
MMTEX: Creating a minimal and modern
TEX distribution for GNU/Linux

Michal Vlasák

MMTEX stands for “minimal modern TEX” and is a
simple, small and legacy-free distribution of TEX for
GNU/Linux. It has the form of a installable package,
offers full functionality of OpTEX and plain LuaTEX
formats, allows use of system fonts and resources in
external TEXMF trees.

This article explains my motivation for creating
it, describes some aspects of a distribution in general
and how they are handled in MMTEX. My goal is to
show that things can be done simply, and that TEX
can integrate better into a Unix system and not be
the odd one out.

Motivation

I find TEX Live huge and complicated. Its “full
scheme” installation, which is the default, takes up
about 7 GiB. Though with “minimal” (plain TEX
only) scheme and no documentation you can get to
about 50 MiB. I also think that it doesn’t fit very
neatly into a Unix system. It isolates itself more or
less in a single directory tree and doesn’t follow the
hier(7) standard; as two examples, it doesn’t store
configuration files in /etc and doesn’t permit read-
only mount of /usr.

My end goal was to create something that:

• is a single package that can be installed using
an operating system’s package manager,

• integrates well into a system (respecting filesys-
tem hierarchy, using system fonts),

• includes only core functionality, but could eas-
ily be pointed to external TEXMF tree(s) with
additional packages/files,

• doesn’t complicate things with legacy, dynamic
regeneration of various files, . . .

The intended users are those who want a small
(34 MiB) but functional TEX system, one compara-
ble to LATEX and its many packages. Because of its
small size and ability to install using a package man-
ager it can also be useful for Docker images or CI/CD

scripts that need to set up a TEX environment.

Engine

Nowadays support for PDF output and OpenType
fonts is a must. That leaves the choice of engine be-
tween LuaTEX and X ETEX. LuaTEX was chosen, be-
cause it is extensible with Lua, has better support of
micro-typographical extensions, and has integrated
METAPOST in the form of mplib.

TUGboat, Volume 41 (2020), No. 3 343

Compiling LuaTEX. Originally LuaTEX started
with pdfTEX’s sources (mostly written in WEB), but
was translated to C. LuaTEX is somewhat confus-
ingly developed in a repository that is essentially a
subset of TEX Live’s repository, but separate. TEX
Live’s build infrastructure is based on GNU Auto-
tools and is able to compile all of TEX Live and
external libraries for a lot of platforms, but is very
slow and does a lot of checks for things that have
been standardized in C or POSIX for years.

After preparing replacements of build-time gen-
erated files it is however possible to compile LuaTEX
in more or less a single call to the compiler — the
only catch is mplib. It is written in CWEB, which it-
self is written in CWEB, so bootstrapping is needed.

External libraries. LuaTEX uses several external
C libraries. The most prominent one is of course
Lua, but it also uses, for example, libpng to handle
PNG images. There are two choices for how to use
a library — either compile its source into the binary
(“statically link”) or on each run of the program
find and load the compiled library file somewhere
on the file system (“dynamically link”). The usual
choice for most systems is dynamic linking — this
allows reuse of a single library file for more programs
(making updates easier) and saves disk space. It is
a bit slower, because of the searching and loading.

The libpng and zlib libraries, for example, are
often already present on systems or can easily be
installed using a package manager. For these the
dynamic linking approach is better. Other libraries
have LuaTEX’s modifications (Lua) or are specific
to TEX (Kpathsea) so sharing them would not be
especially useful. These are statically linked.

Formats

The obvious choice of format for a minimal TEX
would be plain TEX. Or rather its adaptation for
LuaTEX which for example outputs to PDF by de-
fault. While it can be called minimal, it isn’t “mod-
ern”. Most users today expect a format to be able
to easily create documents with numbered sections,
tables of contents, bibliographies, hyperlinks, source
code listings with syntax highlighting, etc. A recent
format, based on LuaTEX, which provides these fea-
tures, but still keeps plain’s simplicity is OpTEX. In
a sense it is even more powerful than LATEX — where
LATEX needs a package or an external binary, OpTEX
has it built in.

Both formats are included in the distribution,
OpTEX is the primary one, while plain is for now
included more or less just to allow running luatex

without getting an error about a missing format.

