIT.pdf
https://dspace.mit.edu/bitstream/handle/1721.1/27408/02149218-MIT.pdf
https://tug.org/TUGboat/tb29-3/tb93crossland.pdf
https://www.persee.fr/web/revues/home/prescript/article/colan_0336-1500_1990_num_86_1_2261
https://www.persee.fr/web/revues/home/prescript/article/colan_0336-1500_1990_num_86_1_2261
https://www.persee.fr/web/revues/home/prescript/article/colan_0336-1500_1990_num_86_1_2261
http://luc.devroye.org/fonts.html
http://luc.devroye.org/fonts.html
http://luc.devroye.org/metafont.html
https://encyclopedie.uchicago.edu
https://www.zigzaganimal.be/elements/just_shaping_scan.pdf
https://www.zigzaganimal.be/elements/just_shaping_scan.pdf

TUGboat, Volume 44 (2023), No. 1 55

[55] Richard Furuta, Je昀昀rey Scofield, and
Alan Shaw, Document Formatting Systems:
Survey, Concepts, and Issues, Computing
Surveys, Vol. 14, No. 3, Sept. 1982, pp. 417–472.
doi.org/10.1145/356887.356891

[56] Pierre-Marie Gallois, Quand Paris Était
Ville-Lumière, L’Âge D’homme, 2001.

[57] Yannis Haralambous, Fonts & Encodings,
O’Reilly, 2007.

[58] Tamir Hassan, Changyuan Hu, and
Roger D. Hersch, Next Generation Typeface
Representations: Revisiting Parametric Fonts,
ACM DocEng 2010 conference, Sept. 2010,
pp. 181–184. lspwww.epfl.ch/publications/
typography/ngtrrpf_10.pdf

[59] Rudolf Hell, Le Digiset, composeuse binaire
électronique, Caractère, vol. 16, no 11, 1965,
pp. 5–16.

[60] Roger Hersch (ed.), The Visual and Technical
Aspects of Type, Cambridge University
Press, 1993. lspwww.epfl.ch/publications/
typography/vataot.html

[61] Allen V. Hershey, Calligraphy for Computers,
U.S. Naval Weapons Laboratory, 1967, 500pp.
archive.org/details/hershey-calligraphy_
for_computers

[62] Allen V. Hershey, A Computer System for
Scienti昀椀c Typography, Computer Graphics and
Image Processing, Vol. 1 (1972), pp. 273–385.

[63] John D. Hobby, Digitized Brush Trajectories,
Ph.D. thesis, Stanford University, Aug. 1985.
tug.org/docs/hobby/hobby-thesis.pdf

[64] John D. Hobby, A User’s Manual for
METAPOST. AT&T Bell Laboratories Computing
Science Technical Report 162, 1992. With
updates: tug.org/docs/metapost/mpman.pdf

[65] Douglas Hofstadter, Metamagical Themas,
Basic Books, 1985.
archive.org/details/MetamagicalThemas

[66] Kris Holmes, Dossier — Calligraphy, Lettering,
Signage and Graphic Design, Filmmaking and
Articles, Keepsake for the Frederic Goudy Award,
Rochester Institute of Technology, 2012.

[67] Changyuan Hu and Roger D. Hersch,
Parameterizable Fonts Based on Shape
Components, IEEE Computer Graphics and
Applications, Vol. 21, No. 3, May/June 2001,
pp. 70–85. lspwww.epfl.ch/publications/
typography/pfbosc.pdf

[68] Peter Karow, Digital Formats for Typefaces,
URW Verlag, Hamburg, 1987.
archive.org/details/
digitalformatsfo0000karo

[69] Peter Karow, Digital punch cutting, Electronic
Publishing, Vol. 4, No. 3, Sept. 1991, pp. 151–170.
http://cajun.cs.nott.ac.uk/compsci/epo/
papers/volume4/issue3/ep044pk.pdf

[70] Peter Karow, Digital Typefaces: Description and
Fprmats, Springer-Verlag, 1994. books.google.
com/books?id=oomrCAAAQBAJ

[71] Peter Karow, Two decades of typographic
research at URW: A retrospective, in [109,
pp. 265–304 (1998)].

[72] Peter Karow, Font Technology: Methods and
Tools, Springer Science, 2012.

[73] Peter Karow, Digital Typography & Arti昀椀cial
Intelligence, On the occasion of the presentation
of the third Dr. Peter Karow Award for Font
Technology & Digital Typography to Dr. Donald E.
Knuth at the ATypI Amsterdam 2013 conference,
Adobe and Dutch Type Library, 2013.

[74] Brian W. Kernighan, A Typesetter-independent
TROFF, Computing Science Technical
Report No. 97, Bell Labs, revised, Mar. 1982.
archive.org/details/typesetter-independent-
troff

[75] Brian W. Kernighan, PIC — a language
for typesetting graphics, Proceedings of the
ACM SIGPLAN SIGOA Symposium on
Text Manipulation, June 1981, pp. 92–98.
doi.org/10.1145/800209.806459 Revised
publication, May 1991: archive.org/details/
pic-graphics-language

[76] Brian W. Kernighan and Lorinda L. Cherry,
A System for Typesetting Mathematics,
Communications of the ACM, Vol. 18, No. 3,
Mar. 1975, pp. 151–157. dl.acm.org/doi/10.
1145/360680.360684

[77] Christopher Knoth, Computed Type Design,
Master Art Direction, ECAL Lausanne, 2011.
christoph-knoth.com/shared/computed_type_-
_christoph_knoth.pdf

[78] Donald E. Knuth, “TAU EPSILON CHI: A
System for Technical Text”, STAN-CS-78-675.1,
Computer Science Department, Stanford
University, Stanford, California, Nov. 1978.
purl.stanford.edu/jy605yq4819

[79] Donald E. Knuth, Mathematical Typography,
Bulletin (N.S.) of the American Mathematical
Society, Vol. 1, No. 2, 1979, pp. 337–372.
doi.org/10.1090/S0273-0979-1979-14598-1

[80] Donald E. Knuth, TEX and Metafont —
New directions in typesetting, Digital Press
and American Mathematical Society, 1979.

[81] Donald E. Knuth, The Letter S,
The Mathematical Intelligencer, Vol. 2 (1980),
pp. 114–122.

[82] Donald E. Knuth, The Concept of a Meta-Font,
Visible Language, Vol. 16, No. 1, Jan. 1982,
pp. 3-27. journals.uc.edu/index.php/vl/
article/view/5329

[83] Donald E. Knuth, The METAFONTbook,
Computers & Typesetting, Reading, MA:
Addison-Wesley, 1986.

Prehistory of digital fonts

https://doi.org/10.1145/356887.356891
https://lspwww.epfl.ch/publications/typography/ngtrrpf_10.pdf
https://lspwww.epfl.ch/publications/typography/ngtrrpf_10.pdf
https://lspwww.epfl.ch/publications/typography/vataot.html
https://lspwww.epfl.ch/publications/typography/vataot.html
https://archive.org/details/hershey-calligraphy_for_computers
https://archive.org/details/hershey-calligraphy_for_computers
https://tug.org/docs/hobby/hobby-thesis.pdf
https://tug.org/docs/metapost/mpman.pdf
https://archive.org/details/MetamagicalThemas
https://lspwww.epfl.ch/publications/typography/pfbosc.pdf
https://lspwww.epfl.ch/publications/typography/pfbosc.pdf
https://archive.org/details/digitalformatsfo0000karo
https://archive.org/details/digitalformatsfo0000karo
http://cajun.cs.nott.ac.uk/compsci/epo/papers/volume4/issue3/ep044pk.pdf
http://cajun.cs.nott.ac.uk/compsci/epo/papers/volume4/issue3/ep044pk.pdf
https://books.google.com/books?id=oomrCAAAQBAJ
https://books.google.com/books?id=oomrCAAAQBAJ
https://archive.org/details/typesetter-independent-troff
https://archive.org/details/typesetter-independent-troff
https://doi.org/10.1145/800209.806459
https://archive.org/details/pic-graphics-language
https://archive.org/details/pic-graphics-language
https://dl.acm.org/doi/10.1145/360680.360684
https://dl.acm.org/doi/10.1145/360680.360684
https://christoph-knoth.com/shared/computed_type_-_christoph_knoth.pdf
https://christoph-knoth.com/shared/computed_type_-_christoph_knoth.pdf
https://purl.stanford.edu/jy605yq4819
https://doi.org/10.1090/S0273-0979-1979-14598-1
https://journals.uc.edu/index.php/vl/article/view/5329
https://journals.uc.edu/index.php/vl/article/view/5329

56 TUGboat, Volume 44 (2023), No. 1

[84] Donald E. Knuth, Computer Modern Typefaces,
Reading, MA: Addison-Wesley, 1986.

[85] Donald E. Knuth, A Punk Meta-Font,
TUGboat, Vol. 9 (1988), No. 2, pp. 152–168.
tug.org/TUGboat/tb09-2/tb21knut.pdf

[86] Donald E. Knuth, Digital Typography,
xvi+685pp. CSLI Lecture Notes, no. 78, Stanford,
California, 1999.

[87] Eliyezer Kohen, A simple and e昀케cient way to
design middle resolution fonts, in [17, pp. 3–19]
and [109, pp. 22–33 (1989)].

[88] Sacha Krakowiak, Xerox PARC et la naissance
de l’informatique contemporaine, Interstices
(revue Inria en ligne), 2012. interstices.info/
jcms/int_64091/xerox-parc-et-la-naissance-
de-l-informatique-contemporaine

[89] Gerry Leonidas, Farewell, Richard Southall,
17 June 2015. leonidas.net/2015/06/17/
farewell-richard-southall/

[90] Raph Levien and Carlo H. Séquin, Interpolating
Splines: Which is the fairest of them all?,
Computer-Aided Design & Applications, Vol. 6,
No. 1, 2009, pp. 91–102. http://graphics.
berkeley.edu/papers/Levien-IIS-2009-06/

[91] Pierre MacKay, The KATIB System, a
revolutionary advancement in Arabic script
typesetting by means of the computer, Scholarly
Publishing Vol. 8, No. 2, 1977, pp. 142–150.

[92] Pierre A. MacKay, Looking at the Pixels.
Quality Control for 300 dpi Laser Printer Fonts,
Especially METAFONTs, in [109, pp. 205–217
(1991)].

[93] Julien Mailland and Kevin Driscoll, Minitel:
The Online World France Built Before the Web,
20 June 2017. spectrum.ieee.org/minitel-the-
online-world-france-built-before-the-web

[94] Ladislas Mandel, Un caractère pour annuaires
téléphoniques, Communication et langages, n° 39,
1979, pp. 51–61.

[95] Ladislas Mandel, Naissance d’une écriture –
Ré昀氀exions sur la typographie et la télématique,
dans L’écriture télématique, années zéro [35,
pp. 41–49].

[96] Ladislas Mandel, Du pouvoir de l’écriture,
Atelier Perrousseaux éd., 1998.

[97] Marie Marchand, La Grande Aventure du
Minitel, Librairie Larousse, 1987.

[98] M. V. Mathews, Carol Lochbaum, and
Judith A. Moss, Array: Three Fonts of
Computer-drawn Letters, The Journal of
Typographic Research, Vol. 1, No. 4, Oct. 1967,
pp. 345–356. journals.uc.edu/index.php/vl/
article/view/5008

[99] Paul McJones, Xerox Alto 昀椀le system archive,
Computer History Museum, last revised
9 Nov. 2017. xeroxalto.computerhistory.org

[100] H.W. Mergler and P.M. Vargo, One Approach
to Computer Assisted Letter Design, The Journal
of Typographic Research, Vol. 2, No. 4, Oct. 1968,
pp. 299–322. journals.uc.edu/index.php/vl/
article/view/5032

[101] Stanley Morison, On Some Italian Scripts of
the XV and XVI Centuries, in Letter forms,
typographic and scriptorial: Two essays on
their classi昀椀cation, history, and bibliography,
Typophiles, pp. 95–129, 1968.

[102] Heidrun Osterer and Philipp Stamm,
Adrian Frutiger – Caractères: L’œuvre Complète,
Walter de Gruyter, Switzerland, 2012.

[103] Victor Ostromoukhov and Jacques André,
Punk : de METAFONT à PostScript, Cahiers
GUTenberg, n° 4 (1989), pp. 23–28.
http://numdam.org/item/CG_1989___4_23_0/

[104] Scott Pakin, The Comprehensive LATEX Symbol
List, 2021. ctan.org/pkg/comprehensive

[105] Arthur Phillips, Computer Peripherals &
Typesetting, London, Her Majesty’s Stationery
O昀케ce, 1968.

[106] Vaughan Pratt, Techniques for conic splines,
ACM SIGGRAPH Computer Graphics,
Vol. 19, No. 3, July 1985, pp. 151–159.
doi.org/10.1145/325165.325225

[107] Lilian M.C. Randall, A Nineteenth Century
‘Medieval’ Prayerbook Woven in Lyon, in Art the
Ape of Nature: Studies in Honor of H.W. Janson,
Moshe Barasch, Lucy F. Sandler (eds), New York,
NY: Harry N. Abrams, 1981, pp. 651–668.

[108] Brian K. Reid and David Hanson, An annotated
bibliography of background material on text
manipulation, Proceedings of the ACM SIGPLAN
SIGOA Symposium on Text Manipulation, ACM
SIGPLAN Notices, Vol. 16, No. 6, June 1981,
pp. 157–160. doi.org/10.1145/800209.806467

[109] RIDT, conference series proceedings:
• Raster Imaging and Digital Typography,

Lausanne, Oct. 1989 (Jacques André and
Roger Hersch, eds.), Cambridge University
Press, 1989. books.google.com/books?id=
mj09AAAAIAAJ

• Raster Imaging and Digital Typography II ,
Boston, Oct. 1991 (Robert A. Morris
and Jacques André, eds.), Cambridge
University Press, 1991. books.google.com/
books?id=Q9KtGcpfNgUC

• Raster Imaging and Digital Typography,
special issue of Electronic Publishing
Origination Dissemination and Design,
(Jacques André, Jakob Gonczarowski,
and Richard Southall, eds.), Wiley,
1994. books.google.com/books?id=
gJcVAQAAIAAJ

• Electronic Publishing, Artistic Imaging,
and Digital Typography (Roger Hersch,

Jacques André

https://tug.org/TUGboat/tb09-2/tb21knut.pdf
https://interstices.info/jcms/int_64091/xerox-parc-et-la-naissance-de-l-informatique-contemporaine
https://interstices.info/jcms/int_64091/xerox-parc-et-la-naissance-de-l-informatique-contemporaine
https://interstices.info/jcms/int_64091/xerox-parc-et-la-naissance-de-l-informatique-contemporaine
https://leonidas.net/2015/06/17/farewell-richard-southall/
https://leonidas.net/2015/06/17/farewell-richard-southall/
http://graphics.berkeley.edu/papers/Levien-IIS-2009-06/
http://graphics.berkeley.edu/papers/Levien-IIS-2009-06/
https://spectrum.ieee.org/minitel-the-online-world-france-built-before-the-web
https://spectrum.ieee.org/minitel-the-online-world-france-built-before-the-web
https://journals.uc.edu/index.php/vl/article/view/5008
https://journals.uc.edu/index.php/vl/article/view/5008
https://xeroxalto.computerhistory.org
https://journals.uc.edu/index.php/vl/article/view/5032
https://journals.uc.edu/index.php/vl/article/view/5032
http://numdam.org/item/CG_1989___4_23_0/
https://ctan.org/pkg/comprehensive
https://doi.org/10.1145/325165.325225
https://doi.org/10.1145/800209.806467
https://books.google.com/books?id=mj09AAAAIAAJ
https://books.google.com/books?id=mj09AAAAIAAJ
https://books.google.com/books?id=Q9KtGcpfNgUC
https://books.google.com/books?id=Q9KtGcpfNgUC
https://books.google.com/books?id=gJcVAQAAIAAJ
https://books.google.com/books?id=gJcVAQAAIAAJ

TUGboat, Volume 44 (2023), No. 1 57

Jacques André, and Heather Brown, eds.),
Lecture Notes in Computer Science #1375,
Springer-Verlag, 1998. books.google.com/
books?id=bo453EDNBp4C

[110] Frank Romano (with Miranda Mitrano),
History of Desktop Publishing, Oak Knoll Press,
2019.

[111] Richard Rubinstein, Digital Typography — an
introduction to type and composition for computer
system design, Reading, MA: Addison-Wesley,
1988.

[112] Lynn Ruggles, Letterform Design Systems,
Stanford University Technical Report
STAN-CS-83-971, 1973. http://i.stanford.
edu/pub/cstr/reports/cs/tr/83/971/CS-TR-83-
971.pdf

[113] Stewart C. Russell, Hershey Font Outlines,
May 2014. scruss.com/wordpress/wp-content/
uploads/2014/05/hershey_samples.pdf

[114] John Seybold and Fritz Dressler,
Publishing From the Desktop, New York, NY:
Bantam Books, 1987. archive.org/details/
publishingfromde0000seyb

[115] Richard Southall, Interfaces between the
designer and the document, in Structured
documents (Jacques André, Richard Furuta,
and Vincent Quint, eds.), Cambridge University
Press, 1989, pp. 119–131. dl.acm.org/doi/10.
5555/73173.73179

[116] Richard Southall, METAFONT in the
Rockies: The Colorado Typemaking Project,
in EP’98 [109, 167–180 (1998)]; link.
springer.com/chapter/10.1007%2FBFb0053270.
Republished in Computers and Typography 2
(Rosemary Sassoon, ed.), Intellect Books, 2002;
books.google.com?id=wdYmvQD5C8IC

[117] Richard Southall, Printer’s Type in the
Twentieth Century — Manufacturing and Design
Methods, The British Library/Oak Knoll Press,
2005.

[118] Bob Sproull, Font Representations and
Formats, Internal note, Xerox PARC, Mar. 1977.
xeroxparcarchive.computerhistory.org/
indigo/printingdocs/.FONTFORMATS.PRESS!
1.pdf

[119] David R. Siegel, The Euler Project at Stanford,
The Department of Computer Science, Stanford
University, Stanford, 1985.

[120] David Sudweeks, Type Trends: Superelliptical
Type, FontShop Typographic Trends, Nov. 2012.
fontshopblog.wordpress.com/2012/11/22/type-
trends-superelliptical-type

[121] Edward Tufte, Visual Explanations — Images
and Quantities, Evidence and Narrative, Cheshire,
CT: Graphic Press, 1997.

[122] Gerard Unger, The Design of a Typeface, Visible
Language, Vol. 13, No. 2, Apr. 1979, pp. 134–149.
journals.uc.edu/index.php/vl/article/view/
5266

[123] Gerard Unger, in Other Replies to Donald E.
Knuth’s article “The Concept of a Meta-Font”,
Visible Language, Vol. 16, No. 4, Oct. 1982,
pp. 353–356. journals.uc.edu/index.php/vl/
issue/view/360

[124] Andries Van Dam and Eric E. Rice, On-line
Text Editing: A Survey, Computing Surveys,
Vol. 3, No. 3, Sept. 1971, pp. 93–114.
doi.org/10.1145/356589.356591

[125] Yue Wang, Interview with Charles Bigelow,
TUGboat, Vol. 34 (2013), No. 2, pp. 136–167.
tug.org/TUGboat/tb34-2/tb107bigelow-
wang.pdf

[126] Matthew Westerby, The Woven Prayer Book:
Cocoon to Codex, Satellite Series. Paris, France &
Chicago, IL, USA: Les Enluminures, 2019.

[127] Norman M. Wolcott and Joseph Hilsenrath,
A Contribution to Computer Typesetting
Techniques: Tables of coordinates for Hershey’s
Repertory of Occidental Type Fonts and Graphic
Symbols, National Bureau of Standards,
NBS Special Publication 424, Apr. 1976.
scruss.com/wordpress/wp-content/uploads/
2014/04/tables_of_coordinates_for_
hersheys_repertory_of_occidental_type_
fonts-wolcott_and_hilsenrath.pdf

[128] Norman M. Wolcott, FORTRAN IV Enhanced
Character Graphics, National Bureau of
Standards, Institute for Computer Sciences
and Technology, NBS Special Publication
500-32, Apr. 1978, 64 pp. archive.org/details/
fortranivenhance5003wolc

[129] Hermann Zapf, Hermann Zapf and His Design
Philosophy, Chicago, IL: Society of Typographic
Arts, 1987. Introduction by Carl Zahn.

[130] Herman Zapf, Vom Formgesetz der
Renaissance-Antiqua, Der Polygraph, Heft 21.

� Jacques André
https://jacques-andre.fr

Prehistory of digital fonts

https://books.google.com/books?id=bo453EDNBp4C
https://books.google.com/books?id=bo453EDNBp4C
http://i.stanford.edu/pub/cstr/reports/cs/tr/83/971/CS-TR-83-971.pdf
http://i.stanford.edu/pub/cstr/reports/cs/tr/83/971/CS-TR-83-971.pdf
http://i.stanford.edu/pub/cstr/reports/cs/tr/83/971/CS-TR-83-971.pdf
https://scruss.com/wordpress/wp-content/uploads/2014/05/hershey_samples.pdf
https://scruss.com/wordpress/wp-content/uploads/2014/05/hershey_samples.pdf
https://archive.org/details/publishingfromde0000seyb
https://archive.org/details/publishingfromde0000seyb
https://dl.acm.org/doi/10.5555/73173.73179
https://dl.acm.org/doi/10.5555/73173.73179
https://link.springer.com/chapter/10.1007%2FBFb0053270
https://link.springer.com/chapter/10.1007%2FBFb0053270
https://books.google.com?id=wdYmvQD5C8IC
https://xeroxparcarchive.computerhistory.org/indigo/printingdocs/.FONTFORMATS.PRESS!1.pdf
https://xeroxparcarchive.computerhistory.org/indigo/printingdocs/.FONTFORMATS.PRESS!1.pdf
https://xeroxparcarchive.computerhistory.org/indigo/printingdocs/.FONTFORMATS.PRESS!1.pdf
https://fontshopblog.wordpress.com/2012/11/22/type-trends-superelliptical-type
https://fontshopblog.wordpress.com/2012/11/22/type-trends-superelliptical-type
https://journals.uc.edu/index.php/vl/article/view/5266
https://journals.uc.edu/index.php/vl/article/view/5266
https://journals.uc.edu/index.php/vl/issue/view/360
https://journals.uc.edu/index.php/vl/issue/view/360
https://doi.org/10.1145/356589.356591
https://tug.org/TUGboat/tb34-2/tb107bigelow-wang.pdf
https://tug.org/TUGboat/tb34-2/tb107bigelow-wang.pdf
https://scruss.com/wordpress/wp-content/uploads/2014/04/tables_of_coordinates_for_hersheys_repertory_of_occidental_type_fonts-wolcott_and_hilsenrath.pdf
https://scruss.com/wordpress/wp-content/uploads/2014/04/tables_of_coordinates_for_hersheys_repertory_of_occidental_type_fonts-wolcott_and_hilsenrath.pdf
https://scruss.com/wordpress/wp-content/uploads/2014/04/tables_of_coordinates_for_hersheys_repertory_of_occidental_type_fonts-wolcott_and_hilsenrath.pdf
https://scruss.com/wordpress/wp-content/uploads/2014/04/tables_of_coordinates_for_hersheys_repertory_of_occidental_type_fonts-wolcott_and_hilsenrath.pdf
https://archive.org/details/fortranivenhance5003wolc
https://archive.org/details/fortranivenhance5003wolc

58 TUGboat, Volume 44 (2023), No. 1

Typographers’ Inn
Peter Flynn

Fast startup with LATEX — a video challenge
It’s usually unfair to compare LATEX with other type-
setting systems such as InDesign or FrameMaker,
and the old DTP favourites like PageMaker, Ven-
tura, 3B2, and QuarkXPress, some of which are still
in use. The reason is not just in some way that
‘LATEX is “better” ’ — whether you believe that to
be true or not — it’s that they work di昀昀erently, and
LATEX has a level of programmability and style of au-
tomation not as easily accessible in other systems.

Other systems do of course have macros and
styles, and many have an internal scripting language.
InDesign uses Extendscript;1 XPress uses Apple-
Script; Frame uses Extendscript also; PageMaker
uses VBScript; 3B2 o昀昀ers its own scripting language
as well as Perl. But LATEX’s programmability is not
an add-on or plugin or third-party language, it is the
TEX typesetting language, inherently a part of the
design from the ground up; and LuaLATEX provides
a language with external acceptance.

So when my attention was drawn to a YouTube
video put out by Los Angeles online design educators
Type-Ed, called Typeset a page in under 10 minutes
in InDesign [2], I wondered how that would compare
to LATEX. We’re not talking here about including the
learning curve in either case — that would stretch it
to an hour or so for LATEX and I have no idea how
long it takes to learn InDesign to the level needed.
There is no voice-over, just music and clicks.

Figure 1: Inline styles (run-in paragraph heads) being
created in a clip from the video Typeset a page in
under 10 minutes in InDesign.

The video (Figure 1, youtube.com/watch?v=
VVIQE6kht8c) is speeded up for brevity, and has a

1 InDesign provides access to its own Document Object
Model (DOM) so in theory you can use other scripting lan-
guages like AppleScript or VBScript.

lot of clicking on and o昀昀 of menus, selecting options
and values. It starts as a single-column text docu-
ment on Letter paper, and they import the mate-
rial from an external plain text 昀椀le all about typo-
graphy. The text is set in Minion Pro and is edited
to elide multiple spaces, and then cast into two col-
umns . . . and then three, then the size is changed
from 10pt to 12pt to 8¼pt to see the e昀昀ect. Styling
follows, 昀椀rst with paragraph heads, then with sec-
tion heads, and 昀椀nally the title. There is a lot of
adjustment to the appearance of the paragraphs:
changing the set and the spacing; but the end result
is very good, and makes an excellent one-o昀昀 example
document to sell people on the idea that InDesign
makes it easy to lay out one-o昀昀 documents.

A few stop–start viewings made it clear that
most of the formatting is fairly standard, and can
easily be done in LATEX using standard packages.
I’m not sure about the practice of narrowing the set
within a multi-column page on a column-by-column
basis (the objective seems to be to regularize some
parts of the ragged-right setting), but without any
narration, the objectives are sometimes unclear.

To test this, I made a small proof-of-concept
using the Wikipedia text on Typography, but there
is signi昀椀cant editing work needed to get it into line
with the text used in the video, and a need for abil-
ities in creating a video from screen captures which
are outside my skill-set. If there is a LATEX user out
there who is also 昀氀uent in InDesign, I’d be inter-
ested to see someone dissect the video with a view
to making one for LATEX, as I think it would be a
good example for users to see a real-life document
being brought into a popular format.

Footnotes as never before or since — a text
challenge
A historian on Twitter tweeted (at twitter.com/
garius/status/1570771789827166208):

It’s Friday. Have some history.
So you know Hadrian’s Wall? Well for over 1000
years everyone thought it was built by someone
else.
Until, in 1840, John Hodgson, an unknown
Northumbrian clergyman published the LONGEST
footnote in history.

It ran to 173 pages. After the footnote, the main
text simply carries on with the subject of the local
history as if nothing had happened. If you can’t
read the thread, there’s a spoiler in this footnote.2

2 Hodgson was embarrassed by the fact that his magnum
opus on Northumbrian history would likely be overshadowed

doi.org/10.47397/tb/44-1/tb136inn

Peter Flynn

https://youtube.com/watch?v=VVIQE6kht8c
https://youtube.com/watch?v=VVIQE6kht8c
https://twitter.com/garius/status/1570771789827166208
https://twitter.com/garius/status/1570771789827166208
https://doi.org/10.47397/tb/44-1/tb136inn

TUGboat, Volume 44 (2023), No. 1 59

The book [1] is now online in Google Books
at books.google.co.uk/books?id=D1IGAAAAQAAJ,
where you can download a PDF; and there on p.149
Hodgson starts his explanation (Figure 2).

Figure 2: The start of the longest footnote.

As with the InDesign video, I had to see what
LATEX would make of 173 pages of a single foot-
note, but pdftotext does not convert Google’s PDFs
to plaintext well, as multiple lines of text from one
column get interleaved with similar-sized blocks of
text from the other, despite the vertical rule. Unfor-
tunately Apache PDFbox fared no better, interleav-
ing almost every single pair of lines. This appears
to be a problem with the way in which the Google
scan and OCR have been synchronised, presumably
done for the purposes of searching, not reprocessing.

Looking through the pages, there are footnotes
within the footnote; run-in subheadings; lists; bib-
liographic references between paragraphs; tabular
settings; embedded graphics, including typographic
reconstructions of inscriptions across both columns;
and genealogical tree-charts — in fact almost the en-
tire panoply of typographic requirements needed for
a whole book.
by including his discovery that the Roman wall everyone until
then thought was built by Septimius Severus was actually
built by Hadrian, so he put it in a footnote.

By comparison, the page layout itself would be
unproblematic, except that the dblfnote package ap-
pears to reset to single-column after a page-break,
and would in any case need modifying to allow re-
version to single-column mode in mid-page for an
illustration, like multicol does.

However, the simple answer to my original ques-
tion is that LATEX has no problem whatever in main-
taining scope for 173 pages of footnote. However, a
lot of work would be needed for a full reconstruction
to test if all the formatting can be done, if someone
[else] would like to take it up.

Afterthought: List spacing
Just browsing the documentation for an old Tom-
Tom VIA 52 satnav and discovered that the main
screen diagram has eleven callouts (icons labelled
1–11) but the list explaining them runs from one to
nine, and then restarts at one (Figure 3).

Figure 3: Callout list misnumbered

It looks very much as if the width of the indent
provided for the list geometry was set to allow just a
single digit . . . but if that was so, truncation on the
left-hand side would have given zero (from the 10)
and one (from the 11); truncation on the right-hand
side would give two ones. So we must conclude that
at 10, the list was actually reset to start at one.
Just a little thing to be aware of when you design
list indents. And, of course, use LATEX, not Word,
InDesign, or anything else.

References
[1] J. Hodgson. History of Northumberland. [Published]

for the Author, Newcastle, Jun 1840.

[2] Type-Ed. Typeset a page in under 10 minutes in
InDesign, May 2016.
youtube.com/watch?v=VVIQE6kht8c

� Peter Flynn
Textual Therapy Division,

Silmaril Consultants
Cork, Ireland
Phone: +353 86 824 5333
peter (at) silmaril dot ie
blogs.silmaril.ie/peter

Typographers’ Inn

https://books.google.co.uk/books?id=D1IGAAAAQAAJ
https://youtube.com/watch?v=VVIQE6kht8c

60 TUGboat, Volume 44 (2023), No. 1

An artist’s journey on a TUGboat

Tine Wilde

Abstract

How does a coloured bird end up on a TUGboat?
This is the story of an artist who studied philosophy
and combined her skills in a PhD at the University of
Amsterdam (NL). In order to write her dissertation,
she had to learn the LATEX typesetting programme.
Many years later, she still makes art and still writes
down her thoughts in LATEX, with the Memoir class
and X ELATEX as first choice. Always trying to stretch
the limits of the programme to her convenience.

This essay is not a technical article written by
a developer conjuring up ingenious innovations to
the LATEX programme. By contrast, it discusses the
relationship between LATEX, art (photography) and
the concept of ‘measurability’ from the perspective
of a philosophising artist.

1 Introduction

After working as a visual artist for some time, I de-
cided at some point to take my work to the next level
with a study in philosophy. I only planned for a Mas-
ter’s degree, but things would turn out differently.
Thanks to my supervisor Martin Stokhof, I got the
opportunity to extend my research in a PhD project
which would enable me to combine my artwork with
philosophical insights through the ideas of Ludwig
Wittgenstein. Since the study of Wittgenstein was
part of analytic philosophy, and analytic philosophy
was part of the Institute for Logic, Language, and
Computation (www.illc.uva.nl), I was housed to-
gether with logicians and computer specialists. A
preliminary condition was that every doctoral can-
didate would write their dissertation in the LATEX
typesetting programme. Thus, so did I.

While most of the PhD students used the LATEX
programme to typeset mathematical or logical formu-
las, i.e., the scientific writing stuff, I was allowed to
employ it freely and without any limitations. Excel-
lent, yet I had no idea of any typesetting programme
to begin with. I had written my Master’s thesis in
Word. A programme I disliked, mainly because of all
sorts of instabilities. An alternative was highly ap-
preciated, but . . . what was LATEX?? I started out by
buying The LATEX Companion [6] in which numerous
issues on fonts, tables, colours, and abbreviations
were spelled out. The book is still on my desk after
all these years and now reads more like a bible, al-
though much can also be found online on the internet
these days. Subsequently, I installed TeXShop and

BibTEX on my Mac so that it began to look like a
complete typesetting programme.

What helped and still helps me most is the way
in which the programme forces one to structure the
writing, and, by consequence, the thinking. Although
it took some effort to learn how everything was set
up and could be utilised, I loved the outcome. The
results looked great, and, no instabilities in contrast
to the Microsoft Word programme. Another qual-
ity I had never encountered elsewhere was the fact
that I could add text without actually showing it in
the final PDF file. A wonderful feature for storing
remarks that were intended for my eyes only. Fur-
thermore, the BibTEX bibliography turned out to be
a marvellous tool. But what struck me most was the
fact that all this was open source: made to be used—
not to be bought and sold. A concept that needs to
be cherished, in my view. There was just one prob-
lem left: the artistic world and more generally the
world outside academia were by and large ignorant
or reluctant to adopt the LATEX programme and its
benefits.

Printers specialised in art usually work with the
Word programme and transfer the text, after editing
and proofreading, into InDesign. For them, a LATEX
programme is beyond their scope. To some, it is a
serious threat, while others declared it something
weird from Mars. And me somewhere in between,
being tossed around on a TUGboat. The two worlds
clashed on this issue. I was keen on working with
the LATEX programme, and I wanted my dissertation
to be printed by a renowned printer specialised in
art. In the end, the printer and I agreed to use the
LATEX files instead of InDesign, but not until after
some fierce discussion and deliberation [7].

I kept using LATEX after having finished my PhD,
and extended my LATEX skills with the Memoir class
and X ELATEX. Playing with the system and produc-
ing all kinds of templates to make life easy since my
projects, merging philosophical insights with artistic
outcome, are complex and more often than not take
several years to complete. In order to keep track, I
need text in which I can add many references and
cross-references, as well as private considerations. In
case I have to apply for funding at multiple organisa-
tions, these elaborated texts help me get my insights
across concisely.

Yet, there is another way in which the typeset-
ting programme is helpful. It stimulates me to think
about the ideas concerning creative processes, the
nature of ‘reality’, and the concept of ‘measurability’.
In the next section, I will give you an illustration of
how the LATEX programme intrinsically has found its
way into my artistic practice.

doi.org/10.47397/tb/44-1/tb136wilde-art

Tine Wilde

https://www.illc.uva.nl
https://doi.org/10.47397/tb/44-1/tb136wilde-art

TUGboat, Volume 44 (2023), No. 1 61

2 Measurability

Within my research into the nature of ‘reality’, what
fascinates me as a visual artist as well as a philoso-
pher is the notion of measurability. The boundaries
between fixed and fluid; between sharp and vague;
between coloured and non-coloured; between love
and hate. In short, I would ask myself: when does
one state of affairs turn into the other? When is
something still measurable? And: is it important for
something to be measurable at all? Trying to shed
light on these questions, I merge art (photography)
with philosophy and theoretical considerations from
physics. Allow me to give you an example by high-
lighting a project I have been working on since 2020.

Project Zero Point

ZERO POINT #S2021-03k. Picturework, dimensions 71x71cm.

One single piece of glassware was taken as a start-
ing point for transformational processes, in which
photographic images were changed into thirty-eight
multi-layered compositions distributed over four se-
ries. Pictorial spaces that are variable and subject
to change in an experimental, unconscious method
of choice, inspiration, and demolition. The results
of split, remodel, and repeat invite you to explore
and contemplate the notions of space and time as
a dimension in which meaning remains something
definitely unfinished, but in which measurability is
crucial. After all, when there is nothing to hold on
to, you have to choose a point of departure from
which you can (re)organise your life.

The most significant literature and validation
for project Zero Point is the work of David Bohm
(1917–1992) with his research into the underlying

meanings concerning quantum theory. As a theoreti-
cal physicist, he was one of the founders of quantum
physics who worked under Oppenheimer on the Man-
hattan Project and collaborated at Princeton with
Einstein. In an attempt to combine relativity and
quantum theory, he discusses in Wholeness and the
Implicate Order [3] in what ways reality lies beyond
appearances. Speculating that the proton takes the
form of a wave collapsing inward in and expanding
outward from all space, rather than being a solid,
continuous particle in spacetime.

ZERO POINT #S2021-03l. Picturework, dimensions 71x71cm.

There is a hidden regime of reality, Bohm says, that
is and always will be inaccessible to us. From this
deeper order he calls the ‘implicate order’ the or-
dinary notions appear in the ‘explicate order’, i.e.,
the world as we know and experience it with our
senses. The model for this proposed implicate order
is not based on ‘things’ considered as objects, or phe-
nomena in a Cartesian space-time order, but rather
a lens-like flowing of simultaneously enfolding and
unfolding dimensions between an implicate and an
explicate order.

Simply put, the implicate order is the ‘ground’
within which the entire universe is enfolded at each
‘point’ in spacetime, manifesting itself in an explicate
unfolding order of a world we can see, hear, smell,
touch and feel. It is an explicate order and for us
actually present as a direct surface order. Under-
neath, there is a deeper, for humans only indirectly
knowable or inaccessible order. A multidimensional
sea of energy as an implicate order from which parti-
cles and spacetime can arise. This underlying reality
and the explicate order as we experience it daily are

An artist’s journey on a TUGboat

62 TUGboat, Volume 44 (2023), No. 1

intrinsically interwoven, amounting to one non-local,
non-analysable breath breathing system, enfolding
and unfolding at every moment into a complex, never
fully knowable totality.

Bohm’s concept of ‘hidden variables’ [1, 2] op-
erates at the boundary of spacetime: “We come to
a certain length at which the measurement of space
and time becomes totally indefinable. Beyond this,
the whole notion of space and time as we know it
would fade out into something that is at present un-
specifiable. So, it would be reasonable to suppose,
at least provisionally, that this is the shortest wave-
length that should be considered as contributing to
the ‘zero point’ energy of space. When this length is
estimated, it turns out to be about 10−33cm. This is
much shorter than anything thus far probed in phys-
ical experiments (which have gone down to about
10−17cm or so). If one computes the amount of en-
ergy that would be in one cubic centimeter of space,
with this shortest possible wavelength, it turns out
to be very far beyond the total energy of all the
matter in the known universe.” [3, p. 190]. David
Bohm called this calculation the ‘zero-point’ energy
for a point of space. Here, he predicts, will be found
a boundary separating an outer, explicate order.

In a 1987 paper [4], Bohm suggests that there
may be multiple explicate orders as suborders of
a single, infinitely connected implicate order. “A
kind of universal process of constant creation and
annihilation, determined through the super-quantum
potential, so as to give rise to a world of form and
structure in which all manifest features are only
relatively constant, recurrent and stable aspects of
this whole.” [4, p. 43]. Further elaboration on this
topic would exceed the scope of this article. A
good introduction to Bohm’s thoughts on the sub-
ject is now recorded on film and can be found at
www.infinitepotential.com. On this website, you
also will find additional illuminating interviews with
Roger Penrose and Basil Hiley, among others.

David Bohm’s search for a new notion of order
amounts to a ‘no final form’ of insight. He urges
us to view the world not as being constituted by
basic objects or building blocks, but in terms of a
universal flux of events and processes. Each rela-
tively autonomous and stable structure should be
understood as a product that has been formed in the
whole flowing movement that will ultimately dissolve
back in this moment. How it forms and maintains
itself depends on the place and function in the whole.

Photography and Philosophy

We, as human beings, are placed on a planet where
we are made up of, but also are dependent on, our

ability to recognise patterns on the basis of similar
differences and different similarities. First perceptu-
ally: ‘unguided’ we recognise patterns in the blots on
a brick wall or on wallpaper. Leonardo da Vinci al-
ready pointed at this faculty as a starting point for all
art. Or in rituals in which a particular organisation of
lines and forms produces a mesmerising effect, like a
mandala or a kōlam. Second, as an attempt to make
human knowledge measurable through ‘information’,
that is, every amount of data, code, or text that can
be preserved, sent, received or manipulated in any
medium. Consider, for example, the mathematical
numbers and proportions that can be grasped by the
mind. Plato stated that these abstractions were of
a higher order than the phenomena. According to
him, the senses merely produce opinions, whereas
the abstractions deliver certain, that is, ‘true’ and
‘perfect’ knowledge. In later times, this idea was
refuted and certainty was exchanged for probabil-
ity. We have now reached the point at which we are
slowly coming to understand that true knowledge
means insight. Insights that are neither true nor
false, but continuously illuminate different aspects of
specific regions or frameworks. In consequence, we
will never reach crystal-clear conclusions.

The all-encompassing truth about the universe,
then, is enclosed in the possibilities and constraints
of the human powers of imagination. In the end, even
a scientific system is but a free play with symbols
according to (logical) arbitrarily given rules of the
game—a free invention. “Thinking without the
positing of categories and of concepts in general
would be as impossible as breathing in a vacuum,”
as Einstein would put it [5, p. 674]. Our concepts
are tools, of which we have to assume that they will
behave differently in different domains. On the other
hand, rule following constitutes a general framework
in which it is possible to compare various (language)
games, according to Wittgenstein [7]. Experience
and knowledge are interconnected and undivided
activities, and, as a result, continuously susceptible
to change and adjustments.

Already at a very young age, I was fascinated by
the patterns that could be detected on the medallion
wallpaper of my aunt. At that time, we spent our
summer holidays with a reformed family who were
living on the south coast of the Netherlands. There
was only beach and sea and family members—no
newspaper nor any radio or television set. Bored
stiff, I began to use the small camera my father had
bought me as a possibility to escape the somewhat
restricted atmosphere. Catching the various patterns
on the wallpaper on camera—whether distorted or
not—made me invent all sorts of landscapes, faces,

Tine Wilde

https://www.infinitepotential.com

TUGboat, Volume 44 (2023), No. 1 63

ghostly suggestions and the stories that came with
them. I did not think these were of the same quality
as the stories told by Star Trek or The Jacksons— for
me the ultimate TV series back then—but at least
they provided a way out of boredom. It was only
much later that I began to appreciate these lonely
holidays and the ways in which my imagination had
been triggered by camera and wallpaper.

It is no coincidence, then, that later in life my
favourite medium to work with as an artist became
photography. More specifically, the ‘digital patterns’
that make up for the images. It is the main reason
why I call my photographic work ‘pictureworks’. Not
questioning the image as we perceive it in documen-
taries, reports, or events, but investigating how an
image may appear to us. As a result, no single deci-
sion is conclusive, but understood as part of a series of
clear and explicit ‘quantum-decisions’. In this concep-
tion, the ideas of the photographer are intrinsically
tied up with the hard-wired, pre-programmed ‘infor-
mation’ inside the camera, amounting in a joined
venture to the final results.

Consequently, the pictureworks are not repre-
sentations, but rather the energy of an unseen and
unknown world in which the camera acts as a con-
centrated point of consciousness, trying to locate the
unknown in a reciprocal poetic resonance between
the explicate structures of the ordinary world and the
implicate processes of the human soul. In the dynam-
ics between the explicate and the implicate, just like
between the seeing and the thinking, pictureworks,
whether they are presented as a single work of art,
a choice sequence or an installation, are not a point
of view, but a field of perception and cognition that
tries to connect us with the deeper levels of life: the
big unanswerable questions, the mysteries. From this,
then, photography is understood as a reflective and
analytic ‘philosophical’ medium. The pictureworks
have nothing to do with reports, stories, documen-
taries, registered events, and the like. Rather, they
originate in images, taken from everyday reality and
used as raw material, to be transformed into works
of art that seek to touch upon the viewer’s infinite
number of subtle feelings.

More thoughts on the subject are in a paper I
wrote in 2021 for Pari Perspectives [8]. The paper
as well as a short video about the making of project
Zero Point can be accessed from my website.

3 Open Source–Open Mind

Within the undivided wholeness of flowing move-
ment, we make a move and move around, constantly
creating some order that structures our everyday life.
More or less in the same way as the LATEX typeset-

ting programme structures my thoughts into words
and sentences and orders them into a comprehen-
sible whole, so as to be able to communicate with
others. Therefore, a huge THANK YOU to all the
developers and people who in one way or another
contribute to the open-source environment of the
LATEX typesetting programme, offering their spare
time to adjust, improve, and alter the typesetting
system. In the end, LATEX is not about a system,
or any language for that matter, but about creative
people, trying to come up with solutions which will
make the world a somewhat more open and more
interesting place to be.

Pictureworks

Zero Point #S2021-03k and Zero Point #S2021-03l
were printed by courtesy of the artist ©2022 Tine
Wilde c/o Pictoright, Amsterdam.

References

[1] D. Bohm. A Suggested Interpretation of
the Quantum Theory in Terms of “Hidden”
variables. I. Physical Review 85(2):166–179,
Jan. 1952.

[2] D. Bohm. A Suggested Interpretation of
the Quantum Theory in Terms of “Hidden”
variables. II. Physical Review 85(2):180–193,
Jan. 1952.

[3] D. Bohm. Wholeness and the Implicate Order.
Routledge & Kegan Paul Ltd., 1980.

[4] D. Bohm. Hidden variables and the implicate
order. In Quantum Implications. Essays in
honour of David Bohm, B. Hiley, F.D. Peat,
eds., ch. 2, pp. 33–45. Routledge & Kegan Paul
Ltd., 1987.

[5] A. Einstein. Reply to Criticisms. In Albert
Einstein: Philosopher–Scientist, P. Schlipp,
ed., The Library of Living Philosophers,
pp. 665–688. La Salle, Ill.: Open Court, 1949.

[6] F. Mittelbach, M. Goossens. The LATEX
Companion. Addison-Wesley, 2nd ed., 2004.

[7] T. Wilde. Remodel[l]ing Reality. Wittgenstein’s
übersichtliche Darstellung & the phenomenon
of Installation in visual art. Wilde Oceans, 2008.

[8] T. Wilde. An Enquiry into the Nature of our
Relationship with Reality. Pari Perspectives
Issue 10(Consciousness):122–128, Dec. 2021.

⋄ Tine Wilde

message (at) tinewilde dot com

https://www.tinewilde.com

ORCID 0009-0008-7390-447X

An artist’s journey on a TUGboat

64 TUGboat, Volume 44 (2023), No. 1

The DuckBoat—Beginners’ Pond:
No more table nightmares with tabularray!

Herr Professor Paulinho van Duck

Abstract

In this installment, Prof. van Duck will introduce you
to tabularray, a package for typesetting tabulars
and arrays with LATEX3.

1 Reputation record!

1,000,000

Hi, (LA)TEX friends!
A sensational event hap-

pened on August 3rd, 2022.
Prof. Enrico Gregorio, a.k.a.
egreg, reached one million repu-
tation points on TEX.SE, quack!
He is the first TEX user to
smash this record.

You can understand the exceptionality of this
fact since on the leading site, Stack Overflow, fewer
than ten people have passed that threshold.

I am pleased to have had the occasion to con-
gratulate him personally. We met last summer at
the seaside and had a pizza (without pineapple) to
celebrate.

In the same period, the funny TikZpingus pack-
age [3] was created. It is a sort of TikZlings spin-off
and allows you to draw nice penguins with a very
wide set of features.

The picture above is an example of its use.

Now let us move to our current topic. Are you
struggling trying to set the height of your table rows?
Do you think aligning some cells at the top and some
others at the bottom is a mission impossible? Are
you bored with typing \hline at every row end?
Are you going crazy vertically centering a text in
a \multirow? Would you like to use colors and
booktabs together?

Do you dream of a package that makes all these
amenities with simple options? Sometimes dreams
come true, quack!

I am pleased to introduce you to tabularray,
a recent package for typesetting tabulars and similar
environments with many handy options.

Of course, I will not explain all the features of
the package, they are a large number! Please refer
to the package documentation [2] for further details.

Last but not least, let me thank Jianrui Lyu, the
brilliant author of the package, for his very accurate

review of this article. He is also a user of TopAnswers
TEX (topanswers.xyz/tex). If you ask a question
there, you may get an answer directly from him.

I am also grateful to samcarter and egreg for
their suggestions. samcarter also provided the exam-
ple in Box 13.

Of course, any errors that remain are my sole
responsibility.

2 Quack Guide n. 8:
The tabularray package

As usual, the first thing to do is to load this awesome
package in your preamble with
\usepackage{tabularray}

Its main environment is tblr; it works in both
text and math mode. This is already a nice fea-
ture, is it not? You can also have a text table in a
math environment by setting mode=text (more in
Section 2.8).

The environment tblr has a mandatory argu-
ment, where you can specify all the options you like.
For example, the standard l (left), c (center), and
r (right) can be used for the horizontal alignment;
there is also j for justified text.

It also has an optional argument, where, for
instance, you can choose the baseline of the table. It
will not be treated here for reasons of brevity; please
refer to the manual [2].

In some of the examples shown in the article,
vertical rules are used, but only to better show some
tabularray features; remember: avoid vertical

rules in professional tables, they are generally
useless and inelegant, quack!

