
76 TUGboat, Volume 40 (2019), No. 1

TEX4ht: LATEX to Web publishing

Michal Hoftich

Abstract

The article gives overview of the current state of de-
velopment of TEX4ht, a conversion system for (LA)TEX
to HTML, XML, and more. It introduces make4ht, a
build system for TEX4ht as well as basic ways how
to configure TEX4ht.

1 Overview of the conversion process

TEX4ht is a system for conversion of TEX documents
to various output formats, most notably HTML and
OpenDocument Format, supported by word proces-
sors such as Microsoft Word or LibreOffice Writer.
An overview of the system is depicted in figure 1.

The package tex4ht.sty starts the conversion
process. The document preamble is loaded as usual,
but it keeps track of all loaded files. It loads special
configuration files for any packages used that are sup-
ported by TEX4ht at the beginning of the document.
These configuration files are named as the configured
file with extension .4ht. They may fix clashes be-
tween the configured package and TEX4ht, but most
notably the package commands are patched to insert
special marks to the DVI file, so-called hooks.

After the package configuration, another type of
.4ht files are loaded. These populate inserted hooks
with tags in the selected output format. In the last
step before processing of the document contents, a
.cfg provided by the user can configure the hooks
with custom tags. Compilation of the document then
continues as usual, resulting in a special DVI file.

The generated DVI file is then processed with
the tex4ht command. This command creates output
files, converts input encodings to UTF-8, and creates
two auxiliary files: an .idv file, a special DVI file
that contains pages to be converted to images, which
can be the contents of the LATEX picture environment
or complex mathematics; second, an .lg file with a
list of output files, CSS instructions, and instructions
for compiling individual pages in the .idv file to
images.

The last step in the compilation chain is the
t4ht program. It processes the .lg file and extracts
the CSS instructions, converts the images in the .idv
file, and may call various external commands.

2 Supporting scripts

Because the entire conversion process consists of sev-
eral consecutive steps, we use scripts to make this

Translation by the author from the original in Zpravodaj
2018/1–4, pp. 11–21, for the BachoTEX 2019 proceedings.

x.tex TEX x.dvi tex4ht x.idv

html files

x.lg

t4ht
images
& CSS
files

Figure 1: TEX4ht process overview

process easier. The TEX4ht distribution contains sev-
eral such scripts. They differ in the supported output
format, TEX engine used, and options passed to the
underlying commands. The most commonly used
script is htlatex, which uses the PDFTEX engine
with LATEX and produces HTML output.

Each of the scripts loads the TEX4ht package
without needing to specify it in the document, and
options from the command line are passed to the
package as well to tex4ht and t4ht commands.

For example, the following command can be
used to request the output in XHTML format in the
UTF-8 encoding:

htlatex file.tex "xhtml,charset=utf-8" \

"-utf8 -cunihtf"

However, these scripts are not flexible; each
time, they execute a three-time compilation of the
TEX document. This ensures the correct structure of
hypertext links and tables, as they require multiple
compilations to function properly, processing the
document repeatedly with tex4ht and t4ht.

For example, if the document contains a bib-
liography or glossary that is created by external
programs, it is necessary to first call htlatex, then
the desired program, and then htlatex again. In
the case of larger documents, compilation time may
thus be relatively long.

Passing options to the underlying commands is
also quite difficult.

New build scripts have been created for these
reasons. My first project that attempted to simplify
the TEX4ht compilation process was tex4ebook. It
added support for e-books, specifically ePub, ePub3
and mobi formats. It added support for use of com-
mand line switches and build files written in Lua.

The main difference between tex4ebook and
TEX4ht is the third compilation step. The t4ht

command is used only to create a CSS file. Image
conversion and execution of the external commands is
controlled by tex4ebook itself. In addition, thanks
to the build file support, it is possible to execute
commands between individual TEX compilations, for
example, to execute an index processor or bibtex

after the first compilation.

Michal Hoftich

TUGboat, Volume 40 (2019), No. 1 77

The library that added the build support pro-
vided features useful also for other output formats
than e-books. It was extracted as a standalone tool
and the make4ht build system is now a recommended
tool for use of TEX4ht.

3 The make4ht build system

make4ht enables creation of build scripts in the Lua
language. It supports execution of arbitrary com-
mands during the conversion, post-processing of the
generated files and defining commands for image
conversion. Using the so-called modes, it is possible
to influence the order of compilation using switches
directly from the command line. For example, the
basic script used by make4ht supports a draft mode
which runs only one compilation of the document
instead of the usual three. This can be used to
significantly speed up the compilation.

Currently, only LATEX is supported; plain TEX
support is possible, but it is more complicated and
ConTEXt is not supported at all. In the following
text we will focus only on LATEX.

make4ht supports a number of switches and
options that affect the progress of compiling and pro-
cessing of the output files. make4ht can be launched
as follows:

make4ht 〈switches for make4ht〉 file.tex \

"〈options for tex4ht.sty〉" \

"〈switches for tex4ht〉" \

"〈switches for t4ht〉" \

"〈switches for TEX 〉"
This complicated list is a result of the way htlatex

works: it needs to pass options for all components
involved in compilation. In most cases, fortunately,
there is no need to use all the options. Most of
the properties that tex4ht and t4ht provide can be
requested using the make4ht switches.

