
TUGboat, Volume 40 (2019), No. 2 153

The LATEX release workflow and
the LATEX dev formats

Frank Mittelbach, LATEX Project

Abstract
How do you prevent creating banana software (i.e.,
software that gets ripe at the customer site)? By
proper testing! But this is anything but easy.

The paper will give an overview of the efforts
made by the LATEX Project Team over the years
to provide high-quality software and explains the
changes that we have made this summer to improve
the situation further.

Contents
Some history 153

The growing release support infrastructure 153
The typical release workflow for LATEX 154
Reasons for failure 155

Finding all these dependencies up front . 155
The missing maintainer problem 155
No or not enough third-party testing . . . 155

The LATEX dev formats 156
Pre-release identification 156
How does it work? 156
Reporting issues in the dev format 156

Some history
The LATEX Project team’s attempts to provide re-
liable high-quality software can be traced back to
the first days when we took over LATEX2.09 from
Leslie Lamport for maintenance and started to work
on producing a new major version of LATEX which
came into existence around 1993 under the name of
LATEX2ε. In its core this is still the version you are
using today, albeit these days with many extensions
and additional kernel features.

While LATEX2ε looked fairly similar on the user
interface level (to allow for easy transition), under the
hood it used completely different internal concepts
in some parts of the software and was therefore quite
different in many areas from the LATEX2.09 version.
After all, the goal of the new system was to overcome
(most) limitations and deficiencies of the original
program that had surfaced since its introduction in
1986.

Executing such major software changes was and
is a daunting task, especially when a huge user base
relies on the software to continue to function seam-
lessly with old and new documents (and preferably
produce identical results).

To have a fighting chance of success, we came
up with the idea of a regression test suite for LATEX
where certified results from document runs could be
used to automatically check that changes made to
the internal code base did not affect the behavior
of LATEX document level interfaces, etc.1 A good
overview of the features and mechanisms of the early
regression test suite can be found in [1].

Around 1992 we then initiated several volunteer
projects [2], one of which was helping to build a base
set of test files which would test all interfaces, and
additionally provide unit tests for known bugs and
issues that we intended to fix.

It was largely due to Daniel Flipo (coordina-
tor back then) and the volunteers who worked on
this initial test set that the introduction of LATEX2ε
turned out to be quite successful. Even though we
experienced some problems and also some level of
push back (as in “Why do we need a new system
which is so much bigger and contains all these fonts
with accented characters that nobody is ever going
to need . . . ”), on the whole the system was favorably
received and after a round of smaller maintenance
releases that fixed overlooked issues and added a few
more missing bits and pieces, the kernel settled to a
stable state with little update or extension. Instead,
further development moved into the package area,
for which the new kernel provided a better basis than
the old.

The growing release support infrastructure
With each bug that was found and any new feature
that got added, the test suite grew. These days
it contains roughly 700 test documents. There are
about 400 for the core of LATEX and another 300 for
the packages that form the required set, i.e., amsmath,
graphics and tools, but excluding babel, which
has its own test suite and release cycle.

At the beginning the support scripts to auto-
matically run the tests were Unix-based (mainly a
huge Makefile plus a few bash scripts). We then
switched over to a Windows-based system and fi-
nally, when LuaTEX became generally available in
the distributions, rewrote the whole system in Lua.
Thanks mainly to Joseph Wright, Will Robertson
and others this l3build program is now a very flexi-
ble and sophisticated tool that is not only capable of
running the test suite for our own LATEX work, but
also able to automate the whole release cycle up to
and including automatic uploads to CTAN [3, 4].

As its actions are configured through a simple
but powerful configuration file that you maintain

1 Nothing especially spectacular these days, but around
1990 it was a rather uncommon approach.

The LATEX release workflow and the LATEX dev formats

154 TUGboat, Volume 40 (2019), No. 2

in your package source tree, it is perfectly capable
of supporting any sort of package development in
the TEX world (it doesn’t have to be LATEX). So if
you are a developer and haven’t seen it yet, try it
out; it will most certainly make your life simpler and
through its automation, more reliable.

