
308 TUGboat, Volume 41 (2020), No. 3

bib2gls: selection, cross-references and
locations

Nicola L. C. Talbot

Abstract

In my previous article [6], I described using index-
ing applications with LATEX, a process required by
the glossaries package to sort and collate terms, and
the development of the bib2gls command line ap-
plication, which was designed specifically for the
glossaries-extra extension package. This article de-
scribes how bib2gls differs from the other indexing
methods with respect to selection, grouping, cross-
references and invisible locations.

1 \printglossary vs \printunsrtglossary

In order to better understand how items are listed
with bib2gls [3], it’s useful to understand the prin-
cipal differences between \printglossary (which is
provided by glossaries [4] and used with makeindex
and xindy [1]) and \printunsrtglossary (which
is provided by glossaries-extra [5] and used with
bib2gls). This was briefly covered in the previous
article but is described in more detail here.

Consider the following document:
\documentclass{article}
\usepackage[style=treegroup]{glossaries}
\makeglossaries
\loadglsentries{entries}
\begin{document}
\Gls{duck}, \gls{parrot} and \gls{quartz}.
\printglossary
\end{document}

The entries are all defined in the file entries.tex,
which helps reduce clutter in the main document file
and also makes it easier to reuse the same definitions
in other documents. The contents of this file follows:
\newglossaryentry{antigen}{name={antigen},
description={toxin or other foreign substance

that induces an immune response}}
\newglossaryentry{mineral}{name={mineral},
description={solid, inorganic,

naturally-occurring substance}}
\newglossaryentry{animal}{name={animal},

description={living organism that has
specialised sense organs and nervous system}}
\newglossaryentry{bird}{name={bird},
parent={animal},
description={egg-laying animal with feathers,

wings and a beak}}
\newglossaryentry{parrot}{name={parrot},
parent={bird},
description={mainly tropical bird with bright

plumage}}
\newglossaryentry{duck}{name={duck},

parent={bird},
description={waterbird with webbed feet}}

\newglossaryentry{quartz}{name={quartz},
parent={mineral},
description={hard mineral consisting of silica}}

This defines seven glossary entries. Only three
have been referenced in the document, three are
ancestors of the referenced entries so they must be
included in the glossary as well, and one (antigen)
hasn’t been referenced and isn’t required by any
referenced entry. The document build is:1

latex myDoc
makeglossaries myDoc
latex myDoc
(assuming the document source is in the file myDoc.
tex). The makeglossaries helper script invokes
makeindex, which creates the file myDoc.gls that
contains (line breaks added for clarity throughout):
\glossarysection[\glossarytoctitle]

{\glossarytitle}
\glossarypreamble
\begin{theglossary}\glossaryheader
\glsgroupheading{A}\relax 〈reset〉
\glossentry{animal}\relax 〈reset〉
\subglossentry{1}{bird}\relax 〈reset〉
\subglossentry{2}{duck}{〈location list〉}
\subglossentry{2}{parrot}{〈location list〉}
\glsgroupskip
\glsgroupheading{M}\relax 〈reset〉
\glossentry{mineral}\relax 〈reset〉
\subglossentry{1}{quartz}{〈location list〉}
\end{theglossary}\glossarypostamble

(The 〈reset〉 code, which is omitted for clarity, deals
with counteracting the effect of \glsnonextpages.)
Note that the location list argument for the unrefer-
enced ancestor entries is just \relax. The start of
each letter group is identified with
\glsgroupheading{〈group label〉}
The argument is a label which may have a corre-
sponding title. If there’s no title associated with it
the label is used as the title. Glossary styles that
don’t support group headings define this command
to do nothing.

\printglossary effectively does:
〈setup defaults〉
\bgroup
〈process options〉
〈input glossary file if it exists〉

\egroup

The initialisation parts (〈setup defaults〉 and 〈process
options〉) deal with defining the glossary section ti-
tle (\glossarytitle and \glossarytoctitle), the

1 latex is used here to denote pdflatex, xelatex or
lualatex. Replace as appropriate.

Nicola L. C. Talbot



TUGboat, Volume 41 (2020), No. 3 309

preamble and postamble, and implementing the re-
quired glossary style (which defines theglossary
and the formatting commands used in that environ-
ment).