2.1 Row and column separation
(and some other options)

Box 1 shows the difference in default row separation
between an ordinary tabular/array (on the left in
the box) and a tblr (on the right).

The tables created by tblr look better because
they have some extra space above and below the rows.
You no longer have to fight against \arraystretch
or \extrarowheight, quack!

The size of the vertical space above/below the
row (or both) is fully customizable, respectively set-
ting abovesep, belowsep or rowsep as options in
rows=⟨styles⟩.

There are also the corresponding options for
columns (leftsep, rightsep, colsep, with the ob-
vious meanings).

You can even set the spacing (or any other op-
tion) for one or a group of rows/columns only.

With row{⟨number⟩}={⟨styles⟩} you can set op-
tions valid only for the rows indicated by ⟨number⟩.

doi.org/10.47397/tb/44-1/tb136duck-tabularray

Herr Professor Paulinho van Duck

https://topanswers.xyz/tex
https://doi.org/10.47397/tb/44-1/tb136duck-tabularray

TUGboat, Volume 44 (2023), No. 1 65

Box 1 – tabular and array vs. tblr

\begin{tabular}{lcr}

\hline

p & v & d \\\hline

p & dl & q \\\hline

\end{tabular} \hspace{1em} vs.\ \hspace{1em}

\begin{tblr}{lcr}

\hline

p & v & d \\\hline

p & dl & q \\\hline

\end{tblr}\par\vspace{1ex}

$\begin{array}{cc}

\dfrac{1}{2} & \dfrac{3}{4} \\

\dfrac{5}{7} & -\dfrac{9}{10} \\

\end{array}$ \hspace{1em} vs.\ \hspace{1em}

$\begin{tblr}{cc}

\dfrac{1}{2} & \dfrac{3}{4} \\

\dfrac{5}{7} & -\dfrac{9}{10} \\

\end{tblr}$

p v d

p dl q
vs.

p v d

p dl q

1

2

3

4
5

7
−

9

10

vs.

1

2

3

4
5

7
−

9

10

This could be a single number, a range ⟨n–m⟩, a
list ⟨n,m,p,q⟩, or even or odd if you need some cus-
tomizations for even or odd rows.

odd[⟨n–m⟩] and even[⟨n–m⟩] also accept an
optional argument which specifies from/to which row
you would like the ⟨styles⟩ to apply. If the end row
is the last of the table, it can be omitted.

There is also the key for specific columns:
column{⟨number⟩}={⟨styles⟩}

You can also mix rows/columns for general set-
tings and row/column for specific ones.

Please note that tabularray generally ignores
spaces around and within its arguments. For in-
stance,
column{3-Z}={yellow!10}

is the same as
column { 3-Z } = { yellow!10 };
only the range cannot be separated by spaces.

Another wonderful feature is the possibility to
use U, V, W, X, Y, and Z as row/column numbers, to
indicate the last six rows/columns, in the order. It
is very convenient when you are defining a different
style for the last rows/columns of your table but you
do not know or do not want to count the number
of rows/columns. Please be aware that the values U,

Box 2 – Column and row options

\begin{tblr}{colspec={llccc},

rows={m, rowsep=2pt},

columns={colsep=3pt},

row{1,Z}={font=\bfseries, abovesep=3pt,

belowsep=1pt},

column{Z}={rightsep=0pt, fg=red},

column{1}={leftsep=0pt},

column{3-Z}={yellow!10}}

\hline

{First\\ name}&{Last\\ name}& A & B &

Average\\\hline

Paulinho & van Duck & 10 & 20 & 15\\

Paulette & de la Quack & 30& 40 & 35

\\\hline

Total && 40 & 60 & 50\\\hline

\end{tblr}

First
name

Last
name

A B Average

Paulinho van Duck 10 20 15

Paulette de la Quack 30 40 35

Total 40 60 50

V, and W were added in a very recent version of the
package. Remember to update your TEX distribution
to enjoy them, quack!

Box 2 shows an example. Please note that when
other parameters are present, the column alignment
must be specified using colspec. The first and the
last row font is set to bold (with font=⟨font com-

mands⟩). Columns from the third to the last have
a background color, which can simply be set with
⟨color⟩, without specifying the key bg. For the fore-
ground color, on the contrary, the key fg=⟨color⟩ is
mandatory. Please remember to also load xcolor

package, and use your imagination if you are reading
the black-and-white version of this article.

You can also note the multiline cells simply
created with {...\\...}. Goodbye, \makecell!

For nearly all the parameters you can set in
the mandatory argument there are corresponding
commands you can use inside the table contents. For
example, \SetRow is like row. For the sake of brevity,
with few exceptions, I will not show these commands
here, please refer to the manual [2] for them.

2.2 No more pain with vertical alignment

The package tabularray allows very easy alignment
setting.

The DuckBoat—Beginners’ Pond: No more table nightmares with tabularray!

66 TUGboat, Volume 44 (2023), No. 1

Box 3 – Vertical alignment with reference
to baseline

\begin{tblr}{colspec={Q[l,t]Q[c,m]Q[r,b]},

hlines}

{Baseline is\\ the top line\\ (left

aligned)} &

{Baseline is\\ at the middle\\ (centered)} &

{Baseline is\\ the bottom line\\ (right

aligned)}\\

\end{tblr}

Baseline is
the top line
(left aligned)

Baseline is
at the middle
(centered)

Baseline is
the bottom line
(right aligned)

Box 4 – Vertical alignment for
non-typographers

\begin{tblr}{colspec={Q[l,h]Q[c,m]Q[r,f]},

hlines}

{At the head\\ (left aligned)} &

{At the\\ middle\\ (centered)} &

{At the foot\\ (right aligned)}\\

\end{tblr}

At the head
(left aligned)

At the
middle

(centered)
At the foot

(right aligned)

Using its “Quack” column type Q[⟨styles⟩], you
can simultaneously indicate the vertical and hori-
zontal alignments. No more “complex” options like
>{\centering\arraybackslash} needed!

The vertical alignment can be set with respect
to the baseline as usual, using t (the baseline is the
top line), m (the baseline is at the middle), or b (the
baseline is the bottom line).

An example is in Box 3 (the hlines option will
be explained in Section 2.4).

Since the “baseline” concept is not easily caught
by newbies, tabularray also allows the h (head) and
f (foot) alignment, see Box 4.

Even more awesome is the possibility to combine
the alignment as you like, as in Box 5. Please note
that if you use the pipes | in rowspec they are
horizontal lines.

2.3 Customizable cell dimensions

Within the styles of your column, you can set the
column width; the option is wd=⟨dimension⟩, but
wd= can often be omitted.

Box 5 – Combined horizontal/vertical
alignment

\begin{tblr}{colspec={Q[l]Q[c]Q[r]},

rowspec={|Q[t]|Q[m]|Q[b]|}}

{Top\\ left} & Top centered & Top right \\

Middle left & {Middle\\ centered} & Middle

right \\

Bottom left & Bottom centered & {Bottom\\

right} \\

\end{tblr}

Top
left

Top centered Top right

Middle left
Middle
centered

Middle right

Bottom left Bottom centered
Bottom

right

The same is true for the cell height, with the
analogous key ht=⟨dimension⟩.

These two parameters together allow you to
create cells of the exact dimension you need, both
horizontal and vertical. No more hacking with struts!

The sudoku scheme in Box 6 is an example of
perfectly square cells. The stretch=0 option is used
to have the numbers perfectly centered.

The solution of the puzzle is left to the reader.
I also have to mention a sudoku package [1] already
exists, quack!

2.4 Lines as you desire

Box 6 is also an example of how you could easily
customize table rules (a.k.a. lines).

With hlines/vlines you can draw with a single
option all the horizontal/vertical rules. There is no
more need to put \hline at the end of every line or
a pipe | between the column types, although they
are accepted as well.

The advantage of tabularray is that you can
customize any given rule, or even part of one. With:
hline{⟨hnumber⟩}={⟨vnumber⟩}{⟨styles⟩}
you can specify for which horizontal rules ⟨hnumber⟩,
and from/to which vertical rules ⟨vnumber⟩, your
options apply. The ⟨hnumber⟩/⟨vnumber⟩ could be
also a range ⟨n–m⟩ or a list ⟨n,m,p,q⟩. Please pay
attention that, in this case, they are the rule numbers,
not the row/column numbers as in row or column.

The analogous option for vertical rules is:
vline{⟨vnumber⟩}={⟨hnumber⟩}{⟨styles⟩}

There are plenty of options for setting the rule
appearance: width (wd=⟨dimension⟩), shape (solid,

Herr Professor Paulinho van Duck

TUGboat, Volume 44 (2023), No. 1 67

Box 6 – A sudoku puzzle

\begin{tblr}{columns={.5cm, colsep=0pt},

rows={.5cm, rowsep=0pt},

cells={c,m},hlines,vlines,stretch=0,

hline{1,4,7,Z}={wd=1.2pt},

vline{1,4,7,Z}={wd=1.2pt}}

1& &6& & &5&4& & \\

& &9&1& &8& &5& \\

7&5& &9& & &1& &3\\

& & &5& & &3& &9\\

2& & & &4& & & &1\\

8& &4& & &9& & & \\

5& &7& & &3& &2&6\\

&6& &8& &1&5& & \\

& &3&2& & &9& &7\\

\end{tblr}

1 6 5 4

9 1 8 5

7 5 9 1 3

5 3 9

2 4 1

8 4 9

5 7 3 2 6

6 8 1 5

3 2 9 7

dashed, dotted), color (fg=⟨color⟩). In Box 6, I use
this to make the first and then every third rule (both
horizontal and vertical) a little thicker.

But, in my opinion, the most awesome feature
is the possibility to use U, V, W, X, Y, and Z to denote
the last six lines, respectively (as was seen above
for rows and columns, but now for rules). This
allows you to completely customize your table within
the mandatory parameter of the tblr environment
without worrying about adding new rows/columns.
It is very useful if you would like to create your own
tabularray environment, see Section 2.8.

2.5 Multirow (and multicolumn)
never so easy

In ordinary tabular environments, in the presence
of multirow cells, the vertical alignment is often a
pain in the . . . quack! One of the big strengths of
tabularray is how it manages this alignment.

In traditional environments, when some cells
have more than one line of text, it is often neces-
sary to manually adjust the multirow text position.
tabularray does it automatically: see Box 7.

Box 7 – Multirow comparison

\begin{tabular}{|p{2.1cm}|p{2.1cm}|}

\hline

\multirow{2}{*}{Multirow cell}& With

\texttt{tabular}\\\cline{2-2}

& A cell with two text lines \\\hline

\end{tabular}\par\vspace{1ex}

\begin{tblr}{columns={2.1cm}, hlines,

vlines, cell{1}{1}={r=2}{l}}

Multirow cell & With \texttt{tblr}\\

& A cell with two text lines \\

\end{tblr}

Multirow cell
With tabular

A cell with two
text lines

Multirow cell

With tblr

A cell with two
text lines

Please also note the horizontal lines are correctly
drawn without specifying the columns where they
should appear. The multirow package and \cline

command are no longer needed!
The option to set a multirow/multicolumn is

cell{⟨i⟩}{⟨j ⟩}={⟨span⟩}{⟨styles⟩}
where ⟨i⟩ and ⟨j ⟩ are the row and column num-
bers (top left position of the multirow/multicolumn
cell); ⟨span⟩ indicates how many rows (r=⟨number⟩)
and/or how many columns (c=⟨number⟩) the cell
should span; and ⟨styles⟩ gives the options of the
multicell.

If you prefer, you can use an analogous command
at the cell position: \SetCell[⟨span⟩]{⟨styles⟩}

When you merge cells horizontally, please note
that you still need to give all necessary & characters
for the empty cells. This is different behavior com-
pared to the ordinary \multicolumn. If you omit
any, the content of some of your cells might be miss-
ing. It can be difficult to detect, as it does not cause
any error, only wrong output.

Another outstanding feature is the possibility
of indicating the span algorithm.

For horizontal spanning, you can choose
hspan=⟨algorithm⟩
where ⟨algorithm⟩ can be default (the last column
is enlarged to reach the width of the multicolumn
cell), even (all the columns are equally enlarged to
reach the width of the multicolumn cell), or minimal

The DuckBoat—Beginners’ Pond: No more table nightmares with tabularray!

68 TUGboat, Volume 44 (2023), No. 1

Box 8 – Horizontal spanning

\begin{tblr}{hlines, vlines,

cell{2}{1}={c=3}{l}}

First & Second & Third \\

Multicolumn cell with default span \\

\end{tblr}

\par\vspace{1ex}

\begin{tblr}{hlines, vlines, hspan=even,

cell{2}{1}={c=3}{l}}

First & Second & Third \\

Multicolumn cell with even span\\

\end{tblr}\par\vspace{1ex}

\begin{tblr}{hlines, vlines, hspan=minimal,

cell{2}{1}={c=3}{l}}

First & Second & Third \\

Multicolumn cell with minimal span\\

\end{tblr}

First Second Third

Multicolumn cell with default span

First Second Third

Multicolumn cell with even span

First Second Third

Multicolumn cell with
minimal span

(the multicolumn cell is split on more lines to fit the
width of the columns). An example is in Box 8.

For vertical spanning, there is
vspan=⟨algorithm⟩
where ⟨algorithm⟩ could be default (the last row is
stretched to reach the height of the multirow cell), or
even (all the columns are equally enlarged to reach
the length of the multicolumn cell). See Box 9.

2.6 Additional libraries

Even though tabularray has such a rich variety
of features, you may well want to use it together
with other traditional packages, such as amsmath,
booktabs, or siunitx.

Since tabularray modifies some commands in
those packages, to avoid potential conflict, you need
to load them with \UseTblrLibrary command.

Box 10 shows an example with the tabularray’s
libraries booktabs and counter. Unlike an ordinary
table with booktabs rules, the background color
touches them and the vertical rules are not discon-
tinuous when they cross the horizontal ones.

The library counter allows you to modify some
counters inside tabularray tables. In the example,

Box 9 – Vertical spanning

\begin{tblr}{hlines, vlines,

cell{1}{1}={r=2}{c}}

{Multirow\\ cell\\ with\\ default span} &

First\\

& Second \\

\end{tblr}\par\vspace{1ex}

\begin{tblr}{hlines, vlines, vspan=even,

cell{1}{1}={r=2}{c}}

{Multirow\\ cell\\ with\\ even span} &

First\\

& Second \\

\end{tblr}

Multirow
cell
with

default span

First

Second

Multirow
cell
with

even span

First

Second

I used the counter \mycount that is increased by 1
at every row of the table, headers excluded.

The package tabularray also provides some
counters that can be used with no need to load the
library. They are: rowcount (total number of rows),
rownum (number of the current row), colcount (total
number of columns), and colnum (number of the
current column). The first two are used in the third
column of the table in Box 10.

With the option preto=⟨text⟩ I avoided writing
the commands for showing the counters at every
row. I wrote them only in the mandatory argument,
specifying with cell where they should be applied.
Is it not great? Quack!

preto prepends text to the cell; to append text
to the cell you can use appto. And if the content of
your cell should be the argument of a command, you
can use cmd.

2.7 X column type

Like tabularx, tabularray provides for
X[⟨coeff ⟩,⟨alignm⟩,⟨styles⟩]
columns, but with extra gear. With the optional pa-
rameters, you can configure their alignment ⟨alignm⟩,
their width ⟨coeff ⟩, or other settings ⟨styles⟩.

The width is in a form of a multiplicative co-
efficient, as in the (outdated) package tabu. For
example, X[2,r] is a right-aligned column with a

Herr Professor Paulinho van Duck

TUGboat, Volume 44 (2023), No. 1 69

Box 10 – booktabs and counter libraries

...

\usepackage{tabularray}

\UseTblrLibrary{booktabs}

\UseTblrLibrary{counter}

\newcounter{mycount}

\newcommand{\myc}{%

\stepcounter{mycount}\arabic{mycount}}

...

\begin{document}

\begin{booktabs}{vlines,

colspec = {lcc}, hspan=even,

cell{1}{1} = {r=2}{},

cell{1}{2} = {c=2}{c},

row{odd[3]} = {bg=cyan!10},

cell{3-Z}{2}={preto={\arabic{rownum} of

\arabic{rowcount}}},

cell{3-Z}{3}={preto={\myc}}}

\toprule

Name & Counters \\

\cmidrule{2-3}

& {\texttt{rownum} of\\ \texttt{rowcount}}

& \texttt{mycount} \\

\midrule

Paulinho van Duck & & \\

Paulette de la Quack & & \\

Paolino Quaqua & & \\

Pauline von Ente & & \\

Paulina Pato & & \\

\bottomrule

\end{booktabs}

\end{document}

Name

Counters

rownum of
rowcount

mycount

Paulinho van Duck 3 of 7 1
Paulette de la Quack 4 of 7 2
Paolino Quaqua 5 of 7 3
Pauline von Ente 6 of 7 4
Paulina Pato 7 of 7 5

doubled width, compared to the other X[1] columns
of the table ([1] is the default and can be omitted).

X columns with negative coefficients are also pos-
sible. In this case, the columns have their “natural
width”, but are limited to the width of a correspond-
ing X column with a positive coefficient. For instance,
X[-1] is like an l column but if its width is greater
than what an X[1] column would have had, then it
is adapted to the X[1] column width. In Box 11,

Box 11 – X column type

\begin{tblr}{width={.9\linewidth},

colspec={X[2, font={\itshape}]

X[2,c]X[-1]X[-1]XX[r]},

vlines, hlines}

A & B & C & D & E & F\\

Q & u & a a a & c & k & !!!\\

\end{tblr}

A B C D E F

Q u a a
a

c k !!!

column C has the same width as E or F, whereas
column D has its natural width.

The total width of the table is \linewidth by
default. If you need a different width, use the option
width=⟨dimension⟩.

2.8 New row/column types,
new environments, and other tricks

As for ordinary environments, you can create your
own column types with:
\NewColumnType{⟨type⟩}[⟨n⟩][⟨dflt⟩]{⟨styles⟩}
where ⟨type⟩ is one letter indicating the name of the
new column type; ⟨n⟩ is the number of parameters,
if any; ⟨dflt⟩ is the default parameter, if any; ⟨styles⟩
are the column options.

Since, with tabularray, you have row options,
you can also create your own row types, with the
analogous command \NewRowType.

In Box 12, column type T is defined as left
aligned, text mode (mode=text allows to use a text
column in a math environment); and D as centered
display math (dmath) mode. The option mode also
provides for imath and math for inline math mode.

As mentioned above, the possibility to have all
the settings in the mandatory argument is partic-
ularly useful if you like to create your own table
template, because styles are totally separated from
the contents of your tables.

With \NewTblrEnviron{⟨envname⟩} you can
define your own environment. Then, with
\SetTblrInner[⟨envname⟩]{⟨styles⟩}
you can set all the styles you like for the environment
⟨envname⟩. Here the environment name is optional;
if you leave it out, the styles for all the tblr of your
document will be set.

For example, \SetTblrInner{rowsep=0pt} sets
the spacing as in the ordinary tabular, for all your
tblr environments.

The DuckBoat—Beginners’ Pond: No more table nightmares with tabularray!

70 TUGboat, Volume 44 (2023), No. 1

Box 12 – New types and environment

\NewColumnType{T}{Q[l, mode=text]}

\NewColumnType{D}{Q[c, mode=dmath]}

\NewTblrEnviron{mytab}

\SetTblrInner[mytab]{colspec={TD},

row{1,Z}={font=\bfseries, mode=text},

hline{1,2,Y,Z}={leftpos=-1, rightpos=-1,

endpos},

cells={m}}

\begin{mytab}{}

Shape&Area\\

Circle & \pi r^2 \\

{Total rows of this table} &

\arabic{rowcount}\\

\end{mytab}\par\vspace{1ex}

\begin{mytab}{rowsep=3pt}

Shape&Area\\

Square & a^2 \\

Rectangle & w\cdot h\\

{Total rows of this table} &

\arabic{rowcount}\\

\end{mytab}

Shape Area

Circle πr
2

Total rows of this table 3

Shape Area

Square a
2

Rectangle w · h

Total rows of this table 4

There is also
\SetTblrOuter[⟨envname⟩]{⟨styles⟩}
to set the specifications of the optional argument of
your environment, such as the baseline. Please refer
to the package manual [2] for this.

Box 12 shows an example with the new envi-
ronment mytab. Please note the use of the Y and Z

in the hline and row options. This way you build
a template that is always valid, regardless of the
number of rows in the table.

The options leftpos=-1 and rightpos=-1 of
hline mean that the lines are trimmed by colsep on
the left and on the right; with endpos this adjustment
is applied only to the leftmost/rightmost column.

The tabularray support for having all the def-
initions separated from the content turns out to be
very helpful when you have to format tables for which

Box 13 – A useful trick

\documentclass{article}

\usepackage{tabularray}

\renewenvironment{tabular}[2][c]{

\begin{tblr}[baseline=#1]{

row{1-2}={font=\bfseries},

colspec={#2}}

}{\end{tblr}}

\begin{document}

\begin{table}[htbp]

\centering

\input{tab.tex}

\end{table}

\end{document}

you do not have easy access to the source code, e.g.
because they are automatically generated by R or
Markdown or another tool.

Imagine having the code of a table you cannot
change, such as tab.tex, but you would like to have
the first two rows in bold. With tabularray you
could redefine the tabular environment adding any
style you like. Box 13 shows how to do it.

3 Conclusions

I hope you liked the features supplied by this modern
package, and if you have problems with your tables,
remember:

Try tabularray

and all will be OK!

References

[1] P. Abraham. The sudoku package. Version 1.0.1.
ctan.org/pkg/sudoku

[2] J. Lyu. Tabularray—Typeset Tabulars
and Arrays with LATEX3. Version 2023A.
ctan.org/pkg/tabularray

[3] F. Sihler. The TikZpingus package. Version 1.0.
ctan.org/pkg/tikzpingus

⋄ Herr Professor Paulinho van Duck
Quack University Campus
Sempione Park Pond
Milano, Italy
paulinho dot vanduck (at) gmail

dot com

Herr Professor Paulinho van Duck

https://ctan.org/pkg/sudoku
https://ctan.org/pkg/tabularray
https://ctan.org/pkg/tikzpingus

TUGboat, Volume 44 (2023), No. 1 71

Metadata in journal publishing

Joppe W. Bos, Kevin S. McCurley

Abstract

We discuss how to use LATEX classes and BibTEX
styles to curate metadata throughout the life cycle
of a published journal or conference article. Our
focus is on streamlining and automating much of the
publishing workflow.

1 Introduction

The original goal of TEX was to provide a system
for typesetting, namely to control the layout of a
document on paper. The later invention of LATEX
was focused on “letting the user concentrate on the
structure of the text rather than on formatting com-
mands” [8]. Users were encouraged to write their
papers using high-level macros like \section, and
leave the decisions like how much space to put before
or after a section to the style that is used. As a
result, an author does not have to worry so much
about how the paper looks, but primarily about how
the paper is logically structured.

This separation of concerns about appearance
versus structure has proved to be very effective and
most, if not all, scientific publishers now have their
own LATEX styles. These styles make it easy for an
author to conform to a common look and feel in a
journal, and can streamline the production steps for
a journal if authors comply with the style. Moreover,
it is usually easy for authors to convert from one
style to another, because most of them adhere to
standard macros like \section.

There is however at least one area in which the
LATEX community has been slow to adapt to the
needs of modern publishing workflows, namely in
the curation of metadata about publications. This
is the main focus of this article.1 We believe that
a LATEX style serves two roles; namely to provide
a mechanism for describing structural information
about the document, and a style for describing how
to lay it out on the page.

2 Metadata in publishing workflows

When we refer to metadata, we include data objects
such as title, subtitle, author names, e-mail addresses,
ORCIDs, affiliations, funding agencies, bibliographic
citations, journal identifier, page numbers, DOI, etc.
Some of this metadata is supplied by the publisher
at the time of publication, but much of it is supplied
by the authors. Once the author submits their final

1 An earlier and longer version of this article was published

at arxiv.org/abs/2301.08277.

version, this metadata is typically used to register
for DOI, at which time the publisher needs to supply
a considerable amount of metadata. Moreover, the
web “landing page” for a paper typically has to be
created from the metadata. Indexing agencies then
step in, either by crawling the data or by receiving
metadata feeds from the publisher. This metadata
is crucial for ranking, indexing, and organization of
scientific publishing.

2.1 Economics of publishing

Part of our motivation arises from our involvement
in trying to launch a new open access journal for the
professional non-profit society International Associa-
tion for Cryptologic Research (IACR).2 The society
already runs two diamond open access journals, but
experience from running these has shown that on
average each published paper requires about an hour
of human effort for production and metadata han-
dling. Even then we find that errors sometimes slip
through. Another study [4] estimated the amount
of human labor for editing and production to be 7.5
person-hours for each published paper. We believe
that most of this should and could be automated, and
this can help to lower the cost of publishing. This
is particularly important for open access publishing,
which is heavily dependent on volunteer labor [1] as
a way to control costs. It can also be used to improve
profitability of commercial publishers.

In some systems, such as Open Journal Sys-
tems [12], the submission and curation of metadata
is treated as a separate task from submission of the
Word, LATEX or PDF document. This imposes an ex-
tra burden on authors, and also renders the workflow
vulnerable to inconsistencies with metadata in two
places. In our experience, by the time an article has
been revised and accepted, there are often changes
in titles, abstracts, affiliations, email addresses, ref-
erences, etc. Checking and correcting these inconsis-
tencies ends up costing time of the human authors
and editors.

For this reason, we believe that a LATEX class
should provide a convenient mechanism for authors
to enter the metadata only once, in a standard way
that encodes relationships between entities. From
that point on, it should be possible to generate ap-
propriate machine-parsable formats which can be
used at every phase in the publishing pipeline.

3 Our approach at a high level

We automate the capture of metadata during the
publishing workflow through the use of a LATEX class

2 See iacr.org.

doi.org/10.47397/tb/44-1/tb136bos-metadata

Metadata in journal publishing

https://arxiv.org/abs/2301.08277
https://iacr.org
https://doi.org/10.47397/tb/44-1/tb136bos-metadata

72 TUGboat, Volume 44 (2023), No. 1

iacrcc.cls and a BibTEX style iacrcc.bst.3 The
function of these files is to both display the meta-
data in the output format, but to also extract the
metadata during the compilation process, producing
an easily parsable external format as a side product.

When authors supply their final versions, they
do so by uploading their LATEX source to a cloud
server, which compiles their sources and extracts all
metadata from their sources into a text file with a
structured format (together with performing some
sanity checks on the provided data). The submis-
sion process does not require authors to enter any
additional metadata, because it is all encoded into
the LATEX source. The DOI suffix is assigned by the
server and the DOI is compiled directly into the PDF

at time of submission. A post-compilation step is
used to parse the structured metadata and convert
it into other formats, including JSON and XML. The
DOI is registered with the DOI registration agency
once the copyediting phase is complete. The ex-
tracted metadata is also used to produce various web
pages for the journal site, RSS feeds, OAI-PMH feeds,
and register with various indexing services.

The metadata output we require is necessarily
text, and the lingua franca for encoding of text is
UTF-8. With the exception of mathematical struc-
tures like inline equations in titles or abstracts, this
text is devoid of TEX macros. This causes a few
problems in the LATEX world, which encourages au-
thors to write in 7-bit ASCII text with user-defined
macros.

Part of our problem arises from the fact that
TEX takes the input format and produces a list of
tokens. This sequence of tokens is convenient to
produce a list of boxes containing glyphs for layout
on pages, but extraction of the author’s original text
from that token list is problematic. For example,
spaces are not space characters but are instead glue
between boxes or terminators for macros.

In addition, a core functionality of LATEX is user-
defined macros, so an author might define \pe to rep-
resent the text string “Paul Erdős”. We only discover
this during the LATEX expansion process when the
macros are expanded into glyphs. Macro expansion
is one of the most difficult topics in understanding
how TEX works.

Our first implementation of metadata capture
used the \write macro during the LATEX compilation
process to write an external file containing metadata.
The intended function of the \write macro is to
expand a list of tokens and write a parsable repre-

3 The authoritative place to download these is publish.

iacr.org/iacrcc.

sentation of these tokens into a file. The fact that
\write performs expansion is very useful to us, be-
cause it expands user-defined macros. Unfortunately
\write also causes a few problems when we use it
to produce metadata. As an example, \(and \)

cannot be used to delimit inline mathematics inside
\write, whereas $ works fine.

Another problem arises with pdflatex, because
we have found examples like \write{Ð and f\"ur}

where the output from \write contains mixed charac-
ter encodings in a single line. This is apparently due
to the fact that while pdflatex handles UTF-8 input,
the output tries to use the single-byte Cork encoding
for things like ü. For this reason we switched to us-
ing \protected@write instead of \write, following
a suggestion from the LATEX team.

One might argue that the author can correct the
previous example by avoiding mixed encodings in
their input, but this is merely one example of many
ways that authors can produce legitimate LATEX that
is difficult to deal with. Our goal is to provide a
system that supports whatever legitimate LATEX the
author supplies to us, and to provide them with clear
instructions on how to prepare it without causing
any interruptions (errors) or other inconvenience
to the author’s typesetting experience. From an
author’s point of view, the flexibility of LATEX can be
a blessing, but it’s also often a curse for a journal.

3.1 Alternative approaches

We considered several ways to implement the meta-
data extraction instead of using \write. One al-
ternative approach would be to use a LATEX parser
to extract the metadata directly from the LATEX.
The problem of parsing LATEX is complicated by the
need to expand macros, for which the LATEX engines
themselves are so far the only robust solution. An-
other approach that we considered involved using
Lua within lualatex. Lua is much better suited to
text processing than using LATEX itself, but we had
an initial goal to try and make things work with any
LATEX engine.

4 What metadata is required?

Some metadata fields in a journal article are obvi-
ous (title, author), but even the obvious fields have
nuances in how they are encoded. Examples include:

• Title of the work. In some fields it is common-
place to use mathematics in titles, but TEX
formatting in metadata records is often changed
to another format like MathML. Titles may also
encode face markup (e.g., bold face) or multiple

Joppe W. Bos, Kevin S. McCurley

https://publish.iacr.org/iacrcc
https://publish.iacr.org/iacrcc

TUGboat, Volume 44 (2023), No. 1 73

character sets. Extremely long titles are some-
times broken up into a hierarchy, incorporating
a subtitle or short versions for running titles.

• Authors of the work. One reason to ask for
authors is to give proper attribution in citations,
but author names are not unique so we should
also use a unique identifier like ORCID.

• Authors may have different levels of contribution.
In some cases this is signaled by having author
names out of alphabetical order, but in other
fields it is common to identify a role for author
contributions. The CRediT taxonomy is often
used to reflect this [11]. Authors may also be
categorized as a “corresponding author”, with
contact information like email.

• Relationships between authors and affiliations
and/or authors and funding agencies. It is now
very common for authors to have multiple affil-
iations [6] and for multiple authors to share a
subset of affiliations or funding agencies. These
many-to-many relationships are best encoded as
relations rather than repeating the information
for each author. These relationships are shown
in Figure 1.

• Bibliographic information (e.g., journal or con-
ference name, volume, year, etc.).

• The list of bibliographic references.

• Submission and acceptance dates.

• Licensing information.

• Funding information.

There are numerous other fields that may be en-
coded into a LATEX document or the output format
produced from LATEX. Examples include abstract,
number of pages, address information for authors,
links to ancillary works like code and data, etc. We
come from the world of mathematics and computer
science, but other things like chemical structures and
clinical trials can also be encoded into metadata. It
is beyond the scope of this document to catalog all
of them, but rather to focus on the most important
elements that are common to all academic disciplines.

4.1 Metadata schemas

Several organizations have defined schemas for the
organization of metadata about an article. One of
the most important ones is crossref.org, which
is a non-profit organization whose primary mission
is the collection of metadata and the assignment of
DOIs. Their schema supports multiple affiliations,
author roles, and funding agencies. Other formats
include Elsevier’s Scopus indexing service and the
Clarivate Web of Science.

Article

Author 1

Author 2

Funding 1

Funding 2

Affiliation 1

Affiliation 2

Affiliation 3

Figure 1: Relationships between major entities.
Each entity is listed only once in the LATEX source.
An article may have multiple authors who share
relationships to affiliations. Funding agencies are
related to the article in the crossref schema, so
we chose to link them this way. As an alternative,
relations shown with dashed arrows can link authors
to their funding sources, in much the same way that
we relate authors to their affiliations. We chose to use
footnotes to clarify the complex relationships between
funding agencies and authors or affiliations. Some
funding agencies (e.g., [10]) have strict guidelines for
how these annotations should be shown in the paper.

Another important schema is the Journal Ar-
ticle Tag Suite (JATS), which is available in three
variations for archiving & metadata, publishing, and
authoring [9]. The JATS format may be viewed as a
complete structural representation for a publication;
in many ways comparable to LATEX but focused even
more on semantic structure rather than typesetting
or layout. A JATS document consists of several sec-
tions, including front matter, body, and back matter.
Most metadata occurs in the front matter and back
matter.

There are numerous other formats, but these
tend to be less descriptive and incomplete. These in-
clude the Dublin Core, the Directory of Open Access
Journals (DOAJ), the Extensible Metadata Platform
(XMP) that is common in PDF, and PRISM. Among
all these alternatives, we found the JATS format to
be the most expressive and consistent with others.

5 Using unique identifiers

Unfortunately, things like human names and insti-
tution names are not unique identifiers. The DBLP

bibliographic website lists 14 authors in computer
science who use the exact name “Thomas Müller”,
and dozens of others that are similar to this, like
Thomas F. Müller. There are multiple institutions
that go by the names MIT or USC. In order to per-
form large scale bibliometric analysis for attribution

Metadata in journal publishing

https://crossref.org

74 TUGboat, Volume 44 (2023), No. 1

or duplicate detection, all entities associated with a
publication need to be assigned a unique identifier.

Many of the XML schemas such as JATS have
embraced the use of unique identifiers. The most
notable efforts to assign unique identifiers include:

• DOIs for publications [13],

• ORCIDs for authors [5],

• ROR IDs for research institutions [7],

• Crossref funder registry for funding agencies [2].

Note that in each case where an organization
has assigned a unique ID to an entity, there will often
be competing organizations with their own ID space.
For example, other identifiers for authors have been
issued by Clarivate Web of Science, Scopus, SciENcv,
Mathematical Reviews, and DBLP.

ROR IDs have coarse granularity, so while there
is an identifier for Massachusetts Institute of Tech-
nology, they don’t distinguish between departments,
schools, or programs of the university. By contrast,
Mathematical Reviews assigns institution codes at
the department level (e.g., 1-SCA-C for the depart-
ment of computer science at University of Southern
California).

A complete list of identifiers associated with
scholarly publications is beyond the scope of this
document, and we should expect future ID systems
to emerge. Because an entity may have multiple IDs
from different organizations, we strongly recommend
a schema that assigns IDs with a namespace and
identifier within that namespace. Thus for example,
an organization may have both a Ringgold ID and
an ROR ID. Including both can be helpful.

6 Output formats

In our processing, LATEX is not usually read by hu-
mans, but is instead converted into another format
like PDF or HTML. To the extent possible, it is
desirable to embed the metadata into these output
formats in a machine-readable way so that the meta-
data accompanies the consumable document. Un-
fortunately the standards for doing so are generally
lacking in comprehensiveness.

Probably the most important example of this is
the XMP standard, whose standard schema does not
even provide a way to identify authors by ORCID.
Luckily, as the name implies, this format is extensi-
ble, and the XML dictionary may use a schema from
a variety of namespaces [14]. Springer does this for
ORCIDs by defining their own namespace sn and
encoding authors as a sequence of (name, orcid)

pairs. Rather than embracing proprietary extensions
such as this, we believe that XMP should use the
JATS schema to encode authors, affiliations, funding

agencies, and bibliographic references. Unfortunately
this is not supported by the hyperxmp and pdfx pack-
ages, but the LATEX team is engaged in a long-term
project to improve the production of XMP in PDF [3].

7 \author considered harmful

We now turn to the problem of how to embed meta-
data into the original LATEX source. The original
LATEX definition of \author provides little help in
capturing author metadata, and is also problem-
atic for displaying large numbers of authors. In the
standard article class, the author defines \author
to include blocks of formatted text, separated by
\and. Thus for example, there is no standard way
to associate an ORCID with an author’s name, or
to associate affiliations or funding agencies with an
author. Left to their own devices, authors might
use various embedded macros or footnotes to link
authors to their metadata, and this makes it very
difficult to extract metadata from the LATEX.

Part of the problem here is that the \author

macro is intricately woven into the display of author
information on the page. This is an example where
the separation of concerns has been neglected, mixing
structure with display. Because of this past history
with the \author macro, we deliberately chose to
break \author and use \addauthor instead. This
means authors have to do some work to convert from
other standard LATEX classes to our class, but we
judged that to be necessary because of the bad habits
that LATEX has encouraged.

We are not the first to have recognized the defi-
ciency of \author. Some LATEX styles have improved
upon the basic use of \author, and have adopted
metadata capture as part of their authoring process.
Examples include ltugboat, elsarticle, acmart,
and amsart. Each of these uses some variation on
\author to capture some metadata about an article,
but none of them rise to the level of expressiveness
contained in something like JATS. Moreover, we are
unaware of any that have attempted to provide func-
tionality for a publishing workflow by extracting the
metadata from the LATEX. Publishing workflows tend
to be proprietary, but most use significant human
labor that is covered by their business model.

8 The iacrcc LATEX and BIBTEX styles

Building on what we have learned from previous ef-
forts, we have designed a new document class called
iacrcc4 that allows us to capture as much metadata
as possible from a document. This may be used with
either BibTEX with our own iacrcc.bst style, or
with the biblatex package. These files are designed

4 May be downloaded from publish.iacr.org/iacrcc.

Joppe W. Bos, Kevin S. McCurley

https://publish.iacr.org/iacrcc

TUGboat, Volume 44 (2023), No. 1 75

to be used in a publishing workflow to produce meta-
data in several different formats. Not only do they
produce metadata to go back into PDF, but they
also produce a plain text version of metadata that
can be easily processed for other purposes like DOI

registration. We capture a broad range of metadata,
including alternate titles, author names, surnames,
ORCIDs, affiliations with ROR IDs and addresses,
and abstract. An example of author metadata for
iacrcc is given in Figure 2.

\title[running={Emojex documentation},

onclick={example.com/emo},

subtitle={Faces in unicode},

]{Emojex: use of emojis in \LaTeX}

\addauthor[orcid={0000-0002-0599-0192},

inst={1,2},

onclick={www.madmagazine.com/}

email={fester@example.com},

]{Fester \surname{Bestertester}}

\addauthor[orcid={0000-0001-7890-5430},

inst={2},

footnote={Thanks mom!},

]{Kevin S. \surname{McCurley}}

\affiliation[ror=044t1p926,

city={New York},

country={United States}]{MAD}

\affiliation[country={United States}]{Self}

\addfunding[crossref=100011047,

grantid={A-1234},

country={Canada}

]{AGE-WELL}

Figure 2: Sample metadata entry in iacrcc.cls.

8.1 How it works

The workflow for an author consists of the usual
multiple rounds of running latex, bibtex or biber,
followed by two more runs of latex. The output
from this is not only a PDF file with XMP metadata,
but also a file \jobname.meta file that contains all
metadata in a structured format. The .meta file is
written with macros using \write calls.

The structure of the \jobname.meta is similar
to YAML. We thought about attempting to write
YAML or JSON or XML format, but each output
format has its own set of special characters and en-
coding requirements that are complicated to achieve
in LATEX. It was easier for us to write Python code to
parse our custom output format than to write LATEX
code to produce one of the more common formats.
This Python code is included in the repository for
the iacrcc files.5

5 See the github repository at github.com/IACR/latex.

The basic metadata from the paper is written
to the .meta file using macros from the iacrcc.cls

file. The citation information is written into the
.meta file in one of two different ways, depending
on whether the author chooses to use BibTEX or
biblatex. Both methods produce a .bbl file that
contains \write macros to append to the .meta file
during compilation. The \write macros are imple-
mented in the iacrcc.cls file for biblatex, and are
implemented in the iacrcc.bst file for BibTEX. In
both cases, the .bbl file ends up containing a struc-
tured form of the citations. In theory, this allows
us to follow the standard practice of publishers to
only require authors to submit their .bbl file rather
than their entire BibTEX file. In practice we require
authors to submit their BibTEX because there is no
convenient way to validate the .bbl file.

8.2 The submission pipeline

Once a paper has been accepted for publication, the
authors need only submit their LATEX source file(s),
including the BibTEX file they used. The submission
form is minimal, since all metadata is included in
the LATEX and BibTEX files themselves. We merely
capture an authenticated paperid and require the
submitting author to supply an email address for the
contact author. We derive the DOI from the paperid,
and inject it into the PDF during compilation along
with the acceptance and received dates.

Once the authors upload their LATEX sources,
the server runs latexmk within a docker container
containing an instance of TEX Live. The server vali-
dates that the sources were compiled, and provides
reports back to the author in case of any errors. We
plan to release our server code as open source in the
future, but it’s premature to do so now, since some
basic design decisions are still being made.

Once the document successfully compiles, the
server runs a Python script to process the .meta

file, creating metadata in XMP, JATS, JSON, and
crossref formats. The JSON format is convenient for
immediately publishing the article on the web. The
crossref format may be used to register the paper
with a DOI.

If the author is satisfied with the output from
compiling their source, then the paper moves to the
next step of copyediting. Copyediting is itself a
huge topic in publishing that is mostly beyond the
scope of this article. In our experience with external
publishers, some of the effort is devoted to metadata
handling. Our goal is to at least completely automate
metadata handling.

Once the paper is given final approval by the
copyeditor, the paper may be published without need

Metadata in journal publishing

https://github.com/IACR/latex

76 TUGboat, Volume 44 (2023), No. 1

for a human to handle any of the metadata. At the
time the paper is published, the DOI is registered.

9 Summary

We believe that LATEX can be used to simplify the
processing of metadata in the publishing process, and
we have developed a document class that we hope
will greatly improve the quality of our metadata. By
using this approach, we believe it should be possible
to streamline the publishing workflow of an open
access journal with a low budget. We are in the early
stages of this project, and we welcome suggestions
for better ways to capture metadata.

Metadata handling is just one reason why text
extraction is important for LATEX. We are in the
midst of a revolution in natural language processing
through the development of machine learning for
large language models. We are hopeful that this
will give rise to better tools for tasks such as copy
editing. This includes some fairly mechanical steps
like punctuation, spelling, and grammar checking.
It may also involve visual aspects of typography
(e.g., widows, orphans, under/overfull hboxes). It
can also involve more intensive steps like checking
consistency in terminology, optimizing word choices,
or improving sentence structure.

Unfortunately, one barrier to the use of large
language models with LATEX is the fact that it is
relatively difficult to extract the author’s text from
LATEX. We encourage the community to think more
about this problem—not just within author envi-
ronments or PDF output, but also within publishing
pipelines.

Acknowledgements

The authors would like to thank Gaëtan Leurent and
other contributors to the iacrtrans document class
that was used as the starting point of this project.
The authors would also like to thank Enrico Gregorio
and David Carlisle for answering questions about the
inner workings of LATEX, and to the reviewers of this
paper for making very useful suggestions.

References

[1] J. Bosman, J.E. Frantsvåg, et al. OA diamond
journals study. Part 1: Findings, Mar. 2021.
This report was supported by Science Europe
and cOAlition S.
doi.org/10.5281/zenodo.4558704

[2] Crossref funder registry.
crossref.org/services/funder-registry/

[3] U. Fischer, F. Mittelbach. Adding XMP
metadata in LATEX. TUGboat 135(3):263–267,
2022. doi.org/10.47397/tb/43-3/

tb135fischer-xmp

[4] A. Grossmann, B. Brembs. Current market
rates for scholarly publishing services.
F1000Research, 2021.
doi.org/10.12688/f1000research.27468.2

[5] L.L. Haak, M. Fenner, et al. ORCID: a system
to uniquely identify researchers. Learned
Publishing 25(4):259–264, 2012.

[6] H. Hottenrott, M.E. Rose, C. Lawson.
The rise of multiple institutional affiliations
in academia. Journal of the Association
for Information Science and Technology
72(8):1039–1058, 2021.
doi.org/10.1002/asi.24472

[7] R. Lammey. Solutions for identification
problems: a look at the research organization
registry. Science Editing 7(1):65–69, 2020.

[8] L. Lamport. LATEX: A Document Preparation
System. Addison-Wesley Publishing Company,
first ed., 1986.

[9] National Center for Biotechnology
Information (NCBI). Journal publishing
tag library NISO JATS version 1.3.
jats.nlm.nih.gov/publishing/tag-

library/1.3/, June 2021.

[10] National Institutes of Health. Communicating
and acknowledging federal funding, 2021.
grants.nih.gov/policy/federal-

funding.htm

[11] NISO. CRediT: Contributor roles taxonomy.
credit.niso.org

[12] Open Journal Systems. pkp.sfu.ca/ojs/

[13] N. Paskin. Digital object identifier (DOI®)
system. Encyclopedia of library and
information sciences 3:1586–1592, 2010.

[14] Technical Note 0009: XMP Extension
Schemas in PDF/A-1. www.pdfa.org/

resource/technical-note-tn-0009-xmp-

extension-schemas-in-pdfa-1/

⋄ Joppe W. Bos
joppe.bos (at) nxp dot com

ORCID 0000-0003-1010-8157

⋄ Kevin S. McCurley
iacrcc (at) digicrime dot com

ORCID 0000-0001-7890-5430

Joppe W. Bos, Kevin S. McCurley

https://doi.org/10.5281/zenodo.4558704
https://crossref.org/services/funder-registry/
https://doi.org/10.47397/tb/43-3/tb135fischer-xmp
https://doi.org/10.47397/tb/43-3/tb135fischer-xmp
https://doi.org/10.12688/f1000research.27468.2
https://doi.org/10.1002/asi.24472
https://jats.nlm.nih.gov/publishing/tag-library/1.3/
https://jats.nlm.nih.gov/publishing/tag-library/1.3/
https://grants.nih.gov/policy/federal-funding.htm
https://grants.nih.gov/policy/federal-funding.htm
https://credit.niso.org
https://pkp.sfu.ca/ojs/
https://www.pdfa.org/resource/technical-note-tn-0009-xmp-extension-schemas-in-pdfa-1/
https://www.pdfa.org/resource/technical-note-tn-0009-xmp-extension-schemas-in-pdfa-1/
https://www.pdfa.org/resource/technical-note-tn-0009-xmp-extension-schemas-in-pdfa-1/

TUGboat, Volume 44 (2023), No. 1 77

LATEX anniversaries — A look in two directions

Frank Mittelbach

Depending on how you count we have several LATEX
anniversaries to celebrate in 2023: roughly forty years
ago Leslie Lamport started his work on LATEX (which
became LATEX 2.09 in 1986). Ten years later in 1993
we made the �rst beta version of LATEX 2ε available —
since then the standard LATEX version used across the
world.

Thirty years of LATEX 2ε does not mean three
decades of standstill — on the contrary. During that
time thirty-six new kernel versions have been released
and the LATEX ecosystem grew from a few hundred
add-on packages to several thousands.

However, during the �rst two decades changes
to the core of LATEX were rather minor and most ac-
tivity was concentrated in the package universe, but
the last decade showed an increased level of activity
modernizing the LATEX core functionalities. This
started around 2015 when the LATEX Project Team
reimported bug �xes accumulated in a separate pack-
age back into the kernel. Since then the format was
gradually modernized, e.g., by making UTF-8 the de-
fault in 2018 and by incorporating the L3 program-
ming layer in 2020. This intensi�ed further in the
last two years when the team embarked on a multi-

year journey to enable automatic tagging of the PDF

output produced from LATEX.
Once the results of this project are fully available

it will be possible to generate accessible documents
with LATEX without the need to post-process the
LATEX output. With the June 2023 release of LATEX a
major milestone of this project will be reached. With
this release a restricted class of documents can already
be automatically tagged — the digital version of this
article is an example for this.

Together with the �rst release of LATEX 2ε the
�rst edition of The LATEX Companion [12] was pub-
lished. In 2004 the second edition [42] (describing
the extended ecosystem of LATEX 2ε) hit the streets,
and �nally, after �ve years of writing, the third edi-
tion [43] has been published as a two-volume set this
time — a living testimony to the widespread use of
LATEX and its by now huge ecosystem.

The remainder of this article consists of an ex-
cerpt1 from this third edition of The LATEX Compan-
ion that describes the LATEX history in more detail.

⋄ Frank Mittelbach
Mainz, Germany
https://www.latex-project.org

A brief history (of nearly half a century) — excerpt from The LATEX Companion, 3rd edition

In May 1977, Donald Knuth of Stanford University [21] started work on the text-processing system
In the Beginning . . .

that is now known as “TEX and METAFONT” [14–18]. In the foreword of The TEXbook [14], Knuth
writes: “TEX [is] a new typesetting system intended for the creation of beautiful books — and
especially for books that contain a lot of mathematics. By preparing a manuscript in TEX format,
you are telling a computer exactly how the manuscript is to be transformed into pages whose
typographic quality is comparable to that of the world’s �nest printers.”

In 1979, Gordon Bell wrote in a foreword to an earlier book, TEX and METAFONT, New
Directions in Typesetting [13]: “Don Knuth’s Tau Epsilon Chi (TEX) is potentially the most signi�cant
invention in typesetting in this century. It introduces a standard language in computer typography
and in terms of importance could rank near the introduction of the Gutenberg press.”

