
TUGboat, Volume 40 (2019), No. 2 119

Quickref: Common Lisp reference
documentation as a stress test for Texinfo

Didier Verna

Abstract

Quickref is a global documentation project for the
Common Lisp ecosystem. It creates reference manu-
als automatically by introspecting libraries and gen-
erating corresponding documentation in Texinfo for-
mat. The Texinfo files may subsequently be con-
verted into PDF or HTML. Quickref is non-intrusive:
software developers do not have anything to do to
get their libraries documented by the system.

Quickref may be used to create a local website
documenting your current, partial, working environ-
ment, but it is also able to document the whole
Common Lisp ecosystem at once. The result is a
website containing almost two thousand reference
manuals. Quickref provides a Docker image for an
easy recreation of this website, but a public version
is also available and actively maintained.

Quickref constitutes an enormous and success-
ful stress test for Texinfo. In this paper, we give
an overview of the design and architecture of the
system, describe the challenges and difficulties in
generating valid Texinfo code automatically, and put
some emphasis on the currently remaining problems
and deficiencies.

1 Introduction

Lisp is a high level, general purpose, multi-paradigm
programming language created in 1958 by John Mc-
Carthy [2]. We owe to Lisp many of the programming
concepts that are still considered fundamental today
(functional programming, garbage collection, inter-
active development, etc.). Over the years, Lisp has
evolved as a family of dialects (including Scheme,
Racket, and Clojure, to name a few) rather than as a
single language. Another Lisp descendant of notable
importance is Common Lisp, a language targeting
the industry, which was standardized in 1994 [5].

The Lisp family of languages is mostly known
for two of its most prominent (and correlated) char-
acteristics: a minimalist syntax and a very high level
of expressiveness and extensibility. The root of the
latter, right from the early days, is the fact that
code and data are represented in the same way (a
property known as homoiconicity [1, 3]). This makes
meta-programming not only possible but also trivial.
Being a Lisp, Common Lisp not only maintains this
property, but also provides an unprecedented arsenal
of paradigms making it much more expressive and

extensible than its industrial competitors such as
C++ or Java.

Interestingly enough, the technical strengths of
the language bring serious drawbacks to its commu-
nity of programmers (a phenomenon affecting all the
dialects). These problems are known and have been
discussed many times [4, 7]. They may explain, at
least partly, why in spite of its technical potential,
the Lisp family of languages never really took over,
and probably never will. The situation can be sum-
marized as follows: Lisp usually makes it so easy
to “hack” things away that every Lisper ends up de-
veloping his or her own solution, inevitably leading
to a paradox of choice. The result is a plethora of
solutions for every single problem that every single
programmer faces. Most of the time, these solutions
work, but they are either half-baked or targeted
to the author’s specific needs and thus not general
enough. Furthermore, it is difficult to assert their
quality, and they are usually not (well) documented.

As this situation is well known, the commu-
nity has been attempting to “consolidate” itself in
various ways. Several websites aggregate resources
related to the language or its usage (books, tuto-
rials, implementations, development environments,
applications, etc.). The Common Lisp Foundation
(cl-foundation.org) provides technical, sometimes
even financial, support and infrastructure for project
authors. Once a year, the European Lisp Sympo-
sium (european-lisp-symposium.org) gathers the
international community, open equally to researchers
and practitioners, newcomers and experts.

From a more technical standpoint, solving the
paradox of choice, that is, deciding on official solu-
tions for doing this or that, is much more problem-
atic — there is no such thing as an official authority
in the community. On the other hand, some libraries
do impose themselves as de facto standards. Two of
them are worth mentioning here. Most non-trivial
Common Lisp packages today use ASDF for structur-
ing themselves (fig.1 has an example). ASDF allows
you to define your package architecture in terms of
source files and directories, dependencies and other
metadata. It automates the process of compiling and
loading (dependencies included). The second one is
Quicklisp (quicklisp.org). Quicklisp is both a cen-
tral repository for Common Lisp libraries (not unlike
CTAN) and a programmatic interface for it. With
Quicklisp, downloading, installing, compiling and
loading a specific package on your machine (again, de-
pendencies included) essentially becomes a one-liner.