A few minor modifications are needed to the
example document to use \printunsrtglossary in-
stead:
\documentclass{article}
\usepackage[postdot,stylemods,style=treegroup]

{glossaries-extra}
\loadglsentries{entries}
\begin{document}
\Gls{duck}, \gls{parrot} and \gls{quartz}.
\printunsrtglossary
\end{document}

Note that \makeglossaries has been removed as
there are now no indexing files that need to be opened.
The extension package has a different set of defaults
to the base package, so the post-description punctu-
ation needs to be added (postdot) if required. The
stylemods option automatically loads glossaries-extra-
stylemods which modifies the predefined glossary
styles to provide better integration with glossaries-
extra and bib2gls and to make the styles easier to
customise.

The document build is now simply:
latex myDoc

In this case there’s no file for \printunsrtglossary
to input. Instead, it iterates over all defined entries
for the given glossary to obtain the contents. Some
glossary styles use a tabular-like environment and
loops within such environments are problematic, so
an internal control sequence (\@glsxtr@doglossary)
is used to store the contents of the glossary which is
then expanded on completion. The glossary code is
now essentially:
〈setup defaults〉
\bgroup
〈process options〉
\glossarysection[\glossarytoctitle]

{\glossarytitle}
\glossarypreamble
〈construct \@glsxtr@doglossary〉
\printunsrtglossarypredoglossary
\@glsxtr@doglossary
\glossarypostamble

\egroup

The \@glsxtr@doglossary command ends up de-
fined as:
\begin{theglossary}\glossaryheader 〈reset〉
〈content〉
\end{theglossary}

The 〈content〉 part is constructed within a loop. The
current group label is initialised to empty:

\def\@gls@currentlettergroup{}

Each iteration of the loop performs the following
steps:
1. Do the loop hook (which does nothing by default

but may be configured to skip the current entry).
2. If the current entry doesn’t have a parent, obtain

its group label (empty, if unavailable), and if
the 〈group label〉 for this entry is different from
the currently stored group label then add the
following code to 〈content〉:
\glsgroupheading{〈group label〉}

(if the current group label is empty) or
\glsgroupskip\glsgroupheading{〈group label〉}

(if the current group label isn’t empty). The
current group label is then set to 〈group label〉.

3. Add the following to 〈content〉:
\〈internal cs handler〉{〈entry label〉}

The group label is obtained as follows: if the group
key has been defined then the label is obtained from
the entry’s group field (which may be empty) other-
wise the label is obtained from the uppercase char-
acter code of the first letter of the sort field (which
is normally obtained from the name field if not set).

In this example, the entry on the first iteration of
the loop is ‘antigen’. This entry doesn’t have a parent
so the group information is queried to determine if a
new group heading should be inserted.

The group key hasn’t been defined in this doc-
ument, so the group label needs to be obtained from
the first character of the name field (since the sort
field hasn’t been provided). This character is the
letter ‘a’ so the label is set to the decimal code of its
uppercase equivalent (65). This is different from the
current group label (initially empty), so the group
header command is added:
\glsgroupheading{65}

(The decimal code is used for the group label to make
it easier to expand.)

Note that no \glsgroupskip is added at this
point because the current group label was empty.
The new current group label is updated (to 65). The
internal handler macro is then added:
\@printunsrt@glossary@handler{antigen}

This handler macro is used by all entries, regardless
of their hierarchical level, and it uses the command:
\printunsrtglossaryhandler{〈label〉}
This is the command that should be redefined (not
the internal handler macro) if you want to customize
the output. The default definition is simply
\glsxtrunsrtdo{〈label〉}

bib2gls: selection, cross-references and locations



310 TUGboat, Volume 41 (2020), No. 3

This fetches the entry’s hierarchical level and then
does either (〈level〉 = 0)
\glossentry{〈label〉}{〈location〉}
or (〈level〉 > 0)
\subglossentry{〈level〉}{〈label〉}{〈location〉}
where the location list is obtained from an internal
field. In this example those fields haven’t been set,
so the locations are all empty.

For debugging purposes, it’s possible to see the
glossary code content using:
\renewcommand{\printunsrtglossarypredoglossary}{%
\csshow{@glsxtr@doglossary}}

In the above example, the content is:
\begin{theglossary}\glossaryheader 〈reset〉
\glsgroupheading{65}
\@printunsrt@glossary@handler{antigen}
\glsgroupskip\glsgroupheading{77}
\@printunsrt@glossary@handler{mineral}
\glsgroupskip\glsgroupheading{65}
\@printunsrt@glossary@handler{animal}
\@printunsrt@glossary@handler{bird}
\@printunsrt@glossary@handler{parrot}
\@printunsrt@glossary@handler{duck}
\@printunsrt@glossary@handler{quartz}
\end{theglossary}

(There’s only one 〈reset〉 here as there’s no sense in us-
ing \glsnonextpages with \printunsrtglossary.)