In the early 1990s, Donald Knuth produced an updated version and also o�cially announced
that TEX would not undergo any further development [22, 23] in the interest of stability. Perhaps
unsurprisingly, the 1990s saw a �owering of experimental projects that extended TEX in various
directions; many of these are coming to fruition in the early 21st century, making it an exciting time
to be involved in automated typography.

The development of TEX from its birth as one of Don’s “personal productivity tools” (created
simply to ensure the rapid completion and typographic quality of his then-current work on The Art
of Computer Programming) [19] was largely in�uenced and nourished by the American Mathematical
Society on behalf of U.S. research mathematicians.

While Don was developing TEX, in the early 1980s, Leslie Lamport started work on the
. . . and Lamport saw

that it was Good. document preparation system now called LATEX, which used TEX’s typesetting engine and macro
system to implement a declarative document description language based on that of a system called

1
© 2023, Pearson. Reprinted with permission.

doi.org/10.47397/tb/44-1/tb136mitt-history

LATEX anniversaries — A look in two directions

78 TUGboat, Volume 44 (2023), No. 1

Scribe by Brian Reid [50]. The appeal of such a system is that a few high-level LATEX declarations, or
commands, allow the user to easily compose a large range of documents without having to worry
much about their typographical appearance. In principle at least, the details of the layout can be left
for the document designer to specify elsewhere.

The second edition of LATEX: A Document Preparation System [25] begins as follows: “LATEX is
a system for typesetting documents. Its �rst widely available version, mysteriously numbered 2.09,
appeared in 1985.” This release of a stable and well-documented LATEX led directly to the rapid spread
of TEX-based document processing beyond the community of North American mathematicians.

LATEX was the �rst widely used language for describing the logical structure of a large range of
documents and hence introducing the philosophy of logical design, as used in Scribe. The central
tenet of “logical design” is that the author should be concerned only with the logical content of his
or her work and not its visual appearance. Back then, LATEX was described variously as “TEX for
the masses” and “Scribe liberated from in�exible formatting control”. Its use spread very rapidly
during the next decade. By 1994 Leslie could write, “LATEX is now extremely popular in the scienti�c
and academic communities, and it is used extensively in industry.” But that level of ubiquity looks
quite small when compared with the present day when it has become, for many professionals on
every continent, a workhorse whose presence is as unremarkable and essential as the workstation on
which it is used.

The worldwide availability of LATEX quickly increased international interest in TEX and in its
Going global

use for typesetting a range of languages. LATEX 2.09 was (deliberately) not globalized, but it was
globalizable; moreover, it came with documentation worth translating because of its clear structure
and straightforward style. Two pivotal conferences (Exeter UK, 1988, and Karlsruhe Germany, 1989)
established clearly the widespread adoption of LATEX in Europe and led directly to International
LATEX [54] and to work led by Johannes Braams [1] on more general support for using a wide variety
of languages and switching between them (see Chapter 13).

Note that in the context of typography, the word language does not refer exclusively to the
variety of natural languages and dialects across the universe; it also has a wider meaning. For
typography, “language” covers a lot more than just the choice of “characters that make up words”, as
many important distinctions derive from other cultural di�erences that a�ect traditions of written
communication. Thus, important typographic di�erences are not necessarily in line with national
groupings but rather arise from di�erent types of documents and distinct publishing communities.

Another important contribution to the reach of LATEX was the pioneering work of Frank
The Next Generation

Mittelbach and Rainer Schöpf on a complete replacement for LATEX’s interface to font resources,
the New Font Selection Scheme (NFSS) (see Chapter 9). They were also heavily involved in the
production of the AMS-LATEX system that added advanced mathematical typesetting capabilities to
LATEX (see Chapter 11).

As a reward2 for all their e�orts, which included a steady stream of bug reports (and �xes)
for Leslie, by 1989 Frank and Rainer “were allowed” to take over the maintenance and further
development of LATEX. One of their �rst acts was to consolidate International LATEX as part of the
kernel3 of the system, “according to the standard developed in Europe”. Very soon version 2.09 was
formally frozen, and although the change-log entries continued for a few months into 1992, plans
for its demise as a supported system were already far advanced as something new was badly needed.
The worldwide success of LATEX had by the early 1990s led in a sense to too much development

Too much of a
Good ThingTM activity: under the hood of Leslie’s “family sedan” many TEXnicians had been laboring to add

such goodies as super-charged, turbo-injection, multivalved engines and much “look-no-thought”
automation. Thus, the announcement in 1994 of the new standard LATEX, christened LATEX 2ε,
explains its existence in the following way:

Over the years many extensions have been developed for LATEX. This is, of course, a
sure sign of its continuing popularity but it has had one unfortunate result: incompatible
LATEX formats came into use at di�erent sites. Thus, to process documents from various
places, a site maintainer was forced to keep LATEX (with and without NFSS), SLITEX,

2 Pronounced “punishment”.
3 Kernel here means the core, or center, of the system.

Frank Mittelbach

TUGboat, Volume 44 (2023), No. 1 79

AMS-LATEX, and so on. In addition, when looking at a source �le it was not always clear
for which format the document was written.

To put an end to this unsatisfactory situation a new release of LATEX was produced. It
brings all such extensions back under a single format and thus prevents the proliferation
of mutually incompatible dialects of LATEX 2.09.

The development of this “New Standard LATEX” and its maintenance system was started in
Standard LATEX

(LATEX 2ε) 1993 by the LATEX Project Team [45], which soon comprised the author of this book, Rainer Schöpf,
Chris Rowley, Johannes Braams, Michael Downes, David Carlisle, Alan Je�rey, and Denys Duchier,
with some encouragement and gentle bullying from Leslie. Although the major changes to the
basic LATEX system (the kernel) and the standard document classes (styles in 2.09) were completed
by 1994, substantial extra support for colored typography, generic graphics, and �ne positioning
control were added later, largely by David Carlisle. Access to fonts for the new system incorporated
work by Mark Purtill on extensions of NFSS to better support variable font encodings and scalable
fonts [2–4].

At this point in the story the �rst edition of the LATEX Companion was written, which helped a
1994 — The first
edition of the

LATEX Companion

lot in making many important packages known to a wide audience and as a side e�ect helped shape
a standard corpus of LATEX packages expected to be available on any installation across the world.

Although the original goal for this LATEX 2ε was consolidation of the wide range of incompati-
Towards the
21st century ble models carrying the LATEX marquee, what emerged was a substantially more powerful system

with both a robust mechanism (via LATEX packages) for extension and, importantly, a solid technical
support and maintenance system. This provides robustness via standardization and maintainability
of both the code base and the support systems. The core of this system remains the current standard
LATEX system that is described in this book. It has ful�lled most of the goals for “a new LATEX for
the 21st Century”, as they were envisaged back in 1989 [48, 49].

The speci�c claims of the current system are “. . . better support for fonts, graphics and color;
actively maintained by the LATEX Project Team”. The details of how these goals were achieved, and
the resulting subsystems that enabled the claims to be substantially attained, form a revealing study
in distributed software support: the core work was done in at least �ve countries and, as is illustrated
by the bugs database [27], the total number of active contributors to the technical support e�ort
remains high.

Although the LATEX kernel su�ered a little from feature creep in the late 1990s, the package
The package system

system together with the clear development guidelines and the legal framework of the LATEX Project
Public License (LPPL) [29, 34] have enabled LATEX to remain almost completely stable while sup-
porting a wide range of extensions. These have largely been provided by a similarly wide range of
people who have, as the project team are happy to acknowledge and the online catalogue [56] bears
witness, enhanced the available functionality in a vast panoply of areas.

All major developments of the base system have been listed in the regular issues of LATEXDevelopment work
News [26]. At the turn of the century, development work by the LATEX Project Team focused on the
following areas: supporting multi-language documents [32]; a “Designer Interface for LATEX” [40];
major enhancements to the output routine [33]; improved handling of inter-paragraph formatting;
and the complex front-matter requirements of journal articles. Back then prototype code had
been made available (see [39]), but the work has otherwise been kept separate from LATEX — partly
because it was executing simply too slowly on the available hardware.

One thing the project team steadfastly refused to do at that time was to unnecessarily “enhance”
No new features at
the kernel level . . . the kernel by providing additional features as part of it, thereby avoiding the trap into which

LATEX 2.09 fell in the early 1990s: the disintegration into incompatible dialects where documents
written at one site could not be successfully processed at another site. In this discussion it should
not be forgotten that LATEX serves not only to produce high-quality documents but also to enable
collaboration and exchange by providing a lingua franca for various research communities.

With LATEX 2ε, documents written in 19964 can still be run with today’s LATEX. In the opposite
direction, new documents run on older kernel releases if the additional packages used are brought

4 The time between 1994 and 1996 was a consolidation time for LATEX 2ε, with major �xes and enhancements being made until the
system was thoroughly stable. In fact, with some minor alterations in pagination or font usage, it is usually possible to reprocess even
documents from the eighties (i.e., written for LATEX 2.09) or make them reusable with little e�ort.

LATEX anniversaries — A look in two directions

80 TUGboat, Volume 44 (2023), No. 1

up-to-date — a task that, in contrast to updating the LATEX kernel software, is easily manageable
even for users working in a multiuser environment (e.g., in a university or company setting).

But a stable kernel is not identical to a standstill in software development; of equally crucial
. . . but no standstill

importance to the continuing relevance and popularity of LATEX is the diverse collection of con-
tributed packages building on this stable base. The success of the package system for nonkernel
extensions is demonstrated by the enthusiasm of these contributors — many thanks to all of them!
As can be easily appreciated by visiting the highly accessible and stable Comprehensive TEX Archive
Network (see Appendix C) or by reading this book (where more than 250 of these “Good Guys”5

are listed on page ii-967), this has supported the existence of an enormous treasure trove of LATEX
packages and related software.

The provision of services, tools, and systems-level support for such a highly distributed main-
The back office

tenance and development system was itself a major intellectual challenge, because many standard
working methods and software tools for these tasks assume that your colleagues are in the next
room, not the next continent (and in the early days of the development, e-mail and FTP were
the only reliable means of communication). The technical inventiveness and the personalities of
everyone involved were both essential to creating this example of the friendly face of open software
maintenance, but Alan Je�rey and Rainer Schöpf deserve special mention for “�xing everything”.

A vital part of this system that is barely visible to most people is the regression testing system
with its vast suite of test �les [31]. It was initially devised and set up by Frank and Rainer with Daniel
Flipo; it has proved its worth countless times in the never-ending battle with the bugs. Over the
years it has seen many re�nements, cumulating in a complete rewrite as part of l3build [44], which
we describe in Section 17.3 on page ii-606.

In 2004, i.e., roughly a decade after its �rst edition, the second edition of the LATEX Companion
2004 — The second

edition of the
LATEX Companion

was published. Due to the popularity of LATEX 2ε and its extended features for developers, new
important packages had emerged, and LATEX had reached out into new domains. While the advice
given in the �rst edition remained largely valid (last but not least because of the long-term backward
compatibility paradigm of LATEX), we ended up rewriting 90% of the original content and added
about 600 pages to account for new developments. As before, the second edition helped a lot in
standardizing the use, and this way the interoperability, of LATEX across the world.

Some members of the LATEX Project Team have built on the team’s experience to extend their
Research

individual research work in document science beyond the current LATEX structures and paradigms.
Some examples of their work up to now can be found in the following references: [5, 7–9, 35–38,
46, 51, 53]. An important spin-o� from the research work was the provision of some interfaces and
extensions that are immediately usable with standard LATEX.

The decision to keep the core of the standard LATEX system stable and essentially unchanging
. . .and into the future

had two major advantages over any other approach to support fully automated document processing.
First, the system already e�ciently provided high-quality formatting of a large range of elements in
very complex documents of arbitrary size. Second, it was robust in both use and maintenance and
hence o�ered the potential to remain in widespread use for at least a further 15 years.6 In the second
edition of this book we wrote on this topic:

As more such functionality is added, it will become necessary to assess the likelihood
that merely extending LATEX in this way will provide a more powerful, yet still robust
and maintainable, system. This is not the place to speculate further about the future
of LATEX but we can be sure that it will continue to develop and to expand its areas of
in�uence whether in traditional publishing or in electronic systems for education and
commerce.

This reassessment became necessary in the second decade of the new century, when it became
Reassessment time

obvious that this position was gradually getting unsustainable, because more and more areas in
which people were looking for solutions could not be adequately addressed with a model of a �xed

5 Unfortunately, this is nearly the literal truth: you need a keen eye to spot the few ladies listed.
6 One of the authors of the second edition had publicly staked a modest amount of beer on TEX remaining in general use (at least by

mathematicians) until at least 2010. He should have made a larger bet, given that this is now 2022 and LATEX is healthy and in fact growing
its user base due to its many unsurpassed qualities.

Frank Mittelbach

TUGboat, Volume 44 (2023), No. 1 81

kernel and all developments outsourced to the package level. Examples are the move to Unicode in
basically all operating systems and the growing pressure to produce “accessible” documents that
conform to standards such as PDF/UA (Portable Document Format/Universal Accessibility).

Thus, in 2015, the LATEX Project Team changed its policy and restarted kernel development.
�An important

policy change To retain the best of both worlds this was accompanied by developing a rollback/roll-forward
functionality for the kernel and packages (that care to implement it). This allows a current LATEX
format to roll back to an earlier point in time in order to process old documents that rely on interfaces
that have been changed since then or to process documents that explicitly worked around bugs (and
so expect them to be there) that have been �xed in the meantime.

The �rst action of the team was to retire the fixltx2e package and instead include the accu-
mulated �xes it contained directly in the format and to o�cially support LATEX when using the
Unicode engines X ETEX and LuaTEX. A big step forward happened in 2018 when LATEX switched
its default input encoding to UTF-8. This change proved that the policy change was the right thing
to do and that the preparatory work (e.g., providing rollback) allows executing even major changes
without disruption in its user base in order to keep LATEX relevant and useful. A good indicator for
the renewed and increased activity are the regular LATEX newsletters [26] accompanying each release,
which grew bulkier and again appeared semi-annually.

The event of providing the mythical LATEX3 had long become a standing joke as “two years
And where is the
mythical LATEX3? from ‘now’ — with ‘now’ a moving target”. The reason was that the concepts and ideas for LATEX3

have been simply a decade or more too early, and while the team implemented a fully working
version already in 1990, it was simply too slow to be usable with the then available computing power.
Thus, we gave up pursuing it and instead concentrated on o�ering LATEX 2ε, which then went
public in 1994.

But ideas and concepts were never forgotten by the team, and especially its newer members
(who joined in this century) pushed them back to the forefront and improved them dramatically. As a
result, the code was eventually publicly made available as the expl3package. It was then picked up by a
number of enthusiastic package developers and used as the basis for their new packages. For example,
if you use acro, breqn, fontspec, siunitx, unicode-math, or xparse, to name a few, you use “LATEX3”
under the hood; a recent count shows more than 200 such packages or classes as part of TEX Live.

So in 2019 the LATEX Project Team made two wide-ranging decisions: there will not be a
separate LATEX3 that is being developed alongside LATEX 2ε (as was originally planned). Instead, we
will modernize the current LATEX gradually from the inside, using the new rollback mechanism
and “development” formats as a safety net to ensure that there is no disruption of service for our
user base. As a �rst step on this journey, the L3 programming layer and the LATEX3 document-level

. . .well it got
merged into the
kernel in 2020

command declarations (formerly known as expl3 and xparse) were made an integral part of LATEX
on February 2, 2020. Thus, more or less exactly 30 years after its conception, LATEX3 became a reality
for every LATEX user — even though few will have immediately noticed.

The importance of this step is that it allows the team to modernize other parts of the kernel and
The foundation layer

for modernization develop new functionality entirely based on the L3 programming layer, which o�ers many features
not available with legacy LATEX programming constructs. For example, the new Hook Management
System for LATEX, which is a cornerstone for modernizing and transforming the existing LATEX, is
entirely written using the new L3 programming layer, and other parts will follow suit.

As already mentioned, there is a steadily increasing interest in the production of “tagged”
Today’s challenge:

structured
and accessible

output is needed

PDF documents that are “accessible”, in the sense that they contain information to assist screen
reading software, etc., and, more formally, that they adhere to the PDF/UA (Portable Document
Format/Universal Accessibility) standard [55], explained further in [10]. In many disciplines this
is starting to become a requirement when applying for grants or when publishing results.

At the moment, all methods of producing such “accessible PDFs”, including the use of LATEX,
require extensive manual labor in preparing the source or in post-processing the PDF (maybe even
at both stages); and these labors often have to be repeated after making even minimal changes to
the (LATEX or other) source. This is a huge pity, because LATEX should in theory be well-positioned
to do this work automatically, given that its source is already well-structured.

The production of tagged (i.e., structured) PDF documents is not only important in order to
comply to accessibility standards. It also opens possibilities to reuse data from such PDFs, because

LATEX anniversaries — A look in two directions

82 TUGboat, Volume 44 (2023), No. 1

it allows other applications to correctly identify the structure inside the output document and this
way extract or manipulate parts of the content — work�ows that become increasingly important
in the digital world.

The LATEX Project Team has for some years been well aware that these new usages are not
adequately supported by the current system architecture of LATEX 2ε and that major work in this
area is therefore urgently needed to ensure that LATEX remains an important and relevant document
source format. However, the amount of work required to make such major changes to the LATEX
system architecture is enormous and de�nitely way beyond the limited resources of a small team
of volunteers working in their spare time (or maybe just about possible, but only given a very long —
and most likely too long — period of time).

At the TEX Users Group conference 2019 in Palo Alto the team’s previously pessimistic outlook
�A multi-

year project
to shape the

future of LATEX

on this subject became cautiously optimistic, because of discussions with senior executives from
Adobe about the possibility of producing structured PDF from LATEX source without the need
for the usual requirement of considerable manual post-processing. As a result of these discussions,
towards the end of 2019 the team produced an extended feasibility study for the project, aimed
primarily at Adobe engineers and decision-makers. This study [41] describes in some detail the
various tasks that constitute the project and their interdependencies. It also contains a project plan
covering how, and in what order, these tasks should be tackled both to achieve the �nal goal and, at
the same time, to provide intermediate concrete results that are relevant to user communities (both
LATEX and PDF); these intermediate results will help in obtaining feedback that is essential to the
successful completion of later tasks.

This multi-year project found the approval of Adobe, which then committed to �nancially
and otherwise supporting this endeavor [47]. Unfortunately — thanks to the COVID-19 pandemic —
the start got delayed, but since the end of 2020, this exciting project is now well under way. First
results from this project that are already in existence (such as the new hook management system
and the alignment of the hyperref package with the LATEX kernel) are already described in this book.
Other parts are obviously still vaporware at this point. Fortunately, none is expected to render any
documentation or suggestion made in this book obsolete — after all, the project goal is to enable
tagging of existing documents, simply by reprocessing with minor con�guration changes as outlined
in the “Spoiler alert” Section 2.1.1 on page 23.

References

[1] Johannes Braams. “Babel, a multilingual style-option system for use with LATEX’s standard
document styles”. TUGboat, 12(2):291–301, 1991.
The babel package was originally a collection of document-style options to support di�erent languages. An update was published in TUGboat,
14(1):60–62, April 1993. https://tug.org/TUGboat/tb12-2/tb32braa.pdf

https://tug.org/TUGboat/tb14-1/tb38braa.pdf

[2] David Carlisle. “A LATEX tour, Part 1: The basic distribution”. TUGboat, 17(1):67–73, 1996.
A “guided tour” around the �les in the basic LATEX distribution. File names and paths relate to the �le hierarchy of the CTAN archives.

https://tug.org/TUGboat/tb17-1/tb50carl.pdf

[3] ——. “A LATEX tour, Part 2: The tools and graphics distributions”. TUGboat, 17(3):321–326, 1996.
A “guided tour” around the “tools” and “graphics” packages. Note that Lamport’s manual [25] assumes that at least the graphics distribution
is available with standard LATEX. https://tug.org/TUGboat/tb17-3/tb52carl.pdf

[4] ——. “A LATEX tour, Part 3: mfnfss, psnfss and babel”. TUGboat, 18(1):48–55, 1997.
A “guided tour” through three more distributions that are part of the standard LATEX system. The mfnfss distribution provides LATEX support
for some popular METAFONT-produced fonts that do not otherwise have any LATEX interface. The psnfss distribution consists of LATEX
packages giving access to PostScript fonts. The babel distribution provides LATEX with multilingual capabilities.

https://tug.org/TUGboat/tb18-1/tb54carl.pdf

[5] ——. “xmltex: A non validating (and not 100% conforming) namespace aware XML parser
implemented in TEX”. TUGboat, 21(3):193–199, 2000.
xmltex is a an XML parser and typesetter implemented in TEX, which by default uses the LATEX kernel to provide typesetting functionality.

https://tug.org/TUGboat/tb21-3/tb68carl.pdf

[6] David Carlisle, editor. Mathematical Markup Language (MathML) Version 4.0. W3C, 1st edition,
2023.
This is the draft speci�cation for a new version of the Mathematical Markup Language; the current version is 3.0 [7]. MathML4 extensions
primarily relate to improving accessibility, with new attributes for improving audio rendering. https://www.w3.org/TR/mathml4/

Frank Mittelbach

TUGboat, Volume 44 (2023), No. 1 83

[7] David Carlisle, Patrick Ion, and Robert Miner, editors. Mathematical Markup Language (MathML)
Version 3.0. W3C, 2nd edition, 2014.
This is the current speci�cation de�ning the Mathematical Markup Language; the upcoming version will be [6]. MathML is an XML
vocabulary for mathematics, designed for use in browsers and as a communication language between computer algebra systems. The goal of
MathML is to enable mathematics to be served, received, and processed on the World Wide Web, just as HTML has enabled this functionality
for text. https://www.w3.org/TR/MathML3/

[8] David Carlisle, Patrick Ion, Robert Miner, and Nico Poppelier, editors. Mathematical Markup
Language (MathML) Version 2.0. W3C, 2nd edition, 2003.
This is the previous version of the MathML standard [7]. https://www.w3.org/TR/MathML2/

[9] David Carlisle, Chris Rowley, and Frank Mittelbach. “The LATEX3 Programming Language—a
proposed system for TEX macro programming”. TUGboat, 18(4):303–308, 1997.
Initial proposals for a radically new syntax and software tools. Most of them are now part of the LATEX format as the L3 programming layer.

https://tug.org/TUGboat/tb18-4/tb57rowl.pdf

[10] Olaf Drümmer and Bettina Chang. PDF/UA in a Nutshell — Accessible documents with PDF.
PDF Association, 2013.
A nice introduction to the ISO standard 14289-1 for universal accessibility, also known as PDF/UA [55]. It provides key facts, e.g., the
requirements of the standard, the current legal situation, etc. https://pdfa.org/resource/pdfua-in-a-nutshell/

[11] Victor Eijkhout. TEX by Topic, A TEXnician’s Reference. Lehmanns Media, Berlin, 2014. ISBN
978-3-86541-590-5. Reprint with corrections. Initially published in 1991 by Addison-Wesley. Also
available free of charge from the author in PDF format.
A systematic reference manual for the experienced TEX user. The book o�ers a comprehensive treatment of every aspect of TEX (not LATEX!),
with detailed explanations of the mechanisms underlying TEX’s working, as well as numerous examples of TEX programming techniques.

https://eijkhout.net/tex/tex-by-topic.html

[12] Michel Goossens, Frank Mittelbach, and Alexander Samarin. The LATEX Companion. Tools
and Techniques for Computer Typesetting. Addison-Wesley, Reading, MA, USA, 1994. ISBN
0-201-54199-8.
The �rst edition of this book. The second edition [42] was published ten years later in 2004 and the third edition [43] in 2023.

[13] Donald E. Knuth. TEX and METAFONT — New Directions in Typesetting. Digital Press, Bedford,
MA, USA, 1979. ISBN 0-932376-02-9.
Contains an article on “Mathematical Typography”, describing the author’s motivation for starting to work on TEX and the early history of
computer typesetting. Describes early (now obsolete) versions of TEX and METAFONT.

[14] ——. The TEXbook, volume A of Computers and Typesetting. Addison-Wesley, Reading, MA,
USA, 1986. ISBN 0-201-13447-0. Jubilee 2021 edition, twenty-�fth printing with corrections.
The de�nitive user’s guide and complete reference manual for TEX. A good secondary reading, covering the same grounds, is [11].

[15] ——. TEX: The Program, volume B of Computers and Typesetting. Addison-Wesley, Reading, MA,
USA, 1986. ISBN 0-201-13437-3. Jubilee 2021 edition, thirteenth printing with corrections.
The complete source code for the TEX program, typeset with several indices.

[16] ——. The METAFONTbook, volume C of Computers and Typesetting. Addison-Wesley, Reading,
MA, USA, 1986. ISBN 0-201-13445-4 (hardcover), 0-201-13444-6 (paperback). Jubilee 2021 edition,
twelfth printing with corrections.
The user’s guide and reference manual for METAFONT, the companion program to TEX for designing fonts.

[17] ——. METAFONT: The Program, volume D of Computers and Typesetting. Addison-Wesley,
Reading, MA, USA, 1986. ISBN 0-201-13438-1. Jubilee 2021 edition, eleventh printing with
corrections.
The complete source code listing of the METAFONT program.

[18] ——. Computer Modern Typefaces, volume E of Computers and Typesetting. Addison-Wesley,
Reading, MA, USA, 1986. ISBN 0-201-13446-2. Jubilee 2021 edition, eleventh printing with
corrections.
More than 500 Greek and Roman letterforms, together with punctuation marks, numerals, and many mathematical symbols, are graphically
depicted. The METAFONT code to generate each glyph is given and it is explained how, by changing the parameters in the METAFONT

code, all characters in the Computer Modern family of typefaces can be obtained.

[19] ——. The Art of Computer Programming, volumes 1– 4A and Fascicles 5–6. Addison-Wesley,
Reading, MA, USA, 1998–2019. ISBN 0-201-89683-4, 0-201-03822-6, 0-201-03803-X, 0-201-03804-8,
0-13-467179-1, and 0-13-439760-6.
Donald Knuth’s major work on algorithms and data structures for e�cient programming.

LATEX anniversaries — A look in two directions

84 TUGboat, Volume 44 (2023), No. 1

[20] ——. Digital Typography. CSLI Publications, Stanford, CA, USA, 1999. ISBN 1-57586-011-2 (cloth),
1-57586-010-4 (paperback).
A comprehensive collection of Knuth’s writings on TEX and typography. While many articles in this collection are available separately on the
Web, not all of them are, and having them all in one place for studying is an additional bene�t.

[21] ——. “Computers and typesetting”. In Knuth [20], pp. 555–562.
Remarks presented by Knuth at the Computer Museum, Boston, Massachusetts, on 21 May 1986, at the “coming-out” party to celebrate the
completion of TEX. Originally published as: https://tug.org/TUGboat/tb07-2/tb14knut.pdf

[22] ——. “The new versions of TEX and METAFONT”. In Knuth [20], pp. 563–570.
Knuth explains how he was convinced at the TUG Meeting at Stanford in 1989 to make one further set of changes to TEX and METAFONT

to extend these programs to support 8-bit character sets. He goes on to describe the various changes he introduced to implement this feature,
as well as a few other improvements. Originally published as: https://tug.org/TUGboat/tb10-3/tb25knut.pdf

[23] ——. “The future of TEX and METAFONT”. In Knuth [20], pp. 571–572.
In this article Knuth announces that his work on TEX, METAFONT, and Computer Modern has “come to an end” and that he will make
further changes only to correct extremely serious bugs. Originally published as: https://tug.org/TUGboat/tb11-4/tb30knut.pdf

[24] Donald E. Knuth and Michael F. Plass. “Breaking paragraphs into lines”. In Knuth [20], pp.
67–155.
This article, originally published in 1981, addresses the problem of dividing the text of a paragraph into lines of approximately equal length.
The basic algorithm considers the paragraph as a whole and introduces the (now well-known TEX) concepts of “boxes”, “glue”, and “penalties”
to �nd optimal breakpoints for the lines. The paper describes the dynamic programming technique used to implement the algorithm.

[25] Leslie Lamport. LATEX: A Document Preparation System: User’s Guide and Reference Manual.
Addison-Wesley, Reading, MA, USA, 2nd edition, 1994. ISBN 0-201-52983-1. Reprinted with
corrections in 1996.
The ultimate reference for basic user-level LATEX by the creator of LATEX 2.09. It complements the material presented in this book.

[26] LATEX Project Team. “LATEX news”.
An issue of LATEX News is released with each LATEX 2ε release, highlighting changes since the last release. There is also a document combining
all issues since 1994, which o�ers a good overview about the history of LATEX 2ε as well as providing an easy way to �nd information on all
major updates and extensions that have been implemented over the years. Locally available via: texdoc ltnews

[27] ——. “Bugs in LATEX software”. Website.
The bug reporting and tracking service run by the LATEX team as part of the LATEX 2ε maintenance activity.

https://www.latex-project.org/bugs/

[28] ———. The LATEX3 Interfaces, 2023.
The reference manual for the L3 programming layer, which has been part of the LATEX format since 2020 and thus available for package
development — the way for LATEX coding going forward. Locally available via: texdoc interface3

[29] ——. “The LATEX project public license (version 1.3c)”, 2008.
The Open Source License used by the core LATEX 2ε distribution and many contributed packages. See [34] for background and history.

https://www.latex-project.org/lppl/

[30] Frank Mittelbach. “E-TEX: Guidelines for future TEX Extensions”. TUGboat, 11(3):337–345, 1990.
The output of TEX is compared with that of hand-typeset documents. It is shown that many important concepts of high-quality typesetting
are not supported and that further research to design a “successor” typesetting system to TEX should be undertaken. A review of the �ndings,
23 years later, is provided in [35]. https://tug.org/TUGboat/tb11-3/tb29mitt.pdf

[31] ——. “A regression test suite for LATEX 2ε”. TUGboat, 18(4):309–311, 1997.
Description of the concepts and implementation of the test suite used to test for unexpected side e�ects after changes to the LATEX kernel.
One of the most valuable maintenance tools for keeping LATEX 2ε stable. https://tug.org/TUGboat/tb18-4/tb57mitt.pdf

[32] ——. “Language Information in Structured Documents: Markup and rendering—Concepts and
problems”. In “International Symposium on Multilingual Information Processing”, pp. 93–104.
Tsukuba, Japan, 1997. Invited paper. Slightly extended in TUGboat 18(3):199–205, 1997.
This paper discusses the structure and processing of multilingual documents, both at a general level and in relation to a proposed extension to
standard LATEX. https://tug.org/TUGboat/tb18-3/tb56lang.pdf

[33] ——. “Formatting documents with �oats: A new algorithm for LATEX 2ε”. TUGboat, 21(3):278–290,
2000.
Descriptions of features and concepts of a new output routine for LATEX that can handle spanning �oats in multicolumn page design.

https://tug.org/TUGboat/tb21-3/tb68mittel.pdf

[34] ——. “Re�ections on the history of the LATEX Project Public License (LPPL) — A software license
for LATEX and more”. TUGboat, 32(1):83–94, 2011.
A review of the evolution of LATEX world’s predominant license [29]. https://tug.org/TUGboat/tb32-1/tb100mitt.pdf

Frank Mittelbach

TUGboat, Volume 44 (2023), No. 1 85

[35] ——. “E-TEX: Guidelines for future TEX Extensions — revisited”. TUGboat, 34(1):47–63, 2013.
This article compares the output of TEX with that of hand-typeset documents. This is a reassessment of the �ndings made 23 years earlier [30].
With the new engines the situation has improved, but even though there is now engine support for most problems, the majority of them still
represent important and open research problems for high-quality automated typesetting.

https://tug.org/TUGboat/tb34-1/tb106mitt.pdf

[36] ——. “A general framework for globally optimized pagination”. In “Proceedings of the 2016 ACM
Symposium on Document Engineering”, DocEng’16, pp. 11–20. Association for Computing
Machinery, New York, NY, USA, 2016. ISBN 978-1-4503-4438-8.
This paper presents research results for globally optimized pagination using dynamic programming and discusses its theoretical background.
It was awarded the “ACM Best Paper Award” at the DocEng 2016 conference. A greatly expanded version of this paper (37 pages) titled “A
General LuaTEX Framework for Globally Optimized Pagination” was submitted to the Computational Intelligence (Wiley) in 2017 and
accepted January 2018 [38]. https://www.latex-project.org/publications/indexbyyear/2016/

[37] ——. “E�ective �oating strategies”. In “Proceedings of the 2017 ACM Symposium on Document
Engineering”, DocEng’17, pp. 29–38. Association for Computing Machinery, New York, NY,
USA, 2017. ISBN 978-1-4503-4689-4.
This paper presents an extension to the general framework for globally optimized pagination described [36]. The extended algorithm supports
automatic placement of �oats as part of the optimization using a �exible constraint model that allows for the implementation of typical
typographic rules. https://www.latex-project.org/publications/indexbyyear/2017/

[38] ——. “A general LuaTEX framework for globally optimized pagination”. Computational Intelligence,
35(2):242–284, 2019.
This article is an extended version (37 pages) of the 2016 ACM article “A General Framework for Globally Optimized Pagination” [36],
providing much more detail and additional research results. The peer-reviewed publication is now freely available.

https://www.latex-project.org/publications/indexbyyear/2020/

[39] Frank Mittelbach, David Carlisle, and Chris Rowley. “Experimental LATEX code for class design”.
Vancouver, 1999.
At the TEX Users Group conference in Vancouver the LATEX project team gave a talk on models for user-level interfaces and designer-level
interfaces in LATEX3 [40]. Most of these ideas have been implemented in prototype implementations (e.g., template design, front matter
handling, output routine, galley and paragraph formatting). The source code is documented and contains further explanations and examples;
see also [33]. The underlying programming interfaces are since 2020 part of the LATEX format as the L3 programming layer [28].

Articles: https://latex-project.org/publications/indexbytopic/l3-expl3

Code: https://github.com/latex3/latex3

[40] ——. “New interfaces for LATEX class design, Parts I and II”. TUGboat, 20(3):214–216, 1999.
Some proposals for the �rst-ever interface to setting up and coding LATEX classes. While all of them were implemented as experimental
prototypes (see [39]), they have been developed at a time were computers were not powerful enough to enable them for general use. This has
�nally changed and several of these ideas are now making their reappearance as part of the “LATEX Tagged PDF” project [47].

https://tug.org/TUGboat/tb20-3/tb64carl.pdf

[41] Frank Mittelbach, Ulrike Fischer, and Chris Rowley. LATEX Tagged PDF Feasibility Evaluation.
LATEX Project, 2020.
This is the feasibility study undertaken by the LATEX team prior to initiating the multiyear project for automatically providing tagged PDF
with LATEX. It explains in detail both the project goals and the tasks that need to be undertaken and concludes with a detailed project plan. See
also [47]. https://latex-project.org/publications/indexbytopic/pdf/

[42] Frank Mittelbach, Michel Goossens, Johannes Braams, David Carlisle, and Chris Rowley. The
LATEX Companion. Tools and Techniques for Computer Typesetting. Addison-Wesley, Reading,
MA, USA, 2nd edition, 2004. ISBN 0-201-36299-6.
The second edition of this book. The contributing authors have changed over the years.

[43] Frank Mittelbach with Ulrike Fischer. The LATEX Companion, Parts I & II. Tools and Techniques
for Computer Typesetting. Addison-Wesley, Reading, MA, USA, 3nd edition, 2023. ISBN
978-0-13-816648-9.
The third edition of this book, published as two-volume set. It is also available in digital formats.

https://www.informit.com/store/latex-companion-parts-i-ii-3rd-edition-9780138166489

[44] Frank Mittelbach, Will Robertson, and LATEX3 team. “l3build— A modern Lua test suite for TEX
programming”. TUGboat, 35(3):287–293, 2014.
The work�ow environment used by the LATEX Project Team and others. Supports concepts developed over the years including regression
testing methods, distribution builds, uploads to CTAN, and installation support.

https://tug.org/TUGboat/tb35-3/tb111mitt-l3build.pdf

Locally available program documentation: texdoc l3build

[45] Frank Mittelbach and Chris Rowley. “LATEX 2.09 ↪→ LATEX3”. TUGboat, 13(1):96–101, 1992.
A brief sketch of the LATEX3 Project, retracing its history and describing the structure of the system. An update appeared in TUGboat,
13(3):390–391, October 1992. A call for volunteers to help in the development of LATEX3 and a list of the various tasks appeared in TUGboat,
13(4):510–515, December 1992. Now mainly of historical interest. https://tug.org/TUGboat/tb13-1/tb34mittl3.pdf

LATEX anniversaries — A look in two directions

86 TUGboat, Volume 44 (2023), No. 1

[46] ——. “The pursuit of quality: How can automated typesetting achieve the highest standards of
craft typography?” In C. Vanoirbeek and G. Coray, editors, “EP92 — Proceedings of Electronic
Publishing ’92, International Conference on Electronic Publishing, Document Manipulation, and
Typography, Swiss Federal Institute of Technology, Lausanne, Switzerland, April 7–10, 1992”, pp.
261–273. Cambridge University Press, New York, 1992. ISBN 0-521-43277-4.
This paper compares high-quality craft typography with the state of the art in automated typesetting. It explains why the current paradigms
of computerized typesetting will not serve for high-quality formatting and suggests directions for the further research necessary to improve
the quality of computer-generated layout.

[47] ——. “LATEX Tagged PDF — a blueprint for a large project”. TUGboat, 41(3):292–298, 2020.
An introduction and summary of the extended feasibility study [41] for the multiyear project “LATEX Tagged PDF”.

https://latex-project.org/publications/indexbytopic/pdf/

[48] Frank Mittelbach and Rainer Schöpf. “With LATEX into the nineties”. TUGboat, 10(4):681–690,
1989.
This article proposes a reimplementation of LATEX that preserves the essential features of the current interface while taking into account the
increasing needs of the various user communities. It also formulates some ideas for further developments. It was instrumental in the move
from LATEX 2.09 to LATEX 2ε. https://tug.org/TUGboat/tb10-4/tb26mitt.pdf

[49] ——. “Towards LATEX 3.0”. TUGboat, 12(1):74–79, 1991.
The objectives of the LATEX3 project are described. The authors examine enhancements to LATEX’s user and style �le interfaces that are
necessary to keep pace with modern developments, such as SGML. They also review some internal concepts that need revision.

https://tug.org/TUGboat/tb12-1/tb31mitt.pdf

[50] Brian Reid. Scribe: A Document Speci�cation Language and its Compiler. Ph.D. thesis,
Carnegie-Mellon University, Pittsburgh, PA 15213, 1980.
The Ph.D. thesis that was one of the inspirations for LATEX.

http://reports-archive.adm.cs.cmu.edu/anon/scan/CMU-CS-81-100.pdf

[51] Chris Rowley. “Models and languages for formatted documents”. TUGboat, 20(3):189–195, 1999.
Explores many ideas around the nature of document formatting and how these can be modeled and implemented.

https://tug.org/TUGboat/tb20-3/tb64rowl.pdf

[52] ——. “The LATEX legacy: 2.09 and all that”. In podc’01: “Proceedings of the Twentieth Annual
ACM Symposium on Principles of Distributed Computing 2001, Newport, Rhode Island,
United States”, pp. 17–25. ACM Press, New York, NY, USA, 2001. ISBN 1-58113-383-9.
Part of a celebration for Leslie Lamport’s sixtieth birthday; a very particular account of the technical history and philosophy of TEX and
LATEX. https://www.latex-project.org/publications/indexbytopic/2e-concepts

[53] Chris Rowley and Frank Mittelbach. “Application-independent representation of multilingual
text”. In “Europe, Software + the Internet: Going Global with Unicode: Tenth International
Unicode Conference, March 10–12, 1997, Mainz, Germany”, The Unicode Consortium, San Jose,
CA, 1997.
Explores the nature of text representation in computer �les and the needs of a wide range of text-processing software.

https://latex-project.org/publications/1996-FMi-CAR-UnicodeConf-appl-independent-representation.pdf

[54] Joachim Schrod. “International LATEX is ready to use”. TUGboat, 11(1):87–90, 1990.
Announces some of the early standards for globalization work on LATEX. https://tug.org/TUGboat/tb11-1/tb27schrod.pdf

[55] Technical Committee ISO/TC 171/SC 2. ISO 14289-1:2014 Document management applications —
Electronic document �le format enhancement for accessibility — 1: Use of ISO 32000-1
(PDF/UA-1), 2014.
ISO 14289-1:2014 speci�es the use of the ISO 32000-1:2008 standard to produce accessible electronic documents.

https://iso.org/standard/64599.html

[56] Graham Williams. “Graham Williams’ TEX Catalogue”. TUGboat, 21(1):17–90, 2000.
In 2000 this catalogue listed more than 1500 TEX, LATEX, and related packages and tools on 74 pages and was linked directly to the items on
CTAN. CTAN now o�ers it in the form of several indexes with more than 5000 items covering everything stored there.

https://tug.org/TUGboat/tb21-1/tb66catal.pdf

Latest version on CTAN at: https://ctan.org/pkg/catalogue

Frank Mittelbach

TUGboat, Volume 44 (2023), No. 1 87

An introduction to expl3
Marei Peischl

Even some long-term LATEX users seem to be scared
of expl3—the syntax of the LATEX3 programming
layer—and think of the structure as confusing or
even frightening. Perhaps with some justi昀椀cation:

\ExplSyntaxOn
\clist_map_inline:nn

\l_tmpa_clist
{ __ptxcd_add_item:n {#1} }

\ExplSyntaxOff

LATEX3 is no longer a development for which LATEX
users have been waiting for decades. LATEX3 has
been around for a long time and nowadays is used
by all LATEX users, often without being noticed. The
goal of this tutorial is to demystify expl3.

The LATEX3 programming layer is the foundation
of almost all new LATEX development in the last years.
It provides uni昀椀ed interfaces that can be used directly
or indirectly by package authors and users to code
complex mechanisms or process content much more
昀氀exibly than with classic LATEX.

Overall, the most important goals of LATEX3 are:
• Uniform interfaces for functions and variables
• Modernization of syntax
• Simpli昀椀cation of controlling expansion

and thus provide both much simpler and more pow-
erful ways to program in LATEX [5].

Programming is useful when a document, de-
pending on settings, should get either a di昀昀erent
layout or a di昀昀erent structure. A typical example
from teaching is the creation of an exam including
solutions within a single 昀椀le, where solutions can be
hidden. Another use case is the processing of exter-
nal data. A typical example is a list to be converted
to an enumeration:

\ExplSyntaxOn
\begin{enumerate}

\clist_map_inline:nn
{ one, two, three }
{ \item #1 }

\end{enumerate}
\ExplSyntaxOff

1. one
2. two
3. three

The expl3 syntax often seems cryptic to users of
other programming languages. As a combination of

underscores and colons and a bunch of naming con-
ventions form a unique structure, expl3 is a nice way
to remind everyone of the fact that LATEX, and thus
expl3, is a pure macro language. Here, tokens are
replaced by their meaning and no actual operations
are performed, as opposed to scripting languages.

Understanding the structure of expl3 therefore
requires a basic understanding of macro expansion
and the concept of category codes. The following
sections explain the basics of these, in addition to
the syntactic structure. If the concepts are already
familiar, the corresponding sections can be skipped.

1 Syntax switching in TEX, LATEX, expl3
When TEX processes input, it not only reads individ-
ual characters, but also assigns a category to each
character. This category determines how the char-
acter should be processed. The assignment is done
using the so-called “category codes” or “catcodes”
for short. Each input character corresponds to a
character code, and each character code is assigned
to a (changeable) category code.

In total, TEX knows sixteen di昀昀erent categories.
The assignments of a character to a category can
change within a document. The most common ex-
ample is language-dependent behavior, such as con-
structed by babel [1]. For German documents, one
can type "a to produce “ä”. (In English documents,
each character is processed separately.) This is done
using category 13 “active”. Active characters are no
longer simple characters, but commands; in this case,
the command to put an umlaut over the following
character.

The following list shows all available categories
along with explanations and examples, many of which
are familiar to all TEX typists, even if you haven’t
heard of category codes.
0. Escape character (\)
1. Beginning of group ({)
2. End of group (})
3. Math shift ($)
4. Alignment tab (&)
5. End of line (〈return〉)
6. Parameter (#)
7. Superscript (^)
8. Subscript (_)
9. Ignored character (〈null〉)
10. Space (␣)
11. Letter (non-ASCII only with X ETEX/LuaTEX)
12. Other character (@)
13. Active character (~)
14. Comment character (%)
15. Invalid character (〈delete〉)

doi.org/10.47397/tb/44-1/tb136peischl-expl3

An introduction to expl3

https://doi.org/10.47397/tb/44-1/tb136peischl-expl3

88 TUGboat, Volume 44 (2023), No. 1

1.1 The @ character in (LA)TEX
macro names

LATEX uses @ to protect internal macros from access
by end users. Usually, internal macros are protected
this way for a reason. So customizations should be
done with caution to avoid unexpected side e昀昀ects.
While being aware of danger, it is possible to use @
within command names, by changing the category
code of @ to 11 (letter), and back to 12 (other) when
no longer needed:

\makeatletter
\makeatother

A typical example for the use of the @ character
is the de昀椀nition of “starred” variants for one’s own
commands. For this, two auxiliary macros must be
de昀椀ned internally, which are often also protected
with an @:

\makeatletter
\newcommand*{\cmd}

{\@ifstar\@cmdstar\@cmd}
\newcommand*{\@cmd}{without *}
\newcommand*{\@cmdstar}{with *}
\makeatother

Then the macro \cmd has the following output:

\cmd \\ \cmd*

without *
with *

1.2 The expl3 syntax
Since the focus of the expl3 syntax is programming,
LATEX behaves fundamentally di昀昀erently when coding
a command than when writing text:
• Spaces and newlines in code delimit tokens, but

are otherwise ignored.
• Blank lines are not paragraph breaks.
• Tilde (~) characters are a normal space (catcode

10), not a tie.
• Colon (:) and underscore (_) characters are

part of macro names.
• There is a syntactic di昀昀erence between functions

and variables.
• It is recommended to put spaces around curly

braces unless they contain only one parameter.
These changes allow us to structure the code quite a
bit better, without changing its meaning. Switching
to (or from) the expl3 programming syntax is done
with these commands:

\ExplSyntaxOn
\ExplSyntaxOff

Additionally, most package authors nowadays use
CamelCase for the commands for their users. This
improves the readability of the code even within the
classic LATEX syntax.

2 Naming scheme
Using a naming scheme, expl3 distinguishes at a
glance functions that process content or arguments
from variables that simply store a value. Function
names contain a : character, and variables do not:
Functions:

\module_description:arguments

Variables:
\validity_module_description_datatype

2.1 Variables
Variables store values. Expl3 provides di昀昀erent data
types for this. The naming scheme is the same for all
types. Technically, this is only a convention. How-
ever, following it ensures that users can understand
the code more easily.

\validity_module_description_datatype

Validity constant (c), global (g) or local (l).
Internal? Internal variables which are not intended

for end-users separate the validity from the mod-
ule by two underscores. Normal variables have
only one underscore here.

Module Named for the package/bundle to avoid
name con昀氀icts. There is a process to register
module names; see [6].

Description What does the variable store for which
purpose?

Datatype What kind of values are stored in the
variable? How must it be processed?

An example of an internal variable (two underscores)
is the token list (tl):

\l__siunitx_complex_sign_tl

There are a wide variety of data types, each with
its own abbreviation. A small selection is shown in
Table 1. All interfaces are documented in [4].

2.2 Functions
The term “function” is perhaps a bit misleading for
those familiar with other programming languages.
TEX and thus expl3 is a pure macro language, which

Marei Peischl

TUGboat, Volume 44 (2023), No. 1 89

Table 1: Selection of expl3 data types

Type Description
bool boolean (true or false)
box box
clist comma-separated list
coffin “box with handles”, a box with anchor

points for relative placement with respect
to other objects.

dim length (dimension)
fp 昀氀oating point numbers (double precision)
int integer
prop key/value list (property list)
seq sequence (queue/stack)
skip extensible length (glue)
str string, consisting only of letters, spaces

and category 12 (other) characters
stream input/output streams for reading/writing

external 昀椀les
tl token list, string with arbitrary catcodes

gives the impression of a function that operates only
by substituting strings. However, functions in expl3
can also be understood to process their contents,
with no return value in the sense of conventional
programming languages. The “return value” is often
left in the “input stream” and thus becomes part of
the document.

The naming convention for functions is:

\module_description:argument speci昀椀cation

The module and description for function names are
identical to those for variables. However, the dif-
ference between whether a function acts locally or
globally is recorded in the description. The conven-
tion pre昀椀xes a set for a (local) assignment and an
additional “g” for a global assignment: gset. Exam-
ples are the functions for setting integer variables:

\int_set:Nn
\int_gset:Nn

In expl3 syntax, the arguments expected by the func-
tion are speci昀椀ed after the colon. Thus, the two
examples above expect two arguments: one of type
“N” and a second of type “n”. Thus, one can di-
rectly look at a function for the number and types
of expected arguments. This will be important for
controlling the expansion process, but for now, just
N and n are enough to deal with. The letter stands
for “No manipulation” in each case. Thus, the argu-
ment is passed to the function without any further
processing.