One remaining problem is that of documenta-
tion. Of course, it is impossible to force a library
author to properly document his or her work. One

Quickref: Common Lisp reference documentation as a stress test for Texinfo

cl-foundation.org
european-lisp-symposium.org
quicklisp.org

120 TUGboat, Volume 40 (2019), No. 2

(asdf:defsystem :net.didierverna.declt

:long-name "Documentation Extractor from Common Lisp to Texinfo"

:description "A reference manual generator for Common Lisp libraries"

:author "Didier Verna"

:mailto "didier@didierverna.net"

:homepage "http://www.lrde.epita.fr/~didier/software/lisp/"

:source-control "https://github.com/didierverna/declt"

:license "BSD"

...)

Figure 1: ASDF system definition excerpt

could consider writing the manuals they miss for the
third-party libraries they use, but this never happens
in practice. There is still something that we can do to
mitigate the issue, however. Because Common Lisp
is highly reflexive, it is relatively straightforward to
retrieve the information necessary to automatically
create and typeset reference manuals (as opposed to
user manuals). Several such projects exist already
(remember the paradox of choice). In this paper
we present our own, probably the most complete
Common Lisp documentation generator to date.

Enter Quickref. . .

2 Overview

Quickref is a global documentation project for the
Common Lisp ecosystem. It generates reference man-
uals for libraries available in Quicklisp automatically.
Quickref is non-intrusive, in the sense that software
developers do not have anything to do to get their li-
braries documented by the system: mere availability
in Quicklisp is the only requirement. In this sec-
tion, we provide a general overview of the system’s
features, design, and implementation.

2.1 Features

Quickref may be used to create a local website docu-
menting your current, partial, working environment,
but it is also able to document the whole Quicklisp
world at once, which means that almost two thousand
reference manuals are generated. Creating a local
documentation website can be done in two different
ways: either by using the provided Docker image
(the most convenient solution for an exhaustive web-
site), or directly via the programmatic interface, from
within a running Lisp environment (when only the
documentation for the local, partial, installation is
required). If you don’t want to run Quickref yourself,
a public website is also provided and actively main-
tained at quickref.common-lisp.net. It always
contains the result of a full run of the system on the
latest Quicklisp distribution.

2.2 Documentation items

Reference manuals generated by Quickref contain
information collected from various sources. First of
all, many libraries provide a README file of some
sort, which can make for a nice introductory chapter.
In addition to source files and dependencies, ASDF

offers ways to specify project-related metadata in the
so-called system definition form. Figure 1 illustrates
this. Such information can be easily (programmati-
cally) retrieved and used. Next, Lisp itself has some
built-in support for documentation, in the form of
so-called docstrings. As their name suggests, doc-
strings are (optional) documentation strings that
may be attached to various language constructs such
as functions, variables, methods and so on. Figure 2
has an example. When available, docstrings greatly
contribute to the completeness of reference manu-
als, and again, may be retrieved programmatically
through a simple standard function call.

(defmacro @defconstant (name &body body)

"Execute BODY within a @defvr Constant.

NAME is escaped for Texinfo prior to rendering.

BODY should render on *standard-output*."

‘(@defvr "Constant" ,name ,@body))

Figure 2: Common Lisp docstring example

As for the rest, the solution is less straightfor-
ward. We want our reference manuals to advertise
as many software components as possible (functions,
variables, classes, packages, etc.). In general there
are two main strategies for collecting this informa-
tion.

Code walking. The first one, known as code walk-
ing, consists of statically analyzing the source code.
A code walker is usually at least as complicated as
the syntax of the target language, because it requires
a parser for it. Because of Lisp’s minimalist syn-
tax, using a code walker is a very tempting solution.
On the other hand, Lisp is extremely dynamic in
nature, meaning that many of the final program’s
components may not be directly visible in the source

Didier Verna

quickref.common-lisp.net

TUGboat, Volume 40 (2019), No. 2 121

Quicklisp foo/ Declt foo.texi Makeinfo foo.html

Figure 3: Quickref pipeline (Main thread, External Process)

code. On top of that, programs making syntactic
extensions to the language would not be directly
parsable. In short, it is practically impossible to
collect all the required information by code walking
alone. Therefore, we do not use that approach.