The results of both methods are shown in Fig-
ures 1 and 2. Note that the letter groups show the
decimal character code (used as the group label)
because no title has been assigned. Titles may be
assigned with
\glsxtrsetgrouptitle{〈label〉}{〈title〉}
For example:
\glsxtrsetgrouptitle{65}{A}

Obviously this is quite tedious to do for the entire
alphabet.

The order of definition has created some strange
results: there are two groups with the label 65 (‘A’)
and the ‘quartz’ sub-entry is separated from its
parent (‘mineral’). The glossary style determines
whether or not the hierarchy is visible (through in-
dentation etc.). The internal loop doesn’t make any
attempt to gather child entries. The parent field is
only queried within the loop to determine whether
or not to attempt to insert the letter group headings.

The key to using \printunsrtglossary is to
ensure the entries are defined in the correct order,
defining child entries immediately after their parent,
and defining only those entries which are required. In
this case, the entries should be defined in the order:
animal, bird, duck, parrot, mineral, quartz (antigen
shouldn’t be defined as it’s not required).

The way bib2gls works is by fetching data from
.bib files and creating a file (.glstex) that defines
all required entries in the required order with the
required internal fields (for the group label and loca-
tion lists) set appropriately. Wrapper commands are
provided to make it easier to customise. For example:
\providecommand{\bibglsnewentry}[4]{%
\longnewglossaryentry*{#1}{name={#3},#2}{#4}}

(\longnewglossaryentry* is used to allow for multi-
paragraph descriptions.)

If required, the group labels are obtained by
the sort method and the code to define the corre-
sponding titles is added to the .glstex file. In other
words, bib2gls takes care of all the tedious code
that’s required with the manual method. This be-
haviour is possible to override; however, if bib2gls
is instructed to assign group labels that don’t follow
the order obtained by the given sorting method then
fragmented groups will occur. (If you find yourself
wanting to order by group title then this is an indica-
tion that you should actually be using a hierarchical
system instead [7].)

The .glstex file is input (if it exists) with:
\GlsXtrLoadResources[〈options〉]
This command also writes information to the .aux
file that’s picked up by bib2gls (for example, the
names of the .bib files that contain the data and
how to order the entries).

bib2gls comes with a helper command line util-
ity convertgls2bib which can be used to parse TEX
files for instances of \newglossaryentry and other
commands that are provided to define entries (such
as \newabbreviation). In general, it’s best to use
this tool with files that only contain entry definitions
(such as the example entries.tex) but it can also
be used on a complete document. (In this case, the
-p or --preamble-only switch may be used to limit
parsing to the document preamble.) For example:
convertgls2bib entries.tex entries.bib

This will create a file called entries.bib. The ex-
ample myDoc.tex file can now be modified to use
bib2gls:
\documentclass{article}
\usepackage[record,postdot,style=treegroup]

{glossaries-extra}
\GlsXtrLoadResources[src={entries}]
\begin{document}
\Gls{duck}, \gls{parrot} and \gls{quartz}.
\printunsrtglossary
\end{document}

Note the use of the record package option, which
is required with bib2gls. This option defines the
group key, which defaults to an empty label if not

Nicola L. C. Talbot



TUGboat, Volume 41 (2020), No. 3 311

explicitly assigned, and the location key, which is
used to store the formatted location list (another field
is available that stores each location in an internal
list, if required).

The document build is now:
latex myDoc
bib2gls -g myDoc
latex myDoc

The result is shown in Figure 3.
The -g (or --group) switch is required if you

want distinct groups. This will make the sort meth-
ods automatically assign the group label to each
top-level entry (stored in the entry’s group field). If
this switch isn’t used and the group labels aren’t
assigned in some other way, then step 2 in the loop
iteration (page 309) will be skipped.

Note there’s a difference between using the -g
switch with a style that doesn’t show the group title
and not using the -g switch. For example, if the style
is changed from treegroup to tree then when bib2gls
is invoked with -g there will be a vertical gap between
letter groups (unless the nogroupskip option is used)
whereas there won’t be a gap if bib2gls is run with
the default --no-group setting.