MMTEX: Creating a minimal and modern TEX distribution for GNU/Linux

Finding files

LuaTEX uses the Kpathsea library for finding files.
Kpathsea uses path specifications and variables sim-
ilar to the Unix PATH environment variable, but dif-
ferentiates between file types. For each file type it
maintains one or more associated variable names, a
list of possible suffixes and most importantly a calcu-
lated search path (directories separated by colons).
For example bib_format’s variables are BIBINPUTS

and TEXBIB, while the suffix list contains .bib.
In a simple case a search path is determined in

one of three ways, in order of significance:

• value of associated variable set in the environ-
ment (that is, an environment variable),

• value of associated variable from a texmf.cnf

configuration file,
• default value set at compilation time.

For finding .cnf files the same path searching
mechanism is used; the variable is TEXMFCNF, but as
it cannot be set from a configuration file, only the
first and last way applies. All texmf.cnf files that
are found are read. Order is important — earlier as-
signments in configuration files override later ones.

I set all the useful file types to have defaults
that work without any configuration file, and respect
standards like hier(7), TDS and XDG. For example,
the search path for .cnf files is:

• TEXMFDOTDIR (more on this later),
• ~/.config/mmtex (or more precisely its XDG

equivalent),
• /etc/mmtex,

to allow local (“project”), user and system configu-
ration files respectively.

In Kpathsea, default (compile-time) values for
search paths can be set, but not variables. For this
I created a patch that “injects” default values for a
few variables, as if they were read from a configura-
tion file.
TEXMFDOTDIR variable was inspired by TEX Live

and is normally the current directory (“.”), but is
useful for temporary overrides on the command line,
using environment variables. Every search path con-
tains TEXMFDOTDIR as the first entry, even the one
for .cnf files (allowing for project-specific settings).
TEXMF is the most important variable for MMTEX.

It should contain roots of all TEXMF trees. It is sup-
posed to be set by the user or system administrator
at any level of configuration they need at the mo-
ment, and doesn’t have a default value (preferences
of users and system administrators vary widely).

344 TUGboat, Volume 41 (2020), No. 3

Language support

Previous TEX engines had the limitation of being
able to load hyphenation patterns only at format
creation time — when running iniTEX. LuaTEX has
no such limitation; by using Lua, it is possible to
load hyphenation patterns at runtime.

Today virtually all hyphenation patterns and
exceptions that have been used by TEX users are
distributed in the hyph-utf8 package. hyph-utf8

also provides patterns and exceptions in UTF-8 en-
coded text files, which are preferred for LuaTEX.

TEX Live’s approach is to provide hyphenation
patterns and exceptions for each language in a sep-
arate package. Each package then hooks itself using
the TEX Live execute AddHyphen directive. An ex-
ample for French:

execute AddHyphen \

name=french synonyms=patois,francais \

lefthyphenmin=2 righthyphenmin=2 \

file=loadhyph-fr.tex \

file_patterns=hyph-fr.pat.txt \

file_exceptions=

This information is also written to files used by
ε-TEX’s language mechanism, which is used by plain
LuaTEX. This gets added to language.def:

\addlanguage{french}{loadhyph-fr.tex}{}{2}{2}

and this is written to language.dat.lua:

[’french’] = {

loader = ’loadhyph-fr.tex’,

lefthyphenmin = 2,

righthyphenmin = 2,

synonyms = { ’patois’, ’francais’ },

patterns = ’hyph-fr.pat.txt’,

hyphenation = ’’, },

etex.src reads language.def at format creation
time. Listed languages are registered and their hy-
phenation patterns loaded into the format. This en-
ables their use later with \uselanguage.

In LuaTEX, it is discouraged to load patterns
into the format, so the mechanism is changed by
hyph-utf8’s own etex.src. Instead of loading each
pattern or exception file on \addlanguage, the lan-
guage is only registered and the files are loaded at
the first \uselanguage. Both commands use Lua
code in luatex-hyphen.lua, which uses informa-
tion in language.dat.lua for handling synonyms
and finding the names of pattern files.

In OpTEX the situation is simpler. It doesn’t
read language.def because it already has that in-
formation, but it still uses luatex-hyphen.lua.

To support all languages in hyph-utf8, MM-
TEX generates the files language.def and language.

dat.lua from the hyph-utf8 sources.