Introspection. Our preferred approach is by in-
trospection. Here, the idea is to actually compile
and load the libraries, and then collect the relevant
information by inspecting memory. As mentioned
before, the high level of reflexivity of Lisp makes
introspection rather straightforward. This approach
is not without its own drawbacks however. First,
actually compiling and loading the libraries requires
that all the necessary (possibly foreign) components
and dependencies are available. This can turn out
to be quite heavy, especially when the two thou-
sand or so Quicklisp libraries are involved. Secondly,
some libraries have platform, system, compiler, or
configuration-specific components that may or may
not be compiled and loaded, depending on the exact
conditions. If such a component is skipped by our
system, we won’t see it and hence we won’t docu-
ment it. We think that the simplicity of the approach
by introspection greatly compensates for the risk of
missing a software component here and there. That
is why introspection is our preferred approach.

2.3 Toolchain

Figure 3 depicts the typical manual production pipe-
line used by Quickref, for a library named foo.

1. Quicklisp is used first, to make sure the library
is installed, which results in the presence of a
local directory for that library.

2. Declt (lrde.epita.fr/~didier/software/
lisp/misc.php#declt) is then run on that li-
brary to generate the documentation. Declt is
another library of ours, written five years before
Quickref, but with that kind of application in
mind right from the start. In particular, it is for
that reason that the documentation generated
by Declt is in Texinfo intermediate format.

3. The Texinfo file is processed into HTML. Tex-
info (gnu.org/software/texinfo) is the GNU

official documentation format. There are three
main reasons why this format was chosen when
Declt was originally written. First, it is partic-
ularly well suited to technical documentation.
More importantly, it is designed as an abstract,
intermediate format from which human-readable

documentation can in turn be generated in many
different forms (notably PDF and HTML). Fi-
nally, it includes very convenient built-in anchor-
ing, cross-referencing, and indexing capabilities.

Quickref essentially runs this pipeline on the
required libraries. Some important remarks need to
be made about this process.

1. Because Declt works by introspection, it would
be unreasonable to load almost two thousand
libraries in a single Lisp image. For that reason,
Quickref doesn’t actually run Declt directly, but
instead forks it as an external process.

2. Similarly, makeinfo (texi2any in fact), the pro-
gram used to convert the Texinfo files to HTML,
is an external program written in Perl (with
some parts in C), not a Lisp library. Thus, here
again, we fork a makeinfo process out of the
Quickref Lisp instance in order to run it.

2.4 Performance

Experimental studies have been conducted on the
performance of the system. There are different sce-
narios in which Quickref may run, depending on
the exact number of libraries involved, their current
state, and the level of required “isolation” between
them. All the details are provided in [6], but in short,
there is a compromise to be made between the execu-
tion time and the reliability of the result. We found
that for a complete sequential run of the system on
the totality of Quicklisp, the most frequent scenario
takes around two hours on our test machine, whereas
the safest one requires around seven hours.

In order to improve the situation, we recently
added support for parallelism to the system. The
upgraded architecture is depicted in Figure 4. In
this new processing scheme, an adjustable number
of threads is devoted to generating the Texinfo files
in parallel. In a second stage, a likewise adjustable
number of threads is in charge of taking the Texinfo
files as they come, and creating the corresponding
HTML versions. A specific scheduling algorithm (not
unlike that of the make program) delivers libraries in
an order, and at a time suitable to parallel processing
by the Declt threads, avoiding any concurrency prob-
lems. With this new architecture in place, we were
able to cut the processing time by a factor of four,
reducing the worst case scenario to 1h45 and the
most frequent one to half an hour. These numbers

Quickref: Common Lisp reference documentation as a stress test for Texinfo

lrde.epita.fr/~didier/software/!lisp/misc.php#declt
lrde.epita.fr/~didier/software/!lisp/misc.php#declt
gnu.org/software/texinfo

122 TUGboat, Volume 40 (2019), No. 2

Library Pool Declt

Declt

Declt

Texinfo files Makeinfo

Makeinfo

Makeinfo

HTML files

Figure 4: Quickref parallel processing (Declt thread, Makeinfo thread)

make it reasonable to run Quickref on one’s local
machine again.