In the first case, the group label is set, so step 2
in the loop iteration adds the group skip and group
heading commands. The tree style redefines the
group heading command to do nothing but the group
skip is implemented. In the second case, the group
label isn’t set, so step 2 is omitted, so neither the
group skip nor the group heading command will
be inserted. If the nogroupskip option is set with
a glossary style that doesn’t show the group head-
ing, then the result will typically appear the same
as invoking bib2gls with the default --no-group
setting. However, since the group formations add to
the total document build time it’s more efficient to
simply use the default --no-group setting—unless
you have multiple glossaries where some do require
visual separation between groups.

2 The .bib file

As with BibTEX, data is defined in the .bib file in
the form:
@〈entry-type〉{〈label〉,〈key=value list〉}

If the 〈entry-type〉 is unrecognised, it will be ignored
(with a warning). Comments are slightly different:
in BibTEX, anything outside of @〈entry-type〉{...}
is considered a comment, but bib2gls is stricter and
comments need to be marked up as such. Like TEX,
bib2gls recognises % as a comment character. The
most important comment is the encoding line, e.g.:
% Encoding: UTF-8

This is best placed near the start of the file. Gen-
eral comments (but not the encoding) may also be
supplied in @comment. For example:
@Comment{jabref-meta: databaseType:bib2gls;}

(Entry type names are case-insensitive.) There are
four basic sets of entry types:
abbreviations Two primary entry types:

@abbreviation and @acronym. These have
two required fields: short and long.

symbols Two primary entry types: @symbol
and @number. The required fields are: name
or parent. If the name is missing, then the
description is also required.

index Two primary entry types: @index and
@indexplural. There are no required fields.

general One primary entry type: @entry. The
required fields are: description and either
name or parent.

There are other entry types, but they are beyond the
scope of this article.

Unknown entry types and fields can be aliased,
which can make a .bib file more adaptable to multi-
ple documents. For example, consider:
@unit{m,

unitname={metre},
unitsymbol={\si{\metre}},
measurement={length}

}

This is an unknown entry type where all the fields
are also unknown. However, the resource options

entry-type-aliases={unit=entry},
field-aliases={
unitname=name,
unitsymbol=symbol,
measurement=description

}

will make bib2gls treat this entry as though it had
been defined as
@entry{m,

name={metre},
symbol={\si{\metre}},
description={length}

}

whereas
entry-type-aliases={unit=symbol},
field-aliases={
unitname=description,
unitsymbol=name

}

will make bib2gls treat this entry as though it had
been defined as
@symbol{m,

bib2gls: selection, cross-references and locations



312 TUGboat, Volume 41 (2020), No. 3
Duck, parrot and quartz.

Glossary

A

animal living organism that has specialised sense organs and nervous system.
bird egg-laying animal with feathers, wings and a beak.
duck waterbird with webbed feet. 1
parrot mainly tropical bird with bright plumage. 1

M

mineral solid, inorganic, naturally-occurring substance.
quartz hard mineral consisting of silica. 1

1

Figure 1: \printglossary (ordered by makeindex)
Duck, parrot and quartz.

Glossary

65

antigen toxin or other foreign substance that induces an immune response.

77

mineral solid, inorganic, naturally-occurring substance.

65

animal living organism that has specialised sense organs and nervous system.
bird egg-laying animal with feathers, wings and a beak.
parrot mainly tropical bird with bright plumage.
duck waterbird with webbed feet.

quartz hard mineral consisting of silica.

1

Figure 2: \printunsrtglossary and stylemods (no automated ordering)
Duck, parrot and quartz.

Glossary

A

animal living organism that has specialised sense organs and nervous system.
bird egg-laying animal with feathers, wings and a beak.
duck waterbird with webbed feet. 1
parrot mainly tropical bird with bright plumage. 1

M

mineral solid, inorganic, naturally-occurring substance.
quartz hard mineral consisting of silica. 1

1

Figure 3: \printunsrtglossary and stylemods (ordered with bib2gls --group)

Nicola L. C. Talbot



TUGboat, Volume 41 (2020), No. 3 313

description={metre},
name={\si{\metre}}

}

With the other indexing options (makeindex, xindy
or \printnoidxglossary), the general recommenda-
tion is to set the sort key for any entry that contains
commands within the name. For example:
\newglossaryentry{m}{name={\si{\metre}},

sort={m},description={metre}}

With bib2gls, the recommendation is the oppo-
site: the sort field typically shouldn’t be set [8].
For this reason, by default convertgls2bib will
skip the sort field when parsing commands like
\newglossaryentry. By omitting this field, it be-
comes possible to dynamically allocate the most
appropriate value on a per-document basis, which
makes it much easier to share .bib files across mul-
tiple documents. This will be covered in more detail
in a follow-up article.