The di昀昀erence between the upper and lower case
is whether the function expects a single token or a
grouped argument. Upper case letters stand for to-
kens; lower case for groups. Thus, our argument spec-
i昀椀cation :Nn above expects a single token followed by
a group. Altogether, the macro \int_set:Nn could
be used as follows:

\int_set:Nn \l_tmpa_int { 5 }

The above example sets an integer variable (the 昀椀rst
argument, here \l_tmpa_int) to the value “5” (spec-
i昀椀ed in a group).

The function is thus similar to classic LATEX’s
\setcounter, but the argument of \int_set:Nn can
also be used to calculate. The function \int_use:N
returns the value of the given variable, in this case
typesetting it:

\ExplSyntaxOn
\int_set:Nn \l_tmpa_int { 5 + 2 * 3 }
\int_use:N \l_tmpa_int
\ExplSyntaxOff

11

2.3 dim: Example of a data type
This section is devoted to the “dim” data type for
lengths. The most common functions are discussed.
Analogous functions exist for other data types. Com-
plete documentation is given in [4].

2.3.1 Initialization: N/n arguments

\dim_new:N
\dim_const:Nn

\dim_new:N is used to create a new variable. It then
exists globally, but can also be assigned locally. Here,
the naming convention is crucial. To create a local
and a global variable for our present tutorial, we do:

\dim_new:N \l_tugboat_test_dim
\dim_new:N \g_tugboat_test_dim

It is thus possible for two variables with the same
description to exist, one of which is to be assigned
locally and one globally.

When de昀椀ning a constant, its value is also di-
rectly speci昀椀ed:

\dim_const:Nn \c_tugboat_test_dim { 5cm }

For variables, which are changeable, the assignment
is done separately with \dim_set:Nn (or _gset):

An introduction to expl3

90 TUGboat, Volume 44 (2023), No. 1

\dim_set:Nn \l_tugboat_test_dim { 3cm }
\dim_gset:Nn \g_tugboat_test_dim

{ 1cm + 5mm }

Analogously to what we saw with counters, calcu-
lation is also possible here. Precision is limited to
that of TEX for lengths. The smallest unit is 1 sp =
0.000 02 pt. And thus de昀椀nitely small enough to have
more than su昀케cient accuracy for print production.

Besides assignments, there are also commands
for addition and subtraction of lengths. The name
structure remains identical here. All details can be
looked up in [4].

2.3.2 Conditionals and loops: T/F/TF
arguments

Another basic part of programming is the ability to
compare values of variables, and create loops based
on such conditions. For lengths, the simplest way to
do this in expl3 is to use the command:

\dim_compare:nTF

This macro can be used to compare lengths with
each other. The possible comparisons are:
Equal = or ==
Greater-equal >=
Larger >
Less-equal <=
Smaller <
Unequal !=

There are other variants of the \dim_compare:
function that allow only some of the operators; they
are processed faster. Here, we discuss only the sim-
plest and most general command. As a complete
example, our just-created and assigned global and
local lengths can be compared with each other:

\ExplSyntaxOn
\dim_compare:nTF { \g_tugboat_test_dim >=

\l_tugboat_test_dim }
{ is~greater~or~equal }
{ is~smaller }

\ExplSyntaxOff

is smaller

The speci昀椀cation TF expects one group or token per
letter according to the previous description. Here,
the “T” stands for “true”, the “F” for “false”.

Expl3 has a special feature here: you are allowed
to specify only the branch that is needed. If the
function should output something only if the query
returns the value “false”, the T argument can simply
be omitted:

\ExplSyntaxOn
\dim_compare:nF

{ \g_tugboat_test_dim >
\l_tugboat_test_dim }

{ not~greater }
\ExplSyntaxOff

not greater

2.3.3 Debugging outputs
In more complex programming, it may be necessary
to display values of variables on the 昀氀y. Expl3 pro-
vides commands to output the current value of a
variable in the terminal or to write it to the log 昀椀le.

\dim_show:N
\dim_show:n
\dim_log:N
\dim_log:n

The variants with type “n” arguments expect a length
expression instead of a length variable. Here you can
calculate again or evaluate a macro which contains
for example a centimeter value.

2.4 Argument speci昀椀cations
In addition to the argument speci昀椀cations already
mentioned, there are several others, most of which
process arguments di昀昀erently than in standard argu-
ments in classic LATEX. Table 2 shows all of them
and their description.

N and TF have already been explained. Type
c follows next, and section 4 will explain the spec-
i昀椀cations o, f, x, e, and V. The types p and w are
less common, especially for beginners, and won’t be
discussed here; they’re listed for the sake of com-
pleteness. Explanations can be found in [5].

Table 2: Argument speci昀椀cations for expl3 functions

Token Description
wN/n No manipulation
TF/T/F True/False
c Csname
V/v Value
o expand Once
x eXhaustive expansion
e Exhaustive expansion, but the macro

might be expandable
f Full expansion to 昀椀rst unexpandable token
p Parameters as for TEX de昀椀nitions
w Weird

Marei Peischl

TUGboat, Volume 44 (2023), No. 1 91

3 Csname/Endcsname: c arguments
A fundamental concept of LATEX is the ability for
macro names to be created dynamically:

\csname name\endcsname
One can roughly describe the functionality of this
construction as pre昀椀xing a backslash:

\LaTeX{}
=
\csname LaTeX\endcsname

LATEX = LATEX

A typical example of practical use is references. Here,
a macro is de昀椀ned internally that contains the argu-
ment of the \label command:

\label{frame:csname}
\expandafter\meaning

\csname r@frame:csname\endcsname

macro:->{3}{91}{Csname\slash Endcsname:
\texttt {c} arguments}{section.3}{}

A reference is thus created as a macro containing
the element number— in this case empty because
not numbered—and the page number. For \ref,
the 昀椀rst value is used. \pageref uses the second.
For more information on the topic, including several
examples, see [3].

In expl3, this concept is the foundation for
type c arguments— c as in “csname”. Here, we’ve
seen the 昀椀rst command, \dim_set:Nn, which sets
\l_tmpa_dim to 1cm. The second command, using
\dim_set:cn, similarly sets \l_tmpb_dim to 2cm,
but the variable is given as a name instead of a
literal control sequence. The third uses names for
both the variable name and the value.

\dim_set:Nn \l_tmpa_dim { 1cm }
\dim_set:cn { l_tmpb_dim } { 2cm }
\dim_set_eq:cc { l_tmpa_dim }

{ l_tmpb_dim }

4 Controlling expansion: o/x/e arguments
Expansion essentially means replacing a command
with its meaning. For classic commands in LATEX, the
expansion of a macro can be seen by the commands

\meaning\command
\show\command
The result can be displayed in the text or output to
the terminal. For example:

\newcommand*{\myVariable}{myvalue}
\meaning\myVariable\\
\newcommand*{\myFunction}[1]{%

function with argument (#1)
}
\meaning\myFunction

macro:->myvalue
macro:#1->function with argument (#1)

The macro \myVariable is thus simply replaced by
the string “myvalue”. The macro \myFunction ac-
cepts an argument and places this behind the text
in parentheses.

To implement more complex structures, other
macros are often used within macro de昀椀nitions. Then,
multi-level expansion is necessary.

4.1 Multiple-level expansion
We use the following de昀椀nitions as an example to
illustrate how LATEX handles commands.

\newcommand\one{a}
\newcommand\two{\one,b}
\newcommand\three{\one,\two,c}

Imagine each macro as a box with di昀昀erent content
depending on its de昀椀nition:

\one

Without expansion, TEX sees only a token. If this is
then to be processed further, the box is unpacked:

a

Since there is only the word “one” inside this
macro, this process cannot be repeated. The macro
is already fully and exhaustively expanded.

Compared to the once-expandable macro \one,
\three can be expanded multiple times. See Figure 1
for all steps.

Expl3 allows for arguments to explicitly control
how far boxes should be unpacked before further
processing. This allows for exact control.

Accordingly, we can now distinguish the argu-
ment speci昀椀cations. We see this using an expl3
construct directly: \tl_to_str:n directly prints
the argument, as a string, into the document. To
get variants of the expansion levels, one can use
\exp_args:No or other expansion levels. Here the
昀椀rst argument is not expanded and the second one
is expanded according to the argument:

An introduction to expl3

92 TUGboat, Volume 44 (2023), No. 1

Before expansion:

\three
Expanded once:

\one , \two ,c

Expanded twice:

a , \one ,b ,c

After third expansion:

a , a ,b ,c

Figure 1: Visualization of expansion steps in boxes

\ExplSyntaxOn
unexpanded:\hfill
\tl_to_str:n { \three } \\
expanded~once:\hfill
\exp_args:No \tl_to_str:n { \three } \\
fully~expanded:\hfill
\exp_args:Nf \tl_to_str:n { \three } \\
exhaustively~expanded~(x)\hfill
\exp_args:Nx \tl_to_str:n { \three } \\
exhaustively~expanded~(e)\hfill
\exp_args:Ne \tl_to_str:n { \three }
\ExplSyntaxOff
unexpanded: \three
expanded once: \one ,\two ,c
fully expanded: a,\two ,c
exhaustively expanded (x) a,a,b,c
exhaustively expanded (e) a,a,b,c

This ability to control exactly in which order ar-
guments of functions should be expanded makes it
possible to look inside boxes before they are 昀椀nally
processed. Thus, for example, you can check in which
format a date is passed and proceed accordingly:

\cs_new:Nn __tugboattut_parse_date:n {
% split at “-”
\seq_set_split:Nnn \l_tmpa_seq

{ - } {#1}
% more than one item
% -> there was a dash

\int_compare:nTF
{ \seq_count:N \l_tmpa_seq > 1 }

{
% assuming ISO format
\seq_item:Nn \l_tmpa_seq { 3 } .
\seq_item:Nn \l_tmpa_seq { 2 } .
\seq_item:Nn \l_tmpa_seq { 1 }

} {
% alternative checks possible
#1

}
}

The macro now checks if the argument contains a
hyphen. If it does, the date is interpreted as an
ISO date (YYYY-MM-DD). Otherwise it is assumed
that the date already has the format DD.MM.YYYY.
(Further checking could be done.)

As an example, let’s imagine the date that is
passed at the beginning of the document via \date
for the title line is to be processed with this. Inter-
nally, this value is stored in the command \@date.
However, this macro does not contain a hyphen,
which means that it has to be expanded 昀椀rst.

One way would be to use the \exp_args: com-
mand used above, but expl3 additionally provides a
mechanism to create variants of a base command:

\cs_generate_variant:Nn
__tugboattut_parse_date:n
{ x }

Now the variant __tugboattut_parse_date:x also
exists. This allows the following construct:

\ExplSyntaxOn
__tugboattut_parse_date:n { 23.06.2022 }
=
__tugboattut_parse_date:n { 2022-06-23 }
=
__tugboattut_parse_date:x

{ \use:c { @date } }
\ExplSyntaxOff
23.06.2022=23.06.2022=23.06.2022

5 Summary/outlook
LATEX3 or expl3 extends and simpli昀椀es the ability to
write more 昀氀exible macros despite—or maybe even
because of— its somewhat weird syntax. In addition
to the basic data type of “Token”, structured data
types are introduced, and a di昀昀erentiation is made
between data processing and data storage. Moreover,
expl3 makes the control of macro expansion much
more transparent.

Marei Peischl

TUGboat, Volume 44 (2023), No. 1 93

It is thus possible to process di昀昀erent contents
automatically and to pack signi昀椀cantly more func-
tionality into a macro depending on the arguments
and their structure. Furthermore, the uniform struc-
ture of the interfaces makes it easier to read and
understand code by other authors.

Very many helper macros, which have been de-
昀椀ned in many packages again and again, are obsolete,
since there now are functions within the LATEX ker-
nel to replace them. Whole groups of packages are
replaced by LATEX3 standard modules, one of the
most common examples being the key–value pars-
ing packages [2]. In the long run, this—along with
other extensions to the kernel—will reduce con昀氀icts
between packages and thus make the overall LATEX
system even more stable and increase the usability
for the end user.

This article provides only a very small glimpse
of the possibilities. Although more or less anything
could be done in classic LATEX, it often required low-
level patches and hacking. Expl3 has made it much
easier for me to do programming tasks directly in
LATEX.

I sincerely hope this article can help to reduce
some confusion and fear, on the road to more expl3.

\prg_do_nothing: or just \relax.

References
[1] J.L. Braams, J. Bezos. Babel: Localization and

internationalization. ctan.org/pkg/babel
[2] CTAN. keyval topic. ctan.org/topic/keyval
[3] A. Hendrickson. The joy of \csname...

\endcsname. TUGboat 33(2):219–224, 2012.
tug.org/TUGboat/tb33-2/tb104hendrickson.
pdf

[4] LATEX Project. The LATEX3 interfaces.
mirrors.ctan.org/macros/latex/contrib/
l3kernel/interface3.pdf

[5] LATEX Project. The expl3 package and LATEX3
programming. mirrors.ctan.org/macros/
latex/contrib/l3kernel/expl3.pdf

[6] J. Wright. Registering expl3 module[s]. texdev.
net/2012/11/04/registering-expl3-module/

� Marei Peischl
Gneisenaustr. 18
20253 Hamburg
Germany
marei (at) peitex dot de
https://peitex.de

An introduction to expl3

https://ctan.org/pkg/babel
https://ctan.org/topic/keyval
https://tug.org/TUGboat/tb33-2/tb104hendrickson.pdf
https://tug.org/TUGboat/tb33-2/tb104hendrickson.pdf
https://mirrors.ctan.org/macros/latex/contrib/l3kernel/interface3.pdf
https://mirrors.ctan.org/macros/latex/contrib/l3kernel/interface3.pdf
https://mirrors.ctan.org/macros/latex/contrib/l3kernel/expl3.pdf
https://mirrors.ctan.org/macros/latex/contrib/l3kernel/expl3.pdf
https://texdev.net/2012/11/04/registering-expl3-module/
https://texdev.net/2012/11/04/registering-expl3-module/

94 TUGboat, Volume 44 (2023), No. 1

LuaCAS: Symbolic computation in LATEX
Timothy All, Evan Cochrane

Abstract
LuaCAS is a portable computer algebra system, writ-
ten entirely in Lua, designed for use within LuaLATEX
via the luacas package [1]. Features include: ar-
bitrary precision integer and rational arithmetic,
number-theoretic algorithms, constructors and al-
gorithms for univariate polynomials de昀椀ned over var-
ious rings, symbolic di昀昀erentiation and integration,
and more.

1 Motivation
Most existing computer algebra systems such as
Maple and Mathematica allow for converting their
stored expressions to LATEX code. But this still re-
quires exporting code from LATEX to another pro-
gram, converting it to a form that the CAS is expect-
ing, performing the computation, and importing the
result, which can be tedious.

In contrast, the luacas package allows the user
to perform basic symbolic computations from within
LuaLATEX without the need for laborious and techni-
cal setup. One simply installs the package like any
other and adds \usepackage{luacas} to the pream-
ble. Indeed, this article, along with all computations
contained therein, was prepared in Overleaf.

2 An example
The main method for interacting with LuaCAS from
within LuaLATEX is to use the CAS environment. The
following example demonstrates typical usage:
\begin{CAS}

vars('x')
f = int(sin(sqrt(x)),x)

\end{CAS}
\[\print{f} = \print*{f} \]

∫

sin
(√

x
)

dx = −2
√

x cos
(√

x
)

+ 2 sin
(√

x
)

The macro \print converts the contents of its ar-
gument as-is into a string formatted for LATEX and
prints the result into the document via tex.print;
the starred variant \print* evaluates and performs
some basic simpli昀椀cations on its argument before the
conversion to LATEX step.

3 Development
LuaCAS began as a senior capstone at Rose-Hulman
Institute of Technology in the fall of 2021. The
primary use case we had in mind early in develop-
ment was that of a professor creating content with
dynamic examples and problems for introductory

calculus classes. We thus decided to make symbolic
di昀昀erentiation/integration the end goal of the project,
as well as including basic algebraic functionality ex-
pected in any CAS.

Our 昀椀rst task was programming the core trees
that would be used to store expressions. Mathe-
matically speaking, an expression is a rooted tree.
The luacas package comes with a pair of macros
\parseforest (plus a starred variant that evaluates
and simpli昀椀es the argument) and @\forestresult
that allow the user to draw these rooted trees with
the help of the forest package [9]. For example,
with f de昀椀ned as in the previous example, we have:
\parseforest*{f}
\bracketset{action character=@}
\begin{forest}

for tree = {font=\ttfamily}
@\forestresult

\end{forest} ADD

MUL

-2 POW

x 1/2

cos

POW

x 1/2

MUL

2 sin

POW

x 1/2

Object-oriented Lua was chosen as our programming
paradigm, allowing for the functionality of the CAS
to be easily extensible without the need for compiling
or setting up a complicated build environment.

Given that LuaCAS is written in an interpreted
language, one can expect dramatically slower per-
formance when comparing LuaCAS to popular com-
puter algebra systems. Any mathematical operation
or structure also gets its own class under this scheme,
so there is an inevitable explosion in the number of
classes. Despite this, LuaCAS performs well within
the scope of its design and motivation.

We decided to split LuaCAS into modules, partly
to increase the potential for extensibility and partly
to reduce the time to load the CAS when only a
subset of its features are needed. At the time of this
writing, there are three modules: core, algebra, and
calculus. The luacas package loads these modules
by default.

The core module contains all of the interfaces
for expressions that other classes need to extend
(e.g., expression manipulation, substitution, etc.).
The algebra module contains polynomial algorithms
and common algebraic and trigonometric functions,
as well as interfaces for algebraic structures such as

doi.org/10.47397/tb/44-1/tb136all-luacas

Timothy All, Evan Cochrane

https://doi.org/10.47397/tb/44-1/tb136all-luacas

TUGboat, Volume 44 (2023), No. 1 95

rings and 昀椀elds. Class inheritance was chosen to
mirror mathematical structures — 昀椀elds inherit from
Euclidean domains since all 昀椀elds are Euclidean do-
mains, and Euclidean domains likewise inherit from
rings. Concrete classes represent speci昀椀c rings, such
as integers or polynomials, and objects are elements
of these rings. Finally, the calculus module con-
tains classes for di昀昀erentiation and integration.

Features were implemented chronologically by
an informal notion of how mathematically ‘fundamen-
tal’ they were. Accordingly, expression simpli昀椀cation
via algebraic properties came 昀椀rst, then polynomial
factoring/root-昀椀nding, then symbolic di昀昀erentiation,
and 昀椀nally symbolic integration. This order turned
out to be convenient for testing purposes, since sym-
bolic integration relies on factoring for rational func-
tion integration. Algorithms for symbolic factoring
and di昀昀erentiation are well-established [10], but sym-
bolic integration required signi昀椀cantly more tinker-
ing to balance power and e昀케ciency. This took the
project beyond its original scope as a senior project;
development on the symbolic integrator continued
for months. Version 1.0.1 of luacas was uploaded
to CTAN on November 15, 2022.

4 Features
The CAS environment is fundamentally a glori昀椀ed
\directlua. Accordingly, the CAS environment can
be used essentially anywhere in a LATEX document,
and variables declared in one instance of the CAS
environment will be remembered in the next instance
of the CAS environment. Thus, expressions can be
manipulated naturally throughout a document, as
the examples below will illustrate.

4.1 Core
At the core of any computer algebra system is the
notion of an expression. In LuaCAS, there are atomic
expressions (e.g., integers, variables) and composite
expressions. Variables must be declared or initialized
before use (like Sage in days of yore). This is done
with the vars() function within the CAS environ-
ment. Using a combination of Lua’s meta-methods
and operator overloading, composite expressions are
constructed naturally:
\begin{CAS}

vars('x')
f,g = 1-x+0*x, 1+1*x
h = f*g

\end{CAS}
\[\print{h} \]

(1− x+ 0 · x) (1 + 1x)

Essential functionality for any computer algebra sys-
tem is the process of simpli昀椀cation. Externally, the

user expects output from the CAS to be simple and
concise. Internally, simpli昀椀cation serves as a sort of
normalization procedure for expressions. Expressions
can be simpli昀椀ed in a couple of di昀昀erent ways:
\begin{CAS}
ah = h:autosimplify()
sh = h:simplify()

\end{CAS}
\[\print{ah} = \print{sh} \]

(1 + x) (1− x) = 1− x2

The autosimplify method is designed to be fast, as
it is automatically performed on expressions before
most other functions, such as factoring and expansion.
Accordingly, it perhaps does not go as far as one
might expect. For a more rigorous simpli昀椀cation, the
simplify method makes a rudimentary search for
the smallest expression tree equivalent to the input.

The core functionality of LuaCAS allows for
other types of expression manipulation including
substitutions:
\begin{CAS}
vars('h')
sh = substitute({[x]=x+h},sh)

\end{CAS}
\[\print{sh} \]

1− (x+ h)
2

4.2 Algebra
The Algebra module contains constructors for various
special classes and related algorithms.

4.2.1 Rings
There are constructors for the following Ring types:

• the integers,
• the integers modulo N ,
• rationals (interpreted somewhat broadly), and
• polynomials.

A rudimentary parser wrapped around the contents
of the CAS environment calls most of these construc-
tors in a natural way:
\begin{CAS}
a,b,c = 65, Mod(65,4), 63/65

\end{CAS}
\[\lprint{{a,b,c}} \]

65, 1,
63

65
But to construct a polynomial requires speci昀椀c input
from the user:
\begin{CAS}
vars('x')
f,g = x^2+2*x+3, Poly({3,2,1},x)

\end{CAS}
\[\print{f} \qquad \print{g} \]

LuaCAS: Symbolic computation in LATEX

96 TUGboat, Volume 44 (2023), No. 1

x2 + 2x+ 3 x2 + 2x+ 3

The printouts of f and g look the same; but in-
ternally, LuaCAS handles these expressions quite
di昀昀erently. There are several advantages to having
a dedicated polynomial class, not least of which is
computational speed.

On the other hand, the user more often than
not needn’t worry about issues pertaining to class
types. Many functions in LuaCAS are class-aware in
that they will either detect or make some attempt
at converting class types for you. For example, the
factor function applied to a = 1440 will detect that
the input is an Integer, then apply number theo-
retic algorithms to determine the prime-factorization
(speci昀椀cally a combination of Pollard-Rho and Miller-
Rabin). On the other hand, when factor is given
the expression f = x3+x2+x−3, it 昀椀rst converts f
to the polynomial class; from there it uses special al-
gorithms to 昀椀nd the factorization over Q (speci昀椀cally
a combination of Berlekamp [2] and Zassenhaus [10]).
\begin{CAS}

vars('x')
a,f = 1440, x^3 + x^2 + x - 3

\end{CAS}
\[\begin{aligned}

\print{f} &= \print{factor(f)} \\
\print{a} &= \print{factor(a)}

\end{aligned} \]

x3 + x2 + x− 3 = (−1 + x)
(

3 + 2x+ x2
)

1440 = 322551

4.2.2 Ring conversion
Each Ring type comes equipped with a Ring iden-
ti昀椀er. This identi昀椀er is used to cast arithmetic per-
formed on di昀昀ering Ring types to the appropriate
Ring. For example, if we ask LuaCAS to add a
polynomial with integer coe昀케cients to a rational
number, LuaCAS will fetch the Ring identi昀椀ers for
both classes and determine that the appropriate Ring
into which to cast the arithmetic is the polynomial
ring with rational coe昀케cients:
\begin{CAS}

a,b,c = 2, 4/3, Poly({-3,1,1,1},x)
d = c+b+a

\end{CAS}
\[(\print{c}) + \print{b}

+ \print{a} = \print{d}\]

(x3 + x2 + x− 3) +
4

3
+ 2 = x3 + x2 + x+

1

3

4.2.3 Special classes
The Algebra module provides constructors for special
classes such as those for trigonometric, radical, and

logarithmic expressions, along with support for the
expected simpli昀椀cations of these expressions:
\begin{CAS}
vars('x')
a,b,c=sin(4*pi/3),ln(e^(x+1)),sqrt(8/9)

\end{CAS}
\[\begin{aligned}
\print{a} &= \print*{a} \\
\print{b} &= \print*{b} \\
\print{c} &= \print*{c}

\end{aligned} \]

sin

(

4π

3

)

= −

√

3

2

ln
(

ex+1
)

= 1 + x
√

8

9
=

2
√

2

3

4.2.4 Number theoretic algorithms
LuaCAS also provides basic number theoretic func-
tionality. For example, LuaCAS can run the extended
Euclidean algorithm:
\begin{CAS}
a,b = 42250, 46137
c,x,y = gcdext(a,b)

\end{CAS}
\[\print{c} = \print{a} (\print{x})

+\print{b}(\print{y}) \]
169 = 42250(−95) + 46137(87)

LuaCAS also contains factoring algorithms and pri-
mality checking for the Integer-class. For primality
checking, we use Miller-Rabin [5] and the base set
of prime witnesses p = 2, 3, . . . , 41. Accordingly, pri-
mality checking can be trusted for integers a bit
beyond 1024. For factoring, we use Miller-Rabin
combined with Pollard-Rho [4] to search for prime
factors recursively:
\begin{CAS}
a = 407808999
b = factor(a)

\end{CAS}
\[\print{a} = \print{b} \]

407808999 = 34313132

4.2.5 Polynomial algorithms
LuaCAS hosts a number of algorithms for (univariate)
polynomial arithmetic over the rationals or modulo
a prime, including: extended Euclidean algorithm,
factoring, and resultants.
\begin{CAS}
vars('x')
f = Mod(topoly(x^2+x+1),7)
ff = factor(f)

\end{CAS}

Timothy All, Evan Cochrane

TUGboat, Volume 44 (2023), No. 1 97

\[\print{f} = \print{ff} \]

x2 + x+ 1 = 1 (x+ 5)
1
(x+ 3)

1

LuaCAS also contains algorithms for symbolic
root 昀椀nding over the rationals (including support-
ing algorithms like those for 昀椀nding decomposition
series).
\begin{CAS}

vars('x')
f = topoly(x^4 + 4*x^3 - 8*x + 3)
r = roots(f)

\end{CAS}
\[\left\{ \lprint{r} \right\} \]

{

1,−3,−1 +
√

2,−1−
√

2
}

4.3 Calculus
The Calculus module contains constructors for deriva-
tives/integrals and algorithms for symbolic di昀昀eren-
tiation/integration.

4.3.1 Di昀昀erentiation
Due to the nature of di昀昀erentiation, LuaCAS can
quickly compute the derivatives of almost any ex-
pression that can be represented in LuaCAS.
\begin{CAS}
vars('x', 'y', 'z')
f,g = 3*ln(y)*sin(x), x^(1/(x*z))*x
dg, df = diff(g,x), diff(f,{x,3},{y,2})
\end{CAS}
\[\print{dg} = \print*{dg} \]
\[\print{df} = \print*{df} \]

d

dx

(

x
1

xz x
)

= x1+
1

x

z





(

1 +
1

x

z

)

x
−

ln(x)

x2z





∂5

∂y2∂x3
(3 ln(y) sin(x)) =

3 cos(x)

y2

4.3.2 Integration
LuaCAS can evaluate a wide variety of de昀椀nite and
inde昀椀nite integrals. The integrator mostly works
by calling standard methods familiar to any college
calculus student recursively (such as u-substitution,
integration-by-parts, etc.) and then searching for
the appropriate anti-derivative. For integration of
rational functions, we use the method of Lazard,
Rioboo, Rothstein and Trager [8].
\begin{CAS}

f = e^(2*x)*cos(3*x)
F = int(f, x,0,pi)

\end{CAS}
\[\print{F} = \print*{F} \]

∫

π

0

e2x cos(3x) dx = −
2

13
−

2e2π

13

However, we cannot guarantee that an integral will
be able to be evaluated, even if the expression is
integrable in elementary terms.

5 Interaction with the LATEX ecosystem
Given that the CAS environment is just a glori昀椀ed
lua environment, LuaCAS interacts very well with
TEX primitives and standard macros as well as the
Lua language. Indeed, the design of LuaCAS was
(in part) inspired by the potential to write reusable
code such as:
\newcommand{\Euclid}[3]{%
\begin{CAS}
vars('x')
a,b,p = #1,#2,#3
a = Mod(topoly(a),p)
b = Mod(topoly(b),p)
tex.print("\\[\\begin{aligned}")
while b.degree>0 do

q,r = a:divremainder(b)
tex.print(a:tolatex(),
"&= (",
b:tolatex(),
")(",
q:tolatex(),
")+",
r:tolatex(),
"\\\\")
a,b = b,r

end
tex.print("\\end{aligned} \\]")

\end{CAS}%
}
\Euclid{x^4+x^3+x^2+x+1}{x^3+2*x+3}{7}

x4
− x2 + 1 = (x3 + 2x+ 1)(x) + 4x2

− x+ 1

x3 + 2x+ 1 = (4x2
− x+ 1)(2x+ 4) + 4x+ 4

4x2
− x+ 1 = (4x+ 4)(x+ 4) + 6

The macro \Euclid displays the Euclidean algorithm
applied to the polynomials found in the 昀椀rst and
second arguments modulo the prime found in the
third argument.

The luacas package comes with the macros
\fetch and \store. These macros allow the user to
pull content out of LuaCAS in a format that’s appro-
priate for packages like TikZ/PGF [7] and Asymptote
[3]. For example:
\begin{CAS}
vars('x')
f = sin(2*x)+x/3
df = diff(f,x):autosimplify()

\end{CAS}
\store{f}\store{df}
The macro \df contains the string:
1/3 + (2 * (cos(2 * x)))

LuaCAS: Symbolic computation in LATEX

98 TUGboat, Volume 44 (2023), No. 1

Macros created via the \store command can be
called into other environments like the asypicture
environment from the asypictureB package [6]:
\begin{asypicture}{}

import graph; size(6cm,0);
real f(real x){return @f;}
real df(real x){return @df;}
draw(graph(f,-pi,pi,operator..),orange);
draw(graph(df,-pi,pi,operator..),blue);
xaxis("x",BottomTop,LeftTicks);
yaxis("y",LeftRight,RightTicks);

\end{asypicture}

−1

0

1

2

y

−3 −2 −1 0 1 2 3

x

The macro \fetch does nearly the same thing as
\store except no macro is created; in other words,
\fetch{df} can be used wherever we would have
used \df. This is particularly useful for grabbing
values out of tables built with LuaCAS:
\begin{tikzpicture}[scale=7]

\draw[orange,densely dashed] (0,0) -- (1,0);
\foreach \k in {2,...,22}{
\draw[blue]

(\fetch{F[\k]},\fetch{H[\k]})
circle (\fetch{H[\k]});

\node[below] at (\fetch{F[\k]},0)
{\small$\print{F[\k]}$};

}
\end{tikzpicture}

1

8

1

7

1

6

1

5

1

4

2

7

1

3

3

8

2

5

3

7

1

2

4

7

3

5

5

8

2

3

5

7

3

4

4

5

5

6

6

7

7

8

6 Future
In the future, we aim to expand the feature set of
LuaCAS and include at least a decent chunk of the
functionality common to popular existing computer
algebra systems. This may include:

• summation and product expressions
• symbolic limits
• symbolic di昀昀erential equation solving
• irreducible factorization of multivariate

polynomials

• logic & set theory
• symbolic linear algebra
• numeric functionality

On the LATEX side of things, it would be good to
include some amount of externalization so that Lua-
CAS performs computations only when needed and
not at every compile.

7 Acknowledgements
We’d like to thank the Mathematics Department
at Rose-Hulman Institute of Technology for their
support throughout this project. A special thanks
goes to Joseph Eichholz for many helpful discussions
and constructive feedback.

References
[1] T. All, E. Cochrane. The Luacas package.

ctan.org/pkg/luacas
[2] E.R. Berlekamp. Factoring polynomials over

昀椀nite 昀椀elds. Bell System Technical Journal
46(8):1853–1859, 1967.

[3] J. Bowman, A. Hammerlindl. The Asymptote
package. asymptote.sourceforge.net

[4] J.M. Pollard. A Monte Carlo method for
factorization. Nordisk Tidskr.
Informationsbehandling (BIT) 15(3):331–334,
1975.

[5] M.O. Rabin. Probabilistic algorithm for testing
primality. J. Number Theory 12(1):128–138,
1980.

[6] C. Staats III. The AsypictureB package.
ctan.org/pkg/asypictureb

[7] T. Tantau, C. Feuersänger, et al. The PGF
package. ctan.org/pkg/pgf

[8] B.M. Trager. Algebraic factoring and rational
function integration. In Proceedings of the third
ACM symposium on Symbolic and algebraic
computation, pp. 219–226, 1976.

[9] S. Živanocić. The Forest package.
ctan.org/pkg/forest

[10] H. Zassenhaus. On Hensel factorization, I.
J. Number Theory 1(3):291–311, 1969.

� Timothy All
Department of Mathematics
Rose-Hulman Institute of Technology
Terre Haute, IN 47803 USA
timothy.all (at) rose-hulman dot edu

� Evan Cochrane
cochraef (at) rose-hulman dot edu

Timothy All, Evan Cochrane

https://ctan.org/pkg/luacas
https://asymptote.sourceforge.net
https://ctan.org/pkg/asypictureb
https://ctan.org/pkg/pgf
https://ctan.org/pkg/forest

TUGboat, Volume 44 (2023), No. 1 99

Attributes in Markdown

Vít Novotný

Abstract

Markup languages provide only a finite set of ele-
ments, whereas the wants of users are infinite. To
bridge this gap, markup languages allow users to
extend them with attributes.

In this article, we introduce attributes in the
lightweight markup language of Markdown. We also
show how writers can type them and how coders can
style them using the Markdown package for TEX.

Introduction

Markup languages provide only a finite set of ele-
ments to writers. This is especially true in lightweight
markup languages such as AsciiDoc, Org-mode, and
Markdown, which use ASCII punctuation marks and
other non-letter symbols for tags. As a result, writers
are often left unable to express their intent using the
markup language.

In many markup languages, users can add new
elements using syntax extensions. For example, in
the Markdown package for TEX, writers can add ta-
bles using pipeTables and tableCaptions options:

\documentclass{article}

\usepackage[pipeTables, tableCaptions]

{markdown}

\begin{document}

\begin{markdown}

Right | Left | Center

------:|:-----|:------:

12 | 12 | 12

123 | 123 | 123

1 | 1 | 1

: Example table

\end{markdown}

\end{document}

Possible output:

Table: Example table

Right Left Center

12 12 12
123 123 123

1 1 1

Since version 2.17.0 from October 2022, users can
also write their own syntax extensions in Lua [1,
Section 2.2]. However, writing syntax extension is a
costly process that requires advanced coding skills.

Furthermore, in some markup languages, users
can also mix different markup languages. For exam-
ple, in the Markdown package for TEX, writers can
easily mix Markdown with YAML metadata, TEX
commands, and HTML tags:

\documentclass{article}

\usepackage[jekyllData, html,

rawAttribute, texMathDollars]

{markdown}

\begin{document}

\begin{markdown}

title: |

Example Document in YAML, `\TeX`{=tex},

<abbr>HTML</abbr>, and Markdown

author: Vít Novotný

date: 2023-03-24

Introduction

Use YAML for metadata, *Markdown* for text,

`\TeX`{=tex} for $math$ and formatting, and

<abbr>HTML</abbr> for extended markup.
\end{markdown}

\end{document}

However, mixing different markup languages makes
the text more difficult to read, typeset, and less
suitable for multitarget publishing.

Lastly, in most markup languages, users can
attach attributes to elements to denote additional
information. For example, in version 2.22.0 of the
Markdown package for TEX from March 2023, writers
can easily attach attributes to Markdown headings,
text spans and blocks, inline code spans and code
blocks, links, and images:

\documentclass{article}

\usepackage[

bracketedSpans, fencedCode, fencedDivs,

fencedCodeAttributes, headerAttributes,

inlineCodeAttributes, linkAttributes

]{markdown}

\begin{document}

\begin{markdown}
Introduction {#introduction}

============

Here is an [important]{color=red} text

that describes the implementation of the

[Quicksort][1] algorithm in Haskell:

~~~~ haskell {.numberLines startFrom=100}

qsort [] = []

qsort (x:xs) = qsort (filter (< x) xs)

++ [x]

++ qsort (filter (>= x) xs)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

[1]: https://wikipedia.org/wiki/Quicksort

{.external-link .wikipedia}
\end{markdown}

\end{document}

In the above example, attributes are written between
pairs of curly braces ({}). When used in modera-
tion, attributes can work around the shortcomings
of markup languages without decreasing readability.

doi.org/10.47397/tb/44-1/tb136novotny-markdown-attr

Attributes in Markdown

https://doi.org/10.47397/tb/44-1/tb136novotny-markdown-attr

100 TUGboat, Volume 44 (2023), No. 1

In this article, we introduce attributes in Mark-
down. In Section 1, we describe the kinds of at-
tributes available in Markdown and how writers can
use them. In Section 2, we show how coders can style
attributes using the Markdown package for TEX. In
Section 3, we discuss the changes to attributes in the
next major version of the Markdown package. We
conclude in Section 4 by summarizing the contribu-
tions of the article.

1 Writer’s workshop

In Markdown, writers can use three different kinds of
attributes: identifiers, class names, and key-values.

Identifiers are the most common type of at-
tributes. Writers can use identifiers to assign a
unique label to an element and refer to it, similar to
the \label and \ref commands in LATEX:

\documentclass{article}

\usepackage[headerAttributes,

relativeReferences]{markdown}

\begin{document}

\begin{markdown}
We conclude in Section <#conclusion>.

Conclusion {#conclusion}

==========

In this paper, we have discovered that most

grandmas would rather eat dinner with their

grandchildren than get eaten. Begone, wolf!
\end{markdown}

\end{document}
Possible output:

We conclude in Section X.

X Conclusion

In this paper, we have discovered that most grandmas would
rather eat dinner with their grandchildren than get eaten.
Begone, wolf!

Unlike identifiers, class names do not uniquely
identify an element. Instead, they place an element
into a category. For example, writers can use a class
name such as fruit to mark all occurrences of fruit:

\documentclass{article}

\usepackage[bracketedSpans]{markdown}

\begin{document}

\begin{markdown}
[Mango]{.fruit} is the king of all fruits.

[Oranges]{.fruit} are full of Vitamin C.

An [apple]{.fruit} a day keeps doctor away.
\end{markdown}

\end{document}

Even if we are undecided how the output should
look, adding the attributes allows us to easily style
all occurrences of fruit in our document later on.

Whereas class names denote coarse-grained cat-
egory membership, key-values describe fine-grained
traits of an element. For example, writers can use
key-values such as width and height for image size:

\documentclass{article}

\usepackage[linkAttributes]{markdown}

\begin{document}

\begin{markdown}

{width=3cm height=2cm}

\end{markdown}

\end{document}

2 Coder’s cubicle

In version 2.22.0 of the Markdown package, writers
can attach three different types of attributes to seven
different types of elements. To prevent a combina-
torial explosion, attributes and element types are en-
coded separately in the abstract syntax tree of a doc-
ument. Consider the following example document:

\documentclass{article}

\usepackage[bracketedSpans, linkAttributes,

inlineCodeAttributes]{markdown}

\begin{document}

\begin{markdown}

[This text]{.red} is so important it glows

red (grayscaled for print). So does this

<https://link>{.red} and this `code`{.red}.

\end{markdown}

\end{document}

The document would produce the following abstract
syntax tree:

\bracketedSpanAttributeContextBegin

\attributeClassName{red}%

This text%

\bracketedSpanAttributeContextEnd{}

is so important it glows red

(grayscaled for print). So is this

\linkAttributeContextBegin

\attributeClassName{red}%

\link{https://link}%

{https://link}%

{https://link}%

{}%

\linkAttributeContextEnd{}

and this

\codeSpanAttributeContextBegin

\attributeClassName{red}%

\codeSpan{code}%

\codeSpanAttributeContextEnd

Vít Novotný

TUGboat, Volume 44 (2023), No. 1 101

This allows us to easily style the class name red

independently on the element that it is attached to:

\ExplSyntaxOn

\markdownSetup {

renderers = {

*ContextBegin = {

\color_group_begin:

},

attributeClassName = {

\str_if_eq:nnT

{ #1 } { red }

{ \color_select:n { red } }

},

*ContextEnd = {

\color_group_end:

},

}

}

\ExplSyntaxOff

Output:

This text is so important it glows
red (grayscaled for print). So does
this https://link and this code.

By contrast, consider the last document from the
previous section, which would produce the following
abstract syntax tree:

\imageAttributeContextBegin

\attributeKeyValue{height}{2cm}%

\attributeKeyValue{width}{3cm}%

\image{}{example-image}{example-image}{}%

\imageAttributeContextEnd

Here, we want to style the key-values width and
height only for images:

\RequirePackage{graphicx}

\ExplSyntaxOn

\markdownSetup {

renderers = {

imageAttributeContextEnd = {

\group_end:

},

imageAttributeContextBegin = {

\group_begin:

\markdownSetup {

renderers = {

attributeKeyValue = {

\setkeys % Pass the key-value

{ Gin } % to graphicx package

{ { ##1 } = { ##2 } }

},

},

}

},

},

}

\ExplSyntaxOff

Output:

Image

3 Developer’s den

For all Markdown elements except headings, the
*AttributeContextBegin and End renderers imme-
diately surround the element in the abstract syntax
tree. By contrast, the headerAttributeContextEnd
renderer is placed after the end of the section implied
by the heading. While this is practical for styling
whole sections [2, Section 2.4], it is inconsistent and
makes other common use cases such as expanding
the attributeIdentifier renderer to the \label

LATEX command more difficult to implement.
In version 2.21.0 of the Markdown package from

February 2023, the sectionBegin and End render-
ers were added, which surround sections implied
by headings regardless of whether attributes are
used. In version 3.0.0 of the Markdown package, cur-
rently scheduled for release around June 2023, the
headerAttributeContextEnd renderer will appear
immediately after headings in abstract syntax tree.

4 Conclusion

Attributes provide a simple bottom-up mechanism
for extending markup languages with new concepts.
In this article, we have shown the types of attributes
that are available in the lightweight markup language
of Markdown. We have also shown how writers can
type attributes in their documents and how coders
can style attributes using the Markdown package for
TEX. With attributes, writers can produce beautiful
documents without littering them with formatting
commands.

References

[1] V. Novotný. Markdown 2.17.1: What’s
new, what’s next? TUGboat 43(3):276–278,
2022. doi.org/10.47397/tb/43-3/

tb135novotny-markdown

[2] V. Novotný, D. Rehák, et al. Markdown
2.15.0: What’s new? TUGboat 43(1):10–15,
2022. doi.org/10.47397/tb/43-1/

tb133novotny-markdown

⋄ Vít Novotný
Studená 453/15
Brno, 638 00
Czech Republic
witiko (at) mail dot muni dot cz

github.com/witiko

Attributes in Markdown

https://link
https://doi.org/10.47397/tb/43-3/tb135novotny-markdown
https://doi.org/10.47397/tb/43-3/tb135novotny-markdown
https://doi.org/10.47397/tb/43-1/tb133novotny-markdown
https://doi.org/10.47397/tb/43-1/tb133novotny-markdown

102 TUGboat, Volume 44 (2023), No. 1

An introduction to automata design with

TikZ’s automata library

Igor Borja

Abstract

This article is a quick introduction to TikZ’s au-

tomata library, used for the design and typesetting
of finite automata in LATEX. It also explores the
use of TEX loops and conditionals to automate the
generation of images that follow noticeable patterns.
TikZ itself is a package used for generating a variety
of figures— from geometry configurations to graphs
and automata—allowing for more control over im-
age editing and quality. Although the package is
very versatile, its uses for designing automata will
be the primary topic of this article.

1 Introduction and basic syntax

Finite automata, also called finite state machines,
are a basic concept in computer science for model-
ing computation. Wikipedia (en.wikipedia.org/
wiki/Finite-state_machine) provides an introduc-
tion to the topic.

In this article, all the code to typeset an au-
tomaton will be contained inside a tikzpicture en-
vironment [3]. After starting the environment, you
can pass optional arguments, separated by a comma,
such as node distance and arrow style. A reminder:
the node distance (which we’ll see below) must be a
dimension (cm, em, pt, etc.).

1.1 Nodes

You can declare a node of an automaton via the
following syntax:

\node[state, ⟨state modifiers⟩,
⟨position modifiers⟩] (⟨id⟩) {⟨name⟩};

Note that a node declaration should always end in a

semicolon. Let’s analyse all of these parameters:

1. Every state node must begin with the word
state.

2. State modifiers are mostly used to indicate that
node is the initial node or an accepting node,
and thus are often not needed.

3. Position modifiers are used to place a node rela-
tive to another (already declared) node. Some
common modifiers are right=of ⟨id⟩, left=

of ⟨id⟩, below=of ⟨id⟩ and above=of ⟨id⟩. Here,
⟨id⟩ is the id of the node relative to which the
positioning is carried out.

Also, it’s possible to give dimensions via the
xshift and yshift parameters to achieve man-
ual control over the position after the relative
placement.

4. The ⟨id⟩ is the unique identifier that will be
used to refer to that node later.

5. The ⟨name⟩ is the text that will appear in the
automaton, inside the circle that represents that
node. It does not need to be plain text; it’s also
possible to use a math expression (enclosed by
single $ signs).

A minimal working example:

\documentclass{standalone}

\usepackage{tikz}

\usetikzlibrary{automata}

\usetikzlibrary{positioning, arrows}

\begin{tikzpicture}

[->, node distance = 2cm]

\node[state] (p) {$p = 1$};

\node[state, accepting, right=of p,

yshift= -2cm] (q) {$q = 2$};

\end{tikzpicture}

p = 1

q = 2

Figure 1: Two nodes

The use of ⟨direction⟩ of=⟨id⟩, although correct, is
marked as deprecated in PGF/TikZ source code [4].

1.2 Edges

You can declare an edge between two nodes with the
following syntax

(⟨id-head⟩) edge[⟨options⟩]
node[⟨options⟩]{⟨value⟩} (⟨id-tail⟩);

Every sequence of consecutive edge declarations
must be preceded by a \draw command. Also, a
semicolon is used to indicate the last edge declaration
of a sequence; any that come after that and before
another \draw command will be ignored. Therefore
(provided n1, n2, n3 have all been declared), this
is correct:

\draw

(n1) edge node{text} (n2)

(n2) edge node{more text} (n3)

(n2) edge node{more text} (n1);

\node[state, above=of n1] (n4) {text};

\draw

(n3) edge node{more text} (n4);

While this is (for both reasons mentioned above)
not correct:

doi.org/10.47397/tb/44-1/tb136prado-automata

Igor Borja

https://en.wikipedia.org/wiki/Finite-state_machine
https://en.wikipedia.org/wiki/Finite-state_machine
https://doi.org/10.47397/tb/44-1/tb136prado-automata

TUGboat, Volume 44 (2023), No. 1 103

\draw

(n1) edge node{text} (n2)

(n2) edge node{more text} (n3)

(n2) edge node{more text} (n1)

\node[state, above=of n1] (n4) {text};

(n3) edge node{more text} (n4);

The edges are treated as directed—to get the
visual effect of undirected edges, remove the arrow
in the environment options.

1.2.1 Analysing the different components

of an edge command

⟨id-head⟩ is the identifier of the head node—the
node from which the edge is originated.

⟨id-tail⟩ is the identifier of the tail node—the
node to which the edge arrives.

The options after the edge keyword indicate how
the edge should be drawn. The following options are
the most common:

• Directions right, left, below, above: indicate
from where the edge should leave

• loop: specifies that the edge should loop and go
back to the head node. Using the loop option
makes TikZ ignore the tail node’s id (which can
be left empty).

Combining the loop option with directions
indicates where the loop should be rendered:
above, to the right, left or below the node.

• bend: indicates bends in the edge to a certain
direction

The options after the node keyword indicate
how the text associated with that edge should be
drawn. The most common arguments are the four
main directions right, left, above and below.

Defaults: if no edge-positioning options are
given, the edge will be drawn as a straight line by
default. Also, if no node options (i.e., options that
determine the positioning of the edge text) are pro-
vided, the text will be rendered at the “center” of
the edge by default. See both behaviors below:

\documentclass{standalone}

\usepackage{tikz}

\usetikzlibrary{automata}

\usetikzlibrary{positioning, arrows}

\begin{tikzpicture}

[->, node distance = 2cm]

\node[state] (p) {$p = 1$};

\node[state, accepting, right=of p,

yshift=-2cm] (q) {$q = 2$};

\draw

(p) edge node{hello} (q)

(p) edge[loop] ();

\end{tikzpicture}

p = 1

q = 2

hello

Figure 2: Two nodes, a labeled edge and a loop

2 Loops and automation by example

Here we show a more complex example.

2.1 Context

Consider the language L over the alphabet Σ =
{a, b} that contains all the sequences with at least
2 characters a and at least 1 character b. Note that
L is the intersection of two regular languages (over
the same alphabet {a, b}): the set of strings with at
least 2 characters a and the set of strings with at
least 1 character b.

Therefore, using the construction detailed in
[2], a possible finite automaton that recognizes L is
M = (Q, {a, b}, δ, q0,0, q2,1), where

Q =
{

qi,j

∣

∣

∣
0 ≤ i ≤ 2 ∧ 0 ≤ j ≤ 1

}

are the states that can be reached. The transition
function δ works as follows: δ(qi,j , a) = qmin(2,i+1),j

and δ(qi,j , b) = qi,min(1,j+1).
In other words, qi,j represents that the string

read has (up to that point) i characters a (if i < 2)
or 2 or more, if i = 2. Also, it has j characters
b if j < 1, else it has 1 or more. Representing it
graphically, we get the following state diagram:

q0,0start q1,0 q2,0

q0,1 q1,1 q2,1

a a
a

b b b

a a
a

b b b

Figure 3: State diagram

An introduction to automata design with TikZ’s automata library

104 TUGboat, Volume 44 (2023), No. 1

which we can produce with the following LATEX code:

\begin{tikzpicture}

[->, node distance = 1.3cm]

\node[state, initial] (a0b0)

{$q_{0,0}$};

\node[state, right=of a0b0] (a1b0)

{$q_{1,0}$};

\node[state, right=of a1b0] (a2b0)

{$q_{2,0}$};

\node[state, above=of a0b0] (a0b1)

{$q_{0,1}$};

\node[state, above=of a1b0] (a1b1)

{$q_{1,1}$};

\node[state, accepting, above=of a2b0]

(a2b1) {$q_{2,1}$};

%% Horizontal edges in first layer

\draw

(a0b0) edge node[above]{a} (a1b0)

(a1b0) edge node[above]{a} (a2b0)

(a2b0) edge[loop right]

node[right]{a} (a2b0);

%% First set of vertical edges

\draw

(a0b0) edge node[right]{b} (a0b1)

(a1b0) edge node[right]{b} (a1b1)

(a2b0) edge node[right]{b} (a2b1);

%% Horizontal edges in second layer

\draw

(a0b1) edge node[above]{a} (a1b1)

(a1b1) edge node[above]{a} (a2b1)

(a2b1) edge[loop right]

node[right]{a} (a2b1);

%% Second set of vertical edges

\draw

(a0b1) edge[loop above]

node[above]{b} (a0b1)

(a1b1) edge[loop above]

node[above]{b} (a1b1)

(a2b1) edge[loop above]

node[above]{b} (a2b1);

\end{tikzpicture}

It is easy to see that this state diagram’s grid-
like structure generalizes nicely to the family of lan-
guages (Lm,n)m,n∈N, where Lm,n is the language of
strings with at least m characters a and at least n
characters b.

However, drawing the state diagram for Lm,n

quickly becomes too much work, since there will be
(m+1)(n+1) nodes and 2(m+1)(n+1) edges: even
at small values (say, m = 4 and n = 3) it is still
more than 60 lines of code.

2.2 Loops

However, due to its very simple structure, render-
ing automata like this one can be abstracted and
automated in a relatively straightforward way, us-

ing foreach loops, available through the package
pgffor.

1. For the nodes, it’s possible to draw first q0,0
with id a0-b0, then for each 1 ≤ i ≤ m draw
qi,0 at the right of qi−1,0 and attribute to it
the id a⟨i⟩-0 (where ⟨i⟩ is a placeholder for the
value of i). This completes the first row.

Then, for each 1 ≤ j ≤ n and for each 0 ≤
i ≤ m we draw qi,j above qi,j−1 and attribute
to it the id a⟨i⟩-b⟨j ⟩. At each iteration it is
necessary to check if i = m and j = n, in which
case we need to add the accepting option.

2. For the edges, we have four different cases: stan-
dard horizontal edges, standard vertical edges,
edges that loop above the node and edges that
loop at the right of the node.

For each 0 ≤ i ≤ m − 1 and 0 ≤ j ≤ n,
we build a horizontal edge from qi,j to qi+1,j .
Then, for each 0 ≤ i ≤ m and 0 ≤ j ≤ n− 1 we
build a vertical edge from qi,j to qi,j+1. Finally,
we build an edge that loops above qi,n for each
0 ≤ i ≤ m and an edge that loops at the right
of qm,j for each 0 ≤ j ≤ n.

It is necessary to refer to i− 1 and j − 1 several
times in this algorithm. However, simply using the
TEX code \i - 1 and \j - 1 and a\i - 1b\j - 1

(for ids) in the TEX code won’t work: loop indices in
foreach loops function as standard variables defined
with \def (just with restrained scope). That means
that any reference \i will be replaced by the value
of \i (as a string), so the expression \i - 1 will not
be evaluated. For example, if i = 5, \i - 1 will be
replaced by 5 - 1.

In order to fix that, we use the fixed-point arith-
metic package called fp and its command for eval-
uating expressions: \fpeval. The implementation
below summarizes all that in working LATEX code, ab-
stracting it all in a command with three arguments
called \gridAutomata. The first argument is the
node distance, the second is m and the third is n:

\usepackage{ifthen}

\newcommand{\gridAutomata}[3][2cm]

{

\begin{tikzpicture} [

->,

node distance = #1,

]

%% building first row of nodes

\ifthenelse{\equal{#2}{0}}

{

% if m == 0

\ifthenelse{\equal{#3}{0}}

{

\node[state, initial,

Igor Borja

TUGboat, Volume 44 (2023), No. 1 105

initial where=below, accepting]

(a0-b0) {$q_{0,0}$};

}{

\node[state, initial,

initial where=below]

(a0-b0) {$q_{0,0}$};

}

}{

% if m > 0

\node[state, initial, initial where=below]

(a0-b0) {$q_{0,0}$};

\foreach \i in {1,...,\fpeval{#2 - 1}}

{

\node[state,

right=of a\fpeval{\i - 1}-b0]

(a\i-b0) {$q_{\i, 0}$};

}

\ifthenelse{\equal{#3}{0}}

{

% if m > 0 and n == 0

\node[state,

right=of a\fpeval{#2 - 1}-b0,

accepting]

(a#2-b0) {$q_{#2, 0}$};

}{

% if m > 0, n > 0

\node[state,

right=of a\fpeval{#2 - 1}-b0]

(a#2-b0) {$q_{#2, 0}$};

}

}

%% other rows

\foreach \j in {1,...,#3}

{

\foreach \i in {0,...,#2}

{

\ifthenelse{\equal{\i}{#2}

\AND \equal{\j}{#3}}

{

\node[state,

above=of a\i-b\fpeval{\j-1},

accepting]

(a\i-b\j) {$q_{\i, \j}$};

}{

\node[state,

above=of a\i-b\fpeval{\j-1}]

(a\i-b\j) {$q_{\i, \j}$};

}

}

}

%% Constructing the edges

%% Loops above

\foreach \i in {0,...,#2}

{

\draw (a\i-b#3) edge[loop above]

node[above]{b} (a\i-b#3);

}

%% Rightmost loops

\foreach \j in {0,...,#3}

{

\draw (a#2-b\j) edge[loop right]

node[right]{a} (a#2-b\j);

}

%% Horizontal edges

\foreach \i in {0,...,\fpeval{#2 - 1}}

{

\foreach \j in {0,...,#3}

{

\draw (a\i-b\j) edge

node[above]{a} (a\fpeval{\i+1}-b\j);

}

}

%% Vertical edges

\foreach \j in {0,...,\fpeval{#3 - 1}}

{

\foreach \i in {0,...,#2}

{

\draw (a\i-b\j) edge

node[right]{b} (a\i-b\fpeval{\j + 1});

}

}

\end{tikzpicture}

}

Using this command for m = 4, n = 3 with a node
distance of 1.5 cm yields the result below:

q0,0

start

q1,0 q2,0 q3,0 q4,0

q0,1 q1,1 q2,1 q3,1 q4,1

q0,2 q1,2 q2,2 q3,2 q4,2

q0,3 q1,3 q2,3 q3,3 q4,3

b b b b b

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

b b b b b

b b b b b

b b b b b

Figure 4: Result for m = 4, n = 3

This command’s generality allows for construc-
tion of a larger example. The image on the next page
uses the values m = 7, n = 8 with a node distance
set to 1.5 cm.

An introduction to automata design with TikZ’s automata library

106 TUGboat, Volume 44 (2023), No. 1

q0,0

start

q1,0 q2,0 q3,0 q4,0 q5,0 q6,0 q7,0

q0,1 q1,1 q2,1 q3,1 q4,1 q5,1 q6,1 q7,1

q0,2 q1,2 q2,2 q3,2 q4,2 q5,2 q6,2 q7,2

q0,3 q1,3 q2,3 q3,3 q4,3 q5,3 q6,3 q7,3

q0,4 q1,4 q2,4 q3,4 q4,4 q5,4 q6,4 q7,4

q0,5 q1,5 q2,5 q3,5 q4,5 q5,5 q6,5 q7,5

q0,6 q1,6 q2,6 q3,6 q4,6 q5,6 q6,6 q7,6

q0,7 q1,7 q2,7 q3,7 q4,7 q5,7 q6,7 q7,7

q0,8 q1,8 q2,8 q3,8 q4,8 q5,8 q6,8 q7,8

b b b b b b b b

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

b b b b b b b b

b b b b b b b b

b b b b b b b b

b b b b b b b b

b b b b b b b b

b b b b b b b b

b b b b b b b b

b b b b b b b b

Figure 5: Result for m = 7, n = 8

Igor Borja

TUGboat, Volume 44 (2023), No. 1 107

3 More customization possibilities

3.1 Absolute positioning

It is also possible to define the position of each node
manually, as a coordinate pair. The syntax is:

\node[state] at (⟨x ⟩, ⟨y⟩) (⟨id⟩) {⟨name⟩};

The fields ⟨x ⟩ and ⟨y⟩ are the x and y components
of the position. To better illustrate this, we make
use of the help lines option to draw a 3× 3 grid,
in which the nodes will be positioned.

a

b

c

Figure 6: An isosceles triangle

\begin{tikzpicture}[<->]

\draw[help lines] (0,0) grid (3,3);

\node [state] at (0, 0) (a) {a};

\node [state] at (1, 2) (b) {b};

\node [state] at (3, 1) (c) {c};

\draw

(a) edge (b)

(b) edge (c)

(c) edge (a);

\end{tikzpicture}

3.2 Drawing arcs and bending edges

Especially when avoiding crossing edges in more
complicated automata, it is useful to be able to draw
edges as arcs (instead of straight lines). In plain TikZ
it is possible to render arbitrary arcs, specifying the
center, the starting and stopping angle, and the
radius (as shown in [5]):

\draw (⟨x ⟩,⟨y⟩) arc (⟨start⟩:⟨stop⟩:⟨radius⟩);

Through the automata library, however, the
syntax is simplified for the case of an arc between
two (already defined) nodes.

(⟨id1 ⟩) edge[bend ⟨options⟩] (⟨id2 ⟩);

More commonly, a directional option (left or
right) is used to inform in which side the arc should
be rendered. Furthermore, its radius can also be
changed, by including the angle (in degrees) of the
arc. Our last example illustrates these options:

a

b c
15◦ arc

90◦ arc

60◦ arc

Figure 7: Various arcs

\begin{tikzpicture}

\node[state] at (0, 0) (a) {a};

\node[state] at (1, 1) (b) {b};

\node[state] at (3, 1) (c) {c};

\draw

(a) edge[bend left=15] node[above left]

{15° arc} (b)

(b) edge[bend left=90] node[above=0.25]

{90° arc}(c)

(c) edge[bend left=60] node[below]

{60° arc} (a);

\end{tikzpicture}

References

[1] S. Sikdar. Drawing Finite State Machines in

LATEX using TikZ: A Tutorial, 2017.

[2] M. Sipser. Introduction to the Theory of

Computation. Thomsom/Course Technology,
2005. Pages 48–50.

[3] T. Tantau, et al. The TikZ and PGF

Packages: Manual for version 3.1.10, ch.
Automata Drawing Library, pp. 571–575. 2023.
ctan.org/pkg/pgf

[4] TeX Stack Exchange. Difference between
“right of=” and “right=of” in PGF/TikZ.
tex.stackexchange.com/questions/9386.

[5] TeX Stack Exchange. How is arc defined in
TikZ? tex.stackexchange.com/questions/

175016.

[6] TikZBlog. Automata diagrams in LATEX.
latexdraw.com/automata-diagrams-in-

latex, 2021.

⋄ Igor Borja

igorpradoborja (at) gmail dot com

https://github.com/IgorPBorja

An introduction to automata design with TikZ’s automata library

https://ctan.org/pkg/pgf
https://tex.stackexchange.com/questions/9386
https://tex.stackexchange.com/questions/175016
https://tex.stackexchange.com/questions/175016
https://latexdraw.com/automata-diagrams-in-latex
https://latexdraw.com/automata-diagrams-in-latex

108 TUGboat, Volume 44 (2023), No. 1

Styling R ggplot2 graphics with LATEX

Travis Stenborg

Abstract

The ggplot2 package is widely used for R graphics.
Example LATEX-style rendering of such graphics is
presented, achieved via annotations with embedded
LATEX markup. This allows R graphics to be in-
tegrated into LATEX documents with a harmonious
visual style.

1 Technology stack

R is a statistical programming language. The mate-
rial presented here was implemented using R 4.2.3,
using the RStudio integrated development environ-
ment, on Windows 11.

In the same way that LATEX is enhanced by
supporting packages, R is also. Key R packages for
integrating LATEX into R graphics were extrafont,
fontcm, ggplot2 and latex2exp.

The Ghostscript interpreter was used to embed
default LATEX fonts into PDF files. R, RStudio and
Ghostscript are all free, and enjoy multiplatform
support. Examples of these technologies applied to
other TEX-related issues appear elsewhere in TUG-

boat [1, 4, 5].

2 Ghostscript setup

Ghostscript typically needs manual configuration on
Windows, summarized here. First, ensure it’s in your
operating system’s path, e.g.:

C:\Program Files\gs\gs10.00.0\bin

Also add the environment variables GS_CMD, iden-
tifying the Ghostscript executable, e.g.:

C:\Program Files\gs\gs10.00.0\bin\

gswin64c.exe

and GS_FONTPATH, designating any font folders to
use, e.g.:

C:\Windows\Fonts\

C:\Users\Travis\AppData\Local\Microsoft\
Windows\Fonts\

An R application-level environment variable for
Ghostscript’s executable should be set too. Find
your local Rprofile document (usually somewhere
under the R installation directory) and append the
new setting, e.g.:

Sys.setenv(R_GSCMD = "C:/Program Files/gs/

gs10.00.0/bin/gswin64c.exe")

3 Computer Modern fonts in R

The ggplot2 package is designed especially for plots
in R. A ggplot2 object is instantiated, associated
with data, and its display properties specified pro-
grammatically.

Font properties of ggplot2 objects can be set
in R to emulate LATEX. A Computer Modern default
font is assumed to be present [2].

ggplot2::theme(

text = ggplot2::element_text(

family = "CM Roman", size = 10

)

)

To style such plots with Computer Modern fonts,
a one-time R call installs them:

extrafont::font_install("fontcm")

To load the fonts in subsequent R sessions, make
a relevant extrafont call at least once per session:

extrafont::loadfonts(quiet = TRUE)

4 Styling ggplot2

LATEX-styled strings can be emulated in plots via
the latex2exp package. Only a LATEX subset is
supported, enumerable in R.

latex2exp::latex2exp_supported()

The package accommodates common features
such as math mode (with escaped backslashes), or
inline Unicode.

latex2exp::TeX("weight \\textbf{W}_1$")

latex2exp::TeX("high\U00ADtech")

5 PDF rendering

PDF rendering is invoked via grDevices (loaded by
default in R). Fonts were embedded in the output file
via extrafont and Ghostscript. Finally, superfluous
bounding whitespace can be cropped via knitr.

Example R code to style ggplot2 with LATEX,
showing the results of Markov Chain Monte Carlo
convergence testing for a mixture model, as per e.g.,
[3], is given below. The resulting PDF appears in
Figure 1.

doi.org/10.47397/tb/44-1/tb136stenborg-ggplot2

Travis Stenborg

https://doi.org/10.47397/tb/44-1/tb136stenborg-ggplot2

TUGboat, Volume 44 (2023), No. 1 109

Data setup.

library(latex2exp)

labels <- c(

TeX("$\\eta_2$"), TeX("$\\eta_1$"),

TeX("$\\sigma_2$"), TeX("$\\sigma_1$"),

TeX("$\\mu_2$"), TeX("$\\mu_1$"))

df <- data.frame(

x = c(3040, 3040, 3458,

3392, 2758, 4176),

y = sapply(labels, deparse))

Fonts and PDF driver setup.

extrafont::loadfonts(quiet = TRUE)

file_name <- "plot_example.pdf"

pdf(file_name)

Build plot.

library(ggplot2)

grid_line <- element_line(

linewidth = 0.25, linetype = "dashed",

color = "grey")

plot <- ggplot(df, aes(x = x, y = y)) +

geom_point() +

scale_y_discrete(labels = labels) +

theme_bw() + theme(

axis.text = element_text(

color = "black"),

panel.grid.major = grid_line,

panel.grid.minor = grid_line,

text = element_text(

family = "CM Roman", size = 10)) +

xlab(TeX(

"bulk\U00AD{}$\\textit{n}_{eff}$")) +

ylab("Mixture parameter")

Set plot size.

gridExtra::grid.arrange(

grobs = lapply(list(plot),

egg::set_panel_size,

width = grid::unit(42, "mm"),

height = grid::unit(42, "mm")))

Close extraneous graphics devices.

while (!is.null(dev.list())) {

device_num <- as.integer(dev.cur())

if (device_num != 1) {

dev.off(which = device_num)}}

Finalise plot.

extrafont::embed_fonts(file_name)

knitr::plot_crop(file_name)

η2

η1

σ2

σ1

µ2

µ1

2800 3200 3600 4000

bulk­neff

M
ix

tu
re

 p
a
ra

m
et

er

Figure 1: Example R ggplot2 output. The y-axis tick

mark labels and x-axis label were styled using LATEX.

Acknowledgements

This work was supported by the Australian Research
Council Training Centre in Data Analytics for Re-
sources and Environments (project ICI9010031) and
funded by the Australian Government (including
contributions by the Australian National Health and
Medical Research Council Ideas Grant GNT1186572).

References

[1] L. Scarso. Two applications of SWIGLIB:
GraphicsMagick and Ghostscript.
TUGboat 36(3):237–242, 2015.
tug.org/TUGboat/tb36-3/tb114scarso.pdf

[2] W. Schmidt. Font selection in LATEX:
The most frequently asked questions.
TUGboat 28(2):241–242, 2007.
tug.org/TUGboat/tb28-2/tb89schmidt.pdf

[3] A. Vehtari, A. Gelman, et al. Rank-
normalization, folding, and localization:
An improved R̂ for assessing convergence of
mcmc (with discussion). Bayesian Analysis

16(2):667–718, June 2021.
doi.org/10.1214/20-BA1221

[4] B. Veytsman. Using knitr and LATEX
for literate laboratory notes. TUGboat

43(2):130–133, 2022. tug.org/TUGboat/

tb43-2/tb134veytsman-labnotes.pdf

[5] U. Ziegenhagen. Dynamic reporting
with R/Sweave and LATEX. TUGboat

31(2):189–192, 2010. tug.org/TUGboat/

tb31-2/tb98ziegenhagen.pdf

⋄ Travis Stenborg

Sydney, Australia

ORCID 0000-0002-2693-9628

Styling R ggplot2 graphics with LATEX

https://tug.org/TUGboat/tb36-3/tb114scarso.pdf
https://tug.org/TUGboat/tb28-2/tb89schmidt.pdf
https://doi.org/10.1214/20-BA1221
https://tug.org/TUGboat/tb43-2/tb134veytsman-labnotes.pdf
https://tug.org/TUGboat/tb43-2/tb134veytsman-labnotes.pdf
https://tug.org/TUGboat/tb31-2/tb98ziegenhagen.pdf
https://tug.org/TUGboat/tb31-2/tb98ziegenhagen.pdf

110 TUGboat, Volume 44 (2023), No. 1

Creating annotated Unicode-like font charts
Janusz S. Bień

Abstract
Printing annotated font tables in the layout following
the Unicode standard documentation is discussed.
Existing tools are presented and desirable but missing
features are proposed.

1 Unicode charts
In this article, we will discuss the primary Unicode
charts;1 the secondary charts describing the varia-
tion sequences, in particular those belonging to Ideo-
graphic Variation Database, are outside the scope of
our interest.

All the charts are produced with the Unibook
formatting software,2 supplied by ASMUS, Inc. (a
company owned by Asmus Freytag, Technical Vice
President of the Unicode Consortium from 1991 to
2007). A version of Unibook is available free of
charge (but with a rather complicated license); it is
used to prepare proposals of new characters, as well
as the full standard. The program runs on several
versions of MS Windows. The fonts used to print the
characters themselves in the charts come from many
sources and are not, in general, free in any sense.3

The charts proper are followed by various an-
notations. The source of annotations, at least in
principle, is the NamesList.txt4 昀椀le belonging to
the Unicode Character Database. Its header states:
This 昀椀le is semi-automatically derived from Unicode-
Data.txt and a set of manually created annotations
using a script to select or suppress information from
the data 昀椀le. The documentation of the format of
the 昀椀le is provided.5 However, there are systematic
discrepancies between the content of the 昀椀le and
the charts, so somewhere in the work昀氀ow additional
processing is performed.

As of the standard version 15.0, there are the fol-
lowing annotations used (examples are given later):

• Lines starting with • (U+2022 bullet) are just
comment lines.

• Lines starting with = (U+003D equals sign)
are alias lines.

• Lines starting with ※ (U+203B reference
mark) are formal alias lines.6

1 unicode.org/charts
2 unicode.org/unibook
3 unicode.org/charts/fonts.html
4 unicode.org/Public/UNIDATA/NamesList.txt
5 unicode.org/Public/UCD/latest/ucd/NamesList.html
6 Formal aliases are used for control characters, which have

no glyphs and o昀케cial names. Another use is correcting name

• Lines starting with → (U+2192 rightwards
arrow) contain cross-references to related char-
acters.

• Lines starting with ≡ (U+2261 identical to)
are used for precomposed characters and contain
the list of characters which together compose
the character in question.7

• Lines starting with ≈ (U+2248 almost equal
to) are used for so-called compatibility charac-
ters8 and show the compatibility decomposition
of the character (this relation is de昀椀ned by enu-
meration).

• Lines starting with ~ (U+007E tilde) describe
registered variation sequences.
The 昀椀le also contain commands to control print-

ing titles, subtitles, block headers, various subheaders
and notices.

2 The fntsample tool and its extension
In 2007 Eugeniy Meshcheryakov (the original spelling
seems to be Евгений Мещеряков) released the 昀椀rst
version of the fntsample program.9 The tool was
developed for the DejaVu Fonts project.

The charts it generates resemble those of the
Unicode standard; see Fig. 1. In particular, they
include glyphs for the characters which are invisi-
ble by de昀椀nition, such as ︀ (U+FE00 variation
selector-1), if the font contains them.

In 2013 a student of mine, Paweł Para昀椀ński,
accepted the task to made the samples even more
similar to the Unicode charts by supplementing them
with annotations. He solved the problem in two steps.
First he created a parser for the NamesList.txt 昀椀le
which converted it into simple XML. In the second
step he extended fntsample to print the additional
information from the XML 昀椀le.

The program is orphaned, but the repositories
are still available;10 in particular, this allows report-
ing the issues. The most annoying problem is the
inability to break long character names. There was
also a problem with the parser, which was coded
in the now-obsolete Python 2. I managed to adapt
it to Python 3 (by trial and error, as I am not a
programmer).
mistakes; because of the stability principle, erroneous names
are not removed from the standard, but the correct names are
added as a formal alias.

7 Some characters ‘decompose’ into another single charac-
ter, but this is another story; the most well-known example
is U+212B angstrom sign, which ‘decomposes’ into U+00C5
latin capital letter a with ring above.

8 See en.wikipedia.org/wiki/Unicode_compatibility_
characters, for example.

9 github.com/eugmes/fntsample
10 Now at github.com/jsbien/fntsample-with-comments

and github.com/jsbien/ucd_xml_parser.

doi.org/10.47397/tb/44-1/tb136bien-unichart

Janusz S. Bień

https://unicode.org/charts
https://unicode.org/unibook
https://unicode.org/charts/fonts.html
https://unicode.org/Public/UNIDATA/NamesList.txt
https://unicode.org/Public/UCD/latest/ucd/NamesList.html
https://en.wikipedia.org/wiki/Unicode_compatibility_characters
https://en.wikipedia.org/wiki/Unicode_compatibility_characters
https://github.com/eugmes/fntsample
https://github.com/jsbien/fntsample-with-comments
https://github.com/jsbien/ucd_xml_parser
https://doi.org/10.47397/tb/44-1/tb136bien-unichart

TUGboat, Volume 44 (2023), No. 1 111

Junicode Two Beta Regular

Supplementary Private Use Area-A

󰀀

󰀁

󰀂

󰀃

󰀄

󰀅

󰀆

󰀇

󰀈

󰀉

󰀊

󰀋

󰀌

󰀍

󰀎

󰀏

󰀐

󰀑

󰀒

󰀓

󰀔

󰀕

󰀖

󰀗

󰀘

󰀙

󰀚

󰀛

󰀜

󰀝

󰀞

󰀟

󰀡
F0000

F0001

F0002

F0003

F0004

F0005

F0006

F0007

F0008

F0009

F000A

F000B

F000C

F000D

F000E

F000F

F0010

F0011

F0012

F0013

F0014

F0015

F0016

F0017

F0018

F0019

F001A

F001B

F001C

F001D

F001E

F001F

F0021

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

A A

B B

C C

D D

E E

F F

F000 F001 F002 F003 F004 F005 F006 F007 F008 F009 F00A F00B F00C F00D F00E F00F

Figure 1: Output of
fntsample -f JunicodeTwoBeta-Regular.ttf
-i 0xf0000- -o sample.pdf

Unfortunately the parser ignores some elements
of the NamesList.txt 昀椀le, as at the time of its design
they seemed not to be needed.

3 Frank Mittelbach’s unicodefonttable
Frank Mittelbach’s unicodefonttable package is avail-
able from CTAN and the usual distributions; its
source repository is github.com/frankmittelbach/
fmitex-unicodefonttable. It provides a LATEX
style 昀椀le to include a font table in a document and,
an interactive standalone version to produce a font
table as a separate document. Tables can be sup-
plemented by block names and user captions; tables
can be limited to selected blocks.

The unicodefonttable package is implemented
using the fontspec package, which is an advantage, as
this allows using all font features which the package
supports. The source of the Junicode font manual [1],
typeset with X ELATEX, gives extensive examples of
the usage of font features with the fontspec package.11

They are also discussed in the manual [1, p. 13]:
11 github.com/psb1558/Junicode-font

Supplementary Private Use Area-A
0 1 2 3 4 5 6 7 8 9 A B C D E F

U+F0000 - F000F 󰀀 󰀁 󰀂 󰀃 󰀄 󰀅 󰀆 󰀇 󰀈 󰀉 󰀊 󰀋 󰀌 󰀍 󰀎 󰀏
U+F0010 - F001F 󰀐 󰀑 󰀒 󰀓 󰀔 󰀕 󰀖 󰀗 󰀘 󰀙 󰀚 󰀛 󰀜 󰀝 󰀞 󰀟
U+F0020 - F002F - 󰀡 - - - - - - - - - - - - - -

Figure 2: unicodefonttable output for plane 15 in
JunicodeTwoBeta-Regular.ttf

Many OpenType features produce di昀昀erent
outcomes depending on an index passed to
an application’s layout engine along with the
feature tag. Di昀昀erent applications have di昀昀er-
ent ways of entering this index: consult your
application’s documentation. Here, the index
is recorded in brackets after the feature tag.
Users of fontspec (with X ELATEX or LuaTEX)
should also be aware that fontspec indexes
start at zero while OpenType indexes start
at one. Therefore all index numbers listed in
this document must be reduced by one for use
with fontspec.

For referencing a speci昀椀c value of a feature we fol-
low [1], e.g., cv02[1] means the feature cv02 (character
variant number 2) with the index 1; on the other
hand ss10 is an example of a feature (stylistic set
number 10) which does not require an index but
which is just on or o昀昀.

It is worth noting that fontspec, and hence also
unicodefonttable, if used with LuaLATEX, allow for the
little known “raw feature” -invisible,12 allowing
printing glyphs for characters which are invisible in
principle (mentioned earlier; see also, for example,
[3]) if the font contains them.13

Figure 2 shows the output of the following:
\displayfonttable

[range-start=F0000,range-end=FFFFF,
nostatistics,noheader,hex-digits=block]

{JunicodeTwoBeta-Regular.ttf}

4 David M. Jones’ STIX charts
The charts for the STIX fonts (OpenType Unicode
fonts for Scienti昀椀c, Technical, and Mathematical
texts14) are typeset by David M. Jones with X ELATEX
from source generated by a Perl script. The principal
part of the charts has the same layout as the Unicode
charts, so this technique could be used to replace
fntsample (the additional part of the charts describes
the OpenType features, which is only indirectly re-
lated to the present paper). Figure 3 shows the page
for the Greek and Coptic block, starting at U+037.

12 github.com/latex3/luaotfload/issues/63
13 I learned this from the author; see github.com/

FrankMittelbach/fmitex-unicodefonttable/issues/5.
14 github.com/stipub and www.stixfonts.org

Creating annotated Unicode-like font charts

https://github.com/frankmittelbach/fmitex-unicodefonttable
https://github.com/frankmittelbach/fmitex-unicodefonttable
https://github.com/psb1558/Junicode-font
https://github.com/latex3/luaotfload/issues/63
https://github.com/FrankMittelbach/fmitex-unicodefonttable/issues/5
https://github.com/FrankMittelbach/fmitex-unicodefonttable/issues/5
https://github.com/stipub
https://www.stixfonts.org

112 TUGboat, Volume 44 (2023), No. 10370 Greek and Coptic 03FF

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

037

0́374

;
037E

038

΄
0384

0̈́385

Ά
0386

·
0387

Έ
0388

Ή
0389

Ί
038A

Ό
038C

Ύ
038E

Ώ
038F

039

ΐ
0390

Α
0391

Β
0392

Γ
0393

Δ
0394

Ε
0395

Ζ
0396

Η
0397

Θ
0398

Ι
0399

Κ
039A

Λ
039B

Μ
039C

Ν
039D

Ξ
039E

Ο
039F

03A

Π
03A0

Ρ
03A1

Σ
03A3

Τ
03A4

Υ
03A5

Φ
03A6

Χ
03A7

Ψ
03A8

Ω
03A9

Ϊ
03AA

Ϋ
03AB

ά
03AC

έ
03AD

ή
03AE

ί
03AF

03B

ΰ
03B0

α
03B1

β
03B2

γ
03B3

δ
03B4

ε
03B5

ζ
03B6

η
03B7

θ
03B8

ι
03B9

κ
03BA

λ
03BB

μ
03BC

ν
03BD

ξ
03BE

ο
03BF

03C

π
03C0

ρ
03C1

ς
03C2

σ
03C3

τ
03C4

υ
03C5

φ
03C6

χ
03C7

ψ
03C8

ω
03C9

ϊ
03CA

ϋ
03CB

ό
03CC

ύ
03CD

ώ
03CE

03D

ϐ
03D0

ϑ
03D1

ϒ
03D2

ϓ
03D3

ϔ
03D4

ϕ
03D5

ϖ
03D6

Ϙ
03D8

ϙ
03D9

Ϛ
03DA

ϛ
03DB

Ϝ
03DC

ϝ
03DD

Ϟ
03DE

ϟ
03DF

03E

Ϡ
03E0

ϡ
03E1

03F

ϰ
03F0

ϱ
03F1

ϴ
03F4

ϵ
03F5

϶
03F6

STIX Two Text Regular, Version 2.13 b169 9

Figure 3: A page from STIXTwoText-Regular.pdf
(headers and footers are omitted).

These charts use some additional conventions, e.g.,
red (grayscaled for print) is used for characters not
directly supported but synthesized by a Unicode-
aware shaping engine; this is shown with characters
U+03D3 and U+03D4 in the 昀椀gure; U+0374 is another
example of a character which “decomposes” into (is
substituted by) another single character.15

At present neither the X ELATEX source nor the
Perl script are available publicly.16

15 github.com/stipub/stixfonts/issues/248
16 github.com/stipub/stixfonts/issues/247

5 Typesetting character annotations
Although in the Unicode standard the character an-
notations occur immediately after the relevant glyph
tables, it is not necessary to follow the standard in
this respect. Separately provided annotations can be
even more convenient.

Typesetting individual annotations in a way ap-
proximating the Unicode charts is not di昀케cult. After
some research I decided to use xltabular, which han-
dles multipage tables (unfortunately it doesn’t work
in a multicolumn environment). The examples in
昀椀gures 4–6 are typeset using code like this (show-
ing just the 昀椀rst line; formatting has been slightly
changed):
\begin{xltabular}{1.0\linewidth}%

{lll>{\raggedright}X}
0000 & &\multicolumn{2}{l}{<control>}\\
& & &※& NULL\\

The Unicode conventions can be used easily to
describe Private Use Area characters, e.g., those from
Medieval Unicode Font Initiative17 (other interesting
initiatives are CONSCRIPT18 and LINCUA19), or
from a speci昀椀c font. Fig. 5 shows some examples.

The line format for the registered variation se-
quences can be easily adapted to tag variation se-
quences (see, for example, [2]) and font speci昀椀c in-
formation, as shown in Fig. 6.

The information about the font can be skipped
when not needed.

6 Providing character annotations
In addition to the ttx program discussed later, the
other tool I know of to list font features in a human-
readable form is layout-features.py,20 but its simple
output does not contain the information needed for
our purposes (see Fig. 7).

In 2018 a feature request was submitted to the
fntsample repository entitled Suggestion: enable print-
ing glyphs not assigned to a unicode slot,21 but there
was no follow up. In 2021 a similar feature request
was made for unicodefonttable.22 The answer, in
my view correct, was that this should be a separate
project.

We focus here on discussing the annotations in
ttx’s XML form (but the fork of layout-features.py may

17 mufi.info
18 www.kreativekorp.com/ucsur
19 bit.ly/2XVTzRL-LINCUA
20 github.com/fonttools/fonttools/blob/

8ab6af03c89726cf80ca3c4b755ae1bd0038b5da/
Snippets/layout-features.py; see also
github.com/fonttools/fonttools/discussions/2873.

21 github.com/eugmes/fntsample/issues/11
22 github.com/FrankMittelbach/

fmitex-unicodefonttable/issues/2

Janusz S. Bień

https://github.com/stipub/stixfonts/issues/248
https://github.com/stipub/stixfonts/issues/247
https://mufi.info
https://www.kreativekorp.com/ucsur
https://bit.ly/2XVTzRL-LINCUA
https://github.com/fonttools/fonttools/blob/8ab6af03c89726cf80ca3c4b755ae1bd0038b5da/Snippets/layout-features.py
https://github.com/fonttools/fonttools/blob/8ab6af03c89726cf80ca3c4b755ae1bd0038b5da/Snippets/layout-features.py
https://github.com/fonttools/fonttools/blob/8ab6af03c89726cf80ca3c4b755ae1bd0038b5da/Snippets/layout-features.py
https://github.com/fonttools/fonttools/discussions/2873
https://github.com/eugmes/fntsample/issues/11
https://github.com/FrankMittelbach/fmitex-unicodefonttable/issues/2
https://github.com/FrankMittelbach/fmitex-unicodefonttable/issues/2

TUGboat, Volume 44 (2023), No. 1 113

0000 <control>
※ null

0030 0 digit zero
~ 0030 FE00 0 short diagonal stroke form

0040 @ commercial at
= at sign

0104 Ą latin capital letter a with ogonek
≡ 0041 A 0328 ◌̨

2105 ℅ care of
≈ 0063 c 002F / 006F o

2B7A ⭺ leftwards triangle-headed arrow with double horizontal stroke
※ leftwards triangle-headed arrow with double vertical stroke

A7C1 ꟁ latin small letter old polish o
• used in Old Polish as a nasal vowel
→ 00F8 ø latin small letter o with stroke

Figure 4: Typesetting standard character annotations.

F1C8 ◌� combining abbreviation mark zigzag above curly form
• MUFI since v.2

E8AF � latin small ligature long s l with stroke
• MUFI in v.4 at E8DF, later moved to E8AF
• used in old Polish

F0001 󰀁 latin small letter a with stroke through terminal
• supported in Junicode Beta since Jun. 30, 2020
• used in old Polish
→ 0105 ą latin small letter a with ogonek
→ 2C65 ⱥ latin small letter a with stroke

Figure 5: Some examples from Unicode’s Private Use Area.

0062 b latin small letter b
~ supported in Junicode Beta since Aug. 25, 2022 with ss10 on: 0062 b E0070 p E0073 s

b old Polish b quadratum
0105 ą latin small letter a with ogonek

• Polish, Lithuanian, . . .
≡ 0061 a 0328 ◌̨
~ supported in Junicode Beta since Jun. 30, 2020:

0104 ą cv02[1] 󰀁 latin small letter a with stroke through terminal
Figure 6: Adapting output to tag variation sequences.

also be considered). How to process this information
further is another question outside the scope of this
note. One possible approach is to continue the work
on the fntsample fork. Another possibility is to use
XSLT to convert to LATEX (running under X ETEX or
LuaTEX); this is a general recommendation of David
Carlisle, the author of xmltex.23

The Unicode standard is updated every year, so
we need a way to handle the update conveniently.
Conversion to XML with Para昀椀ński’s parser, after

23 tex.stackexchange.com/questions/562856

some minor improvements of the program, seems a
satisfactory solution.

In the Private Use Area, the updates to Me-
dieval Unicode Font Initiative recommendation, for
example, don’t have a stable speci昀椀c form. The data,
e.g., as prepared for Para昀椀ński’s program, have to
be updated by hand.

One way to extract the interesting information
from the font which seems to be worth consideration

Creating annotated Unicode-like font charts

https://tex.stackexchange.com/questions/562856

114 TUGboat, Volume 44 (2023), No. 1

Table: GSUB
Script: DFLT

Language: default
Feature: aalt

Lookups: 0,1
Feature: c2sc

Lookups: 204
...

Feature: ccmp
Lookups: 50,53,55,56,57,58,59,60,61,...

Feature: cv01
Lookups: 110

Feature: cv02
Lookups: 111

...

Figure 7: Some of the output from
layout-features.py JunicodeTwoBeta-Regular.ttf

consists of using the ttx plain text format of Open-
Type/TrueType fonts produced by the program of
the same name.24

To make the output more human readable, by
default ttx uses the character names from the 昀椀le
UnicodeData.txt belonging to the Unicode Char-
acter Database. There is, however, an option to
provide a di昀昀erent 昀椀le for the data. One occasion for
this is a new version of the standard which has not
yet migrated to the relevant software libraries. The
second, more important for us, is to provide names
of the PUA characters, including MUFI, prepared
already in the appropriate format by Rebecca G.
Bettencourt25 (updates are probably needed).

OpenType/TrueType fonts consist of several
tables and subtables, which ttx converts to XML
(in the examples below, the formatting is slightly
changed). Variation and tag sequences are repre-
sented in the same way as other ligatures. For ex-
ample, in NotoSans-Regular.ttf the slashed zero
variation sequence (surprisingly few fonts support
this variation sequence), stored in the GSUB (Glyph
Substitution) table, looks like this:
<GSUB>

<Version value="0x00010000"/>
...
<LookupList>

<!-- LookupCount=43 -->
<Lookup index="2">

...
<!-- SubTableCount=1 -->
<LigatureSubst index="0" Format="1">

<LigatureSet glyph="zero">
<Ligature components="uniFE00"

glyph="zero.slash"/>

24 github.com/fonttools/fonttools; see also [4, p. 22].
25 kreativekorp.com/charset/PUADATA/PUBLIC/MUFI

</LigatureSet>
</LigatureSubst>

</Lookup>
...

</LookupList>
</GSUB>

To discover what uniFE00 de昀椀nitively means,
we consult the cmap (Character to Glyph Index Map-
ping) table:
<cmap>
<tableVersion version="0"/>
<cmap_format_4 platformID="0" platEncID="3"

language="0">
...

<map code="0xfe00" name="uniFE00"/>
<!-- VARIATION SELECTOR-1 -->

</cmap_format_4>
...

</cmap>

The comments are provided by the ttx program.
As for zero.slash, we can use the auxiliary

table GlyphOrder produced by ttx to 昀椀nd the font
slot number of the character:

<GlyphOrder>
<!-- The 'id' attribute is only for humans;

it is ignored when parsed. -->
...
<GlyphID id="2581" name="zero.slash"/>
...

</GlyphOrder>

The slot number can be used to typeset the
character; in X ETEX the appropriate command is
\XeTeXglyph.26

Let’s now consider another example, namely
b quadratum from the Junicode font mentioned above.
The tag sequence is active only when stylistic set 10
is selected, so the ligature has to be embedded in the
appropriate FeatureElement:
<GSUB>

<Version value="0x00010000"/>
...
<FeatureList>

<!-- FeatureCount=155 -->
...
<FeatureRecord index="140">

<FeatureTag value="ss10"/>
<!-- Character Entities

for Combining Marks -->
<Feature>

<FeatureParamsStylisticSet>
<Version value="0"/>

26 This was kindly pointed out to me by Ulrike
Fischer on the X ETEX mailing list (tug.org/pipermail/
xetex/2022-October/028105.html). [Editor’s note: For
LuaTEX, some Lua code can achieve the same result; see
tex.stackexchange.com/questions/120736.]

Janusz S. Bień

https://github.com/fonttools/fonttools
https://kreativekorp.com/charset/PUADATA/PUBLIC/MUFI
https://tug.org/pipermail/xetex/2022-October/028105.html
https://tug.org/pipermail/xetex/2022-October/028105.html
https://tex.stackexchange.com/questions/120736

TUGboat, Volume 44 (2023), No. 1 115

<UINameID value="256"/>
<!-- Entities -->

</FeatureParamsStylisticSet>
<!-- LookupCount=3 -->
...
<LookupListIndex index="2"

dopiskivalue="71"/>
</Feature>

</FeatureRecord> ...
</FeatureList>
<LookupList>

<!-- LookupCount=234 -->
...
<Lookup index="71">

<LookupType value="4"/>
<LookupFlag value="16"/>

<!-- useMarkFilteringSet -->
<!-- SubTableCount=1 -->
<LigatureSubst index="0" Format="1">

...
<LigatureSet glyph="b">

<Ligature components="e.tag,n.tag"
glyph="b.enlarged"/>

<Ligature components="p.tag,l.tag"
glyph="b.p02"/>

<Ligature components="p.tag,s.tag"
glyph="b.p01"/>

</LigatureSet>
...

</LigatureSubst>
<MarkFilteringSet value="1"/>

</Lookup> ...
</LookupList>

</GSUB>

In general the glyph selection can depend on a
script, a language, and user-selected features, which
make the font structure quite complicated. A pro-
gram intended to extract all the information about
a font has to take everything into account.

7 Final remark
I hope this note will provide inspiration to a reader
or readers with appropriate skills and in some future
we will see a tool for printing annotated font tables
in a nice fashion.

References
[1] P. Baker. Junicode — the font for medievalists.

specimens and user manual for version 2, 2022.
github.com/psb1558/Junicode-font/

[2] J.S. Bień. Representating Parkosz’s alphabet in
the Junicode font. TUGboat 43(3):247–251, 2022.
tug.org/TUGboat/tb43-3/tb135bien-parkosz.pdf

[3] M. Davis, K. Whistler. Default ignorable issues.
L2/02-368, 2002. unicode.org/L2/L2002/
02368-default-ignorable.pdf

[4] Y. Haralambous. Fonts & Encodings. From
Advanced Typography to Unicode and Everything in
Between. O’Reilly Media, 2007.

� Janusz S. Bień
Warsaw, Poland
jsbien (at) uw.edu.pl
sites.google.com/view/jsbien
ORCID 0000-0001-5006-8183

TUGboat, Volume 44 (2023), No. 1 115

Production notes
Karl Berry

Almost all of the characters in Janusz’s article could
be typeset with no particular trouble. But two needed
special attention: the character 󰀁 (U+F0001 latin small
letter a with stroke through terminal) and the
visible glyph ︀ (U+FE00 variation selector-1).

For the former, X ELATEX has no problems typeset-
ting U+F0001 from the Junicode font:
\newfontfamily{\Junicode}

{JunicodeTwoBeta-Regular.ttf} % for XeTeX
\newcommand{\sgl}[1]

{{\Junicode #1}}
\newcommand{\Fzerosone}{\sgl{...}}

However, I wanted to use LuaLATEX to typeset the
article, because its support for microtype’s font expan-
sion feature avoided several overfull lines, and it typeset
some other character. It turns out (github.com/latex3/
luaotfload/issues/244) that setting the HarfBuzz ren-
dering mode is what’s needed. (This is not the default
in lualatex, even though it uses the luahbtex engine.)
% For LuaTeX:
\newfontfamily{\Junicode}

[Renderer=HarfBuzz]{JunicodeTwoBeta-Regular.ttf}

For the latter character: ordinarily, Unicode pre-
scribes that variation selectors are invisible, but a few
fonts also provide a visible glyph; the one here (found
by Janusz) is from NotoSansManichaean-Regular.ttf,
following what is printed in the Unicode font charts.

X ELATEX could handle this with its \XeTeXglyph
primitive, which can be used to typeset any glyph from a
font, whether mapped to an input character or not; in this
case, \XeTeXglyph 58. (The ttx program can be used
to discern such internal information in any OpenType or
TrueType font.)

For LuaLATEX, however, it was necessary both to use
the Base rendering mode, and a bit of Lua code devised
by Henri Menke (thank you Henri, and thank you search
engines), which emulates many X ETEX primitives in
LuaTEX (gist.github.com/hmenke/6e8ff7c90a5e5df3
c4895f60059a2ef7):
\ifx\undefined\XeTeXglyph % LuaTeX case:

\def\XeTeXglyph{%