3 Challenges

Quickref is a challenging project in many regards.
Two thousand libraries is a lot to process. Setting up
the environment necessary to properly compile and
run those libraries is not trivial, especially because
many of them have platform or system-specific code
and require foreign dependencies. Finally, Quickref
constitutes a considerable (and successful) stress test
for Texinfo. The Texinfo file sizes range from 7KB
to 15MB (double that for the generated HTML ones).
The number of lines of Texinfo code in those files
extends from 364 to 285 020, the indexes may contain
between 14 and 44 500 entries, and the processing
times vary from 0.3s to 1m 38s per file.

Challenges related to the project scalability and
performance have been described previously [6]. This
section focuses on more general or typesetting/Tex-
info issues.

3.1 Metadata format underspecification

One difficulty in collecting metadata is that their
format is often underspecified, or not specified at all,
as is the case with ASDF system items. To give just
one example, Figure 5 lists several of the possible
values we found for the author metadata. As you can
see, most programmers use strings, but the actual
contents vary greatly (single or multiple names, email
addresses, middle letter, nicknames, etc.), and so
does the formatting. For the anecdote, we found
one attempt at pretty printing the contents of the
string with a history of authors, and one developer
even went as far as concealing his email address by
inserting Lisp code into the string itself. . .

It would be unreasonable to even try to under-
stand all these formats (what others will we discover
in the future?), so we remain somewhat strict in
what we recognize — in this particular case, strings
either in the form "author" or "author <email>"

(as in either:
"Didier Verna"

"Didier Verna <didier@lrde.epita.fr>"

respectively), or a list of these. The Declt user man-
ual has a Guidelines section with some advice for
library authors that would like to be friendlier with
our tool. We cannot force anyone to honor our guide-
lines however.

"Didier Verna"

"Didier Verna <didier@lrde.epita.fr>"

"Didier Verna didier@lrde.epita.fr"

"didier@lrde.epita.fr"

"<didier@lrde.epita.fr>"

"Didier Verna and Antoine Martin"

"Didier Verna, Antoine Martin"

"Didier Verna Antoine Martin"

"D. Verna Antoine E Martin"

"D. Verna Antoine \"Joe Cool\" Martin"

("Didier Verna" "Antoine Martin")

"

Original Authors:

Salvi Péter,

Naganuma Shigeta,

Tada Masashi,

Abe Yusuke,

Jianshi Huang,

Fujii Ryo,

Abe Seika,

Kuroda Hisao

Author Post MSI CLML Contribution:

Mike Maul <maul.mike@gmail.com>"

"(let ((n \"Christoph-Simon Senjak\"))

(format nil \"~A <~C~C~C~C~A>\"

n (elt n 0) (elt n 10) (elt n 16)

#\\@ \"uxul.de\"))"

Figure 5: ASDF author metadata variations

On the other hand, Quickref has an interesting
social effect that we particularly noticed the first
time the public website was released. In general,
people don’t like our documentation for their work
to look bad, especially when it is publicly available.
In the first few days following the initial release and
announcement of Quickref, we literally got dozens of
reports related to typesetting glitches. Programmers
rushed to the website in order to see what their
library looked like. If the bugs were not on our side,
many of the concerned authors were hence willing

Didier Verna

TUGboat, Volume 40 (2019), No. 2 123

to slightly bend their own coding style, in order for
our documentation to look better. We still count on
that social effect.

3.2 Definitions grouping

Rather than just providing a somewhat boring list
of functions, variables, and other definitions, as ref-
erence manuals do, Declt attempts to improve the
presentation in different ways. In particular, it tries
to group related definitions together when possible.