3 Cross-referencing

When using \index with makeindex, if you want to
add a cross-reference in the index then you use the
see or seealso encap (format). For example:
\index{cross product|see{vector product}}
\index{dot product|seealso{vector product}}
\index{products|see{dot product and vector
product}}

These are treated by makeindex in the same way as
any other location format, where the content follow-
ing the encap marker (the vertical pipe | by default)
is treated as the name of a formatting command that
needs to encapsulate the page number. The argument
text {vector product} is considered all part of the
formatting command name (from makeindex’s point
of view). The above commands will be converted by
makeindex into:
\item cross product, \see{vector product}{1}
...
\item dot product, \seealso{vector product}{1}
...
\item products, \see{dot product and vector
product}{1}

(assuming the \index commands were on page 1).
The \see and \seealso commands are provided by
indexing packages such as makeidx [2] and are defined
to ignore the second argument. Naturally, you also
need to index the referenced term (‘vector product’
in this case) to avoid confusing the reader.

By analogy, you could adopt the same method
with the glossaries package (makeidx is loaded in the
example below to provide \see and \seealso):

\documentclass{article}
\usepackage{makeidx}
\usepackage{glossaries}
\makeglossaries
\newglossaryentry{product}{name={products},

description={...}}
\newglossaryentry{vector-product}{

name={vector product},description={...}}
\newglossaryentry{cross-product}{

name={cross product},description={...}}
\newglossaryentry{dot-product}{

name={dot product},description={...}}
\begin{document}
\Gls{vector-product}.
\glsadd[format=see{vector product}]

{cross-product}
\glsadd[format=seealso{vector product}]

{dot-product}
\glsadd[format=see{dot product and vector

product}]{product}
\printglossaries
\end{document}

In version 1.17 (2008-12-26) of the base glos-
saries package a new command \glssee was added
to provide a cross-referenced entry similar to this, but
instead of using makeidx’s \see and \seealso com-
mands it uses its own analogous commands that take
a label as the first argument instead of user-supplied
text. (Again the second argument containing the
location is ignored.) So the above document can be
changed to use \glssee:

\documentclass{article}
\usepackage{glossaries}
\makeglossaries
\newglossaryentry{product}{name={products},

description={...}}
\newglossaryentry{vector-product}{

name={vector product},description={...}}
\newglossaryentry{cross-product}{

name={cross product},description={...}}
\newglossaryentry{dot-product}{

name={dot product},description={...}}
\begin{document}
\Gls{vector-product}.
\glssee{cross-product}{vector-product}
\glssee[see also]{dot-product}{vector-product}
\glssee{product}{dot-product,vector-product}
\printglossaries
\end{document}

This has several advantages:

• the cross-references are identified by label so the
text produced can be obtained from the name
key, which ensures consistency;

• if the hyperref package is added then the cross-
reference can be automatically hyperlinked;

bib2gls: selection, cross-references and locations



314 TUGboat, Volume 41 (2020), No. 3

• if xindy is required instead of makeindex, then
\glssee can use xindy’s native cross-referencing
markup.

The location (which is ignored within the document
but required by makeindex) is set to ‘Z’ regardless
of where \glssee is used in the document so, with
the default makeindex settings, the cross-reference
will be pushed to the end of the location list.

In the case of synonyms, such as ‘cross prod-
uct’, that don’t need to be used in the document but
need to be added to the glossary as a cross-reference
to assist the reader, then the term only needs to
be defined and indexed with \glssee. For conve-
nience, version 1.17 also introduced the see key to
\newglossaryentry as a shortcut to enable the en-
try to be defined and indexed at the same time. For
example:
\newglossaryentry{cross-product}{

name={cross product},description={...},
see={vector-product}}

is equivalent to:
\newglossaryentry{cross-product}{

name={cross product},description={...}}
\glssee{cross-product}{vector-product}

This is the only function that the see key serves with
the base glossaries package. Since indexing can only
be performed after the associated files have been
opened an error will occur if the see key is used be-
fore \makeglossaries (otherwise the indexing will
silently fail). For draft documents (where you may
want to consider commenting out \makeglossaries
to speed compilation), you can suppress the error or
turn it into a warning with the seenoindex package
option.

As with \index, it’s necessary to ensure that the
referenced entry is also indexed (through commands
like \gls or \glsadd).

