
14 TUGboat, Volume 40 (2019), No. 1

No hands — the dictation of LATEX

Mike Roberts

Abstract

This article gives a brief introduction to a combi-
nation of open source extensions to Dragon Profes-
sional Individual dictation software which allow for
relatively easy dictation of LATEX syntax and mathe-
matical formulae.

While the primary use case is for people with
disabilities which prevent them from typing (repeti-
tive strain injuries caused by regular computer use
are surprisingly common), dictation may provide a
realistic alternative for normal users as well.

1 Introduction

1.1 Me

As an Economics undergraduate with a spinal in-
jury which precludes me from using a keyboard, I’ve
been using dictation software throughout my degree
for all exams, assignments and essays. This article
will focus on the workflow I’ve developed and the
tools that I use for dictating LATEX documents and
mathematical formulae relatively painlessly.

First, though, I will briefly describe the problem
space: what would ideally be made possible by a
dictation system and the limitations of what is cur-
rently available. I will then describe the technical
details and user experience of my setup.

1.2 Dictation software

If you are totally unfamiliar with dictation software,
the first thing I should say is that broadly speaking it
works well. With a good microphone, in a quiet room,
speaking clearly, it’s not unreasonable to expect in
excess of 99% accuracy when dictating full sentences.

The leader in the voice recognition industry has
for many years been Nuance (though with the cur-
rent rate of progress in machine learning their tech-
nological lead may soon evaporate). Their product,
Dragon, is marketed mainly for corporate, medical
and legal document preparation and works excel-
lently when dictating into Microsoft Word. For com-
pleting the full range of academic work without a
keyboard though, this basic dictation functionality
is necessary but not sufficient, and for those with
disabilities who cannot use a mouse, navigating a
graphical interface to access formatting options is an
active hindrance to getting things done.

For dictating mathematics, another commercial
product is available — MathTalk [3] is the industry
standard for mathematical dictation (the client list
on their website includes the Department of Defense

and Federal Aviation Authority, as well as many
universities). When I first tried it I was very dis-
appointed and quickly found it to be practically
unusable. Despite costing over $300 it is incredibly
slow to recognise and execute commands, and will
not accept more than two or three commands at a
time. This can easily be seen by watching any of
the videos on their website. Even with extra time
granted, the chances of being able to do well in ex-
ams when you have to wait half a second between
every character are minimal.

1.3 The problem

There is certainly room for improvement then, both
for normal documents and for mathematics. An ideal
dictation system of this kind should have a number
of features which are lacking from the commercial
offerings detailed above. Firstly, it should be able
to interpret commands as fast as the user can say
them, without the need to wait for output to appear
or to pause between commands. Secondly, it should
be customisable so that users can modify and add to
their grammar to suit it to their own needs. Finally,
of course, it should as far as possible be free and
open source.

2 Implementation

As I finish my degree and after a lot of experimenta-
tion I have settled on a solution which is as close to
this ideal as I can imagine. It can be used for almost
anything, can interpret commands as quickly as they
can be dictated, and is modifiable and extensible.

2.1 Building blocks

Although it is somewhat expensive, Dragon [4] is
by far the best speech recognition engine currently
available, and while its built-in tools for creating cus-
tom commands are limited, it is thankfully hackable.
This is done using Natlink [2], a free tool originally
created in 1999 by Joel Gould — then working at
Dragon — which allows for custom command sets
written in Python 2.7 to be imported into Dragon.

These custom commands are defined using an
open source Python library called Dragonfly [1],
which simplifies the process of creating grammars
and provides easy access to frequently used function-
ality like the typing of text and the execution of
keystrokes.

Together, these elements — Dragon, Natlink and
Dragonfly — allow for any combination of keystrokes
or Python scripts to be mapped to voice commands
which can be interpreted and executed fluidly and
with only minimal delay. While these tools have so
far primarily been used to enable voice programming,

Mike Roberts

TUGboat, Volume 40 (2019), No. 1 15

they can easily be repurposed for voice-enabling vir-
tually anything.

2.2 Mathfly

Mathfly [5] is my own contribution, and comprises
command sets for dictating raw LATEX as well as
using WYSIWYG editors like LYX.

Within Mathfly, commands are organised into
modules, each with a different purpose, which can
be enabled and disabled at will. For basic operations
like creating a new file there are also context specific
commands which will only be recognised when a
particular program is active.

To provide usability for non-programmers, pre-
dictable and common structures (like the begin, end
tags in LATEX) are hardcoded in Python while the
lists of options themselves are defined in plain text
configuration files which can all be opened and added
to with voice commands.

3 LATEX

LATEX represents an obvious and favourable alterna-
tive to dictating into word processing software for
a number of reasons. Writing everything in plain
text means that entire documents can be produced
by replicating keystrokes, without ever having to
navigate an awkward GUI. This provides the ability
to automate fiddly tasks like the creation of tables,
insertion of images and organisation of references —
a major win for those without the use of a mouse.

Dictating using Mathfly’s LATEX module is in-
tended to be as intuitive as possible and to work
largely as one would expect it to. Most commands
consist of a memorable prefix, which helps to avoid
over-recognition during dictation, followed by the
name of the desired item.