A typical example of this is when we need to
document accessors (readers and writers to the same
information). It makes sense to group these defini-
tions together, provided that their respective doc-
strings are either nonexistent, or exactly the same
(this is one of the incentives given to library authors
in the Declt guidelines). This is exemplified in Fig-
ure 6. Another typical example consists in listing
methods (in the object-oriented sense) within the
corresponding generic function’s entry.

context-hyperlinksp CONTEXT [Function]

(setf context-hyperlinksp) BOOL CONTEXT [Function]

Access CONTEXT ’s hyperlinksp flag.

Package [net.didierverna.declt], page 29,

Source [doc.lisp], page 24, (file)

Figure 6: Accessors definitions grouping

Texinfo provides convenient macros for defin-
ing usual programming language constructs (@defun,
@defvar, etc.), and “extended” versions for adding
sub-definitions (@defunx, @defvarx, etc.). Unfortu-
nately, definitions grouping prevents us from using
them, for several reasons.

1. Nesting @def... calls would lead to undesirable
indentation.

2. Heterogeneous nesting is prohibited. For exam-
ple, it is not possible use @defvarx within a call
to @defun (surprising as it may sound, this kind
of heterogeneous grouping makes sense in Lisp).

On the other hand, that kind of thing is possible
with the lower-level (more generic) macros, as hetero-
geneous categories become simple macro arguments.
One can, for example use the following (which we
frequently do):

@deffn {Function} ...

@deffnx {Compiler Macro} ...

...

@end deffn

This is why we stick to those lower-level macros, at
the expense of re-inventing some of the higher-level
built-in functionality.

Even with this workaround, some remaining
limitations still get in our way.

1. There are only nine canonical categories and it
is not possible to add new ones (at least not
without hacking Texinfo’s internals).

2. Although we understand the technical reasons
for it (parsing problems, probably), some of the
canonical categories are arguable. For example,
the distinction between typed and untyped func-
tions makes little sense in Common Lisp which
has optional static typing. We would prefer
to have a single function definition entry point
handling optional types.

3. Heterogeneous mixing of the lower-level macros
is still prohibited. For example, it remains im-
possible to write the following (still making sense
in Lisp):

@deffn {Function} ...

@defvrx {Symbol Macro} ...

...

@end deffn

3.3 Pretty printing

Pretty printing is probably the biggest challenge
in typesetting Lisp code, because of the language’s
flexibility. In particular, it is very difficult to find
the right balance between readability and precision.

Identifiers. In Lisp, identifiers can be basically
anything. When identifiers contain characters that
are normally not usable (e.g. blanks or parentheses),
the identifier must be escaped with pipes. In order
to improve the display of such identifiers, we use
several heuristics.

• A symbol containing blank characters is nor-
mally escaped like this: |my identifier|. Be-
cause the escaping syntax doesn’t look very nice
in documentation, we replace blank characters
with more explicit Unicode ones, for instance
my identifier. We call this technique “reveal-
ing”. Of course, if one identifier happens to
contain one of our revealing characters already,
the typesetting will be ambiguous. This case is
essentially nonexistent in practice, however.

• On the other hand, in some situations it is better
to not reveal the blank characters. The so-called
setf (setter / writer) functions are such an ex-
ample. Here, the identifier is in fact composed
of several symbols, such as in (setf this). Re-
vealing the whitespace character would only clut-
ter the output, so we leave it alone.

• Finally, some unusual identifiers that are nor-
mally escaped in Lisp, such as |argument(s)|,

Quickref: Common Lisp reference documentation as a stress test for Texinfo

124 TUGboat, Volume 40 (2019), No. 2

do not pose any readability problems in docu-
mentation, so we just typeset them without the
escaping syntax.