The glossaries-extra package provides a similar
command \glsxtrindexseealso, which essentially
does \glssee[\seealsoname] (unless xindy is re-
quired, in which case alternative markup is used).
There’s a corresponding key seealso that performs
this command, analogous to the see key. (Note that
the tag used for the ‘see also’ command and key is
always \seealsoname.) Although these commands
(and their corresponding shortcut keys) essentially
do the same thing but with a different tag, they are
provided both for semantic reasons and to make it
easier to apply different formatting, depending on
whether the cross-reference is a synonym or a pointer
to related terms.

The extension package modifies the see key so
that its value is also saved. The key still serves

as a shortcut for \glssee, but it may be useful to
later query the information. The seealso key also
saves its value. The extension package also provides
a related key alias which may only take a single
label as its value. This behaves much like its see
counterpart when indexing but it will also make
commands like \gls link to the alias target in the
glossary.

Now let’s switch to \printunsrtglossary:
\documentclass{article}
\usepackage{hyperref}
\usepackage[seenoindex=ignore]{glossaries-extra}
\newglossaryentry{product}{name={products},

see={dot-product,vector-product},
description={...}}

\newglossaryentry{vector-product}{
name={vector product},description={...}}

\newglossaryentry{cross-product}{
name={cross product},description={...},
alias={vector-product}}

\newglossaryentry{dot-product}{
name={dot product},description={...},
seealso={vector-product}}

\begin{document}
\Gls{vector-product} (also called
\gls{cross-product}) and \gls{dot-product}.
\printunsrtglossary
\end{document}

No indexing is performed so the see and seealso
keys have no effect. There are no location lists for
any of the entries (not even the ones used in the
document). In order to show the cross-referencing
information in the glossary, it’s necessary to either
modify the glossary style (or associated hooks) or
define the location key (which the record option
does) and then set this key for the required entries.
For example:
\usepackage[record]{glossaries-extra}
\newglossaryentry{product}{name={products},

see={dot-product,vector-product},
description={...},
location={\glsxtrusesee{product}}}

\newglossaryentry{vector-product}{
name={vector product},description={...}}

\newglossaryentry{cross-product}{
name={cross product},description={...},
alias={vector-product},
location={\glsxtrusealias{cross-product}}}

\newglossaryentry{dot-product}{
name={dot product},description={...},
seealso={vector-product},
location={\glsxtruseseealso{dot-product}}}

Again this is tedious to do manually but can be
performed automatically by bib2gls.

In .bib files, the see, seealso and alias fields
don’t perform any automated indexing but establish

Nicola L. C. Talbot



TUGboat, Volume 41 (2020), No. 3 315

dependencies. The entries that are actually selected
and added to the .glstex file depend on the selection
criteria. For example:
\usepackage[record]{glossaries-extra}
\GlsXtrLoadResources[src=entries,selection=all]
\begin{document}
\printunsrtglossaries
\end{document}

This will select all entries defined in entries.bib.
None of them will have any page numbers (because
they haven’t been indexed in the document), but
any entries with the see, seealso or alias fields
set will have the cross-reference information added
to the location field.

The default setting is selection={recorded
and deps} which selects all entries with records in
the .aux file (that is, they’ve been indexed using com-
mands like \gls) and their dependent entries (ances-
tors, cross-references and any entries that have been
referenced in certain fields, such as description).
This is straightforward for bib2gls to do (since it
has access to all data in the .bib files) but is some-
thing that makeindex and xindy can’t do (as they
only have limited information about entries that have
been indexed and no information at all about entries
that haven’t been indexed).

Consider the following example (which requires
makeindex):
\documentclass{article}
\usepackage[colorlinks]{hyperref}
\usepackage[style=tree]{glossaries-extra}
\makeglossaries
\loadglsentries{vegetables}
\begin{document}
\Gls{cauliflower} and \gls{marrow}.
\printglossaries
\end{document}

Where the file vegetables.tex contains:
\newglossaryentry{cauliflower}{

name={cauliflower},description={type of
\gls{cabbage} with edible white flower head}}

\newglossaryentry{cabbage}{
name={cabbage},description={vegetable

with thick green or purple leaves}}
\newglossaryentry{marrow}{

name={marrow},description={long
white-fleshed gourd with green skin},

seealso={courgette}}
\newglossaryentry{courgette}{name={courgette},
description={immature fruit of a \gls{marrow}}}