3.1 Basic commands

For example, saying “begin equation” produces:

\begin{equation}

\end{equation}

Similarly, “insert author” and “insert table of con-
tents” produces \author{} and \tableofcontents,
respectively, and “use package geometry” will pro-
duce \usepackage{geometry}.

LATEX commands can often be a little cryptic
and non-obvious. For example, to create a bulleted
list, you need:

\begin{itemize}

This is reasonably memorable once you have used it
a few times, but is not easily guessable, especially
for those of us living in countries which resist the
encroachment of the letter Z.

Mathfly attempts to make things as easy as
possible in cases like these by often providing multiple
voice commands for the same thing. In this case,
“begin itemize”, “begin list” and “begin bulleted list”
will all produce an itemize environment.

3.2 Mathematics

By default, all mathematical symbols are prefixed
with “symbol”, so “symbol integral” produces \int,
but there is also a mode specifically for dictating
symbols which does not require the prefix. Thus in
mathematics mode, “sine squared greek theta plus
cosine squared greek theta equals one” produces:

\sin ^{2} \theta +\cos ^{2} \theta =1

that is,
sin2 θ + cos2 θ = 1 (1)

3.3 Templates

For including larger sections of text, or sections which
don’t fit into any of the predefined commands, there
are templates — arbitrary strings which are pasted
with a voice command. For example, the command
“template graphic” pastes:

\begin{figure}[h!]

\centering

\includegraphics[width=0.8\textwidth]{}

\caption{}

\label{}

\end{figure}

Not only does this save a lot of time and rep-
etition, but as a novice user it is useful to be able
to outsource the task of remembering what settings
you like to use and how common command blocks
are constructed.

3.4 Configuration

As I mentioned above, it is easy for users to add to the
available commands by modifying the configurations
files. The command definitions for the LATEX module
look like this:

[environments]

"equation" = "equation"

...

[command]

"author" = "author"

...

and can be easily added to or modified.

3.5 Scripting

There are also intriguing possibilities for the inte-
gration of Python scripting. I’ve only scratched the
surface so far, but to give an example I can high-
light the title of a book or paper, say “add paper to

No hands — the dictation of LATEX

16 TUGboat, Volume 40 (2019), No. 1

bibliography” and a script will run which searches
Google Scholar for the title and appends the resulting
BibTEX citation to my .bib file.

4 WYSIWYG mathematics

For technical homework assignments and especially
exams, formatting is of far less importance than
getting what you know onto the paper as quickly
and easily as possible, so a what you see is what you
get (WYSIWYG) editor makes more sense.

Mathfly includes grammars for both LyX, an
open source LATEX editor, and Scientific Notebook,
a proprietary alternative which is often provided for
free by universities. They both function similarly and
allow for natural dictation of mathematical formulae
with immediately visible output.

For example, the command

integral

one over x-ray

right

delta

x-ray

equals

natural logarithm

x-ray

plus

charlie

can all be interpreted in one go and will produce the
desired output. ∫

1

x
dx = lnx+ c (2)

The only deviation from natural speech is the
requirement for a command (a right keypress) to
signal the end of the fraction.

I don’t have any hard data comparing the speed
of dictation like this to that of normal writing. I can
say, though, that I am technically allowed 50% extra
time for all exams but have never needed to make
use of it, suggesting that the two methods are fairly
comparable.

5 Limitations

The major limitations of dictation are currently not
functional — it performs about as well as could rea-
sonably be expected — but are related to platforms
and compatibility. Dragon and Natlink are only avail-
able on Windows (with a limited and soon to be dis-
continued version of Dragon available for MacOSX),
so the only feasible way of using software like Mathfly
on other operating systems is to run Dragon in a
Windows Virtual Machine, using remote procedure
calls to send instructions to the host.

The long-term prospects for a completely free
and platform agnostic dictation and voice command
framework are reasonably good, however. Dragonfly
is under active development with the aim of inte-
grating new speech engines like Carnegie Mellon Uni-
versity’s PocketSphinx and Mozilla’s DeepSpeech,
although these have a fairly long way to go before
they reach Dragon’s level of maturity and accuracy.

6 Getting started

Anybody interested can visit the Mathfly website [5],
which contains links to the documentation, installa-
tion instructions and a few short video demonstra-
tions. If you have any questions or requests then feel
free to email me, post in the Gitter chat room or on
the GitHub issues page.

References

[1] C. Butcher. Dragonfly, 2007.
pythonhosted.org/dragonfly

[2] Q. Hoogenboom. About Natlink, Unimacro and
Vocola. qh.antenna.nl/unimacro

[3] mathtalk.com. MathTalk — speech recognition
math software. mathtalk.com

[4] nuance.com. Dragon — the world’s no. 1 speech
recognition software (nuance UK).
nuance.com/en-gb/dragon.html

[5] M. Roberts. Mathfly — dragonfly/caster scripts
for dictating mathematics fluidly, 2019.
mathfly.org

� Mike Roberts
mike (at) mathfly dot org

mathfly.org

Mike Roberts