Qualification. Another issue is symbol qualifica-
tion. With one exception, symbols in Lisp belong
to a package (more or less the equivalent of a name-
space). Many Lispers use Java-style package names,
which can end up being quite long. Typesetting a
fully qualified symbol would give something like this:
my.long.package.name:symbol. Lisp libraries usu-
ally come with their own very few packages, so type-
setting a reference manual with thousands of symbols
fully qualified with the same package name would
look pretty bad. Because of that, we avoid typeset-
ting the package names in general. Unfortunately, if
different packages contain eponymous symbols, this
leads to confusing output. Currently, we don’t have
a satisfactory answer to this problem.

Docstrings. The question of how to typeset doc-
strings is also not trivial. People tend to use varying
degrees of plain-text formatting in them, with all
kinds of line lengths, etc. Currently, we use only a
very basic heuristic to determine whether an end of
line in a docstring is really wanted here, or just a con-
sequence of reaching the “right margin”. We are also
considering providing an option to simply display
the docstrings verbatim. In the long term, we plan
to support markup languages such as Markdown.

References. A Texinfo-related problem we have
is that links are displayed differently, depending on
the output format, and with some rather undesirable
DWIM behavior. Table 1 shows the output of a
call to @ref{anchor, , label} in various formats
(anchor is the link’s internal name, label is the
desired output).

Table 1: Texinfo links formatting in various output
formats

HTML label
PDF [label], page 12,
Info *note label: anchor.

Emacs Info mode See label.

In PDF, the presence of the trailing comma
is context dependent. In Info, both the label and
the actual anchor name are typeset, which is very
problematic for us (see Section 3.4). In Emacs Info
mode, the casing of “See” seems to vary. In general,
we would prefer to have more consistent output across
the different formats, or at least, more control over it.

3.4 Anchoring

The final Texinfo challenge we want to address here
is that of anchoring. In Texinfo, anchor names have

severe limitations: dots, commas, colons, and paren-
theses are explicitly forbidden (due to the final dis-
play syntax in Info). This is very unfortunate be-
cause those characters are extremely common in Lisp
(parentheses of course, but also dots and colons in
the package qualification syntax).

Note that formats other than Info are not af-
fected by this problem. There is an Info-specific
workaround documented in Appendix G.1 of the Tex-
info user manual. In short, a sufficiently recent ver-
sion can automatically “protect” problematic node
names by surrounding them with a special marker in
the resulting Info files. Unfortunately, neither older
Info readers, nor the current Emacs mode are aware
of this feature. Besides, the latest stable release of
Texinfo still has problems with it (menus do not work
correctly). Consequently, this workaround is not a
viable solution for us (yet).

Our original (and still current) solution is to
replace those characters by a sequence such as <dot>.
Of course, this makes anchor names particularly ugly,
but we didn’t think that was a problem because we
have nicer labels to point to them in the output (in
fact, labels have a less limited syntax, although this
is not well documented). However, we later realized
that anchor names still appear in the HTML output
and also in pure Info. Consequently, we are now
considering changing our escaping policy, perhaps by
using Unicode characters as replacements, just as we
already do on identifiers (see Section 3.3).

The second anchoring problem we have is that
of Texinfo nodes, the fundamental document struc-
turing construct. In addition to the aforementioned
restrictions related to anchoring, nodes have two very
strong limitations: their names must be unique and
there is no control over the way they are displayed in
the output. This is a serious problem for us because
Lisp has a lot of different namespaces. A symbol
may refer to a variable, a function, a class, and
many other things at the same time. Consequently,
when nodes are associated with Lisp symbols, we
need to mangle their names in a way that makes
them barely human readable. Because of that, our
use of nodes remains rather limited, which is some-
what paradoxical, given the importance of nodes in
Texinfo. Apart from general, high level sectioning,
the only nodes associated with Lisp symbols are for
ASDF components and packages, probably already
a bit too much. It is our hope that one day, the
node names uniqueness constraint in Texinfo might
be relaxed, perhaps disambiguating by using their
hierarchical organization.

Didier Verna

TUGboat, Volume 40 (2019), No. 2 125

4 Conclusion and perspectives

Although a relatively young project, Quickref is al-
ready quite successful. It is able to document almost
two thousand Common Lisp libraries without any
showstoppers. Less than 2% of the Quicklisp libraries
still pose problems and some of the related bugs have
already been identified. The Common Lisp commu-
nity seems generally grateful for this project.