\newglossaryentry{zucchini}{name={zucchini},
description={},see={courgette}}

\newglossaryentry{aubergine}{name={aubergine},
description={purple egg-shaped fruit}}

\newglossaryentry{eggplant}{name={eggplant},
description={},see={aubergine}}

Two entries have been indexed in the document (cau-
liflower and marrow) and three have been implicitly
indexed via the see or seealso key (marrow, zuc-
chini and eggplant). If the file is called myDoc.tex
then the document build would normally be:
latex myDoc
makeglossaries myDoc
latex myDoc

This results in a glossary containing five items (cauli-
flower, courgette, eggplant, marrow and zucchini;
see Figure 4), and there are two warnings from
hyperref about non-existent references to targets
glo:aubergine and glo:cabbage. This is because
there are hyperlinks in the glossary to aubergine and
cabbage, but the targets aren’t defined as those en-
tries haven’t been indexed. In the case of cabbage,
makeindex isn’t aware of the reference in the descrip-
tion of cauliflower, but once the glossary has been
created this reference can be indexed on the next
LATEX run. This means that the complete document
build has to be:
latex myDoc
makeglossaries myDoc
latex myDoc
makeglossaries myDoc
latex myDoc

This ensures that the required cabbage entry appears
in the glossary but there’s still a broken link to the
unlisted aubergine (Figure 5). The cross-reference
(via see or \glssee) only indexes the source entry
(eggplant). It doesn’t index the target (aubergine).
The target must be indexed in order to resolve the
broken link, but there’s no reason for either eggplant
or aubergine to be listed in the glossary as neither
are required in the document.

The vegetables.tex file can be converted to a
.bib file:
convertgls2bib -i vegetables.tex vegetables.bib

(The -i switch converts the entries with empty de-
scriptions to use @index instead of @entry, which
is more appropriate.) The document can now be
converted to use bib2gls:
\documentclass{article}
\usepackage[colorlinks]{hyperref}
\usepackage[record,stylemods,style=tree]

{glossaries-extra}
\GlsXtrLoadResources[src={vegetables}]
\begin{document}
\Gls{cauliflower} and \gls{marrow}.
\printunsrtglossaries
\end{document}

This is with the default selection criteria which selects
recorded entries (cauliflower and marrow) and their
dependencies (cauliflower requires cabbage, since

bib2gls: selection, cross-references and locations



316 TUGboat, Volume 41 (2020), No. 3

\gls{cabbage} is in its description, and marrow
requires courgette, in order to resolve the cross-
reference). This means that the glossary ends up
with four items: cabbage, cauliflower, courgette and
marrow. Note that cabbage doesn’t have a location.
The location (if required) can only be determined
once the description is expanded in the glossary.

Neither zucchini nor eggplant have been selected
since neither of them have records and neither are
required by any of the indexed entries (or their de-
pendents). It would, however, be useful to also se-
lect zucchini to supply the synonym for courgette
(but not eggplant, since aubergine isn’t required).
This can be done with either selection={recorded
and deps and see} or selection={recorded and
deps and see not also} This will select any en-
tries that cross-reference a required entry via the
see or alias fields. The former will also include
cross-references via the seealso field. The latter
doesn’t. This will now include zucchini but not egg-
plant (Figure 7).

So with bib2gls you can use see, seealso and
alias to establish dependencies without automati-
cally forcing the entry into the glossary. With the
other methods, these keys should only be used if that
automated indexing is intended.

4 Invisible or ignored locations

Both makeindex and xindy require an associated
location (typically a page number). They are gen-
eral purpose indexing applications and indexes are
intended to direct the reader to relevant locations
in the document. Glossaries, on the other hand,
provide definitions of terms and these don’t neces-
sarily require any locations. The location list may
be suppressed with the nonumberlist option, but this
will also suppress any cross-references (since they are
placed inside the location list).

The glossaries package provides a \@gobble-like
command \glsignore which simply ignores its ar-
gument and may be used as an encap to provide an
invisible location. This only works if that is the only
location in the list. If there are other locations it
will result in spurious commas or en-dashes. This
encap is used by \glsaddallunused, which iterates
over all defined entries and indexes each unused en-
try. The aim here is to ensure all entries appear in
the glossary, while only those used in the text have
locations. The problematic spurious commas and
en-dashes occur when this command is combined
with any indexing command that doesn’t mark the
entry as used or if the first-use flag has been reset or
if any subsequent indexing occurs.