The typical release workflow for LATEX
With l3build, our typical release work flow these
days looks roughly like this:
1. Development phase
– Make some changes (bug fixes or minor exten-

sions) to the LATEX kernel or to core packages.
– Write some new test files to cover the change

and the expected behavior.
2.a Testing phase (run l3build check)
– This way we immediately see if the changes

break anything.
– All tests are executed with pdfTEX, X ETEX,

LuaTEX and for a certain subset also with
pTEX and upTEX.

– This means that running l3build with the
check target executes more than 2000 test
documents for the LATEX2ε distribution, which
even on a reasonably fast machine requires
some patience.

2.b Testing phase (do a texmf-dist search)
– If we had to modify internal kernel commands

we do a sweep over the whole TEXLive distri-
bution tree to check if those commands have
been used or (often more importantly) modi-
fied by other packages and whether or not our
change will conflict with that usage.

– If so, we analyze the situation further and
inform the package authors to coordinate any
necessary updates.

– Depending on the analysis, we may also con-
clude that we need to revert our change or
implement it differently.

2.c Testing phase (asking for user testing)
– This requires manually installing a prerelease

of the new kernel locally and thus is unfortu-
nately both somewhat time consuming and
requiring knowledge that is not so easy to
come by these days.

– As a result we had little to no feedback in the
last years from this step.

3. Everything is finally “in the Green”
– . . . or so everybody believes.
4.a Upload phase (run l3build ctan)

– This target reruns all checks with all engines,
processes all documentation and if this suc-
ceeds without any errors, collects the result in
a .zip for upload to CTAN.

4.b Upload phase (run l3build upload)
– Based on preconfigured information this tar-

get automatically uploads the .zip file to-
gether with the necessary metadata to CTAN.
For some pieces of information, such as in-
stallation instructions to the CTAN team, we
are prompted, as they change from upload to
upload.

4.c Upload phase (reaching the distributions)
– Once installed on CTAN the kernel and pack-

ages move into the TEX distributions, e.g.,
TEXLive and MikTEX, and then, depending
on the update policy chosen by the end user,
show up on the user machines either automat-
ically or through a manually initiated update
process. And then . . .

A BOOM!
– Thousands of users use (a.k.a. “test”) the

changes and a few encounter issues, due to
dependencies our test suite hasn’t signaled,
packages we have overlooked, code or pack-
ages that are not on CTAN, etc.

5. Urgent patch phase
– The problem is that with the user base mea-

suring in millions2 even a rate of 0.001% of
users being affected by some issue translates
into a noticeable number of users with prob-
lems.

– Thus, even a single issue with some nearly-
unused package may need urgent correction
(and it takes a few days from producing a
patch to getting it into end user hands). As a
consequence this is usually a phase of hectic
activity and we have seen in recent releases
more than one patch needing to be provided
in quick succession—the worst case was three
in 2016.

2 Nobody knows for sure how many active LATEX users
are out there as there is no easy way to measure this.
Downloads of TEXLive or from CTAN, for example, are
done through a large network of mirrors and the download
numbers per mirror are unknown. But there are somewhat
between six and ten thousand hits on the LATEX project
web site per day, most of which look at the “get” or “about”
pages, i.e., are most likely new users. Another indication
is that visitor numbers grow substantially at the start of
university terms. This would mean more than two million
prospective new users hitting the site per year.

Frank Mittelbach, LATEX Project

TUGboat, Volume 40 (2019), No. 2 155

Reasons for failure
What are the reasons that despite extensive regres-
sion testing we often end up with patch releases?
They are largely due to the ineffectiveness of steps
2.b and 2.c in the above sequence.

The regression test suite we run in step 2.a
ensures that our official interfaces are all working
correctly and any bugs we have fixed in the past do
not suddenly reappear. In fact on several occasions
it has saved us from major blunders by stopping us
from distributing “harmless changes that couldn’t
by any chance produce problems” but did after all—
often in, on the surface, unrelated places.