\directlua{...}}%

\fi
\newfontfamily{\NSM}

[Renderer=Base]{NotoSansManichaean-Regular.ttf}
\newcommand{\VSone}{{\NSM\XeTeXglyph 58}}

Happy Unicode typesetting.

� Karl Berry
github.com/TeXUsersGroup

doi.org/10.47397/tb/44-1/tb136prod

https://github.com/psb1558/Junicode-font/
https://tug.org/TUGboat/tb43-3/tb135bien-parkosz.pdf
https://unicode.org/L2/L2002/02368-default-ignorable.pdf
https://unicode.org/L2/L2002/02368-default-ignorable.pdf

116 TUGboat, Volume 44 (2023), No. 1

OpenType extensible brace debugging

Hans Hagen, Mikael P. Sundqvist

When you combine writing a new math manual with
development of the math typesetting subsystem, you
can run into surprising buglets.

A valid traditional TEX approach to putting
braces over or under (a bit of) formula is to assemble
such a brace from five snippets, where the left, middle
and right snippet are characters and the “even” ones
are rules that can stretch. An OpenType math font
can have line segments that are used instead of rules.
But before that assembly happens, one can first check
if there are precomposed wider variants in the font.

Consider the following formula elements (typeset
with simply \overbrace{i}, etc.):𝑖H__H__
⏞H__H__H__

H____V 𝑥H__H__⏞H__H__H__

H____V 𝑥 + 1H__H__
⏞H__H__H__

H____V 𝑥 + 𝑦H__H__⏞H__H__H__

H____V 𝑥 + 𝑦 + 𝑧H__H__

⏞H__H__H__

H____V

When you test examples like this you would expect
the overbrace on the i to be narrower than on the x.
But in the above, using Pagella (its design makes the
problem apparent), we see they are the same size.
Also, the braces above x+ 1 and x+ y are slightly
wider than they need to be.

Another issue is that we expect braces above
and below (with \underbrace) to have the same size.
Switching to Lucida for the example below, we can
see that they don’t; the brace on top is noticeably
bigger: 𝑥⏟⏞

Of course you will seldom put a brace both on
top of and below a single character, and that is likely
why this went unnoticed for quite a while. And,
because normally code involved in handling this is
kind of symmetric, one starts wondering about the
font. And indeed, when we looked into the font, we
found that uni23DE (top curly bracket) had an
error in the variant list: .size1 and .size2 were
swapped. In FontForge (the variant list is given in
the box at the upper right of the screenshot):

Because we had just updated this font1 we im-
mediately thought that we had messed up, but a look
at the old version showed us that this swap was al-
ready there: it just went unnoticed! The simple fact
that we showed both braces made it prominent. How
likely is it to have two braces on a single character?

Sorting the sizes correctly results in braces of
the same size (left below), but you may notice that
the braces are still wider than the x. We can fix this
by scaling the brace slightly (right below).𝑥⏟⏞ 𝑥⏟⏞

While looking closer at this, we realized that an-
other problem exists: Lucida’s widest precomposed
brace character is much smaller than the narrowest
extensible brace. Also, the precomposed braces are
naturally “curvier” than the extensible ones, so the
braces for x+1 are quite different compared to x+y:

𝑖H__H__⏟H__H__H__
⏞H__H__H__

H____V 𝑥H__H__⏟H__H__H__
⏞H__H__H__

H____V 𝑥+ 1H__H__⏟H__H__H__
⏞H__H__H__

H____V 𝑥+𝑦H__H__
⏟H__H__H__

⏞H__H__H__

H____V 𝑥+𝑦+𝑧H__H__
⏟H__H__H__

⏞H__H__H__

H____VH__

Since the different curviness is by design it is nothing
to fix, but in a future version we might need to add
a size or modify the extensible recipe.

Since the problems have gone unnoticed, there is
no hurry to push another release, though. Meanwhile,
in ConTEXt, we can easily fix the swap with a tweak
in the goodie file (by sorting variants on size), and
users will not notice the gap between the sizes, since
we stretch or shrink the result. Here we show how
it looks for Pagella, to be able to compare with the
first figure, with stretching and shrinking enabled:𝑖H__H__⏟H__H__H__
⏞H__H__H__

H____V 𝑥H__H__⏟H__H__H__
⏞H__H__H__

H____V 𝑥 + 1H__H__⏟H__H__H__
⏞H__H__H__

H____V 𝑥 + 𝑦H__H__⏟H__H__H__

⏞H__H__H__

H____V 𝑥 + 𝑦 + 𝑧H__H__
⏟H__H__H__

⏞H__H__H__

H____V

Note that the sizes of all braces now match their
content.

Font debugging grows ever more complex . . .

⋄ Hans Hagen

Pragma ADE

⋄ Mikael P. Sundqvist

Department of Mathematics

Lund University

mickep (at) gmail dot com

1 tug.org/TUGboat/tb43-3/tb135hagen-lucida.pdf

doi.org/10.47397/tb/44-1/tb136hagen-extensible

https://tug.org/TUGboat/tb43-3/tb135hagen-lucida.pdf
https://doi.org/10.47397/tb/44-1/tb136hagen-extensible

TUGboat, Volume 44 (2023), No. 1 117

ConTEXt in TEX Live 2023

Hans Hagen

Starting with TEX Live 2023 the default ConTEXt
distribution is LMTX, a follow up on MkIV, running
on top of the LuaMetaTEX engine instead of Lua-
TEX. Already for a long time the MkII version used
with pdfTEX, X ETEX and Aleph has been frozen and
most users moved on from MkIV to LMTX (a more
distinctive tag for what internally is version MkXL).

In principle one can argue that we now have
three versions of ConTEXt and there can be the
impression that they are very different. However,
although MkXL can do more than MkIV which can
do more than MkII, the user interface hasn’t changed
that much and old functionality is available in newer
versions. Of course some old features make no sense
in newer variants, like eight-bit font encodings in an
OpenType font realm and input encodings when one
uses UTF, although we still support input encodings
a.k.a. regimes. When we started using the Mk* suf-
fixes the main reason was that we had to distinguish
files and the official TEX distribution doesn’t permit
duplicate file names. Using a distinctive suffix also
makes it possible to treat files differently.

Table 1 shows major aspects of the different Con-
TEXt versions. The ‘template’ files listed in the table
are a mix of TEX and Lua and originate in the early
days of MkIV; basically, they are a wink to active
server pages. With ‘arguments’, we refer to files that
accept named macro arguments which means that
they need to be preprocessed. That started as a
proof of concept but some core files are defined that
way. Users will normally just use a .tex file.

The Lua files in the code base have the suffix
lua, or when meant for LuaMetaTEX that uses a
newer Lua engine they can have the suffix lmt. There
can also be lfg (font goodies) and llg (language
goodies) plus byte-compiled files with various suffixes
but these are normally not seen by users. We leave
it at that.

So, while TEX Live 2022 installed MkII and
MkIV, TEX Live 2023 installs MkIV and LMTX.
Therefore the most significant upgrade is in the en-
gine that is used by default: LuaMetaTEX instead
of LuaTEX. The MkII files are no longer installed so
we don’t need pdfTEX.

So how did we end up here? Initially the idea
was that, because LuaTEX is basically frozen, Lua-
MetaTEX would be the engine that we conduct ex-
periments with and from which occasionally we could
backport code to LuaTEX. However it soon became
clear that this would not work out well so backport-
ing is off the table now. Just for the record: the
project started years ago so we’re not talking about
something experimental here. There have been arti-
cles in TUGboat about what we’ve been doing over
the years.

One of the first decisions I made when starting
with LuaMetaTEX was to remove the built-in back-
end, which then meant also removing the bitmap
image inclusion code. That made us get rid of de-
pendencies on external libraries. In fact, a proof-of-
concept experimental variant didn’t use the built-
in backend at all. The font loading code could be
removed as well because that was not used in MkIV
either. In MkIV we also don’t use the kpse library
for managing files so that code could be dropped
from the engine tool; it can be loaded as so-called
optional library if needed but I’ll not discuss that
here. If you look at what happens with the LuaTEX
code base, you’ll notice that updating libraries hap-
pens frequently and that is not a burden that we
want to impose on users, especially because it also
can involve updating build-related files. Another
advantage of not using them is that the code base
remains small.

A direct consequence of all this was that the
build process became much more efficient and less
complex. A fast compilation (seconds instead of min-
utes) meant that more drastic experiments became
possible, like most recently an upgrade of the math
subsystem. All this, combined with an overhaul of

suffix engine template arguments main file

MkII pdfTEX, X ETEX, Aleph context.mkii

MkIV LuaTEX, LuaJITTEX, LuaMetaTEX context.mkiv

MkVI idem yes
MkIX idem yes
MkXI idem yes yes

MkXL LuaMetaTEX context.mkxl

MkLX idem yes

Table 1: Major ConTEXt versions.

doi.org/10.47397/tb/44-1/tb136hagen-texlive

https://doi.org/10.47397/tb/44-1/tb136hagen-texlive

118 TUGboat, Volume 44 (2023), No. 1

the code base, both the TEX and MetaPost part,
meant that backporting was no longer reasonable.
Being freed from the constraint that other macro
packages might use LuaMetaTEX in turn resulted in
more drastic experiments and adding features that
had been on our wish list for decades. Another side
effect was that we could easily compile native Win-
dows binaries and immediately support transitions
to ARM-based hardware.

Instead of “backporting after experimenting”,
a leading motive became “fundamentally move for-
ward” while at the same time tightening the relation
between ConTEXt and the engine: the engine code
became part of the distribution so that users can
compile themselves, which fits perfectly in the par-
adigm (and demands) of distributing all the source
code, even that of the engine. There is also less
danger that patches on behalf of other usage inter-
feres with stable support for ConTEXt. A specific
installation is now more or less long-term stable by
design because it no longer depends on binaries and/
or libraries being provided for a specific platform
and operating system version. Of course installers
and TEX Live do provide the binaries, so users aren’t
forced to worry about it, but they can move along
with a system update by recompiling an old, and for
their purpose, frozen ConTEXt code base.

An unofficial objective (or challenge) became
that the accumulated source stays around 12 MB

uncompressed, (compressed a bit over 2 MB) and the
binary around 3 MB so that we could use the engine
as an efficient Lua runner as well as a launcher stub,
thereby removing yet another dependency. That
way the official ConTEXt distribution didn’t grow
much in size. A bonus is that we now use the same
setup for all operating systems. It also opened up
the possibility of a exceptionally small installation
with all bells and whistles included. Another nice
side effect, combined with automatic compilation
on the compile farm, makes that we can provide
installations that reflect the latest state of affairs: a
recent binary combined with the latest ConTEXt. As
a result, most users quickly went for LMTX instead
of MkIV.

In the code base we avoid dependencies on spe-
cific platforms but there are a few cases where the
code for Windows and UNIX differs. However, the
functionality should be the same. A good test is
that for Windows we can compile with mingw (cross-
compilation), MSVC (native) and clang (native); that
order is also the order of runtime performance. The
native MSVC binary is the smallest but users prob-
ably don’t care. In any case, it is nice to have a
fallback plan in place. The code is all in C; the

MetaPost code is converted from CWEB into C using
a Lua script but we also ship the resulting C code.
The code base provides a couple of CMake files and
comes with a trivial build script.

When I say that there are no libraries used,
I mean external libraries. We do use code from
elsewhere: adapted avl as well as decnumber (for
the MetaPost library), adapted hjn (hyphenation),
miniz (zip compression), pplib (for loading PDF

files), libcerf (to complement other math library
support, but it might be dropped), and mimalloc

for memory management. However all the code is in
the LuaMetaTEX code base and only updated after
checking what changed. The most important library
originating elsewhere is of course Lua: we use the lat-
est and greatest (currently) 5.4 release. We kept the
socket library but it might be dropped or replaced
at some point. In addition there is a subsystem for
dynamically loading libraries; the main reason for
that being that I needed zint for barcodes, interfaces
to sql databases, a bunch of compression libraries,
etc. But all that is tagged optional and ConTEXt will
never depend on it. There are no consequences for
compilation either because we don’t need the header
files. The glue code is very minimalistic and most
work gets delegated to Lua.

Initially, because the backend is written in Lua,
there was a drop in performance of some 15% but that
was stepwise compensated by gains in performance
in the engine and additional or improved function-
ality. The ConTEXt code base is rather optimized
so there was little to gain there, apart from using
new features. Existing primitive support could also
be done a bit more efficiently; it helps if one knows
where potential bottlenecks are. Therefore, in the
meantime an LMTX run can be quite a bit faster than
a MkIV run and it can even outperform a LuaJITTEX
run. In practice, the difference between an eight-bit
MkII run using the eight-bit pdfTEX engine and a 32-
bit LuaMetaTEX run with LMTX can be neglected,
definitely on more complex documents. I never get
complaints about performance from ConTEXt users,
so it might be a minor concern.

So what are the main differences in the installa-
tion? If you really want to experience it you should
use the standard installation. Currently the small
installer is the engine that synchronizes the installa-
tion over the net and, assuming a reasonable internet
connection, that takes little time. The installation is
relatively small, and many of the bytes used are for
the documentation. Updates are done by transferring
only the changed files. The TEX Live installation is
a bit larger because it shares for instance fonts with
the main installation and these come with resources

TUGboat, Volume 44 (2023), No. 1 119

used by other macro packages. Both installations
bring MkIV as well as LMTX and therefore provide
LuaTEX as well as LuaMetaTEX. However, a MkIV
run is now managed by LuaMetaTEX because we
use that engine for the runner. The MkII code is no
longer in TEX Live but is in the repositories and used
to test and compare with pdfTEX. It just works.

The number of binaries and stubs is reduced to
a minimum:
luametatex combined TEX, MetaPost, Lua engines

mtxrun script runner, binary

context ConTEXt runner, binary

mtxrun.lua script runner, Lua code

context.lua loader for ConTEXt runner

luatex the good old ancestor

All of these programs are in the ConTEXt distribu-
tion directory tex/texmf-⟨platform⟩/. In addition,
context and mtxrun are symlinks to the luametatex
binary, where possible.

So, the context command runs luametatex,
but loads the Lua file with the same name which
in turn will locate the ConTEXt management script
(mtx-context) in the TEX tree and run it. The same
is true for mtxrun: it is a binary (link) that loads
the script in (this time) the same path and then can
perform numerous tasks. For instance, identifying
the installed fonts so that they can be accessed by
name is done with:

mtxrun --script font --reload

Where in MkII we had stubs for various utility
scripts, already in MkIV we went for a generic runner
and a bit more keying. It’s not like these scripts are
used a lot and by avoiding shortcuts there is also
little danger for a mixup with the ever-growing list
of other scripts in TEX Live or commands that the
operating system provides.

The LuaTEX binary is optional and only needed
if a user also wants to process MkIV files. There are
no shell scripts used for launching. The two main
calls used by users are:

context foo.tex

context --luatex foo.tex

A user has only to make sure that the binaries
are in the path specification. When you run from an
editor, the next command does the work:

mtxrun --autogenerate --script context ⟨filename⟩

with ⟨filename⟩ being an editor-specific placeholder.
Like other engines, LuaMetaTEX (and ConTEXt)
needs a file database and format file, and although
it should generate these automatically you can make
them with:

mtxrun --generate

context --make

The rest of the installation is similar to what we
always had and is TDS compliant. The source code
of LuaMetaTEX is included in the distribution itself
(which nicely fulfills the requirements) but can also be
found at github.com/contextgarden/luametatex.

There are also some optional libraries there but
ConTEXt works fine without them. The official latest
distribution of ConTEXt itself is:
github.com/contextgarden/context

github.com/contextgarden/context-distribution-fonts

We see users grab fonts from the Internet and
play with them. They can install additional fonts in
tex/texmf-fonts/data/⟨vendor⟩. Project-specific
files can be collected in tex/texmf-project/tex/

context/user/⟨project⟩. These directories are not
touched by installations and can easily be copied or
shared between different installations. After adding
files to the tree mtxrun --generate will update the
file database.

In the distribution there are plenty of documents
that describe how LuaMetaTEX with LMTX differs
from MkIV with LuaTEX: new primitives, macro
extensions, more granular math rendering, improved
memory management, new (or extended) (rendering)
concepts, more MetaPost features; most is covered
in one way or another, and much is already applied
in the ConTEXt source code. After all, it took a
few years before we arrived here so you can expect
substantial refactoring of the engine as well as the
code base, and therefore eventually there is (and will
be) more than in MkIV.

When you compare a ConTEXt installation with
what is needed for other macro packages you will
notice a few differences. One concerns the way TEX
is launched. An engine starts with a blank slate but
can be populated with a so-called format file that is
basically a memory dump of a preloaded macro pack-
age. So, the original way to process a file is to pass a
format filename to the engine. In order to avoid that
a trick is used: when an engine (or symlink/stub
to it) is launched by its format name, the loading
happens automatically. So, for instance pdflatex

is actually an equivalent for starting pdfTEX with
the format file pdflatex.fmt while latex is pdfTEX
with another format file (latex.fmt) starting up in
DVI mode. And, as there are many engines, a specific
macro package can have many such combinations of
its name and engine.

In ConTEXt we don’t do it that way. One rea-
son is that we never distinguished between backends:
MkII uses an abstract backend layer and load driver
files at runtime (it was one of the reasons why we
could support Acrobat as soon as it showed up, be-
cause we already supported the now obsolete but

https://github.com/contextgarden/luametatex
https://github.com/contextgarden/context
https://github.com/contextgarden/context-distribution-fonts

120 TUGboat, Volume 44 (2023), No. 1

quite nice DVIWINDO viewer). And that model
hasn’t changed much as we moved on. Because we
use a runner, we also don’t need to distinguish be-
tween engines: all formats have the same name but
sit on an engine subpath in the TEX tree. Any-
way, this already removes quite some formats. On
the other hand, ConTEXt can be run with different
language specific user interfaces which means that
instead of just context.fmt we have cont-en.fmt

and possibly more, like cont-nl.fmt. So that can
increase the number again but by default only the
English interface is installed. As a side note: where
with MkII we needed to generate MetaPost mem
files, with its descendants having MPlib we load the
(actually quite a bit of) MetaPost code at runtime.1

In addition to a format file, for the LuaTEX
and LuaMetaTEX engine we also have a (small) Lua
loader alongside the format file. All this is handled
by the runner, also because we provide extensive
command line features, and therefore of no concern
to users and package maintainers. However, it does
make integrating ConTEXt in for instance TEX Live
different from other macro packages and thereby puts
an extra burden on the TEX Live team. Here I want
to thank the team for making it possible to move
forward this way, in spite of this rather different
approach. Hopefully a LuaMetaTEX integration is
a bit easier in the long run because we no longer
have different stubs per platform and at least the
binary part now has no dependencies and only has a
handful of files.

For those new to ConTEXt or those who want to
try it in TEX Live 2023 there is not much difference
between the versions. However, MkIV is now frozen
and new functionality only gets added to LMTX. Of
course we could backport some but with most users
already having moved on, it makes no sense. Just as
we keep MkII around for testing with pdfTEX, we also
keep MkIV alive for testing with LuaTEX. Maybe
in a couple of years MkIV will go the same route
as MkII: ending up in the archives as an optional
installation.

⋄ Hans Hagen

Pragma ADE

1 Occasionally I do experiments with loading the TEX
format code at runtime, but at this moment the difference in
startup time of about one second (assuming files are cached)
is too large and running over networks will be less fun, so the
format file will stay. The time involved in loading MetaPost
can be brought down but for now I leave it as it is.

Preserving the math class of variables

Hans Hagen

If there is one thing that OpenType math has made
clear, it’s that we have lots of alphabets. It is cus-
tomary in a TEX document to key in regular (ASCII)
letters and expect them to become for instance math
italic, bold upright, script or whatever.

One way to do this is to relate a character (di-
rectly or by name) to a specific slot in a font assigned
to a so-called math family, which groups text, script
and scriptscript sizes. Here are a couple ways to do
this, using the Unicode \Umathcode primitive:

\Umathcode‘a = "0 "9 ‘a

\Umathcode‘a = "0 "5 "1D44E

In the first line we map the input character a
(the first ‘a) to the glyph slot of ‘a (the second one;
that is, 97) in family 9. In the second line, the input
a is mapped to the Unicode math italic alphabet’s
a, using family 5. The "0 in both lines is the math
class, in this case specifying an “ordinary” character.

Switching families can be done directly, although
more usually it is wrapped in a command:

$ a + {\fam"9 a} + {\fam"5 a} $

For our next example, we take a colon from fam-
ily zero ("0) and assign it class 6 ("6) which means
that it will get punctuation spacing (like \Colon):

\Umathchardef\foo "6 "0 ‘: % punct

In the following line we do the same but with
class 7, which is “variable”, meaning TEX uses the
current family, as stored in the \fam primitive pa-
rameter.

\Umathchardef\foo "7 "0 ‘: % ord

Doing this, we lose the prior class value (3), so we
end up with ordinary (which normally means no)
spacing. In LuaTEX (>1.15.1) we can now preserve
the class by declaring and using a special “variable”
family instead:

\variablefam"24

\Umathchardef\foo "6 "24 123 % punct

When a character has family \variablefam as-
signed, it will get the current \fam value and the
class can remain 3, as specified.

This is a relatively cheap extension which we
prototyped in LuaMetaTEX and backported to Lua-
TEX. We don’t use this in ConTEXt (just to warn
its users) but it might be handy in other macro
packages.

⋄ Hans Hagen

Pragma ADE

doi.org/10.47397/tb/44-1/tb136hagen-classes

Creating macros in OpTEX

Petr Oľsák

Introduction

OpTEX [1] is an extended plain TEX. We can create
macros as in plain TEX. In particular, this means
that we use TEX primitives like \def, \edef, \ifx,
\expandafter, \csname, \hbox, \vbox, \hrule, and
so on. Likewise, we use basic plain TEX macros like
\newcount, \llap and many others. I wrote a sum-
mary of these TEX and plain TEX tools in [2].

OpTEX keeps the plain TEX philosophy: it does
not create any new syntactic, semantic, or thought
layers over TEX, so the commands mentioned above
are principal ones, basic for creating macros. For
example, OpTEX doesn’t try to provide anything sim-
ilar to \newcommand, nor anything similar to expl3.
The main message is: if you know TEX, you can
make your macros.

On the other hand, OpTEX provides many el-
ementary macros which can make macro program-
ming easier. And there are a few conceptual rec-
ommendations especially to separate different name-
spaces when your macros will be used for public
purposes. This article summarizes these tools and
principles. More detailed information can be found
in the OpTEX manual [3].

Naming conventions and namespaces

When you are creating macros for your use then you
can use arbitrary alphabetical names for newly de-
clared control sequences. Moreover, you can redefine
existing names, if you decide that it is useful and
you never are using them in their original meaning.
For example, you can define \def\box{...} without
any problem, as long as you use it only with your
declared meaning. It doesn’t matter that \box is a
TEX primitive in its original meaning. OpTEX inter-
nally uses copies of all primitive names and internal
macro names, _box in this case.

In other words, when OpTEX starts, all inter-
nal sequences are duplicated (both \box and _box

are present, with the same meaning) and OpTEX
uses only the name _box in its internal macros. A
user can redefine \box if he or she finds it useful, or
doesn’t know that the name is already used. There is
only one requirement: if you re-declare a control se-
quence then it cannot be used in its original meaning
in your document. For example, \def\def{...} is
possible but then you cannot use \def as a primitive
command in your next text.

TUGboat, Volume 44 (2023), No. 1 121

The alphabetical control sequences like \foo,
\SomethingOther, \hbox are considered in “public
namespace” from the OpTEX point of view. On the
other hand, alphabetical control sequences begin-
ning with “_” (like _foo) are reserved in special
namespaces. The character “_” has category code 11
(letter) in OpTEX.* This means that you have full
access to the internal control sequences like _foo

without any category dancing. You don’t need to say
something like \makeatletter ... \makeatother.
You can use these internal sequences in “read-only”
mode without any restrictions. You can redefine
them too, but if you decide to do that then you
hopefully know what you are doing, and what inter-
nal process in OpTEX will be changed.

As mentioned above, “OpTEX’s private name-
space” includes names beginning with “_” followed
by normal letters. There are copies of all TEX prim-
itives and internal OpTEX macros here. An internal
macro of a macro package uses its “package’s private
namespace” _pkg_foo, where “pkg” is a shortcut of
the package. A package writer uses the _namespace
declaration for dealing with such control sequences
more comfortably; see below, the section “writing
public macro packages”.

The single-letter control sequences (like \$, \/,
\,) are declared similarly to plain TEX** and are not
used in internal OpTEX macros. Users can re-declare
them freely without affecting the behavior of OpTEX.

Basic macros for macro programmers

OpTEX provides a few basic macros:

• \sdef{〈cs-name〉} defines a control sequence
whose name is given by the 〈cs-name〉 string.
Thus, \sdef {T\the\mycount}#1:#2{...} is
(roughly speaking) an equivalent to \def\T42

#1:#2{...} if \mycount=42.
• \sxdef{〈cs-name〉} is similar to \sdef, but the
\xdef primitive is used behind the scenes in-
stead of \def.

• \slet{〈cs-name1 〉}{〈cs-name2 〉} is (roughly
speaking) equivalent to \let 〈cs-name1 〉=
〈cs-name2 〉.

* There is a little trick to enable use of this char-
acter with its normal plain TEX meaning in math
mode without changing this category. But it works.

** Not all single letter control sequences from plain
TEX are available. Control sequences for accents like
\", \’ are undefined by default because we suppose
that accented letters are directly written in Unicode
(the current year is 2023). But a conservative user
can enable them with the \oldaccents declaration.

doi.org/10.47397/tb/44-1/tb136olsak-optexmac

Creating macros in OpTEX

• \adef 〈character〉 sets the 〈character〉 to be
active and defines it like \def〈character〉. For
example, \adef *{...} or \adef @#1#2{...}.

• \optdef\macro [〈default〉]〈params〉 is similar
to \def\macro 〈params〉 but the \macro can
be used with an optional argument given like
\macro[〈text〉] before scanning other parame-
ters. If the optional syntax is used then the
token register \opt includes 〈text〉. Otherwise,
it includes 〈default〉.

• \eoldef\macro #1{...} defines \macro with
a single parameter delimited by the end of the
current line. This parameter is #1, and it can
be used in the macro body. Such a \macro can
be used only when lines of text are read, not
inside other macros.

• \cs{〈text〉} is a shortcut for the commonly-used
\csname 〈text〉\endcsname.

• \trycs{〈text〉}{〈else〉} does \cs{〈text〉} only
if \cs is defined, otherwise the 〈else〉 part is
processed.

There is a useful shortcut of the \expandafter
primitive: \ea. Of course, it is safer to use _ea

because control sequences with short names tend to
be re-declared later by a user.

Additional simple macros include:

• \ignoreit{〈text〉} does nothing.
• \useit{〈text〉} does 〈text〉.
• \ignoresecond{〈A〉}{〈B〉} does 〈A〉.
• \usesecond{〈A〉}{〈B〉} does 〈B〉.

You can add a given text to a parameterless
macro:

• \addto\macro{〈text〉} appends 〈text〉 to the
\macro body.

• \aheadto\macro{〈text〉} prepends 〈text〉 to the
\macro body.

You can globally increase a counter by one by
\incr〈counter〉 and decrease it by \decr〈counter〉.
\opwarning{〈message〉} prints a message to the ter-
minal and log file.

Branching macro processing

Of course, you can use all of TEX’s \if* primitives.
OpTEX also provides the following \is* conditionals
with the general syntax being one of:

\isfoo...\iftrue 〈true-text〉\else 〈false-text〉\fi
or

\isfoo...\iffalse 〈false-text〉\else 〈true-text〉\fi

The macro \isfoo calculates the condition and
gobbles the \iftrue or \iffalse. You have to
use this syntax because the \isfoo block can be

122 TUGboat, Volume 44 (2023), No. 1

skipped by another outer \if condition and the pairs
\if . . . \fi must match.

The \isfoo macros are:

• \isempty{〈text〉}\iftrue is true if 〈text〉 is
empty.

• \isequal{〈text-A〉}{〈text-B〉}\iftrue is true
if the string 〈text-A〉 is equal to 〈text-B〉. These
parameters are treated as strings. The category
code of the characters has no effect.

• \ismacro\macro{〈text〉}\iftrue is true if the
body of the parameterless \macro is equal to
given 〈text〉.

• \isdefined{〈cs-name〉}\iftrue is true if the
〈cs-name〉 is defined.

• \isinlist\list{〈text〉}\iftrue is true if the
〈text〉 is included in the \list macro body.

• \isfile{〈file-name〉}\iftrue is true if the file
named 〈file-name〉 exists and is accessible by
TEX for reading.

• \isfont{〈font-name〉}\iftrue is true if the
font named 〈font-name〉 exists. You can use
[〈font-file〉] instead of 〈font-name〉 too.

All these \is-macros are fully expandable. The
following \is-macro has different syntax than the
macros mentioned above, but it is also expandable:

• \isnextchar 〈char〉{〈true-text〉}{〈false-text〉}.
If the next character is equal to 〈char〉 then
〈true-text〉 is processed else 〈false-text〉 is pro-
cessed.

OpTEX provides the \afterfi{〈text〉} macro
which can be used inside \if . . . \else . . . \fi. The
macro closes the \if . . . \fi block and runs 〈text〉
after it is closed. For example

\ifx\a\b ... \afterfi{do something}%

\else ... \afterfi{do something else}%

\fi

This is almost the same as _ea 〈token〉\else or
_ea 〈token〉\fi but the \afterfi parameter can
include more than a single token.

A nested \if . . . \fi block can be inside the
\afterfi parameter and \afterfi macros can be
here too. It means that nested \afterfi macros
work as expected. You don’t need to escape from
a nested \if . . . \fi block by a larger number of
\expandafters.

We must recall that usage of primitive condi-
tionals with \if . . . \fi blocks hides one potential
problem: if you are designing a macro that reads a
TEX macro code token by token then your #1 might
be \if or \else or something similar. Usage of such
#1 inside your \if . . . \fi block in your macro causes
TEX to give an error. What can you do in such a

Petr Oľsák

case? Here’s one example, when looking for a specific
token (~, here):

\ifx ~#1\ea\ignoresecond\else \ea\ignorefirst\fi

{〈true text with #1, we know that #1 is ~〉}
{〈else text with #1〉}%

Branching with more structural macros

OpTEX provides macros \caseof and \xcaseof to
switch among more alternatives. Usage of \caseof:

\caseof 〈token〉
〈token A〉 {〈text A〉}
〈token B〉 {〈text B〉}
〈token C 〉 {〈text C 〉}
...

_finc {〈else text〉}%

If 〈token〉 is 〈token A〉 then only 〈text A〉 is pro-
cessed, if 〈token〉 is 〈token B〉 then only 〈text B〉 is
processed, etc. If 〈token〉 differs from all declared
tokens, then 〈else text〉 is processed.

The \xcaseof macro is similar, but you can
specify an arbitrary primitive \if-test instead of a
token comparison only. The fragment of the code
above with one condition more can be written as

\let\next=〈token〉
\xcaseof

{\ifx\next A} {〈text A〉}
{\ifx\next B} {〈text B〉}
{\ifx\next C} {〈text C 〉}
{\ifnum\mynum=12 } {〈text 12 〉}
...

_finc {〈else text〉}%

A \caseof block is skippable by an outer \if . . . \fi
block but \xcaseof is not.

If there is more than one “true” result of the
conditions given by \xcaseof, then the first condi-
tion wins and the others are skipped.

The _finc separator followed by {〈else text〉}
is obligatory. Of course, you can declare empty 〈else
text〉. The separator must be written as _finc

separator, not \finc. The reason is that the same
syntax is given for _caseof and _xcaseof macros.

The spaces between \caseof or \xcaseof pa-
rameters are ignored but not the last space after
the {〈else text〉}. Note the percent character in the
examples.

\caseof and \xcaseof are fully expandable
macros.

Loops

You can use the classical plain TEX \loop macro.
The one difference from plain’s \loop is that OpTEX

TUGboat, Volume 44 (2023), No. 1 123

allows you to declare \if . . . \else . . . \repeat. But
nothing more. There are still limitations here: \loop
is not expandable and \loop inside \loop is possible
only if the inner \loop is in a group.

OpTEX provides two additional looping macros,
\foreach and \fornum. They are fully expandable
and can be arbitrarily nested without declaring a
group. The body of these macros is processed with-
out opening and closing a group. The syntax of the
\foreach macro is one of:

\foreach 〈text〉\do {〈body〉}
or

\foreach 〈text〉\do 〈parameter-spec〉{〈body〉}

The first variant runs 〈body〉 for each token* from the
〈text〉. The current token (current parameter) can be
processed inside the 〈body〉 as #1. If the \foreach

block is included inside another macro then you have
to use ##1; if it is inside a macro in a macro, or
inside another \foreach or \fornum body, then use
####1, etc.

The second variant with 〈parameter-spec〉 en-
ables scanning of the given 〈text〉 with an arbitrary
parameter specification like with \def. You can de-
clare separators for these parameters. For example,
suppose we are creating a macro \macro which gets
a parameter as a list of pairs in parentheses:

\macro{(a,b); (c,d); (1,42)}

and we want to read this and print these pairs in
reverse order and with a different format: b/a d/c

42/1. We can do this by:

\def\macro#1{%

\foreach #1\do ##1(##2,##3){##3/##2 }%

}

The unused ##1 is there because we want to ignore
an optional “; ” before the opening (.

This \macro is expandable, so you can use it
inside the parameter of the \message primitive, for
example.

The \fornum and \fornumstep macros have the
following syntax:

\fornum 〈from〉..〈to〉 \do {〈body〉}
or

\fornumstep 〈step〉: 〈from〉..〈to〉 \do {〈body〉}

The 〈body〉 is repeated for numbers starting at 〈from〉
and ending at 〈to〉. The \fornum increments the
number by one. The second case uses the given
〈step〉. The parameters 〈from〉, 〈to〉, 〈step〉 can be

* Not always a single token: if the 〈text〉 includes
{...} then all tokens inside these braces are taken at
once, similar to the scanning of a macro parameter.

Creating macros in OpTEX

any arbitrary expression accepted by the \numexpr
primitive. The current number is accessible in 〈body〉
as #1 (or ##1 inside macros, etc.).

You may notice that there is a name conflict: the
same control sequence \foreach is used by the TikZ
package with different syntax and different features.
OpTEX enables loading TikZ by \load[tikz]. If this
is done then the \foreach from TikZ is available only
within the \tikzpicture . . . \endtikzpicture en-
vironment. Outside this environment, the \foreach
from OpTEX is active. Moreover, your macro code
can use the private _foreach from OpTEX if you
want to be sure what you are using. With _foreach,
you have to use the _do separator, instead of \do.

Why is there such a naming conflict? My macros
are several decades old; older than TikZ. I don’t want
to rename this control sequence only due to TikZ
(especially when I personally hardly use TikZ).

Key–value syntax for parameters

Calling \readkv{〈list〉} or \readkv\list reads a
given 〈list〉 or a \list macro in 〈key〉=〈value〉 for-
mat. These pairs are comma-separated, and the
=〈value〉 may be missing. Once the 〈list〉 is read,
you can access the 〈value〉 by expandable macro
\kv{〈key〉}. If you only need to know whether the
〈key〉 was used then \iskv{〈key〉}\iftrue returns
the answer.

You can also declare 〈code〉 to be processed
whenever a particular 〈key〉 is encountered during
\readkv. This is done with \kvx{〈key〉}{〈code〉}.
The 〈code〉 can access the scanned 〈value〉 as #1.
Specifying \nokvx{〈other code〉} declares common
〈other code〉 to process for all 〈keys〉 not declared
by \kvx. The 〈other code〉 can use #1 to access the
〈key〉 and #2 to access the 〈value〉.

The 〈key〉=〈value〉 data are stored in and read
from a dictionary with the name \kvdict, which
is a token register. It is empty by default, i. e. the
default dictionary has an empty name. You can
manage more dictionaries by changing it.

The following example is borrowed from the
OpTEX documentation. We define a macro \myframe
which can scan optional parameters in [...] key–
value format and sets colors and dimensions by these
parameters. When we use, for example

\myframe [rule-width=2pt, frame-color=\Blue]

{text}

then a frame around the given text with rule width
2pt in blue color is created. The macro can be defined
like this:

124 TUGboat, Volume 44 (2023), No. 1

\def\myframedefaults{% defaults:

frame-color=\Black, % color of rules

text-color=\Black, % color of the text

rule-width=0.4pt, % width of rules

margins=2pt, % space between text and rules

}

\optdef\myframe []#1{%

\bgroup

\readkv\myframedefaults \readkv{\the\opt}%

\rulewidth=\kv{rule-width}%

\hhkern=\kv{margins}%

\vvkern=\kv{margins}\relax

\kv{frame-color}%

\frame{\kv{text-color}\strut #1}%

\egroup

}

The \myframe macro from this example runs the
\frame macro provided by OpTEX. Its parameters
\rulewidth, \hhkern and \vvkern are set from val-
ues given in key–value format when \myframe is used.
The \myframedefaults macro clearly specifies the
default values and any user-given values are read
from the optional argument from the \opt tokens
register. The \readkv macro is used twice: first the
default values are read and second, the user-specified
values are read. The last assignment wins.

Expressions

In addition to the well-known \numexpr primitive
from ε-TEX, OpTEX provides the expandable macro
\expr{〈expression〉}, which calls the Lua interpreter
(OpTEX always runs under LuaTEX) and does arith-
metic with decimal numbers. The number of dec-
imal digits of the result is 3 by default; this can
be overridden with the optional argument, as in
\expr[〈digits〉]{〈expression〉}. Examples:

\expr{2*(4-1.3)} % 5.400

\expr{math.sqrt(1/3)} % 0.577

\expr[14]{math.pi} % 3.14159265358979

The OpTEX macro \bp{〈dimen〉} provides an
expandable conversion of 〈dimen〉 to the decimal
number which expresses the given value in bp units.
The 〈dimen〉 can be an arbitrary expression accepted
by the \dimexpr primitive. The result is a decimal
number without a unit. It can be used in, for exam-
ple, arguments to the \pdfliteral literal where we
are using such numbers without units in low-level
PDF commands. For example, \bp{\parindent} re-
turns 19.925 in this document, because \parindent
is set to 20pt here.

You can use the \bp{〈dimen〉} as operands in
the \expr{〈expression〉}. This is very useful when
we are programming graphics using \pdfliteral.

Petr Oľsák

More programming tools

The list of macros provided for macro programmers
cannot be complete in this short article. There are
many macros specialized for particular problems like
math macros, color macros, font macros, reference
macros, citation–bib macros, etc. See the OpTEX
documentation [3] for more information. There are
plenty of macro programming tips on the OpTEX
tricks page [4] too. Here, I will demonstrate only
two more cases of useful macros.

First case: \replstring\buff{〈from〉}{〈to〉}
replaces all occurrences of 〈from〉 text by 〈to〉 text
in the “buffer” macro \buff. For example:

\def\buff{A text is here.}

\replstring\buff{ }{{ }}

\ea\foreach\buff \do{[#1]}

It returns: [A][][t][e][x][t][]%

[i][s][][h][e][r][e][.]

We have used \replstring in this example to “pro-
tect” spaces. Each space is replaced by { }. So,
the next macro \foreach (which reads token by to-
ken via an internal macro taking an undelimited
parameter #1) can read spaces too.

Second case: We can set the current type-
setting position anywhere by \setpos[〈label〉] and
then read this position elsewhere with the (expand-
able) commands \posx[〈label〉], \posy[〈label〉] and
\pospg[〈label〉]. The first two commands return
the x, y coordinates of the absolute position of the
\setpos point on the page (measured from the left-
bottom corner). The values are given in the format
〈number〉sp. You can convert to bp units (for exam-
ple) with \bp{\posx[〈label〉]} or read into a variable
with \mydimen=\posx[〈label〉]\relax. The last one
(\pospg) returns the global page number of the doc-
ument where the \setpos point was set. The data
is available after a second run of TEX because an
external .ref file is used for this purpose.

Writing public macro packages

When you are writing macros for your usage, there
are no rules for naming the control sequences. You
can write any macro code and test it. If you plan
to release such a macro code as a public package,
however, then I recommend the following naming
conventions described here. You can look at the
code of the math.opm package [5] for inspirations and
examples of how to create packages for OpTEX. This
package deals with options, math macros, and there
is a special section about writing public packages
too.

TUGboat, Volume 44 (2023), No. 1 125

First of all, you may set a package shortcut. I’ll
use the shortcut pkg in the following examples. If
you select a shortcut used by another package, then
users are unable to load both these packages at one
time: OpTEX reports an error. So, it is a good idea
to see what public packages for OpTEX are available
and thus choose a shortcut that isn’t already being
used.

First, two code lines (after optional comments)
in the package file (which should be named pkg.opm

for our example) should be

_def_pkg_version {0.07, 2023-01-14}

_codedecl \supermacro {Title <_pkg_version>}

The first argument of the _codedecl macro (in
this example, \supermacro) is a macro name that
_codedecl checks for being already defined; if it is,
\endinput is executed, so that the package is not
read twice. The idea is that \supermacro is a macro
never used before and will be defined in this package.
The second argument of the _codedecl macro is
printed to the log file. The Title should be a short
title for the package.

The macro code that follows has to be sur-
rounded by

_namespace{〈package-shortcut〉}
...

_endnamespace

I. e. _namespace{pkg} . . . _endnamespace in our
example. Also, the _endcode macro has to be
called just after _endnamespace. It is similar to
\endinput, but has more features (described below).

Suppose that you have tested your macros with
names in the public namespace. Now, rename all
used control sequences by the following rules:

• If it is a TEX primitive or an OpTEX macro, add
the “_” prefix: use _foo instead of \foo.

• If it is your macro, defined and used in the
package, add the “.” prefix.

Each \.foo is transformed to _pkg_foo automat-
ically inside the _namespace . . . _endnamespace

scope. A macro programmer is thus not forced to
write and read his package shortcut again and again
for essentially all internal control sequences in the
macro code.

If you decide that a macro is intended for users
in the public namespace, export it from the package
namespace to the public namespace using:
_nspublic〈list of control sequences〉;
In our example, we could do:

_def \.supermacro #1#2#3{...}

_nspublic \supermacro ;

Creating macros in OpTEX

The _pkg_supermacro and \supermacro control
sequences are now defined, with the same meaning.

The _nspublic command checks if the given
macro is defined already in the public namespace.
If so, then it is redefined, but a warning about it is
shown on the terminal.

Maybe there is no reason to declare both the in-
ternal copy of a control sequence \.foo and the pub-
lic copy \foo. You can declare \foo directly, as in
_mathchardef\foo, _newcount\foo, _def\foo,
etc. But it is highly recommended to prefix such a
declaration by _newpublic. For example:

_newpublic _newcount \foo

_newpublic _mathchardef \bar = "123456

This prefix does the same check as _nspublic: if
a declared control sequence is already defined, it is
redefined but with a warning printed.

You can add documentation text to individual
macros in a _doc . . . _cod block. These parts are
skipped when your macros are read. For example:

_doc

The \‘\supermacro‘ reads parameters and does

a supertrick A and then does a supertrick B.

_cod

_def \.supermacro #1#3#3{...A...B.}

_nspublic \supermacro ;

It is recommended to append more extensive docu-
mentation of the package after the _endcode com-
mand. This text is not read, because _endcode

executes \endinput. This way, you have code and
documentation together in a single file, making it
much more convenient to manage the package.

You can append a special block _doc . . . _cod

to the documentation after _endcode, to include
commands used by the \docgen command from
OpTEX. Typical usage of this final _doc . . . _cod
scope could be:

_doc

\load [doc] % provides \printdoc, etc.

\tit Package which enables super-\TeX/ing

\hfill Version: _pkg_version \par

\centerline{\it Au. Thor\/\fnotemark1, 2023}

\fnotetext{\url{https://au.thor.or}}

\notoc\nonum\sec Table of contents

\maketoc

\printdoctail pkg.opm % prints the doc.

% written after _endcode

\sec Implementation

\printdoc pkg.opm % prints doc. of code

126 TUGboat, Volume 44 (2023), No. 1

% before _endcode

\nonum\sec Index

\begmulti 3

\tt \makeindex % prints index, 3 columns

\endmulti

\bye

_cod

The macros provided by \load[doc] are described
in the OpTEX documentation [3], section 2.40.

Now, you have everything you need in a single
file: the code itself, technical short documentation,
detailed documentation, and commands to generate
a whole document including title, table of contents,
index, etc. The macro code is ready to be used
directly without docstrip pre-processing.

A user can load your package with \load[pkg]

or can generate a complete documentation by the
command line:

optex -jobname pkg \\docgen pkg

You can try to use this command for the real existing
package:

optex -jobname math \\docgen math

Run this command three times because TEX needs to
generate the correct table of contents and the index.

If you write a package for OpTEX, please let me
know about it. I’ll add a notice about it into [3],
section 1.7.3.

References

1. OpTEX. petr.olsak.net/optex/

2. P. Oľsák: TEX in a Nutshell. 2020, 30 pp.
https://petr.olsak.net/ftp/olsak/optex/

tex-nutshell.pdf

3. OpTEX manual.
https://petr.olsak.net/ftp/olsak/optex/

optex-doc.pdf

4. OpTEX tricks.
https://petr.olsak.net/optex/

optex-tricks.html

5. OpTEX macros for doing math more
comfortably.
https://petr.olsak.net/ftp/olsak/optex/

math-doc.pdf

� Petr Oľsák

Czech Technical University

in Prague

https://petr.olsak.net

Petr Oľsák

Reflections on \globaldefs in plain TEX

Udo Wermuth

Abstract

This article discusses a single integer parameter of
the program TEX: It looks at the history of the in-
vention of \globaldefs, describes the behavior of
this internal parameter and tries to list useful ap-
plications. It also warns about constructions that
might lead to faulty results. Moreover, it explains
why one must do a careful verification of someone
else’s code if that code should be reused under a
setting of \globaldefs.

1 Introduction

The core design model of TEX, the box/glue/penalty
model, hasn’t changed since its creation in April
1977 [9, p. 142]. And one of the model’s realizations
hasn’t changed much either: After the debugging in
March 1978, the code of the line-breaking algorithm
was only once overhauled (June 1980) [9, ch. 3] and
received in November 1982 an important fix in one
of its computations [7, pp. 274–276]. But neverthe-
less the program TEX mainly grew because of the
addition of new internal parameters and primitives,
i.e., commands that are implemented in the program
and aren’t defined as macros. Luckily, we are able to
follow how TEX evolved as TEX’s author, Donald E.
Knuth, decided to keep a detailed log file about
all changes that he applied since March 10, 1978;
see [5]. This log contains the descriptions of bug
fixes as well as enhancements like generalizations.
The above mentioned changes to the line-breaking
algorithm are the entries #461 and #554.

Knuth stated that he wanted to create a type-
setting language but early users pushed him to add
more and more programming features [9, p. 648].
Obviously, his intention was to keep the language
TEX concentrated on its application domain: type-
setting texts.

A new parameter. One generalization is listed in
the aforementioned log as entry #623, dated Jan-
uary 20, 1983: “Add a new \globaldefs feature.”
Knuth describes that a generalization often occurred
when people presented him with new applications [7,
p. 281]: “When I couldn’t handle the new problem
nicely with the existing TEX, I usually would end up
changing the system.” From other notes in the log
file one sees that he was working on The TEXbook

chapters 16 and 17 and on Appendix G; these are
the chapters about typesetting math. The param-
eter \globaldefs has neither a direct influence on

TUGboat, Volume 44 (2023), No. 1 127

the typesetting of mathematics nor is it used in the
text of The TEXbook. Moreover, the entry in the log
doesn’t carry a name of another person as is done
with other entries (see, for example, entry #631). It
seems that no one individual suggested the creation
of this parameter.

I guess that the idea for this generalization was
born during the work on entry #621, which is la-
beled “a cleanup for consistency or clarity”. In [7,
p. 245] this type of enhancement is described as:
“Here I changed the rules of the language to make
things easier to remember and/or more logical.” The
cleanup of January 19 touches TEX’s procedure pre-
fixed command [4, §1211] which got, with #623, the
code for the parameter \globaldefs in §1214.

Thus, I surmise the question “Why was the pa-
rameter \globaldefs added to TEX?” should re-
ceive an answer like “because this generalization was
an ad hoc idea about a programming feature that
could easily be implemented” instead of “because a
detailed study showed that this programming fea-
ture lets TEX gain a lot of capabilities to solve cer-
tain problems more nicely.”

Please note, I use “ad hoc” without implying
that the implementation was spontaneous or un-
planned. Knuth defined the parameter \globaldefs
one day after #621. Thus he had time to think about
it and to design its implementation.

The creation of \globaldefs, as documented
in entry #623 of [5], didn’t implement the function-
ality that this feature has today. On June 7, 1983,
Knuth states in entry #710 that he made a cleanup
for the rules of \globaldefs. One month later he
had to apply a fix to this feature; see entry #748.
It’s a fix of type “forgotten function” which is de-
scribed as [7, p. 245]: “Here I didn’t remember to
do everything I had intended, when I actually got
around to writing a particular part of the code.”
Section 2 explains the impact of these two changes.

Not much coverage in the literature. The TEX-

book [3] mentions \globaldefs in only three places.
No exercise applies this parameter nor is it used
in the format file plain.tex. A brief description
appears between two blocks with syntax rules on
page 275. Pages 206 and 215 indirectly explain fix
#710; the impact of #748 is mentioned on page 238.

Well, The TEXbook cannot explain everything
in detail but other books about TEX might fill the
gap. Unfortunately, all books that I own either don’t
mention \globaldefs or they just repeat what is
written in The TEXbook on page 275. At last I
found on CTAN one that uses it: [1, p. 306] applied
\globaldefs mainly to save keystrokes.

doi.org/10.47397/tb/44-1/tb136wermuth-globaldefs

Reflections on \globaldefs in plain TEX

So what are the use cases of \globaldefs? Un-
der which conditions does the saving of keystrokes
create a real benefit? And is it only used to save
keystrokes or are there other useful applications?

Another place to search for use cases is the
archive of TUGboat [10]. I found only one article
by another author; the text describes how to com-
bine TEX-formatted labels with PostScript files; see
TUGboat 13:3, page 332. Nowadays it is difficult to
say why the parameter is used as the code to which
\globaldefs is applied isn’t completely known. But
it’s very likely that its use merely avoids the input of
a handful of \globals. Again, \globaldefs is used