Since bib2gls is designed for glossaries where lo-
cations may not be required, it allows selection with-
out adding to the location list. The bib2gls alterna-
tive to \glsaddallunused is to use selection=all,
which will select all entries, but only those that have
been specifically indexed will have locations. It also
recognises glsignore as a special ‘ignored location’,
which indicates that the entry should be selected
but the location should be discarded (rather than
simply rendered invisible). You can even set this as
the default format with
\GlsXtrSetDefaultNumberFormat{glsignore}

This could, for example, be done at the start of the
back matter, or it could be done for the entire doc-
ument and only overridden for significant locations.
Setting up the alternative modifier can make it easier
to switch the format. For example:
\GlsXtrSetAltModifier{!}{format=glsnumberformat}

Now the principal mention of cauliflower could be
written as:
A \gls!{cauliflower} is a type of \gls{cabbage}.

If glsignore has been set as the default format this
will only add the current page to the cauliflower
location list but will ensure that cabbage is also
selected. This can help reduce lengthy location lists
into a more compact list that only includes the most
pertinent locations.

References
[1] R. Kehr, J. Schrod. xindy: a general-purpose index

processor, 2018. ctan.org/pkg/xindy.
[2] LATEX Team. The makeidx package, 2014.

ctan.org/pkg/makeidx.
[3] N. Talbot. bib2gls: Command line application

to convert .bib files to glossaries-extra.sty
resource files, 2020. ctan.org/pkg/bib2gls.

[4] N. Talbot. The glossaries package, 2020.
ctan.org/pkg/glossaries.

[5] N. Talbot. The glossaries-extra package, 2020.
ctan.org/pkg/glossaries-extra.

[6] N. Talbot. Indexing, glossaries and bib2gls.
TUGboat 40(1), 2019. tug.org/TUGboat/tb40-1/
tb124talbot-bib2gls.pdf

[7] N. Talbot. Logical glossary divisions (type vs group
vs parent), 2020. dickimaw-books.com/gallery/
?label=logicaldivisions.

[8] N. Talbot. Sorting, 2019. dickimaw-books.com/
gallery/?label=bib2gls-sorting.

� Nicola L. C. Talbot
School of Computing Sciences
University of East Anglia
Norwich NR4 7TJ
United Kingdom
https://www.dickimaw-books.com

Nicola L. C. Talbot

https://ctan.org/pkg/xindy
https://ctan.org/pkg/makeidx
https://ctan.org/pkg/bib2gls
https://ctan.org/pkg/glossaries
https://ctan.org/pkg/glossaries-extra
https://tug.org/TUGboat/tb40-1/tb124talbot-bib2gls.pdf
https://tug.org/TUGboat/tb40-1/tb124talbot-bib2gls.pdf
https://dickimaw-books.com/gallery/?label=logicaldivisions
https://dickimaw-books.com/gallery/?label=logicaldivisions
https://dickimaw-books.com/gallery/?label=bib2gls-sorting
https://dickimaw-books.com/gallery/?label=bib2gls-sorting


TUGboat, Volume 41 (2020), No. 3 317
Cauliflower and marrow.

Glossary

cauliflower type of cabbage with edible white flower head 1
courgette immature fruit of a marrow

eggplant see aubergine

marrow long white-fleshed gourd with green skin 1, see also courgette

zucchini see courgette

Figure 4: makeindex can’t detect dependent entries that haven’t been indexed

Cauliflower and marrow.

Glossary

cabbage vegetable with thick green or purple leaves 1
cauliflower type of cabbage with edible white flower head 1
courgette immature fruit of a marrow

eggplant see aubergine

marrow long white-fleshed gourd with green skin 1, see also courgette

zucchini see courgette

Figure 5: A second run is required when \gls is used in the description

Cauliflower and marrow.

Glossary

cabbage vegetable with thick green or purple leaves
cauliflower type of cabbage with edible white flower head 1
courgette immature fruit of a marrow

marrow long white-fleshed gourd with green skin 1, see also courgette

Figure 6: bib2gls with selection=recorded and deps

Cauliflower and marrow.

Glossary

cabbage vegetable with thick green or purple leaves
cauliflower type of cabbage with edible white flower head 1
courgette immature fruit of a marrow

marrow long white-fleshed gourd with green skin 1, see also courgette

zucchini see courgette

Figure 7: bib2gls with selection=recorded and deps and see

bib2gls: selection, cross-references and locations


	printglossary vs printunsrtglossary
	The .bib file
	Cross-referencing
	Invisible or ignored locations