Quickref also constitutes an enormous, and suc-
cessful, stress test for Texinfo. Given the figures
involved, it was not obvious how makeinfo would
handle the workload, but it turned out to be very
reliable and scalable. Although the design of Texinfo
sometimes gets in our way, we still consider it a good
choice for this project, in particular given the diver-
sity of its output formats and its built-in indexing
capabilities.

In addition to solving the problems described
in this paper, the project also has much room for
improvement left. In particular, the following are at
the top level of our TODO list.

1. The casing problem needs to be addressed. Tra-
ditional Lisp is case-insensitive but internally
upcases every symbol name (except for escaped
ones). Several modern Lisps offer alternative
policies with respect to casing. Quickref doesn’t
currently address casing problems at all (not
even that of escaped symbols).

2. Our indexing policy could be improved. Cur-
rently, we only use the built-in Texinfo indexes
(Functions, Variables, etc.) but we also provide
one level of sub-indexing. For instance, macros
appear in the function index, but they are listed
twice: once as top level entries, and once under
a Macro sub-category. The question of which
amount of sub-indexing we want, and whether
to create and use new kinds of indexes is under
consideration.

3. Although our reference manuals are already
stuffed with cross-references, we plan to add
more. Because Declt was originally designed to
generate one reference manual at a time, only
internal cross-references are available. The exis-
tence of Quickref now raises the need for exter-
nal cross-references (that is, between different
manuals).

4. Many aspects of the pretty printing could be
improved, notably that of so-called “unreadable”
objects and lambda lists.

5. In addition to HTML, we plan to provide PDF

as well as Info files on the website, since they
are readily available.

6. We intend to integrate Quickref with Emacs
and Slime (a de facto standard Emacs-based
development environment for Common Lisp).
In particular, we want to give Emacs the abil-
ity to browse the Info reference manuals online
or locally if possible, and provide Slime with
commands for opening the Quickref documenta-
tion directly from Lisp source code displayed in
Emacs buffers.

7. Finally, we are working on providing new in-
dex pages for the website. Currently, we have a
library index and an author index. We are work-
ing on providing keyword and category indexes
as well.

References

[1] A. C. Kay. The Reactive Engine. PhD thesis,
University of Utah, 1969.

[2] J. McCarthy. Recursive functions of symbolic
expressions and their computation by
machine, part I. Communications of the ACM
3(4):184–195, Apr. 1960.
doi:10.1145/367177.367199

[3] M. D. McIlroy. Macro instruction extensions
of compiler languages. Communications of
the ACM 3:214–220, Apr. 1960.
doi:10.1145/367177.367223

[4] M. Tarver. The bipolar Lisp programmer.
marktarver.com/bipolar.html, 2007.

[5] Ansi. American National Standard:
Programming Language — Common Lisp.
ANSI X3.226:1994 (R1999), 1994.

[6] D. Verna. Parallelizing Quickref.
In 12th European Lisp Symposium, pp. 89–96,
Genova, Italy, Apr. 2019.
doi:10.5281/zenodo.2632534

[7] R. Winestock. The Lisp curse, Apr. 2011.
winestockwebdesign.com/Essays/Lisp_

Curse.html

� Didier Verna
14-16 rue Voltaire
94276 Le Kremlin-Bicêtre
France
didier (at) lrde dot epita dot fr

http://www.didierverna.info

Quickref: Common Lisp reference documentation as a stress test for Texinfo

http://dx.doi.org/10.1145/367177.367199
http://dx.doi.org/10.1145/367177.367223
marktarver.com/bipolar.html
http://dx.doi.org/10.5281/zenodo.2632534
winestockwebdesign.com/Essays/Lisp_Curse.html
winestockwebdesign.com/Essays/Lisp_Curse.html

	Introduction
	Overview
	Features
	Documentation items
	Toolchain
	Performance

	Challenges
	Metadata format underspecification
	Definitions grouping
	Pretty printing
	Anchoring

	Conclusion and perspectives