to save keystrokes.

One can find \globaldefs in code on CTAN

too. As an example, look at twimac.tex by Knuth
[6]. It’s a macro package to support the program
TWILL [8] and contains \globaldefs four times. He
used this program in 1985 to create the extremely
useful mini-indexes for TEX : The Program [4].

Contents. The rest of this section briefly reviews
the concepts known as “local” and “global”. Sec-
tion 2 describes what \globaldefs does including
all special cases. Section 3 looks at the applications
of a non-default setting for \globaldefs; it lists four
use cases. Another non-default setting is analyzed in
section 4. At its end I formulate a fifth use case with
a recommendation for the use of \globaldefs. Sec-
tion 5 discusses what can happen if \globaldefs
with different settings are nested. At the end of this
section I extend the recommendation of section 4.
Section 6 briefly examines technical aspects inside
of TEX, especially a possibility to save memory. The
article ends with some personal remarks in section 7.

Local and global. It is well known that TEX obeys
with assignments and macro definitions the group
level in which it executes the command.

Example 1: Local assignment restored

\dimen0=10.01pt

{\dimen0=20.02pt A: \the\dimen0 }% a group

\quad B: \the\dimen0

TEX output

A: 20.02pt B: 10.01pt

(The rectangle in the gutter—here at the end of
the part “TEX output”—marks the end of the ex-
ample.) TEX prints 20.02pt and then 10.01pt be-
cause the second assignment occurs inside a group.
The new value is only locally known, i.e., only inside
this group level. One must apply the prefix \global

to change \dimen0 inside the group with a global ef-
fect, i.e., to keep the new value after the ‘}’. Then
the code prints 20.02pt twice.

128 TUGboat, Volume 44 (2023), No. 1

Example 2: Global assignment kept

\dimen0=10.01pt

{\global\dimen0=20.02pt A: \the\dimen0 }%

\quad B: \the\dimen0

TEX output

A: 20.02pt B: 20.02pt

But, let’s note that not all statements that ap-
pear as if they were an assignment are such to TEX.
For example, \openout associates a stream number
to a file name and accepts an equal sign in its syn-
tax but isn’t an assignment. It cannot be prefixed
by \global. Well, it doesn’t need to be prefixed as
the association is by default global.

There are a few commands and quantities which
TEX treats with global effect. For example, changing
a box dimension, i.e., an assignment to \wd, \ht, or
\dp of a box, is always global in the sense that the
box dimension is changed for this box permanently.
Only if the box number is restored at the end of a
group the restored box has its former dimensions.

Some primitives that always act globally are
simple commands without the form of an assign-
ment. For example, a switch of the interaction mode
from the default \errorstopmode to \batchmode is
a global change. See page 277 of The TEXbook [3]
for the syntactic rule 〈global assignment〉 that col-
lects all the statements that act globally. One can
use the prefix \global in front of \errorstopmode
or \batchmode but it doesn’t make a difference.

2 What does the parameter do?

The value of the integer parameter is simply changed
by an assignment of the form \globaldefs = n, in
which n is any valid TEX integer. But the param-
eter \globaldefs acts only in three different ways
because TEX only checks if n > 0, n = 0, or n < 0.
• With n > 0 TEX starts to execute commands

listed under 〈simple assignment〉 (see [3, p. 276]) and
〈macro assignment〉 (see p. 275)— in short: all as-
signments, arithmetic commands, and all control se-
quence definitions including \font and \read—as if
the prefix \global was specified. Thus, TEX doesn’t
care if \global occurs in the code or not. It operates
on these statements as if it saw the prefix.

Note that TEX must execute the code to assign
the prefix; for example, a \def inside a \def doesn’t
become global during the definition. Similarly, the
\relax equivalent of a \csname/\endcsname con-
struct in a test or after \expandafter\show, etc.,
which is otherwise an undefined control sequence,
does not become a global \relax as it isn’t executed.
• With n = 0 \globaldefs is neutral or switched

off; this is the default value of the TEX program.

Udo Wermuth

Thus, a statement that’s influenced by \global (ex-
cept those that always act globally) has to receive
the prefix \global to change a value not only inside
the current group level; see example 2.
• With n < 0 \globaldefs switches the prefix

\global off: \global has no impact on the following
command and operates like \relax. But as a prefix
it must still be used only with 〈simple assignment〉
and 〈macro assignment〉. For example, you cannot
write \global\begingroup as \begingroup doesn’t
accept \global and therefore TEX raises an error.

The primitives \gdef and \xdef behave like
\def and \edef, respectively; this was the cleanup
in #710 of [5]. Thus, we can treat \gdef and \xdef

as equivalent to \global\def and \global\edef.
The always-global commands listed as 〈global

assignment〉 in [3] keep their global effect.

Get \globaldefs’ value. As an internal param-
eter \globaldefs’ value can be shown, printed, or
assigned to an integer register or parameter. That
is, \showthe\globaldefs shows the current value
on the terminal; \number\globaldefs typesets its
value (use it in math mode as the value can be
negative), and, for example, \count9=\globaldefs
stores its value in the count register number 9.

A special case. When TEX scans the tokens in the
preamble of an \halign or \valign it collects them
for the templates of the rows or columns, respec-
tively. TEX processes a few tokens during this scan:
(1) the alignment character, ‘&’; (2) the expand to-
ken, \span; (3) the parameter character, ‘#’; (4) the
end-of-preamble tokens \cr and \crcr; and (5) the
\tabskip token with its following glue specification.
Everything else belongs to the templates.

This means that \global cannot be applied to
assignments to \tabskip in the preamble as TEX
puts this \global into the template. It also means
that the \tabskip cannot be placed in a group to
make the assignment local: Even in such a case the
new \tabskip value in the preamble is extracted
and used for the space inserted between the follow-
ing columns or rows. But at the end of the alignment
TEX forgets all non-global changes to \tabskip. The
last change to \tabskip in the preamble never de-
termines its value after the alignment except when
the alignment starts under \globaldefs > 0. Then
all assignments in the alignment are global; with fix
#748 of [5], including the ones to \tabskip in the
preamble, as probably anticipated by the users.

3 Use cases for \globaldefs=1

Two use cases for \globaldefs=1 were already men-
tioned. In section 1 we learned that it can be used

TUGboat, Volume 44 (2023), No. 1 129

to avoid the repetitive input of \global. Section 2,
subsection “A special case”, showed that it’s re-
quired to make a \tabskip in a preamble global.

UC1: global \tabskip. As explained in section 2
a \tabskip assignment in the preamble cannot use
\global. Inside the table entries the value can be
globally modified: use \global\tabskip followed by
a glue specification. It has no effect on the rôle of
\tabskip in the preamble: The white space between
columns or rows of the alignment isn’t changed.

To be honest, I hesitate to call this a use case
for \globaldefs=1 as it is quite extreme to apply
this setting to have global assignments to \tabskip

in the preamble. Without \globaldefs=1 just in-
sert \noalign{\global\tabskip=\tabskip} after
the preamble’s \cr to make the preamble’s last value
of \tabskip global; no other statement is affected.

UC2: saving keystrokes. Sure, a \globaldefs=1

followed by at least four statements that should oth-
erwise be prefixed by \global and a \globaldefs=0
can save at least 2 keystrokes as the prefixes aren’t
required in the input: 2 × 13 keystrokes vs. 4 × 7.
Let’s write it explicitly although I use just two as-
signments not four; you see later why.

Example 3: Saving keystrokes with \globaldefs=1

\globaldefs=1 \count9=123 \dimen9=123.45pt

\globaldefs=0

One should observe that the second assignment to
\globaldefs is a global assignment too. But this as-
signment can be avoided as all statements are global
except the \globaldefs=1; so, inside a group, TEX
restores only the value of \globaldefs. Now one
saves a keystroke if there are just two assignments.

Example 3 continued: Simpler input

{\globaldefs=1 \count9=123 \dimen9=123.45pt }

One shouldn’t do this without need. (If you
have to create the group you don’t save keystrokes.)
Check [1] and the first occurrence in [6] and you
see that the authors are forced to open a group be-
cause of a catcode change; it might be hidden in an
\obeylines. The setting \globaldefs=1 allows to
enter the code that belongs to the outer level of the
macro package as if it were not in a group. Often
in such a group, only \def is used; thus, one saves
only a ‘g’ and not a ‘\global’ in the statements.

But keystroke savings aren’t the only point. If
the catcode change isn’t needed anymore one can
easily remove the group and the \globaldefs=1.
Then the code integrates well with the rest. (See,
for example, file ctwimac.tex in the directory of
twimac.tex; the first \globaldefs=1 of the latter
isn’t used in the former anymore.)

Reflections on \globaldefs in plain TEX

The application of \globaldefs=1 in front of a
loop is similar. Here is an example using the prefix
\global (such a case appears in [6]):

Example 4: Several \global in a loop

\newcount\nn \newcount\maxnn \maxnn=200

\global\nn=100

\loop \global\count\nn=0 \global\dimen\nn=0pt

\global\skip\nn=0pt \global\muskip\nn=0mu

\global\toks\nn={}%

\ifnum\nn<\maxnn \global\advance\nn by 1 \repeat

To limit the scope of \globaldefs=1 a group
encloses the whole \loop/\repeat construction.

Example 4 continued: Loop with \globaldefs=1

\newcount\nn \newcount\maxnn \maxnn=200

{\globaldefs=1 \nn=100

\loop \count\nn=0 \dimen\nn=0pt \skip\nn=0pt

\muskip\nn=0mu \toks\nn={}%

\ifnum\nn<\maxnn \advance\nn by 1 \repeat}

One advantage is that the material between \loop

and \repeat is more compact and might be easier
comprehended. A side effect in this scenario is that
the \body in the macro \loop becomes global too.

UC3: global expand. Here \globaldefs=1 is ap-
plied to a token register, a macro, or a TEX file that
contains definitions and assignments. When TEX ex-
pands the register with \the, executes the macro, or
inputs the file all statements receive \global. Such
a construction can be used, for example, inside the
output routine to make the data in the register or
the macro available to the outer level. (For a bet-
ter but more advanced example, read “Processing
by TEX” in [8, p. 7] together with [6], if you can un-
derstand high level descriptions of output routines.)

Example 5: Apply \global to a collection

Here is a very simple example of how statements that
were collected in a token register are executed inside a
group with \globaldefs=1. Assignments to \hsize and
\vsize via \setsize and macros to get their product
are placed into the register. I omit all error checking.

TEX input

{\catcode‘_=11 \newcount\area_sqmm

\newtoks\area_cmds % the collection

\global\area_cmds={\area_sqmm=0 }% initialize

\gdef\set_area(#1){% #1: dimen w/o unit mm

\ifnum\area_sqmm=0 \area_sqmm=#1\relax

\else \multiply\area_sqmm by #1\fi}

\gdef\setsize#1#2mm{% #1: h/v; #2: dimen w/o mm

\area_cmds=\expandafter{\the\area_cmds

\csname#1size\endcsname=#2mm\set_area(#2)}}

\gdef\prtarea{\message{Area: \the\area_sqmm

sqmm.}\area_cmds={\area_sqmm=0 }}% reset

}\setsize h176mm\setsize v250mm% fill collection

{\catcode‘_=11 \globaldefs=1 \the\area_cmds}

\prtarea % shows 176mmx250mm = 44000sqmm

130 TUGboat, Volume 44 (2023), No. 1

Without the \globaldefs the \hsize and \vsize

settings aren’t global and \area_sqmm would be zero
in the message. We can add \global to the defini-
tions, but then the collection cannot be executed
without \globaldefs=-1 for a local application.

UC4: keep code and output in sync. Journals
like TUGboat publish TEX input and also its typeset
output. To stay in sync TUGboat suggests to use
the following construction; here demonstrated with
additional code from me. The first example of this
article was more or less coded as

\verbatim[\inputfromfile{example1.tex}]

\endverbatim\exout \input example1.tex \exend

where the macro \exout outputs “TEX output” in
boldface and opens a group that ends in \exend.
The first line reads example1.tex and typesets its
contents verbatim. Line 2 executes the code in this
file inside the \exout/\exend group. In this group
and in front of the \input a register value from a
previous example might be entered or a parameter
implied from the current topic like \parfillskip

is set. Example 1 doesn’t need anything of this kind.
Here is an example in which the environment

of \exout might start with \globaldefs=1. In this
example a file is opened for writing. Just one line
is written to this file and this line contains a macro
that was defined inside the example. TEX executes
the \write delayed, i.e., the file gets the line with
the next \shipout; see [3, pp. 226–227].

Example 6: Code and its output

First, we look at the contents of the file example6.tex.

TEX input

\toks9={Hello world!}\openout5=ex6outfile.tex

\def\textforex6{\number\pageno: \the\toks9 }%

\write5{\textforex6}\closeout5

This code cannot be executed inside a group. The
\write waits for the next page break and when it
occurs TEX expands the token list of this \write

and stumbles over \textforex because outside of
the group it’s undefined. One could add \immediate

to \openout, \write, and \closeout; or use \gdef
for \textforex and \global in front of the \toks

assignment. This destroys the example if the author
wants to keep the code as simple as possible.

We don’t want to change anything in the input
file example6.tex that contains the code of the ex-
ample. And we want to keep the code of \exout (and
\exend). Thus we must make the assignment and
the definition global, i.e., we must use \globaldefs.

Example 6 continued: Code used for execution

\exout\globaldefs=1 \input example6.tex \exend

We are only allowed to do this as we know the code
in the file. It doesn’t work always; see example 11.

Udo Wermuth

4 Use cases for \globaldefs=-1

Of course, the use of \globaldefs=-1 can be eas-
ily replaced if the code to which it should be ap-
plied doesn’t contain other settings of \globaldefs.
As \relax passes prefixes on to the next token we
can code \let\global=\relax and the code \long
\global\def still generates a \long\def.

But there’s a difference between an deactivated
\global by \globaldefs=-1 and the above \let.
If you scan tokens one by one and compare them
against \relax then the new \global executes a
wrong branch of the test. The solution consists of
a replacement text that uniquely identifies \global
as well as \gdef and \xdef.

Example 7: Avoiding \globaldefs=-1

\let\CPglobal=\global \let\CPgdef=\gdef

\let\CPxdef=\xdef

% use for them unique replacement texts

\def\global{\relax\relax}\def\gdef{\relax\def}%

\def\xdef{\relax\edef}%

... % code with inactive \global, \gdef, \xdef

% restore \global, \gdef, \xdef with the copies

\let\global=\CPglobal \let\gdef=\CPgdef

\let\xdef=\CPxdef

Use cases from section 3. Obviously, one cannot
save keystrokes with the setting \globaldefs=-1 as
only existing \global tokens are affected. So there
are no use cases that correspond to UC1 or UC2.
UC3 can be turned into a “local expand” variant
if the collection contains the prefix \global. In the
scenario of UC4 \globaldefs=-1 can only be used if
the code doesn’t contain necessary \global. Thus,
it helps in some sense only for badly written code.

Example 8: Case where \global is necessary

Is testscript.sh’s first line a so-called shebang line,
signaling that it is a Bourne shell script?

TEX input

\def\uncatcodespecials{% see The TeXbook, p. 380

\def\do##1{\catcode‘##1=12 }\dospecials}

\edef\shebangline{\string#!/bin/sh}%Bourne shell

% the code with \read in a group

\newread\infile \openin\infile=testscript.sh

\def\readin{{\uncatcodespecials \endlinechar=-1

\global\read\infile to \lineofinfile}}\readin

\ifx\lineofinfile\shebangline

\message{Bourne shell}\fi \closein\infile

If the \global\read isn’t global because of an active
\globaldefs=-1 then the \ifx doesn’t produce a
reliable result as \lineofinfile is either undefined
or contains data from another assignment.

Reuse unknown code. One might think a good
use case for the parameter \globaldefs with a neg-
ative number is to limit the effect of a file that con-

TUGboat, Volume 44 (2023), No. 1 131

tains macros. But of course, \globaldefs=-1 must
not eliminate a necessary \global. One must be
careful if it should be applied to reuse code.

For example, assume that calmacros.tex con-
tains macros for calendrical computations like the
Day of Repentance and Prayer for a given year. (It’s
celebrated eleven days before the first Sunday of Ad-
vent, so its month is November.) Another file con-
sists of macros that belong to the same domain; it’s
very likely that the files share, for example, regis-
ter names. Assume that in the second file the Day
of Repentance and Prayer is required and that the
package calmacros.tex provides a macro with the
name \CalcRepPrayDay to compute that day.

Example 9: Avoiding global changes with \input

\newcount\repprayday {\globaldefs=-1

\input calmacros \repprayday=\CalcRepPrayDay2023

\globaldefs=0 \global\repprayday=\repprayday}

The main file has then access to \repprayday but all
macro names, register names etc. of calmacros.tex
are gone when the group ends. Nevertheless, exam-
ple 8 warns us: the result might be wrong!

Even if the code doesn’t throw an error one
cannot trust the result. In calmacros.tex compu-
tations might occur inside a group and the final re-
sult made available to the outside only through an
assignment prefixed by \global. This doesn’t hap-
pen if \globaldefs=-1. Thus, the result value is
restored when the group ends; the result becomes a
“random” value.

One must verify that a file with macros that
one wants to reuse in a group with \globaldefs=-1

contains at most unnecessary \globals in the code
paths that are called.

Another more concrete example from this text:

Example 10: Which number is output after “A:”?

\globaldefs=-1 {\input example3 }%

A: $\number\globaldefs$

The result is either 0 or −1; it depends if the black
box example3.tex refers to the version with the two
\globaldefs or to the one with the group. More-
over, we also cannot answer the question if we use
\globaldefs=1 instead of \globaldefs=-1.

What has been found out is known [2] but it
should become common knowledge.

UC5: reuse known code. To eliminate the effect
of \global one might execute code inside a group
with the setting \globaldefs=-1. But one must ver-
ify that it doesn’t deactivate a necessary \global.

In general follow this recommendation: Never
apply \globaldefs 6= 0 to code that you don’t com-
pletely know or fully understand in all its details
because you might get a random result.

Reflections on \globaldefs in plain TEX

5 Nested \globaldefs

A programmer might ask if code can be written in
such a way that it protects itself against bad results
if someone reuses this code inside a group with a
non-zero \globaldefs. Of course, there is a simple
solution: Start your code with \globaldefs=0. This
cancels a \globaldefs=-1 and with \globaldefs=1

only the \globaldefs=0 becomes global.
Let’s assume that we want to execute all state-

ments under the setting of \globaldefs except if
this would cause an error. Then the protection with
\globaldefs=0 is a valid solution for \globaldefs=
-1 if the reused code has only necessary \globals.
For \globaldefs=1 it isn’t a solution.

Protection against \globaldefs=1. Let’s state
the goal precisely. A programmer wants to protect
code so that it still executes correctly if someone
takes this code and places it inside a group starting
with {\globaldefs=1. To simplify the discussion
}\globaldefs=0 \global\globaldefs=0 is used at
the end of the group; thus a change of \globaldefs’
value inside the group isn’t important. The solu-
tion to start the code with \globaldefs=0 is not
considered to be valid. Only the code that must be

protected because otherwise the original code does
something wrong should be protected. Everything
else should be executed using \globaldefs=1.

I admit it sounds like an unrealistic scenario.
But we might learn from it.

Example 11: Try to protect against \globaldefs=1

The following code should be protected to allow execu-
tion in a group that sets \globaldefs=1. It’s artificial
code to keep the size of the often repeated example small.

TEX input

\dimen9=1000pt \count9=0

{{\catcode‘\e=3 ex^2e}%

\global\advance\count9 by 2 }%

\divide\dimen9 by\count9 \count8=\count9

It’s clear why this code cannot be executed under a
\globaldefs=1 without throwing an error. The cat-
code change becomes globally active and thus an un-
defined control sequence \advanc is reported later.

A setting \globaldefs=-1 or 0 must be placed
in front of the catcode change to keep it local in its
group. Let’s apply −1.

Example 11 continued: A failed attempt

\dimen9=1000pt \count9=0

{{\globaldefs=-1 \catcode‘\e=3 ex^2e}%

\global\advance\count9 by 2 }%

\divide\dimen9 by\count9 \count8=\count9

This code throws an error too. As TEX executes
the new assignment globally, \globaldefs=-1 sur-
vives the end of the inner group and deactivates the

132 TUGboat, Volume 44 (2023), No. 1

\global in front of the \advance. Thus, TEX re-
stores \count9 at the next }, finds a division by 0
in the last line, and reports “Arithmetic overflow”.

Thus, the code for the protection needs an im-
provement. The \global\advance must stay global.
We can put a \globaldefs=0 in front of that state-
ment. But as another group ends, the next line isn’t
globally executed. Should we use \globaldefs=0 in-
stead of \globaldefs=-1 in the inner group?

Example 11 continued: A successful attempt?

\dimen9=1000pt \count9=0

{{\globaldefs=0 \catcode‘\e=3 ex^2e}%

\global\advance\count9 by 2 }%

\divide\dimen9 by\count9 \count8=\count9

This code runs without generating an error and it
protects the code. But the last statements are still
protected although that shouldn’t happen. In es-
sence it’s more or less equivalent to the initial solu-
tion which was rejected above because of this effect.

We must find another solution: Let’s keep the
\globaldefs=-1 in the inner group to signal that
the catcode change must be local; but its influence
must be stopped when this group ends. As the code
must work with initial values 0 or 1 for \globaldefs
its value should be reset after the other group.

Example 11 continued: The final attempt

\dimen9=1000pt \count9=0

\edef\SAVEglobaldefs{\number\globaldefs}%

{{\globaldefs=-1 \catcode‘\e=3 ex^2e}%

\globaldefs=0 \global\advance\count9 by 2 }%

\globaldefs=\SAVEglobaldefs

\divide\dimen9 by\count9 \count8=\count9

The current value is captured in a macro and then
restored at the correct place. This does what was
requested above. But, in this version, two of the
original four lines contain additional code and the
other two lines are now accompanied by new lines.
The amount of code is nearly doubled.

Extension of the recommendation. I don’t sug-
gest that programmers protect their code against an
execution with a non-zero setting of \globaldefs;
at least not with a \globaldefs=0 at the start of
the file. But we should extend the recommendation
stated in UC5: You are responsible to protect the
code that you reuse from generating erroneous out-
put because of your setting of \globaldefs. And
you are responsible to ensure that \globaldefs’
value outside of the group that you opened is re-
stored if that is required.

6 Technical advantages

Up to now we looked at the parameter \globaldefs
to see what advantages its application has in the

Udo Wermuth

input of a user. But, of course, there are techni-
cal payoffs too. The first is obvious: An input file
needs fewer bytes, i.e., it needs less storage space and
might load faster, if at least two \global are saved
for each \globaldefs=1. Is there anything more
about the introduction of \globaldefs? Can it save
memory? Knuth worked hard in the late 1970s and
early 1980s to get TEX into the then-available mem-
ory space of the then-available computers.

Let’s do a little experiment with the two ver-
sions of example 4: Execute the two code snippets
with \tracingstats=1 in front of the code and with
an \end after it. Next, compare the statistics at the
end of the log files. The \globaldefs variant saves
twelve memory words on my system.

The effect seen in example 4 doesn’t occur al-
ways. For other scenarios the number of memory
words doesn’t change. For example, create two files.
Once “\tracingstats=1 \global\count3=4 \end”
and the second replaces the global assignment by
“\globaldefs=1 \count3=4”. Except for the value
of buffer size the statistics are identical. The re-
sult is the same if \count is replaced by \dimen,
\skip, \muskip, or \toks with appropriate right
hand sides. Even a block with all five register types
has the same number of memory words.

The opportunities to apply \globaldefs are
quite rare. Thus, we cannot hope that it helps to
save any significant amount of memory in a project.

7 Personal remarks

I confess that I haven’t used \globaldefs often in
my TEX projects. I used it when I was forced to
do so in an unusual macro project (TUGboat 43:1,
p. 63) to protect the code from the problems of sec-
tion 5. (I suggest on p. 72 to use \let\globaldefs=
\undefined as the protection cannot be perfect.)
There are other TEX primitives that I seldom use,
for example, \valign; but I thought I had used this
primitive more often. It is part of the typographic
language that Knuth wants to put into the fore-
ground. I assumed Knuth had a good reason to add
\globaldefs to the program TEX. At least its addi-
tion makes the language more complicated to learn.

I don’t deny that UC2 is useful: Saving key-
strokes is a nice feature and example 4 looks much
better with \globaldefs=1. But its use could be
easily avoided here as well as in UC3. Only UC4

needs \globaldefs if code shouldn’t be changed.
But an alternative with changed code isn’t hard to
create: Use sed (or similar) to insert \global auto-
matically into the code and write a new file that’s
used after \exout. I’m convinced that UC5 is of lim-
ited use. And I would never apply it to \newread as

TUGboat, Volume 44 (2023), No. 1 133

in thumbpdf.sty on CTAN; it isn’t my programming
style to use such tricks. So I asked: Has a TEX with-
out \globaldefs problems that must be solved with
this parameter? Is it important to save keystrokes?

The reader might say, “Wasn’t the introduction
of \xdef in #370 of [5] similar, as it just saves one
\global?” No, I think it does more: The language
becomes easier to learn with the pairs \def/\gdef
and \edef/\xdef. And Knuth was asked to imple-
ment this change.

I wrote this article to understand \globaldefs

better. I learned: All listed use cases have other solu-
tions without complicated tricks. Moreover, nesting
\globaldefs can create problems as described in
section 5. And even with the results of section 6, I
wonder why \globaldefs became a part of TEX.

References

[1] Paul W. Abrahams, Kathryn A. Hargreaves, Karl
Berry, TEX for the Impatient, 2003.
ctan.org/tex-archive/info/impatient/book.pdf

[2] David Carlisle, comment on tex.sx, 2022-06-30.
tex.stackexchange.com/questions/649425/is-it-

safe-to-use-globaldefs-for-setting-global-pgf-

key-value-pairs/649437#comment1618526_649425

[3] Donald E. Knuth, The TEXbook, Volume A of
Computers & Typesetting, Boston, Massachusetts:
Addison-Wesley, 1984.

[4] Donald E. Knuth, TEX : The Program, Volume B
of Computers & Typesetting, Boston,
Massachusetts: Addison-Wesley, 1986.

[5] Donald E. Knuth, “The Errors of TEX”,
Software—Practice and Experience 19 (1989),
607–685; reprinted as Chapters 10 and 11 in [7],
243–339. The log, i.e., Chapter 11, is still updated:
ctan.org/tex-archive/systems/knuth/dist/

errata/errorlog.tex

[6] Donald E. Knuth, twimac.tex.
ctan.org/systems/knuth/local/lib/twimac.tex

[7] Donald E. Knuth, Literate Programming, Stanford,
California: Center for the Study of Language and
Information, CSLI Lecture Notes No. 27, 1992.

[8] Donald E. Knuth, “Mini-Indexes for Literate Pro-
grams”, Software—Concepts and Tools 15 (1994),
2–11; reprinted as Chapter 11 in [9], 225–245.

[9] Donald E. Knuth, Digital Typography, Stanford,
California: Center for the Study of Language and
Information, CSLI Lecture Notes No. 78, 1999.

[10] TUGboat, archive of all publicly available articles.
tug.org/TUGboat/contents.html

⋄ Udo Wermuth
Dietzenbach, Germany
u dot wermuth (at) icloud dot com

Reflections on \globaldefs in plain TEX

134 TUGboat, Volume 44 (2023), No. 1

Storing Unicode data in TEX engines

Joseph Wright, LATEX Project Team

1 Introduction

Unicode has become established over the past three
decades as the international standard for representing
text in computer systems. By far the most common
input encoding in use today is UTF-8, in which Uni-
code text is represented by a variable number of
bytes: between one and four. Unicode deals with
codepoints : a numerical representation for each char-
acter. There are in principle 1 114 112 codepoints
available, although not all are currently assigned and
some of these are reserved for ‘private use’ for ad hoc

requirements.
Each codepoint has many different properties.

For example, depending on our application, we might
need to know whether a codepoint is a (lower case)
letter, how it should be treated at a line break, how
its width is treated (for East Asian characters), etc.
Unicode provides a range of data files which tabulate
this information. These files are human-readable
and are, in the main, purely ASCII text: they are
therefore not tied to any particular programming
language for usage. The full set of files is available
from unicode.org/Public/UCD/latest/ucd/: the
complete current set as a zip is around 6.7MiB.

There are of course standard libraries for com-
mon programming languages such as C which both
load this data and provide implementations of the
algorithms which use this data: things like changing
case, breaking text into lines and so on. However,
these are not readily available to us as TEX pro-
grammers. Thus, if we want to be able to properly
implement Unicode algorithms, we will need to look
at how to load the relevant data and store it within
TEX in an efficient manner.

Here, I will focus on how the LATEX team is
approaching the data storage challenge. I will show
how the particular requirements of implementing
in TEX mean we need to use a mix of approaches,
depending on exactly which data we are looking at.
The current implementation for loading this data in
expl3 is available at github.com/latex3/latex3/

blob/main/l3kernel/l3unicode.dtx, and is read
as part of the LATEX2ε format-building process.

2 The data challenge

With over a million codepoints, even on a modern
computer, storing values for every codepoint sep-
arately is impractical, particularly when we worry
about having multiple properties and needing to
access any data value with equal ease.

In some cases, we do not need to record prop-
erties for every single Unicode codepoint. We will
see that for example with grapheme breaking: most
codepoints have the same property value here, so
we can tackle data storage by looking just at ex-
ceptions. However, there are major problems there.
First, there are plenty of properties where we do need
to track information of most if not all codepoints.
There are cases where we might look at using ranges
of characters, but the downside to this can be that
we get uneven speed of access: that’s fine if all of our
documents are written in ASCII, but not acceptable
if we need to cover a range of input scripts in an
even manner.

This is not something that applies only to TEX
of course, and it’s a problem that the notes from
the Unicode Consortium themselves address. The
recommended approach is to use what is called a
two-stage table. This is a way of covering all of
those 1 114 112 codepoints without needing to store
separate values for every single one, and maintaining
fast access for all codepoints. We will see both how
that works and how to do it in TEX below.

3 TEX aspects

For classical TEX engines, we might think we don’t
need to cover all of Unicode: the engines are only
8-bit anyway. But we know that we can take that
8-bit input and treat it as codepoints: the LATEX
inputenc package has done that for over 30 years. So
even if we don’t need to cover all of Unicode, we need
to handle a subset, and it’s not always easy to make
this a clearly limited and non-expanding subset. So
even for these engines, we likely need methods to
store a full range of data.

The Unicode engines X ETEX and LuaTEX present
a different question. They do have tables for some
Unicode data: \uccode, \lccode, \catcode and so
on. But whilst we do need to set those up (so that
they have the ‘right’ values for TEX operations), it
turns out they don’t offer enough flexibility to track
everything needed. Also, if we want to be able to
use code shared by different engines, we want to use
approaches that work with pdfTEX anyway. For the
LATEX team, that’s the case, of course.

The experienced TEX programmer might at this
stage well be worrying about where I’m thinking
of putting all of this data. TEX is very limited in
the data structures it provides: macros and some re-
gisters. The latter are simply too limited in number,
even with the ε-TEX extensions. We can store quite
a bit in macros, and rely on the hash table to get
fast access, but even that isn’t going to scale well for
the amount of data we might want, at least without

doi.org/10.47397/tb/44-1/tb136wright-unidata

Joseph Wright, LATEX Project Team

https://unicode.org/Public/UCD/latest/ucd/
https://github.com/latex3/latex3/blob/main/l3kernel/l3unicode.dtx
https://github.com/latex3/latex3/blob/main/l3kernel/l3unicode.dtx
https://doi.org/10.47397/tb/44-1/tb136wright-unidata

TUGboat, Volume 44 (2023), No. 1 135

some extra tricks. But there is another, perhaps
unexpected, data store we can use, one that will give
us quite a bit of headroom: font dimensions.

It turns out that we can set almost as many
\fontdimen values for a font as we want, but we
need to know how many to create for any given font.
We don’t want to do that for real fonts, but we can
load the same font at lots of sizes and use each size
as, effectively, an integer array. All that’s needed is
to pick sizes that the user doesn’t care about: we do
that by starting at 1 sp and working upwards. There
is a limit on the total number of \fontdimen values,
but it’s in the millions and we won’t get close to that.
So we do have a fast random access data structure
we can use for storing integer values. Now all we
need to do is use this idea efficiently.1

4 Making it numerical

Before we deal with storing all of the Unicode data
we need, there’s the question of exactly what we will
store. Very few Unicode properties are numerical:
they are descriptors of behaviour. However, we can
turn most of them into something we can represent by
a number. The Unicode ‘General Category’ property
is a good demonstration here. There are 31 possible
values, for example

Cc Control character
Lu Uppercase letter
Nd Decimal number

It’s trivial to assign a numerical value to each of these;
then we can store that integer value and quickly
convert to the descriptor as required.

That approach works for most properties, but
not, for example, for case-changing data. The case
mapping of a codepoint will itself be a codepoint:
it could be the same one, or it could be anywhere

in the Unicode range. We are going to want values
that have some chance of repeating, so storing the
absolute value of the target codepoint isn’t going to
work. Instead, we will store the relative position of
the ‘output’ codepoint. For example, A is "0041 and
a is codepoint "0061. So we will store the lowercase
mapping for A as "0041−"0061, i.e. −32. The open-
ended nature of the values here is going to impose a
few extra conditions, as we’ll see in a bit.

1 If we are working in LuaTEX, other data structures are

available for storage. In expl3, the same macro-level interface

is used for creating integer arrays in all engines, with LuaTEX

using a Lua-based storage method. This allows an engine-

neutral approach to the problem of storing large amounts of

numerical data whilst still taking advantage of the greater

flexibility of Lua where available.

5 Two-stage tables . . .

The idea of a two-stage table is that it offers fast
data access to a large number of values, while at
the same time avoiding storing every single entry
separately. This works for us here as there are pat-
terns in the data we can exploit. Two-stage tables
are recommended by the Unicode Consortium and
are used by several languages. A particularly clear
explanation, including an implementation for storing
general category data written in Python, is available
at strchr.com/multi-stage_tables.

The two-stage approach is based on arbitrary
data blocks (not Unicode’s character blocks): we
divide the full Unicode range into equal-sized blocks,
then deal with each block separately. The size of the
block (a power of two) somewhat affects the amount
of compression we will see, but anything from 64 to
256 gives similar results; these are typical values.

Dividing the full range into blocks of known
size means of course that we know how many blocks
there will be. For example, if we assume a block
size of n = 256, there will be 4352 blocks. That will
be the size of the first table we will use, with one
entry for each of these blocks: that means it has a
predictable size, and can be created before we do any
data processing. Each entry in this first table points
to a second table, of which we will need several.

The second stage tables contain the data for
each block, so have n entries each. What we don’t
know here before creating the entire data structure
is how many of these second stage tables we will
need. At the start of building the structure, each
block of codepoints will need a separate second stage
table. But as we go on, we will find that different
blocks can reuse the same second stage table. So,
representing the table as a comma-separated list, we
might see our first stage table (the property values
we need to store) looking something like2

1, 2, 3, 1, 4, 5, 6, 1, 2, 8, 1,

...

That is, the first three values in the first-stage table
each point to different blocks in the second stage
table, but the fourth value points to the same second
stage block as the first, and so on. As we get into the
parts of Unicode that have long ranges of codepoints
with identical property values, this compression effect
becomes significant and the total size of the two
stages ends up much smaller than the total number
of codepoints.

2 Here, I am using an index from 1: this is the approach

used by expl3 and by Lua. Languages involving direct memory

management will use an offset starting from 0.

Storing Unicode data in TEX engines

https://strchr.com/multi-stage_tables

136 TUGboat, Volume 44 (2023), No. 1

With this all set up, retrieving a value is quite
quick. We can find which block a codepoint is in,
and the position within a block, with a couple of
numerical expressions. So getting a value out of the
tables is very fast. That of course is the point: the
work is done in the creation stage, so at point of use
everything is very quick.

To set this up in TEX, we need to think about
exactly how to create those two tables. As I’ve said,
we can predict the size of the first table, so we can
make that directly using the \fontdimen approach.
We can’t do that for the second stage as we don’t
know in advance how many entries we will need.
Also, we want to be able to check each block’s table
against those we’ve already created. That’s better
done if the data are stored in macros: a series of
comma lists work well. Macros are fine if we don’t
need to access the values randomly, and during the
creation stage that’s true. We can then use fast \ifx
tests to check each block as we finish it: have we seen
this block before? Once we’ve done all the blocks,
we can then create the second \fontdimen table in
one shot. (We could make lots of stage-two tables,
but as they are of predictable size, we can store all
the information in a single \fontdimen array using
an offset to get the right block information.)

With over a million codepoints, one might be
worried about how long reading every one of them
will take. However, in most cases, large parts of
the full range are compressed in the input. For
example, UnicodeData.txt contains details of case
mappings and general category. For many east Asian
characters, these and other values are identical, so
the file simply lists the first and last entries with
similar values. So for these, we don’t have to work
through every codepoint: we just have to work out
which second stage table they use, then add the right
number of entries to the first stage.

With some carefully-coded for loops, we can read
the entirety of UnicodeData.txt and save all of the
upper- and lowercase data in a couple of seconds.
That needs only four \fontdimen arrays, and the
total number of entries is fewer than half of the
number of codepoints that have case data.

6 . . . or not

As you will have seen, whilst a two-stage table ap-
proach is efficient for covering the whole Unicode
range, there is a limit to the degree of compression,
as the first stage will always have a significant num-
ber of entries, even if we need very few second stage
tables. At the same time, the approach relies on
being able to read the data once, so it’s not so good
if we want to make ad hoc changes. It should come

as no surprise, therefore, that dealing with one-off
overrides is best done using other methods, for ex-
ample storing as macros which can then be looked
up using TEX’s hash table.

The line between using a two-stage table ap-
proach and individual hash table entries (or other
approaches) is fuzzy: one needs to make a judgement.
But broadly, if we are looking at fewer than a couple
of thousand codepoints, we are likely to avoid a two-
stage approach. For example, storing case folding
and titlecasing information is easier using a macro
approach: both are essentially tightly focussed vari-
ants of standard case changing, and apply only to a
relatively small number of codepoints.

Another area where two-stage tables are more
tricky to use is where we need to store multiple
values. This applies for example to normal form
decomposition and to full lower/uppercasing data.
We could do that by having combined values in a
first stage table, for example 1 to 999 for the first
output codepoint and 1000 to 100 000 for the second.
But the alternative of using a two-stage approach
for the one-to-one data, then a hash approach for
one-to-many, works pretty well for us.

Finally, there is a consideration about how we
are actually loading the data. The source data file
UnicodeData.txt is ordered by codepoint, so is ideal
for reading line by line and turning the contents into
a few two-stage tables covering the different concepts.
Here are a few lines from UnicodeData.txt:
0000;<control>;Cc;0;BN;;;;;N;NULL;;;;

...

0041;LATIN CAPITAL LETTER A;Lu;0;L;;;;;N;;;;0061;

...

0061;LATIN SMALL LETTER A;Ll;0;L;;;;;N;;;0041;;0041

...

10FFFD;<Plane 16 Private Use, Last>;Co;0;L;;;;;N;;;;;

Several of the other Unicode data files are ordered for
logical access. For example, the grapheme-breaking
data file (GraphemeBreakProperty.txt) is divided
up by breaking class, then within that ordered by
codepoint. Some example lines, from three different
classes (in the real file, the comments are not on
separate lines):
0600..0605 ; Prepend

Cf [6] ARABIC NUMBER SIGN..ARABIC NUMBER MARK ABOVE

...

00AD ; Control

Cf SOFT HYPHEN

...

AC01..AC1B ; LVT

Lo [27] HANGUL SYLLABLE GAG..HANGUL SYLLABLE GAH

...

D789..D7A3 ; LVT

Lo [27] HANGUL SYLLABLE HIG..HANGUL SYLLABLE HIH

To turn that into a two-stage table, we first need to
do some manipulation to get it into the right form.

Joseph Wright, LATEX Project Team

TUGboat, Volume 44 (2023), No. 1 137

We can do that, of course, but there’s a time cost,
and we would also have to worry about how many
intermediate data structures we are using.

Many languages handle this problem using a
dedicated script to make their two-stage table struc-
tures, then reading some ‘digested’ form back at
runtime. For TEX use, that would probably be bet-
ter done using a different scripting language: Python
has some advantages, but as Lua is the TEX world’s
standard scripting system, I would favour that. The
downside to this approach is you can’t use the files
from the Unicode Consortium directly, so you have
to keep track of your digested set. Also, as in TEX
we tend to create formats, and they already are di-
gested data dumps, it feels more natural to just read
the ‘raw’ Unicode files as part of format-building,
wherever possible.

The outcome of that decision is that there are
places where it’s easier not to use a two-stage table,
as we can make a reasonably efficient structure in
macros that works ‘well enough’. I’ve done that,
for example, for grapheme breaking. There are only
about 12 different grapheme breaking classes, and
almost all codepoints are in the default one that we
don’t need to record. The raw data are ordered by
breaking class, so it’s easy to turn that into comma-
separated lists of codepoint ranges: one list for each
breaking class. Whilst this means that a few code-
points perform slightly less well than others when
looking them up,3 that’s acceptable as most of the
effort TEX is making here is not the data checking.

7 Outlook

Unicode is the way that most computer systems
work with text data today. Supporting Unicode
methods is workable in TEX, even with engines that
are fundamentally 8-bit. Over time, more Unicode
data will be needed by expl3, and potentially by
others, and using the approaches outlined here we
can make that available inside TEX runs without
needing to look to novel engine extensions.

It’s possible that as more data are required, it
will be sensible to move from parsing in TEX to
parsing in Lua for ‘digestion’. But the underlying
data structures can remain the same; that is only a
question of how best to create them.

⋄ Joseph Wright

Northampton, United Kingdom

joseph dot wright (at) morningstar2.co.uk

⋄ LATEX Project Team

https://latex-project.org

3 Hangul characters: these have the most complex breaking

behaviour.

Book review: Do Not Erase: Mathematicians

and Their Chalkboards, by Jessica Wynne

Jim Hefferon

Jessica Wynne, Do Not Erase: Mathematicians

and Their Chalkboards. Princeton University
Press, USA, 2021, 240 pp., hardcover, US$35,
ISBN 9780691199221.

This book exhibits an art that is small but that
is very important to many of us: the handwritten
work of mathematicians.

The author introduces the project by describing
some friends, “Amie and Benson are theoretical or
‘pure’ mathematicians . . . One day on the Cape, I
watch Benson work at his dining room table. . . . For
several hours, he sits, thinking, creating, jotting down
the occasional note. It looks like he has a secret. . . .
I feel like he is creating something so expansive and
beautiful it is beyond words, something that exists
only in his head. When I ask him to explain what
he is working on, he pauses, appears to struggle for
the right words, and replies, simply, ‘No. I can’t.’ ”

Later the author also says, “I have always used
my camera as a way to understand and explore the
world.” So while this book is subtitled Mathemati-

cians and their chalkboards, another good way to
understand it is: glimpses into the works of mathe-
maticians through their chalkboards.

This is a coffee table book. It is beautiful, with
typography that is understated yet powerful. It is
not coffee table-sized but it has the same feel in that
you shouldn’t read it, you should browse it. Open it
anywhere and you see a two-page spread about one
mathematician. Most are research mathematicians,
although a few do not fit that description perfectly.
Even-numbered pages have a brief biography and
an essay by that mathematician reflecting on their
work. They write about their perception of beauty,
or perhaps a bit about their career and what drew

doi.org/10.47397/tb/44-1/tb136reviews-wynne

Book review: Do Not Erase

138 TUGboat, Volume 44 (2023), No. 1

them in the direction that they went. It is not the
usual thing for mathematicians to put in writing.

Odd-numbered pages show that person’s chalk-
board. Each picture is different than the others and
all are visually interesting.

These are not necessarily candid shots. The
author says, “I ask the mathematicians to write or
draw whatever they want on their boards. (Often I
end up shooting whatever is already on the board—
usually something they are currently working on.)”
So the subject had the option to put on the board
what they want to share. That’s wise, if only because
for instance my board would contain a grocery list,
along with some passwords.

Some boards are messy, some are spare. Some
are covered with formulas, while others focus on a
figure or two.

I’ll take Gilbert Strang as an example. There is
a five-sentence biography and his essay focuses on
what he is most popularly famous for, his lectures
and book on Linear Algebra. His blackboard is taken
straight from that class, with matrices and matrix
equations hard at work.

The author asserts, “Despite technological ad-
vances (such as the creation of computers), chalk
on a board is still how most mathematicians choose
to work. As musicians fall in love with their instru-
ments, mathematicians fall in love with their boards—
the shape, the texture, the quality of the special Ja-
panese Hagoromo chalk.” While I don’t know that
this is completely true, since plenty of people prefer
whiteboards, or paper, or tablets, perhaps it doesn’t
matter. Certainly chalk gives the pictures a theme.
Certainly also many of us agree with Sun-Yung Alice
Chang who says, “Despite the computer age we live
in, the type of talks I enjoy the most are still those
in which the speaker writes on the blackboard line
by line and explains his or her thoughts.”

There are many books about mathematics filled
with beautiful graphics. Searching for phrases such
as ‘mathematics art’ or ‘mathematics beauty’ will
produce a list. They often have lots of drawings done
with computers, such as fractals, and these can be
stunning as well as fascinating. However, as with re-
ally high-end natural science illustrations, often some-
how the hand-crafted ones are more compelling and
show better what it is that the viewer needs to see.

This book also fits with another tradition, ones
that reflect on a life in mathematics. Many of these
are biographies but there are some that like this
one touch on a number of mathematicians, sampling
broadly rather than deeply. Two familiar and ex-
cellent ones of this type are Mathematical People

and More Mathematical People. One that is recent
enough that some readers may not yet have seen it is
Mathematicians: An Outer View of the Inner World,
published by the AMS in 2018.

Alec Wilkinson’s afterword is a powerful medita-
tion, “These photographs . . . typify the mathemati-
cian’s historic engagement with beauty.” Strictly
speaking this book doesn’t have to do with TEX—
for instance, there is no mathematical typography
in the typeset material—but it is about conveying
mathematics and about beauty. He closes by saying,
“Each of these elegant photographs preserves a detail
in the canvas of rigorous human thought.”

Do Not Erase is an excellent choice as a gift for
a budding mathematician, to communicate what the
life of a mathematician is like, especially that of a
researcher. For the same reason it is also a great
choice for either an institutional or departmental
library. The striking beauty draws the reader in and
the essays hold them.

⋄ Jim Hefferon

jhefferon (at) smcvt dot edu

Jim Hefferon

TUGboat, Volume 44 (2023), No. 1 139

Book review: Stop Stealing Sheep & Find

out how type works, by Erik Spiekermann

John D Lamb

Erik Spiekermann, Stop Stealing Sheep &

Find out how type works, 4th edition. The
Other Collection, 2022, 231 pp., softcover,
ISBN 978-3-949164-03-3. Available from
https://fonts.google.com/knowledge/

stop_stealing_sheep.pdf at no cost.

Erik Spiekermann

top Stealing Sheep, 4th editionStop Stealing Sheep, 4th edition

From the start, TEX was designed to set type well.
Stop Stealing Sheep is a book that explains why that
matters. First published in 1993, the book is hardly
new. What is new is that the author, Erik Spieker-
mann, with the help of Google Fonts, has made the
book available under a Creative Commons licence,
CC BY-ND 4.0 (creativecommons.org/licenses/
by-nd/4.0).

Spiekermann has written a delightful, readable
guide to the world of type. He shows us what type
is, how it works, how it makes us feel and how we
might choose it for different situations. He explains
different varieties of type and how they interact.
He shows us how type works at different sizes with
tracking, kerning, spacing between words and lines,
grids, and the layout of the page. And he builds
all of this into a book that more than anything else
illuminates his concepts. The left page of each pair

is a full-page image that illustrates some concept on
the right. And these text pages are filled, but not
cluttered, with sidebars, illustrations and marginal
notes, all exemplifying how type can be used well.
The chapters are short and can be read independently,
which makes the book one you can browse or dip
into whenever you like.

The book’s terse, lively style means that it is not
a detailed guide on how to choose typefaces (or fonts)
or how to decide on such things as column width,
line spacing and page layout. For these, I would
suggest the book by Williams [1] for a more gentle
introduction, or Bringhurst [2] for a comprehensive
treatise. But this doesn’t mean you won’t find much
helpful material in the present book.