Michal Vlasák

Fonts

To fully use the potential of LuaTEX, OpenType
fonts should be used. These are the same fonts
that are used by other programs, and as such some
of them are already preinstalled on operating sys-
tems. And probably many more are additionally
installed by users or administrators. To also not
duplicate any effort with packaging of fonts, the dis-
tribution doesn’t provide any OpenType fonts. The
idea is to let users use the fonts they already have
or can get on their system, as well as the fonts they
have in their TEXMF tree(s). For example Latin
Modern, the GUST e-foundry adaptation of Com-
puter Modern which includes OpenType, is avail-
able as fonts-lmodern on Debian-based systems
and otf-latin-modern on Arch Linux.

8-bit fonts. Only 8-bit fonts can be preloaded into
a TEX format. Both OpTEX and plain LuaTEX do
this. To support this, MMTEX includes a minimal
set of Type 1 fonts and their respective metric and
encoding files. A pdftex.map file is needed, as it is
used to map names of TFM metric files to font names
and font files, with optional reencodings. This file
contains lines like:

cmr5 CMR5 <cmr5.pfb

ec-lmr5 LMRoman5-Regular <lm-ec.enc <lmr5.pfb

The first line connects the cmr5.tfm font metric
file, the cmr5.pfb Type 1 font and the CMR5 font
name inside the .pfb. (CMR5 stands for Computer
Modern Roman in 5 point optical size). The second
line is similar, but additionally refers to a so-called
encoding vector stored in file lm-ec.enc. This is
necessary because lmr5.pfb contains many glyphs,
while TEX can use only 256 of them and expects
the order to correspond with ec-lmr5.tfm, which
contains metric information for those selected 256
glyphs. In this particular case the Cork (“EC”) en-
coding (set of glyphs) is used.

Engines only read one pdftex.map file, but each
font package usually provides one or more .map files.
This is why an aggregate pdftex.map is usually gen-
erated (in TEX Live using the updmap script). As
MMTEX supports only a limited number of Type 1
fonts, a minimal pdftex.map was created by hand.

OpenType fonts. In order to handle OpenType
fonts Lua code is needed. luaotfload is included
for this purpose as it is already used internally by
OpTEX. It can also be used from plain LuaTEX,
with \input luaotfload.sty.
luaotfload is able to find all system fonts, be-

cause it reads fontconfig’s configuration. There-
fore, there is no need to set the OSFONTDIR variable.

TUGboat, Volume 41 (2020), No. 3 345

The standard TDS directories for font files also work:
$TEXMF/fonts/{opentype,truetype}.

MetaPost

METAPOST is integrated into LuaTEX as mplib and
available via a Lua interface. luamplib adapts the
code from ConTEXt for plain (and LATEX), making
it possible to use METAPOST in a .tex file. To use
it, \input luamplib.sty.
mplib proved to be useful even as a METAFONT

replacement. “Ralph Smith’s Formal Script” font
(required by OpTEX) doesn’t have prebuilt TFM

files on CTAN. Normally one would use META-
FONT to generate the metrics, but with a few lines
of Lua mplib can, just like METAPOST, use the
mfplain.mp format to function as METAFONT and
do the job.

Implementation of MMTEX

MMTEX itself is a few supporting files and a script
called build which contains instructions for building
MMTEX to a given directory. The script in this form
allows a wrapper that packs together the directory
and some metadata to create an installable pack-
age. The included package-builder script demon-
strates this, and as of now can create packages in
Debian’s .deb, Arch Linux’s pkg and classic tarball
(.tar.gz) formats.

The sources (which are merely the build logic),
documentation, and prebuilt packages are available
at https://github.com/vlasakm/mmtex.

The result

The resulting package, installed, takes up 34 MiB
(around 15 MiB compressed). Most of this is Type 1
fonts (11 MiB), the luatex binary (6.5 MiB), data
related to Unicode codepoints (about 5 MiB) and
hyphenation patterns/exceptions (3.2 MiB).

Not included are macro source files (.dtx) and
package documentation , both of which are of course
available on CTAN. Documentation is also easily
accessible on https://texdoc.net.

At present there is no support for getting or
managing packages from CTAN — MMTEX expects
to be pointed to already-prepared TEXMF trees. Op-
TEX hopefully provides enough functionality to not
require a large number of other macros.

� Michal Vlasák
Proboštov, Czech Republic
lahcim8 (at) gmail dot com

MMTEX: Creating a minimal and modern TEX distribution for GNU/Linux