Finding all these dependencies up front
However, even a huge test suite can’t find and test for
all kinds of possible dependencies in several thousand
contributed packages and millions of user documents.
This problem is increased by the fact that the LATEX
code was written for a very constrained engine and
the kernel is therefore very much tailored and stream-
lined, saving token space whenever possible.3 As a
result there aren’t many interfaces where third-party
packages can officially hook into kernel functionality,
so it isn’t surprising that there is nearly no internal
LATEX command that hasn’t been (mis)used in one
way or another by some package out there.

This is the reason for the importance of step 2.b,
but since this is largely a manual effort it is easy to
miss cases or fool oneself into believing that no one
could possibly have altered this or that internal com-
mand in a package— in the end somebody usually
did after all.

The missing maintainer problem
The other issue with step 2.b is that these days there
are unfortunately many packages in use where the
original author is no longer reachable, because he or
she has moved on. Their packages are on CTAN and
in the distributions but the maintainer information is
no longer correct. As long as everything works that is
not necessarily a problem, but the moment something
breaks it can be quite hard or even impossible to
find the person and even if the search is successful it

3 In the early ’90s when most of this code was initially
written, this was an absolute must as TEX’s main memory,
register space, pool size, etc., was much smaller than today.
These days one would produce quite different-looking code
that would support extensions much better, by offering the
necessary hooks, and this is what we are gradually introducing
in various parts of the code. However, given that there are
many packages out there that expect the code to look exactly
like it does right now, changing anything means that these
packages need to have corresponding changes.

may turn out that they no longer have any interest
in their work which they did years ago.

A recent prominent example of this problem
is the package tabu which implements a nice user
syntax on top of array, tabularx and longtable.
That package was abandoned by its author around
2011 but people continued to use it despite a few
unfixed (minor) bugs, because it does implement a
number of nice ideas.

Unfortunately, its code hacks in rather bad ways
into the kernel internals in places that should never
have been altered by other packages. So when we had
to fix a color leakage problem in tabular cells in the
core kernel commands by adding color safe groups
that then broke the package for good. Without a
maintainer who was willing to spend the necessary
time to unravel these hacks in the package code, the
package remained broken when the 2018 kernel got
released.4

The biggest problem resulting from this was
that doxygen, the de-facto open source standard for
producing annotated C++ code documentation was
making heavy use of the tabu package when pro-
ducing LATEX-based PDF documents. As a result
their toolset was initially unable to use the current
LATEX release. We recently resolved this for them
by providing a dedicated rollback of the involved
kernel fixes to be used within their workflow (i.e.,
reintroducing the kernel bug so that a special version
of doxygen-tabu could be used as part of their doc-
umentation tools). This is clearly far from a perfect
solution, so we hope that a new maintainer for tabu
will eventually step forward so that this rollback can
be removed again.

No or not enough third-party testing
However, we believe that the most important factor
for ending up with patch level releases was in step
2.c: the insufficient public testing of the release prior
to its move into the main distributions.

In essence, the effort needed from users was sim-
ply too high and the setup too complicated, so only
a very small number of people participated. Testing
was therefore neither sufficient nor comprehensive.

As a result, overlooked dependencies on third-
party packages or failure with typical user input were

4 In fact the LATEX Project team tried to update the pack-
age when it became clear that nobody was maintaining it, and
we managed to produce a version that didn’t die right out
from the beginning. However, the package altered so many
commands and used them in new ways that this emergency
fix was only partially successful. So in the end we could only
suggest that people should not use it in the future, or more ex-
actly not until a new maintainer stepped forward and spends
the necessary time to unravel the coding issues.

The LATEX release workflow and the LATEX dev formats

156 TUGboat, Volume 40 (2019), No. 2

seldom found beforehand but only when the release
moved to the distributions and everybody became
(unwillingly) a tester—banana software after all,
despite our best efforts above.

The LATEX dev formats
To improve this situation and hopefully get to a
release workflow that doesn’t normally involve step
5, we developed the concept of a LATEX development
format. This format contains a prerelease of the
upcoming main LATEX release and is ready for testing
by anybody using either TEXLive or MikTEX.