First, it is worth reading because it helps you
understand the value of many of the design choices
of TEX. Compared to most word processors, TEX
and its variants make it difficult to change typeface
whenever you like. Although you can do more than
this, the easy option is to choose a package giving
you a set of families of typefaces to be used together:
one roman, one sans serif and one monospaced. And
you don’t easily change type sizes arbitrarily. You
can use boldface or italics, but underlining is not
so easy. On the other hand TEX has hyphenation
switched on by default, and goes to great lengths
to get it correct, while word processors usually have
it switched off and hyphenate more crudely. TEX
also uses different spacing between words depending
on whether they end sentences or not (by default),
produces ligatures by default and allows fine control
over spacing and kerning. Spiekermann explains why
these and other design choices matter and illustrates
how they work to produce more readable, legible and
beautiful type.

Second, if you don’t want or need detailed type
information, Stop Stealing Sheep gives you some
sensible ideas about the choices you still might make.
When should you use \raggedright or flushleft?
Is it a good idea or not to put lines in a table? When
should you indent paragraphs or put space between
them? When is it better to use two columns rather
than one? And why is all caps not usually a good
idea?

While it introduces you to sensible design choices,
Stop Stealing Sheep is not a book about TEX or any
of its variants. Indeed, it mentions neither these nor
any composition software, but notes in passing a few
other programs such as Adobe Illustrator. So, if you
wish to apply the ideas, you will need to look to
other sources such as [3] or the various online guides.
To use colors (Chapter 3) you might investigate the
color or xcolor packages. The fontspec package is

doi.org/10.47397/tb/44-1/tb136reviews-spiekermann

Book review: Stop Stealing Sheep & Find out how type works, by Erik Spiekermann

https://fonts.google.com/knowledge/stop_stealing_sheep.pdf
https://fonts.google.com/knowledge/stop_stealing_sheep.pdf
https://creativecommons.org/licenses/by-nd/4.0
https://creativecommons.org/licenses/by-nd/4.0
https://doi.org/10.47397/tb/44-1/tb136reviews-spiekermann

140 TUGboat, Volume 44 (2023), No. 1

143

What did people do before there was the

instant replay? A 100-yard dash is over in less

than ten seconds these days, and spectators

can’t possibly look at each of the six or more

contestants by the time they’re across the line.

Does that bring to mind the experience of

thumbing through a magazine, with all those

ads flashing by your eyes in split seconds?

That’s typography at its most intense. If you

want to make an impression in an ad, you can’t

wait for readers to get settled in, and there is

no space to spread your message out in front

of their eyes. The sprinter has to hurl forward,

staying in a narrow lane. In short-distance

text, lines must be short and compact or the

reader’s eye will be drawn to the next line before

reaching the end of its predecessor.

Setting text in short lines for
quick scanning requires re-
arrangement of all the other
parameters, too. Tracking can
be tighter, and word spaces
and line spaces smaller.

The choice of typefaces is, of
course, another consideration.
A type that invites you to read
long copy has to be inconspicu-
ous and self-e�acing, confirming
our acquired prejudices about
what is readable. A quick look at
a short piece of writing could be
assisted by a typeface that has a
little verve. It shouldn’t be as
elaborate as a display font used
on a label or a poster, but it also
doesn’t need to be too modest.

The above text has been
tuned for sprint reading,
set in 10/13 Equity, the
regular text face in this
book.

Figure 1: A page spread (pp. 142–143) from Stop Stealing Sheep.

helpful for font selection with OpenType (Chapter 6),
while the geometry package will help design the page
layout (Chapter 8) and textpos is a possibility if
you want a detailed grid layout (also Chapter 8).

You may also investigate the unicode-math

package if you want to use OpenType with mathe-
matics. But, to be clear, Stop Stealing Sheep is not
a book about typesetting mathematics. Indeed, it
mentions nothing about mathematics beyond illus-
trating the various possibilities for setting figures—
tabular and proportional, lining and oldstyle. But
even here it should be useful if you produce tables
of numbers or more readable equations.

In summary, then, while this is not a book about
TEX, it is one that I would recommend to anyone
who uses TEX.

First, it is an excellent introduction to what type
is, how it works and how it can be used. The fourth
edition covers many of the features of OpenType,
which is becoming the standard for any application
that uses type. Whether you want to use OpenType
or just use type well, Stop Stealing Sheep has much
to offer, without excessive technical detail.

Second, TEX remains ahead of any current word
processor in its ability to make the features of type

available. Stop Stealing Sheep will give you a good
idea of what these features are. While most are
already available in TEX or its derivatives (though
many are frustratingly absent in word processors),
it is likely that they will become even more widely
available in future. So, it makes sense to learn what
these features are and why you might want to use
them.

Finally, while the printed book is certainly good
value for money, the online version is, undeniably,
unbeatable value for money.

References

[1] Robin Williams, The Non-Designer’s Type Book,

2nd edition, Peachpit Press, 2006.

[2] Robert Bringhurst, The Elements of Typographic

Style, Version 4.3, Hartley & Marks, 2013.

[3] Frank Mittelbach with Ulrike Fischer, The LATEX
Companion, 3rd edition, Part 1, Addison Wesley,
2023.

⋄ John D Lamb
j.d.lamb (at) johndlamb dot net

John D Lamb

TUGboat, Volume 44 (2023), No. 1 141

TheTreasureChest

These are the new packages posted to CTAN (ctan.org)
from October 2022–April 2023. Descriptions are based
on the announcements and edited for extreme brevity.

Entries are listed alphabetically within CTAN di-
rectories. More information about any package can be
found at ctan.org/pkg/pkgname.

A few entries which the editors subjectively believe
to be especially notable are starred (*); of course, this is
not intended to slight the other contributions.

⋄ Karl Berry
https://tug.org/TUGboat/Chest

https://ctan.org/topic

biblio

bibcop in biblio/bibtex/utils

Style checker for .bib files.

fonts

euler-math in fonts

OpenType implementation of Zapf’s Euler.

gelasio in fonts

Support for Eben Sorkin’s Gelasio fonts, metric-
compatible with Georgia.

graphics

emo in graphics

Emoji support for all LATEX engines.

graphics/metapost/contrib/macros

hershey-mp in graphics/metapost/contrib/macros

Support for Hershey font file format.

mpchess in graphics/metapost/contrib/macros

Draw chess boards and positions.

graphics/pgf/contrib

fenetrecas in graphics/pgf/contrib

Display CAS examples.

outilsgeomtikz in graphics/pgf/contrib

Typeset geometry tools (compass, . . .).

pixelarttikz in graphics/pgf/contrib

Generate pixel art.

quickreaction in graphics/pgf/contrib

Typeset chemical reactions.

sacsymb in graphics/pgf/contrib

“Sacred symbols” used with the Orch OR theory
of consciousness.

scrabble in graphics/pgf/contrib

Commands for Scrabble boards.

tangramtikz in graphics/pgf/contrib

Tangram puzzles.

tikz-mirror-lens in graphics/pgf/contrib

Spherical mirrors and lenses.

tikz-nfold in graphics/pgf/contrib

Triple, quadruple, and n-fold paths.

tikzviolinplots in graphics/pgf/contrib

Draw violin plots from data.

graphics/pstricks/contrib

egpeirce in graphics/pstricks/contrib

Draw Peirce’s existential graph.

pst-flags in graphics/pstricks/contrib

Draw country flags.

info

* drawing-with-metapost in info

Example-based document for drawing technical
diagrams with MetaPost; intermediate to advanced.

* tlc3-examples in info/examples

All examples from The LATEX Companion, third
edition. See excerpt in this issue (pp. 77–86). To
order the book, see tug.org/l/tlc3.

macros/generic

crossrefenum in macros/generic

Smart handling of cross-reference ranges; supports
LATEX and ConTEXt.

expkv-bundle in macros/generic

Expandable key=val implementation and friends.

pdfmsym in macros/generic

More math symbols, including arbitrarily-extendable
accents, arrows, etc.

macros/latex/contrib

cleveref-usedon in macros/latex/contrib

Adds forward referencing to cleveref.

cvss in macros/latex/contrib

CVSS scores for IT vulnerabilities.

elteiktdk in macros/latex/contrib

Thesis template for Hungarian TDK conferences.

exam-lite in macros/latex/contrib

Simple exam template.

fistrum in macros/latex/contrib

150 paragraphs of Lorem Fistrum comedian phrases.

gfdl in macros/latex/contrib

Use the GNU Free Documentation License (GFDL).

gradient-text in macros/latex/contrib

Decorate text with linear gradient colors.

hep-reference in macros/latex/contrib

Adjustments for publications in high energy physics.

hfutexam in macros/latex/contrib

Exam class for the Hefei University of Technology.

hwemoji in macros/latex/contrib

Unicode emoji support for pdfLATEX with sequences.

ibrackets in macros/latex/contrib

Intelligent brackets for open intervals.

doi.org/10.47397/tb/44-1/tb136chest

macros/latex/contrib/ibrackets

142 TUGboat, Volume 44 (2023), No. 1

jeuxcartes in macros/latex/contrib

Playing cards from poker or French tarot decks.

jourcl in macros/latex/contrib

Universal cover letter for journal submissions.

jwjournal in macros/latex/contrib

Writing personal journals.

korigamik in macros/latex/contrib

Support for academic projects and lab reports.

lgrmath in macros/latex/contrib

Use LGR-encoded fonts in math mode.

maze in macros/latex/contrib

Generate random mazes.

naive-ebnf in macros/latex/contrib

Typeset EBNF from a plain text notation.

namedtensor in macros/latex/contrib

Macros for named tensor notation.

osda in macros/latex/contrib

Open-Source Design Automation proceedings.

overarrows in macros/latex/contrib

Custom extensible arrows over math expressions.

* pagelayout in macros/latex/contrib

Declarative desktop publishing with LATEX.

pangram in macros/latex/contrib

LATEX package for testing fonts.

physics2 in macros/latex/contrib

Easier math typesetting.

pythonimmediate in macros/latex/contrib

Library to run Python code.

recorder-fingering in macros/latex/contrib

Typeset recorder fingering diagrams.

resmes in macros/latex/contrib

The measure restriction symbol.

resolsysteme in macros/latex/contrib

Operate on linear systems with xint or pyluatex.

songproj in macros/latex/contrib

Beamer slideshows with song lyrics.

tangocolors in macros/latex/contrib

Use colors from the Tango color palette.

tidyres in macros/latex/contrib

Multi-column formal resumes.

tramlines in macros/latex/contrib

Lines above and below titles, for legal documents
in the UK.

ukbill in macros/latex/contrib

Typeset UK legislation.

uol-physics-report in macros/latex/contrib

Lab reports at the U. of Oldenburg.

uvaletter in macros/latex/contrib

Unofficial letterhead for the U. of Amsterdam.

writeongrid in macros/latex/contrib

Grid creation and text positioning on the lines.

zennote in macros/latex/contrib

Streamline note-taking process.

macros/latex/contrib/babel-contrib

babel-lithuanian in m/l/c/babel-contrib

Babel support for Lithuanian.

macros/luatex/generic

blopentype in macros/luatex/generic

Basic LuaTEX OpenType handler.

evangelion-jfm in macros/luatex/generic

Font metric package supporting many advanced
CJK features.

lparse in macros/luatex/generic

Lua module for parsing key-value options.

lua-tinyyaml in macros/luatex/generic

Tiny YAML (subset) parser in pure Lua.

tsvtemplate in macros/luatex/generic

Apply templates to tsv (tab-separated value) files.

macros/luatex/latex

* luacas in macros/luatex/latex

Computer algebra and symbolic computation
system within LuaLATEX. See article in this issue
(pp. 94–98).

luacomplex in macros/luatex/latex

Perform operations on complex numbers.

luagcd in macros/luatex/latex

GCD computation.

lualinalg in macros/luatex/latex

Perform linear algebra operations.

luamaths in macros/luatex/latex

Perform standard math operations.

luamodulartables in macros/luatex/latex

Generate modular addition/multiplication tables.

luaoptions in macros/luatex/latex

Option handling for LuaLATEX packages.

luaset in macros/luatex/latex

Perform set operations.

scikgtex in macros/luatex/latex

Annotate contributions using XMP metadata.

macros/unicodetex/latex

alchemist in macros/unicodetex/latex

Typeset alchemy and astrological symbols from
Unifont

macros/xetex/plain

unimath-plain-xetex in macros/xetex/plain

OpenType math support in plain X ETEX.

support

digestif in support

Editor plugin and language for LATEX, plain TEX,
ConTEXt and Texinfo.

* texfindpkg in support

Install TEX packages via filenames or command/
environment names. Supports TL and MiKTEX.

macros/latex/contrib/zennote

TUGboat, Volume 44 (2023), No. 1 143

Abstracts

Die TEXnische Komödie 4/2022–1/2023

Die TEXnische Komödie is the journal of DANTE e.V.,
the German-language TEX user group (dante.de).

Die TEXnische Komödie 4/2022

Volker RW Schaa, Protokoll der 64. Mitgliederver-
sammlung von DANTE am 25. Juni 2022 in Magdeburg
[Minutes of the 64. DANTE meeting held on June 25,
2022, in Magdeburg]; pp. 6–13

Minutes of the meeting.

Doris Behrendt, Bericht der Schatzmeisterin für das
Jahr 2021 [Treasurer’s report for the financial year
2021]; pp. 13–17

Report of the Treasurer for the financial year 2021

Mario Haustein and Marei Peischl, Bericht der
Rechnungsprüfer zu den Jahren 2020 und 2021 [Report
of the internal auditors for the financial years 2020 and
2021]; pp. 17–22

Report of the internal auditors for the financial years
2020 and 2021.

Marei Peischl, \dante_tutorial:nn{expl3}{2022};
pp. 23–36

A tutorial on the new expl3 syntax. (English trans-
lation published in this issue, 87–93.)

Henning Hraban Ramm, ConTEXt – bildschön!
[ConTEXt — beautiful graphics!]; pp. 37–46

A tutorial on how to handle graphics in ConTEXt.

Henning Hraban Ramm, ConTEXt kurz notiert!
[ConTEXt News]; pp. 46–49

News regarding ConTEXt.

Götz Schnell, Eindrücke vom ConTEXt-Meeting
2022 [Impressions from the ConTEXt Meeting 2022];
pp. 50–54

What happened at the 2022 ConTEXt meeting.

Jürgen Fenn, Neue Pakete auf CTAN [New packages
on CTAN]; pp. 57–62

List of new packages on CTAN.

Die TEXnische Komödie 1/2023

Keno Wehr, LATEX und Schulphysik 1: Größen und
Einheiten [LATEX and Physics in School 1: Dimensions
and Units]; pp. 7–16

On the typographical rules for formulas and units.
We also present the schulma-physik package.

Henning Hraban Ramm, Buchumschläge mit
ConTEXt [Bookcovers using ConTEXt]; pp. 16–25

A tutorial on how to design bookcovers in ConTEXt.

Henning Hraban Ramm, ConTEXt kurz notiert!
[ConTEXt news]; pp. 25–27

News regarding ConTEXt.

Frank Mittelbach, Das LATEX Tagged PDF

Project — Status und Fortschritte [The LATEX
Tagged PDF Project — A status and progress report];
pp. 28–39

[Published in TUGboat 43:3; translated by
Thomas Demmig.]

Ulrike Fischer, Frank Mittelbach,
XMP-Metadaten in LATEX einfügen [Adding XMP

metadata in LATEX]; pp. 39–49
[Published in TUGboat 43:3; translated by

Thomas Demmig.]

Frank Mittelbach, LATEX News, issue 36, November
2022; pp. 49–56

[Published in TUGboat 43:3; translated by
Thomas Demmig.]

Jürgen Fenn, Neue Pakete auf CTAN [New packages
on CTAN]; pp. 56–61

List of new packages on CTAN.

[Received from Uwe Ziegenhagen.]

La Lettre GUTenberg 47–49, 2022–2023

La Lettre GUTenberg is a publication of GUTenberg, the
French-language TEX user group
(gutenberg-asso.org); published online at
publications.gutenberg-asso.fr/lettre.

As of issue #49, La Lettre GUTenberg publishes its
source code. This code is available by clicking on links
located in the journal itself, at the end of each article.

La Lettre GUTenberg #47

Published November 2, 2022. Special issue about the
bylaws submitted to the members of the association for
a vote, which took place on November 12, 2022.

Patrick Bideault, Éditorial [Editorial]; p. 1

Flora Vern, Présentation de la proposition de
nouveaux statuts [Presentation of the proposed new
bylaws]; pp. 3–4

Proposition de statuts pour GUTenberg [Proposal of
bylaws for GUTenberg]; pp. 5–13

The new bylaws were written collectively by all
interested members, via public git repository and mailing list.

doi.org/10.47397/tb/44-1/tb136lettredoi.org/10.47397/tb/44-1/tb136komo

https://ctan.org
https://ctan.org/pkg/
https://ctan.org/pkg/bibcop
https://ctan.org/pkg/euler-math
https://ctan.org/pkg/gelasio
https://ctan.org/pkg/emo
https://ctan.org/pkg/hershey-mp
https://ctan.org/pkg/mpchess
https://ctan.org/pkg/fenetrecas
https://ctan.org/pkg/outilsgeomtikz
https://ctan.org/pkg/pixelarttikz
https://ctan.org/pkg/quickreaction
https://ctan.org/pkg/sacsymb
https://ctan.org/pkg/scrabble
https://ctan.org/pkg/tangramtikz
https://ctan.org/pkg/tikz-mirror-lens
https://ctan.org/pkg/tikz-nfold
https://ctan.org/pkg/tikzviolinplots
https://ctan.org/pkg/egpeirce
https://ctan.org/pkg/pst-flags
https://ctan.org/pkg/jeuxcartes
https://ctan.org/pkg/jourcl
https://ctan.org/pkg/jwjournal
https://ctan.org/pkg/korigamik
https://ctan.org/pkg/lgrmath
https://ctan.org/pkg/maze
https://ctan.org/pkg/naive-ebnf
https://ctan.org/pkg/namedtensor
https://ctan.org/pkg/osda
https://ctan.org/pkg/overarrows

144 TUGboat, Volume 44 (2023), No. 1

La Lettre GUTenberg #48

Published December 2, 2022.

Patrick Bideault, Éditorial [Editorial]; pp. 1–3

François Druel, Procès verbal de l’assemblée
générale extraordinaire du 12 novembre consacrée
à la modification de nos statuts [Minutes of the
extraordinary general assembly of November 12
devoted to the modification of our bylaws]; pp. 4–5

Maxime Chupin, Résultat du vote des nouveaux
statuts de l’association [Result of the vote on the new
bylaws of the association]; p. 6

GUTenberg’s new bylaws have been adopted.

Flora Vern, Yvon Henel, Rapport financier pour
l’année 2021 [Financial report for the year 2021];
pp. 6–7

Maxime Chupin, Bilan moral : janvier 2021 —
décembre 2022 [Annual activity report: January
2021–December 2022]; pp. 8–14

Journée et assemblée générale 2022 [GUTenberg Day
and General Assembly 2022]; pp. 14–16

The day’s program includes three lectures, by Cédric
Pierquet, François Pantigny and Antoine Missier.

Maxime Chupin, Nénufar — Collection de classiques
mis en page avec LuaLATEX [Nénufar — Collection of
classics formatted with LuaLATEX]; pp. 16–18

Patrick Bideault, Denis Bitouzé, Maxime Chupin,

Yvon Henel, Et maintenant, une bonne vieille veille
technologique ! [Technology watch]; pp. 18–22

24 new CTAN packages, October–November 2022.

Patrick Bideault, La fonte de ce numéro : Plex
[This issue’s font: Plex]; pp. 22–24

Patrick Bideault, À propos des fontes que nous
utilisons [About the fonts in use]; pp. 24–26

A short article about the desired specifications of
the fonts in use in the bulletin.

Patrick Bideault, En bref [At a glance]; pp. 26–28
Short news about capitals, acronyms, fonts,

footnotes and more.

La Lettre GUTenberg #49

Published January 23, 2023.

Patrick Bideault, Éditorial [Editorial]; pp. 1–2

Patrick Bideault, Denis Bitouzé, Maxime Chupin,

François Druel, Procès verbaux [Reports of the
board’s meetings]; pp. 2–10

Maxime Chupin, Les vidéos de la Journée GUTenberg
2022 sont en ligne ! [The videos of the GUTenberg
2022 conferences are online]; pp. 10–12

Patrick Bideault, Denis Bitouzé, Maxime Chupin,

Yvon Henel, Et maintenant, une bonne vieille veille
technologique ! [Technology watch]; pp. 12–17

30 new CTAN packages, December 2022–January
2023.

Patrick Bideault, À propos des documentations
de packages et des moyens de contacter leurs auteurs
[About package documentation and how to contact
their authors]; p. 18

Advocacy about documentation formats and ways
to contact package authors.

Maxime Chupin, Sondage sur les utilisateurs
francophones de (LA)TEX [Survey of French-speaking
users]; pp. 18–19

Denis Bitouzé, Maxime Chupin, Passer à la
définition de commandes de LATEX3 [Switch to the
LATEX3 macro definition commands]; pp. 19–24

Denis Bitouzé, Maxime Chupin, La fonte du
numéro : Fira Sans [This issue’s font: Fira Sans];
pp. 25–28

Patrick Bideault, Maxime Chupin, En bref [At a
glance]; pp. 28–29

Short news about a website and a nice suggestion.

Yvon Henel, Rébus, cacotypographie et
archéotypographie [A rebus and considerations
on cacotypography and archeotypography]; pp. 29–30

Patrick Bideault, Un beau moment de lecture
[A nice reading moment]; pp. 30–31

About Gerard Unger’s book While You’re Reading.

[Received from Patrick Bideault.]

TUGboat, Volume 44 (2023), No. 1 145

Zpravodaj 2022/1–4

Zpravodaj is the journal of CSTUG, the TEX user group
oriented mainly but not entirely to the Czech and Slovak
languages. The full issue can be downloaded at cstug.

cz/bulletin.

Petr Sojka, Úvodńık [Introductory word]; pp. 1–2
Go forth and participate in CSTUG to make the

bright future of TEX & Friends a reality! You can!

Petr Olšák, cropmarks.tex – makra na tvorbu
ořezových značek [cropmarks.tex — Macros for
creating crop marks]; pp. 4–10

The cropmarks.tex package included in the olsak-

misc bundle of packages is presented here. It enables
adding configurable crop marks to any PDF file (no mat-
ter what software created it). The macro package is based
on plain TEX and works in OpTEX too. The special crop
marks needed for impositions are also supported, and
this example is shown in the article in detail.

A summary of other olsak-misc macro files is given
in the last section. Moreover, the macros are documented
at the end of each file.

Tereza Vrabcová, Digitálńı archivace Zpravodaje
CSTUGu [Digital archival of the CSTUG Bulletin];
pp. 11–17

When a person is proud of their creation, they want
to share it with as many people as possible. Therefore, it
cannot be a surprise that CSTUG took the opportunity
to digitally archive the CSTUG Bulletin and make its
articles accessible to the general public with the help of
the Czech Digital Mathematics Library (DML-CZ). This
article introduces the technical solution and the results
of this digitization, along with some interesting statistics
that were discovered during the process. It is adapted
from the author’s talk at the general assembly of CSTUG

on May 14, 2022.

Denis Roegel, Romantika v METAPOSTu po
francouzsku: ĺıbaj́ıćı se kružnice [Kissing circles:
A French romance in METAPOST]; pp. 18–34

Published in TUGboat 26:1.

V́ıt Novotný, Vysokoúrovňové jazyky pro TeX
[High-level languages for TEX]; pp. 35–48

TEX is the assembly language of digital typesetting,
which requires advanced programming skills from au-
thors and designers, and which provides few high-level
abstractions to programmers. In this article, I introduce
selected markup, programming, and style-sheet languages
for TEX, which enable the division of labor between au-
thors, programmers, and designers, and which simplify
the process of electronic document preparation. The
article is a transcription of my invited talk at the general
assembly of CSTUG on May 14, 2022.

Max Chernoff, Automatically removing widows and
orphans with lua-widow-control; pp. 49–76

Published in TUGboat 43:1; now updated.

Peter Wilson, Mělo by to fungovat XII [It might
work XII]; pp. 77–88

Published in TUGboat 32:1 as “Glisterings”.

[Received from Vı́t Novotný.]

Advertisements

TEXnology Inc.

Amy Hendrickson

57 Longwood Ave. #8

Brookline, MA 02446

+1 617-738-8029

Email: amyh (at) texnology.com

Web: https://texnology.com
Full time LATEX consultant for more than 30 years;
have worked for major publishing companies,
leading universities, and scientific journals. Our
macro packages are distributed on-line and used by
thousands of authors. See our site for many
examples: texnology.com.

• LATEX Macro Writing: Packages for books,
journals, slides, posters, e-publishing and
more; Sophisticated documentation for users.

• Design as well as LATEX implementation for
e-publishing, print books and journals, or
specialized projects.

• Data Visualization, database publishing.
• Innovative uses for LATEX, creative solutions
our speciality.

• LATEX Training, customized to your needs,
on-site or via Zoom. See
https://texnology.com/train.htm for sample
of course notes.

Call or send email: I’ll be glad to discuss your
project with you.

doi.org/10.47397/tb/44-1/tb136zprav

Zpravodaj 2022/1–4

cstug.cz/bulletin
cstug.cz/bulletin
https://doi.org/10.47397/tb/44-1/tb136zprav

The information here comes from the consultants
themselves. We do not include information we know
to be false, but we cannot check out any of the
information; we are transmitting it to you as it was
given to us and do not promise it is correct. Also, this
is not an official endorsement of the people listed here.
We provide this list to enable you to contact service
providers and decide for yourself whether to hire one.

TUG also provides an online list of consultants at
tug.org/consultants. If you’d like to be listed, please
visit that page.

Dangerous Curve

Email: typesetting (at) dangerouscurve.org

Typesetting for over 40 years, we have experience in
production typography, graphic design, font design,
and computer science, to name a few things. One DC
co-owner co-authored, designed, and illustrated a TEX
book (TEX for the Impatient).

We can convert your documents to LATEX from
just about anything type up your handwritten pages
proofread, copyedit, and structure documents

in English apply publishers’ specs write custom
packages and documentation resize and edit your
images for a better aesthetic effect make your
mathematics beautiful produce commercial-quality
tables with optimal column widths for headers and
wrapped paragraphs modify bibliography styles
make images using TEX-related graphic programs
design programmable fonts using METAFONT and

more! (Just ask.)
Our clients include high-end branding and

advertising agencies, academics at top universities,
leading publishers. We are a member of TUG, and
have supported the GNU Project for decades (including
working for them). All quote work is complimentary.

Latchman, David

2005 Eye St. Suite #6
Bakersfield, CA 93301
+1 518-951-8786
Email: david.latchman

(at) texnical-designs.com

Web: www.texnical-designs.com

LATEX consultant specializing in the typesetting
of books, manuscripts, articles, Word document
conversions as well as creating the customized LATEX
packages and classes to meet your needs. Contact us
to discuss your project or visit the website for further
details.

146 TUGboat, Volume 44 (2023), No. 1

TEXConsultants

Veytsman, Boris

132 Warbler Ln.
Brisbane, CA 94005
+1 703-915-2406
Email: borisv (at) lk.net

Web: www.borisv.lk.net

TEX and LATEX consulting, training, typesetting and
seminars. Integration with databases, automated
document preparation, custom LATEX packages,
conversions (Word, OpenOffice etc.) and much more.

I have about two decades of experience in TEX and
three decades of experience in teaching & training. I
have authored more than forty packages on CTAN as
well as Perl packages on CPAN and R packages on
CRAN, published papers in TEX-related journals, and
conducted several workshops on TEX and related
subjects. Among my customers have been Google,
US Treasury, FAO UN, Israel Journal of Mathematics,
Annals of Mathematics, Res Philosophica,
Philosophers’ Imprint, No Starch Press, US Army
Corps of Engineers, ACM, and many others.

We recently expanded our staff and operations to
provide copy-editing, cleaning and troubleshooting of
TEX manuscripts as well as typesetting of books,
papers & journals, including multilingual copy with
non-Latin scripts, and more.

Warde, Jake

90 Resaca Ave.
Box 452
Forest Knolls, CA 94933
+1 650-468-1393
Email: jwarde (at) wardepub.com

Web: myprojectnotebook.com

I have been in academic publishing for 30+ years. I
was a linguistics major at Stanford in the mid-1970s,
then started a publishing career. I knew about TEX
from editors at Addison-Wesley who were using it to
publish beautifully set math and computer science
books.

Long story short, I started using LATEX for
exploratory projects (see website above). I have
completed typesetting projects for several journal
articles. I have also explored the use of multiple
languages in documents extensively. I have a strong
developmental editing background in STEM subjects.
If you need assistance getting your manuscript set in
TEX I can help. And if I cannot help I’ll let you know
right away.

TUGboat, Volume 44 (2023), No. 1 147

TUG 2023 election report

Nominations for TUG President and the Board of
Directors in 2023 have been received and validated.
Because there is a single nomination for the office
of President and because there are not more nom-
inations for the Board of Directors than there are
open seats, there is no requirement for a ballot this
election.

For President, Arthur Rosendahl was nominated.
As there were no other nominees, he is duly elected
and will serve for a two-year term.

For the Board of Directors, the following indi-
viduals were nominated:

Barbara Beeton, Max Chernoff, Ulrike Fischer,
Jim Hefferon, Tom Hejda, Jérémy Just,
Norbert Preining, Boris Veytsman.

As there were not more nominations than open posi-
tions, all the nominees are duly elected to a four-year
term. Thanks to all for their willingness to serve.

Terms for both President and members of the
Board of Directors will begin at the Annual Meeting.

Board member Paulo Cereda has decided to step
down. Paulo was appointed to the Board in 2021 to
fill a position that remained open after the election.
His dedication and service to the community are
gratefully acknowledged.

Election statements by all candidates are given
below. They are also available online, along with
announcements and results of previous elections.

⋄ Karl Berry

for the Elections Committee

tug.org/election

Arthur Rosendahl
(né Reutenauer)

(Candidate for TUG President.)

Biography : I first came across TEX as a mathematics
student 25 years ago and was instantly hooked. A
few years later, my interest in languages gave me
another angle to look at TEX and related programs,
especially Metafont. I have been involved in some
aspects of their development ever since, through
packages such as polyglossia and hyph-utf8, and have
participated in many conferences to meet with other
TEX enthusiasts, and spread the knowledge. I am
mostly a ConTEXt user nowadays. I love TEX and
its ecosystem for the freedom it gives its users and
the taste of beautifully typeset documents.

My involvement with TUG started in 2005 at
the annual conference in Wuhan (since then known
for other things . . .) and I have been on the board for
ten years, the last six of which as vice president. I’ve
been part of the organisation committee of the three
online TUG conferences from 2020 to 2022 and am
also active in other user groups of the TEX world, as
the founding president of the ConTEXt Group, and a
board member of GUTenberg, the French-language
TEX users group. I was incidentally born on the year
TUG was founded.
Statement : While TEX itself hasn’t changed at all
since Don Knuth released version 3 in 1990, almost
every single program around it has, as well as the way
we use them. The set of users has grown dramatically,
as well as their reason for using them, and while
one may think that there is less justification for
a nonprofit organisation today—when commercial
companies such as Stack Exchange and Overleaf
have seemingly taken over the stage— I believe that
the TEX Users Group is more necessary today than
ever, as a gathering place for all the people who
give their time, their energy, and not seldom their
personal money, so that this beautiful program can
long endure.

Barbara Beeton

(Candidate for TUG Board of Directors.)

Biography : For TEX and the TEX Users Group:

• charter member of the TEX Users Group; charter
member of the TUG Board of Directors;

• TUGboat Editor.

Retired from the American Mathematical Society.

• Staff Specialist for Composition Systems, respon-
sible for documentation and author support;

• STIX representative to the Unicode Technical
Committee for adoption of additional math sym-
bols, which were added effective with Unicode
4.0;

• co-author of Unicode Technical Report #25,
Unicode Support for Mathematics;

Publications communicating the history of TEX.

• principal author, Communication of Mathemat-
ics with TEX, Visible Language 50:2 (2016),
40–51;

• co-author (with Dave Walden and Karl Berry),
TEX, A branch of desktop publishing (Parts 1

doi.org/10.47397/tb/44-1/tb136elec

TUG 2023 election report

https://doi.org/10.47397/tb/44-1/tb136elec

148 TUGboat, Volume 44 (2023), No. 1

and 2), IEEE Annals of the History of Comput-

ing, 40:3 (2018), 78-93, 41:2 (2019), 29–41.

Statement : Although I will be retired from the AMS I
intend to continue to be active in TUG, where I have
made so many good friends. As the oldest user group
in the worldwide TEX community, TUG provides a
focus for dedicated TEX users and developers.

I believe there’s still a place in the TUG ranks
for one of the “old guard”, to provide institutional
memory when it’s appropriate, and cheer on the
younger folks who are trying new things.

With support from the members of this won-
derful community, I’d like to continue for four more
years.

Max Chernoff

(Candidate for TUG Board of Directors.)

Biography : I was a fairly advanced user of Microsoft
Word, but about 6 years ago I became frustrated
with its clumsy input. I discovered LATEX and I
immediately fell in love. All of my free time was
quickly replaced by me making new document styles
and remaking old documents.

These days, I process most of my documents
with ConTEXt, although I occasionally use LATEX
and Plain. I am the author of the LuaTEX package
lua-widow-control as well as the associated TUGboat

articles.
I am currently studying Math and Physics as

an undergraduate at the University of Calgary.
Statement : Despite its remarkable design, TEX is be-
ginning to show its age. The TEX community has put
in extensive work to develop modern improvements
like LuaTEX, expl3, and BibLATEX/Biber, yet most
IDEs/editors, publishers, and tutorials still recom-
mend or require pdfLATEX and BibTEX. These tools
still have their place, but I believe that their limita-
tions are a major barrier for newer users. As a TUG

director, I would encourage the adoption of LuaTEX
and Biber as defaults. I would also support mod-
ernisation in general, while maintaining backwards
compatibility and avoiding unnecessary changes.

Ulrike Fischer

(Candidate for TUG Board of Directors.)

Biography : I was born in Stuttgart, Germany, and
moved first to Switzerland with my parents and
later to Bonn where I studied mathematics. I wrote
my thesis in a rather arcane branch called model
theory using an Atari text processor called Signum.
But I did not like to have to place the many sub-
and superscripts with a mouse. So when seeing an
example LATEX document, I ordered the floppy discs
and never looked back.

I found my way into the LATEX groups on the
Internet and have always enjoyed and still enjoy
answering questions and debugging errors. I also
like to help new users to find their way into the TEX
world.

Talks about accessibility and tagged PDF at
Dante and TUG meetings induced me to write the
tagpdf package and to present it to LATEX team
members at a workshop at the TUG meeting in Rio
de Janeiro in 2018. This got me an invite to join the
LATEX Team and to work on the long term project to
enable LATEX to create tagged PDF thus ensuring that
it will remain an important and relevant document
source format. I also helped with the production
of the third edition of the LATEX Companion which
hopefully will be released at end of April.
Statement : I joined the TUG board in 2020 on invi-
tation and would be happy to serve four more years
(:-). Stable user groups like TUG can offer long term
support and communication means that you don’t
get in fast changing internet groups. They also can
organize in person meetings. The last years have
shown to me that this is something that I would
really miss. So when the TUG board discussed the
next TUG conference, my husband Gert and I offered
to be the local organizers in the summer of 2023. It
would be really nice to welcome and meet many TUG

members and other TEX friends in my hometown
Bonn as a TUG board director!

TUG 2023 election report

TUGboat, Volume 44 (2023), No. 1 149

Jim Hefferon

(Candidate for TUG Board of Directors.)

Biography : My biography is that I have been a faculty
member in mathematics for many years. I have used
TEX and LATEX since the early 90s for a variety of
projects, including professional articles and open
source technical books. I helped run CTAN for a
decade. I have been on the TUG Board for a number
of terms, including terms as Vice President, and I had
the privilege of acting as President for a short time.
Statement : I would like to continue to work on bring-
ing in new members, both to TUG and to the wider
TEX community. Sometimes a group of experienced
users could forget the needs of people starting out,
and I try to be an advocate, to help keep them in
focus.

Tom Hejda

(Candidate for TUG Board of Directors.)

Biography : I earned my master’s in engineering in
2012 and my PhD in mathematics and computer
science in 2016. Parallel to my studies, I was a
technical LATEX editor for a small journal for over 6
years. After a few years of postdocs, I joined Overleaf
in 2019 as a support team member and later as a
manager. I also volunteer with the Scouts movement
as a manager and a DIYer, and at a local church as
an organist.
Statement : I would like to join the Board for three
reasons.

First, I have been helping run the online TUG

meetings and it makes sense to me to continue to
offer my help even as we hopefully move back to
in-person meetings, with the possibility of running
one of the conferences in Prague if there is interest.

Second, at Overleaf, we have a first-hand ex-
perience with a lot of LATEX users and we are most
likely the largest entity using TEX Live (our annual
deployment of TEX Live to the users and the asso-
ciated testing have helped with kernel and package
debugging before), and I am happy to look for more
improvements in this direction.

Third, I would like to offer my experience as
a manager in the non-profit/volunteering sector to
the TEX community by becoming a member of the
Board.

Jérémy Just

(Candidate for TUG Board of Directors.)

Biography : I’m a biologist who studies plant genomes:
over the years, I’ve worked on research projects on
rapeseed, wheat, rose, and more recently mosses. As
for LATEX I had my first experience with it in 2000,
spontaneously starting to use it to write my reports
during my Master of Science. I never stopped.

I’ve been active in the LATEX community on
Usenet (fr.comp.text.tex) since 2003. There, I discov-
ered the existence of TEX users groups and quickly be-
came a member of GUTenberg, the French-speaking
users group. In 2009, willing to help the community,
I joined GUTenberg board, and started to serve the
association as its treasurer, then as its president. I
stayed at GUTenberg until 2022.

Within this association, I took care of the daily
administrative stuff, kept the website up to date, set
up a CTAN mirror, made the link with TUG and
other groups. . . Since 2016, I’m also the main main-
tainer of the French-speaking LATEX FAQ now hosted
at https://www.latex-fr.net/ and I’ve translated
several LATEX documentations into French, notably
the LearnLaTeX website, a tutorial targeting LATEX
beginners (https://www.learnlatex.org/).

The past few editions of the yearly TUG confer-
ence being held online, that offered me the opportu-
nity to give a hand in their organization.
Statement : LATEX is a wonderful tool for efficiently
producing good-looking documents and plots. But
one must admit that its learning curve is quite steep.
I believe that TEX users groups have a strong role
to play in lowering the first step, by encouraging
all useful initiatives: writing documentations for
all levels, translation of documentations, interactive
web sites, video tutorials. . . As a side-effect, this
would very certainly popularize the use of LATEX in
fields where it’s not (yet) a habit to use it: biology,
humanities . . .

TUG 2023 election report

https://www.latex-fr.net/
https://www.learnlatex.org/

150 TUGboat, Volume 44 (2023), No. 1

Norbert Preining

(Candidate for TUG Board of Directors.)

Biography : I am a mathematician and computer
scientist living and working whereever I find a job.
After my studies at the Vienna University of Tech-
nology, I moved to Tuscany, Italy, for a Marie Curie
Fellowship. After another intermezzo in Vienna I
have settled in Japan since 2009, as Associate Profes-
sor, and since several years now in various companies
mostly working on Machine Learning systems.

After years of being a simple user of (LA)TEX, I
first started contributing to TEX Live by compiling
some binaries in 2001. In 2005, I started working on
packaging TEX Live for Debian, which has developed
into the standard TEX package for Debian and its
derivatives. During EuroBachoTEX 2007, I got (by
chance) involved in the development of TEX Live
itself, which is now the core of my contribution to
the TEX world. Up till now I am continuing with
both these efforts.

Furthermore, with my move to Japan I got in-
terested in its typographic tradition and support in
TEX. I am working with the local TEX users to im-
prove overall Japanese support in TEX (Live). In this
course we managed to bring the TUG 2013 conference
for the first time to Japan.

More details concerning my involvement in TEX,
and lots of anecdotes, can be found at the TUG

interview corner (tug.org/interviews/preining.
html) or on my web site (preining.info).
Statement : After many years in the active develop-
ment and eight years on the board of directors of
TUG, I want to continue serving TUG and the wider
TEX community.

The challenges I see for TUG remain the same
over the years: increase of members and funds, and
technical improvement of our software. Promoting
TEX as a publishing tool also outside the usual math/
CS environment will increase the acceptance of TEX,
and by this will hopefully bring more members to
TUG.

Boris Veytsman

(Candidate for TUG Board of Directors.)

Biography : I was born in Odesa, Ukraine. After
getting my degree in Theoretical Physics I worked
in academia and industry, doing research in many
areas including physics of fluids, materials science,
biophysics, medical physics, air traffic safety, cellular
communications, science of science, etc. I also per-
formed TEX consulting for a number of customers
from publishers to universities to government agen-
cies to non-profits. My current CV and the list
of publications is available at https://borisv.lk.
net/cv/cv.html.

I have been using TEX since 1994 and have been
a TEX consultant since 2005. I published a num-
ber of packages on CTAN and papers in TUGboat.
I have been a Board member in 2010–2016, Vice-
President in 2016–2017, and President in 2017–2023.
I am an Associate Editor of TUGboat and support
https://www.tug.org/books/. I support TUG ac-
counts at Twitter (@TeXUsersGroup) and Mastodon
(@TeXUsersGroup@TechHub.social).

TEX and friends are my primary tools and the
source of my livelihood. I spend most of my working
day producing TEX documents. I always felt that
I ought to give back to the community: writing
packages, editing, mentoring, and serving TUG in
different capacities.
Statement : I think TEX is an important part of pub-
lishing infrastructure, of scientific communications,
and of communications in many other areas, from
music to literature to philology. It is our job as
members of TUG to advocate it, to support it and to
coordinate its development. It have been a privilege
for me to be a part of this movement. I hope to be
able to continue this service.

TUG 2023 election report

tug.org/interviews/preining.html
tug.org/interviews/preining.html
preining.info
https://borisv.lk.net/cv/cv.html
https://borisv.lk.net/cv/cv.html
https://www.tug.org/books/

TUGboat, Volume 44 (2023), No. 1 151

TUG financial statements for 2022

Karl Berry, TUG treasurer

The financial statements for 2022 have been reviewed
by the TUG board but have not been audited. The
totals may vary slightly due to rounding. As a US

tax-exempt organization, TUG’s annual information
returns are publicly available on our web site, below.

Revenue (income) highlights

Membership dues revenue was down in 2022 com-
pared to 2021; we ended the year with 1,162 paid
members, 48 fewer than in 2021. The 2022 online
conference had a net gain of over $4,300, due to few
expenses and generous donations— thank you! Gen-
eral contributions were substantially increased (74%)
due to individual bequests and the generous dona-
tion from UK-TUG after their dissolution. Product
sales were unusually high due to a major licensing
of Lucida to NASA. Overall, 2022 income was up
almost 30%.

Other highlights; the bottom line

Apart from Lucida (per above) and payroll (fulfilling
past obligations), other cost categories were about
the same.

Our bottom line for 2022 was substantially pos-
itive: $23,391.

Balance sheet highlights

Due to that bottom line, TUG’s end-of-year asset
total was up around 15% in 2022 compared to 2021.

Committed Funds are reserved for designated
projects: LATEX, CTAN, MacTEX, the TEX develop-
ment fund, and others (https://tug.org/donate).
TUG charges no overhead to administer these funds.

The Prepaid Member Income category is mem-
ber dues that were paid in earlier years for the current
year (and beyond). The 2022 portion of this liabil-
ity was converted into regular Membership Dues in
January of 2022. The payroll liabilities are for 2022
state and federal taxes due January 15, 2023.

Upcoming

We have not changed any rates or fees for 2023,
despite increased costs. Worldwide support from
members and donations are what allow us to continue,
so thank you! As always, we welcome ideas to attract
new members.

⋄ Karl Berry, TUG treasurer

https://tug.org/tax-exempt

TUG 12/31/2022 (vs. 2021) Revenue, Expense

Dec 31, 22 Dec 31, 21

ORDINARY INCOME/EXPENSE

Income

Membership Dues 76,940 79,320

Product Sales 20,008 4,423

Contributions Income 37,055 21,311

Annual Conference 4,325 2,636

Interest Income 742 184

Advertising Income 375 565

Total Income 139,445 108,439

Cost of Goods Sold

TUGboat Prod/Mailing (22,639) (22,053)

TUGboat Crossref (369) (275)

Software Prod/Mailing (2,818) (2,391)

Members Postage/Delivery (1,822) (1,827)

Lucida Sales to B&H (9,595) (1,675)

Member Renewal (520) (372)

Total COGS (37,763) (28,593)

Gross Profit 101,682 79,846

Expense

Contributions made by TUG (2,000)

Office Overhead (12,647) (12,924)

Payroll Expense (71,565) (64,274)

Interest Expense (84)

Total Expense (84,212) (79,282)

Net Ordinary Income 17,470 565

OTHER INCOME/EXPENSE

Prior year adjustment 5,921

NET INCOME 23,391 565

TUG 12/31/2022 (vs. 2021) Balance Sheet

Dec 31, 22 Dec 31, 21

ASSETS

Current Assets

Total Checking/Savings 198,499 173,601

Accounts Receivable 2,335 395

Total Current Assets 200,834 173,996

LIABILITIES & EQUITY

Current Liabilities

Committed Funds 53,524 55,656

Administrative Services 1,443 1,445

Prepaid Member Income 11,395 10,075

Payroll Liabilities 3,539 1,281

Total Current Liabilities 71,901 68,455

Equity

Unrestricted 105,542 104,977

Net Income 23,392 565

Total Equity 128,934 105,542

TOTAL LIABILITIES & EQUITY 200,835 173,999

doi.org/10.47397/tb/44-1/tb136treas

2023

Apr 29 –
May 3

BachoTEX2023, “A model kit. Modeling
and implementing text typesetting in
TEX and other systems”,

28th BachoTEX Conference,
Bachotek, Poland.
www.gust.org.pl/bachotex/2023-en

May 10 – 13 Association Typographique Internationale,
ATypI Paris 2023 (hybrid)
Paris, France.
atypi.org/conferences-events/

atypi-paris-2023

May 20 GuIT Meeting 2023,

19th Annual Conference, Rome, Italy.
www.guitex.org/home/en/meeting

Jun 1 – 3 Markup UK, A Conference about XML

and Other Markup Technologies,
Queen Mary University of London, UK

markupuk.org

Jun 3 TypeParis23, talks on
typography’s visible impact;
Workshop No. 16, Jun 4: Font Nerdery,
Paris, France. typeparis.com

Jun 26 – 29 SHARP 2023, “Affordances and Interfaces:
Textual Interaction Past, Present
and Future”, Society for the History
of Authorship, Reading & Publishing.
Hosted online by the
University of Otago, New Zealand.
www.sharpweb.org/main/conferences

Jun 28 – 30 Twenty-first International Conference
on New Directions in the Humanities,
“Literary Landscapes: Forms of
Knowledge in the Humanities”,
Sorbonne University, Paris, France.
thehumanities.com/2023-conference

Jul 10 – 14 Digital Humanities 2023, Alliance of
Digital Humanities Organizations,
“Collaboration as Opportunity”,
Graz, Austria. dh2023.adho.org

Jul 13 DANTE 65th meeting, Bonn, Germany.
dante.de/veranstaltungen/dante2023

152 TUGboat, Volume 44 (2023), No. 1

Calendar

TUG 2023 Bonn, Germany

Jul 13 Developers’ workshop:
Tagging PDF documents,
2:00–6:00 pm (space is limited)

Jul 13 Guided walking tour of downtown Bonn,
3:00–6:00 pm

Jul 13 Opening reception, 7:00–8:00 pm

Jul 14 – 16 The 44th annual meeting of the
TEX Users Group.
Presentations covering the TEX world
tug.org/tug2023

Jul 16 Excursion: boat trip to the Seven Hills,
2:15 pm

Jul 17 Guided walking tour of downtown Bonn,
9:30 am–12:30 pm

Jul 23 Final papers due for TUG 2023

proceedings

Jul 31 –
Aug 4

Balisage: The Markup Conference
(virtual). www.balisage.net

Aug 6 – 10 SIGGRAPH 2023, 50 years of SIGGRAPH,
Los Angeles, California.
s2023.siggraph.org

Aug 22 – 25 23rd ACM Symposium on Document
Engineering, Limerick, Ireland.
doceng.org/doceng2023

Sep 5 The Updike Prize for Student Type Design,
application deadline, 5:00 p.m. EST.
Providence Public Library,
Providence, Rhode Island.
prov.pub/updikeprize

Sep 10 – 16 17th International ConTEXt Meeting,
Prague–Sibřina, Czech Republic.
meeting.contextgarden.net/2023

2024

Feb 4 – 7 CODEX IX,
Richmond, California.
www.codexfoundation.org

Status as of 5 April 2023

For additional information on TUG-sponsored events listed here, contact the TUG office
(+1 503 223-9994, fax: +1 815 301-3568, email: office@tug.org). For events sponsored by
other organizations, please use the contact address provided.

User group meeting announcements are posted at tug.org/meetings.html. Interested
users can subscribe and/or post to the related mailing list, and are encouraged to do so.

Other calendars of typographic interest are linked from tug.org/calendar.html.

TUGBOAT Volume 44 (2023), No. 1

Introductory
4 Barbara Beeton / Editorial comments

• typography and TEX news, accessibility, and a warning

58 Peter Flynn / Typographers’ Inn
• Fast startup with LATEX; Footnotes as never before or since; Afterthought: List spacing

9 Frank Romano / A conversation with type designer Matthew Carter

3 Boris Veytsman / From the president
• on Macsyma, Maxima, software longevity, and the TUG presidency

Intermediate
21 Jacques André / Prehistory of digital fonts

• extensive examination of the foundational research in digital typography, profusely illustrated

141 Karl Berry / The treasure chest
• new CTAN packages, October 2022–April 2023

110 Janusz Bień / Creating annotated Unicode-like font charts
• inspiration to add Unicode and PUA annotations to font charts

71 Joppe Bos, Kevin McCurley / Metadata in journal publishing
• specifying extensive metadata to maximize reuse

117 Hans Hagen / ConTEXt in TEX Live 2023
• using the new LuaMetaTEX engine and ConTEXt LMTX

64 Carla Maggi / The DuckBoat — Beginners’ Pond: No more table nightmares with tabularray!
• introduction to the unique features of the tabularray package for typesetting tables

77 Frank Mittelbach / LATEX anniversaries — A look in two directions
• LATEX history and outlook; excerpted from The LATEX Companion, third edition

60 Tine Wilde / An artist’s journey on a TUGboat
• relationships between LATEX, art (photography), and measurability

Intermediate Plus
94 Timothy All, Evan Cochrane / LuaCAS: Symbolic computation in LATEX

• pure Lua computer algebra system, integrated into LATEX

115 Karl Berry / Production notes
• rendering modes in LuaLATEX and unusual Unicode characters

102 Igor Borja / An introduction to automata design with TikZ’s automata library
• typesetting finite automata (state machines), including loops and conditionals

116 Hans Hagen, Mikael Sundqvist / OpenType extensible brace debugging
• braces over single characters, and extensible lists vs. precomposed characters

99 Vı́t Novotný / Attributes in Markdown
• using, coding, and styling attributes in Markdown in LATEX

87 Marei Peischl / An introduction to expl3
• step-by-step introduction to the modern LATEX programming layer

108 Travis Stenborg / Styling R ggplot2 graphics with LATEX
• integrating R graphics with LATEX documents in a harmonious style

Advanced
133 Hans Hagen / Preserving the math class of variables

• new \variablefam extension to allow preserving math classes

121 Petr Oľsák / Creating macros in OpTEX
• many conveniences for macro programming, packaging, documenting

127 Udo Wermuth / Reflections on \globaldefs in plain TEX
• history, behavior, applications, and questions about \globaldefs

134 Joseph Wright / Storing Unicode data in TEX engines
• reading the great mass of Unicode data: two-stage tables and macro storage

Reports and notices
2 Institutional members

137 Jim Hefferon / Book reviews: Do Not Erase, by Jessica Wynne
• review of this coffee table book of mathematicians’ chalkboards and short essays

139 John Lamb / Book reviews: Stop Stealing Sheep & Find out how type works, by Erik Spiekermann
• review of this book on type and typography principles, now available at no charge

143 From other TEX journals: Die TEXnische Komödie 4/2022–1/2023; La Lettre GUTenberg 47–49 (2022);
Zpravodaj 2021/1–4

145 TEXnology Inc.

146 TEX consulting and production services

147 TUG Elections committee / TUG 2023 election report

151 Karl Berry / TUG financial statements for 2022

152 Calendar