All the user needs to do is to replace his or her
standard engine call by adding the suffix -dev to the
name, for example, using
pdflatex-dev myfile
instead of pdflatex myfile on the command line.
If you use an editing environment with integrated
TEX processing, then there is normally some config-
uration possibility, where you can either make the
same change or even add another menu item. Be-
sides pdfTEX, all other major engines are supported
as well, e.g., with lualatex-dev you get the new
format on top of the LuaTEX engine, etc.

Pre-release identification
If you call LATEX in this way you can immediately
see that the pre-release format is used. For example
processing this document with the line above gives:
This is pdfTeX, Version 3.14... (TeX Live 2019)
(preloaded format=pdflatex-dev)
restricted \write18 enabled.

entering extended mode
(./TUB-latex-dev.tex
LaTeX2e <2019-10-01> pre-release-2

As you can see the format announces itself as
a pre-release of the upcoming 2019-10-01 release of
LATEX, and the number tagged at the end indicates
that it is the second pre-release we have distributed
(the first was a trial to see if the mechanism functions
correctly). If bugs are found during the testing (or if
we enable further features for the upcoming release)
we might issue another pre-release in which case the
number would increase accordingly.

However, the important point to note here is
that the development format is not like a “nightly
build” (that you would get by tracking the LATEX
source at GitHub); rather, it changes only if we think
that the code is ready for public testing, i.e., has
passed our own internal tests in steps 2.a and 2.b.

How does it work?
The files for the pre-release are uploaded by the
LATEX Project Team to CTAN under the package

names latex-base-dev, latex-graphics-dev, and
if necessary latex-tools-dev, etc. From there they
are integrated into the distributions into the tree
tex/latex-dev/..., which is not searched by de-
fault. Thus, when you are using, say, pdflatex, only
the files from the main release are used.

However, if any of the programs ending in -dev
are called, then this extra tree is prepended to the
search tree, so that not only the pre-release format
is used, but also any other file from that tree, e.g.,
article.cls, is found first. For any package not
part of the pre-release, the TEX engine will continue
to find it in the main tree and use that version.

This allows any user who works on an important
project (such as a thesis or a book) to quickly test
if this work continues to typeset correctly under the
upcoming format. Similarly, it enables any developer
of a package that has known or unknown depen-
dencies on a certain kernel version to check if any
adjustments made work well with both the current
and upcoming LATEX release—and if so, upload a
new version of his or her work prior to the actual
release date of the new LATEX kernel.

Reporting issues in the dev format
If, during such testing, issues or incompatibilities are
found (that in the past would have led to step 5) we
suggest that a Github issue is opened for them so
that they can be tracked and addressed by the team.
Details on how to open such an issue can be found
at the LATEX Project website [5].

References
[1] Frank Mittelbach. A regression test suite

for LATEX2ε. TUGboat, 18(4):309–311, 1997.
tug.org/TUGboat/tb18-4/tb57mitt.pdf

[2] Frank Mittelbach, Chris Rowley, and Michael
Downes. Volunteer work for the LATEX3
project. TUGboat, 13(4):510–515, 1992.
tug.org/TUGboat/tb13-4/tb37mitt-l3.pdf

[3] Frank Mittelbach, Will Robertson, and
LATEX3 team. l3build –A modern Lua
test suite for TEX programming. TUGboat,
35(3):287–293, 2014. tug.org/TUGboat/tb35-3/
tb111mitt-l3build.pdf

[4] Joseph Wright. Automating LATEX(3)
testing. TUGboat, 36(3):234–236, 2015.
tug.org/TUGboat/tb36-3/tb114wright.pdf

[5] LATEX Project Team. Bugs in LATEX software.
www.latex-project.org/bugs

� Frank Mittelbach, LATEX Project
Mainz, Germany
frank.mittelbach (at) latex-project dot org
www.latex-project.org

Frank Mittelbach, LATEX Project