3.1 make4ht command line switches

Every command line switch that make4ht supports
has a short and long version. In addition, short
switches can be combined. For example, the following
two commands are identical:

make4ht --lua --utf8 --mode draft filename.tex

make4ht -lum draft filename.tex

This command uses LuaLATEX for the compi-
lation, which will be executed only one once, due
to draft mode. The resulting document will be in
UTF-8 text encoding. The default output format for
make4ht is HTML5 (htlatex’s default is HTML4).

In addition to these --lua, --utf8, and --mode

switches, there are a number of other useful switches:

--config (-c) configuration file for TEX4ht, allow-
ing tags inserted into output files to be changed.

--build-file (-e) select a build file.

--output-dir (-d) the directory where the output
files will be copied.

--shell-escape (-s) pass the -shell-escape op-
tion to LATEX, enabling execution of external
commands.

--xetex (-x) compile the document with X ELATEX.

--format (-f) select the output format.

There are other switches, but the above are the
most commonly useful.

3.2 Output formats and extensions

TEX4ht supports a wide range of XML-based formats,
from XHTML, through ODT to DocBook and TEI.

The --format switch for make4ht supports the
formats html5, xhtml, odt, tei and docbook (the
format names must be specified in lowercase). The
default format is html5.

Formats can be selected also using the tex4ht.

sty option:

make4ht filename.tex "docbook"

However, the advantage of --format is that it can
fix some common issues for the particular formats.
It can also load extensions. Extensions allow us to
influence the compilation without having to use a
build script. The list of extensions to be used can
be written after the format name. They can be
enabled using the plus character, and disabled with
the minus character.1 For example, the following
command uses the HTMLTidy command to fix some
common errors in the generated HTML file:

make4ht -f html5+tidy simple-example.tex

The following extensions are available:

latexmk_build Use the latexmk build system to
compile the document. This will take care of
calling external commands, for example, to cre-
ate a bibliography.

tidy Clean HTML output with the tidy command.

dvisvgm_hashes efficient generation of images using
the dvisvgm command. It can use multiple pro-
cessors and only creates images that have been
changed or created since the last compilation.
This can make compilation noticeably faster.

common_filters, common_domfilters Clean the
document using filters. Filters will be discussed
later in the article.

mathjaxnode Convert MathML math code into spe-
cial HTML using MathJax Node Page.2 This

1 Extensions can be enabled in a make4ht configuration
file, so disabling them from the command line can be useful.

2 github.com/pkra/mathjax-node-page

TEX4ht: LATEX to Web publishing

78 TUGboat, Volume 40 (2019), No. 1

produces mathematics that can be viewed in
web browsers without MathML support. The
rendering of the result doesn’t need JavaScript,
which results in much faster display of the doc-
ument compared to standard MathJax.

staticsite Create a document usable with static
page generators such as Jekyll.3 These are useful
for creating blogs or more complex websites.

3.3 Configuration files for make4ht

make4ht supports build scripts in the Lua language.
They can be used to call external commands, to pass
parameters to an executed command, to apply filters
to the output files, to affect the image conversion, or
to configure extensions.

The .make4ht configuration file is a special build
script that is loaded automatically and should con-
tain only general configurations shared between doc-
uments. In contrast, normal build files may contain
configurations useful only for the current document.
The configuration file can be located in the directory
of the current document or in its parent directories.

This can be useful, for example, for maintaining
a blog, with each document in its own directory.
In the parent directory, a configuration file ensures
proper processing. Here’s a small example:

filter_settings "staticsite" {

site_root = "output"

}

Make:enable_extension("common_domfilters")

if mode=="publish" then

Make:enable_extension("staticsite")

Make:htlatex {}

end

This configuration file sets the option site_root

for the staticsite extension using the command
filter_settings. This command can be used to set
options for both filters and extensions. The name of
the filter or extension is separated from the command
by a space, followed by another space-separated field,
where options can be set.

The next command is Make:enable_extension,
which enables the extension. In this case the exten-
sion common_domfilters is used in every compila-
tion, but the staticsite extension is used only in
publish mode. In this mode it is also necessary to use
the Make:htlatex{} to require at least one LATEX
compilation.

Now we can run make4ht in publish mode:

make4ht -um publish simple-example.tex

The output directory will be created if it does
not already exist; HTML and CSS files will be copied

3 jekyllrb.com

here. The static site generator must be configured
to look for files here and it needs to be executed
manually; the extension doesn’t do that.

The resulting HTML looks something like this:

time: 1544811015

date: ’2018-12-14 18:10:47’

title: ’sample’

styles:

- ’2018-12-14-simple-example.css’

meta:

- charset: ’utf-8’

<p>Sample document</p>

The document header enclosed between the two ---

lines contains variables in the YAML format extracted
from the HTML file. Only the contents of the docu-
ment body remains in the document; the old header
is stripped off. The static generator can then create
a page based on the template and the variables in
the YAML header.

This was just a basic example. Filters and exten-
sions have much more extensive configurable options,
all of which are described in the make4ht documen-
tation.4

3.4 Build files

In the compilation scripts it is possible to use the
same procedures as in the configuration file, but fo-
cused on the particular compiled document. The
following code shows use of the DOM filters. These
take advantage of the LuaXML5 library. It supports
processing XML files using the Document Object
Model (DOM) interface. This makes it easy to navi-
gate, edit, create or delete elements.

The use of DOM filters is shown in the following
example for LuaLATEX:

\documentclass{article}

\begin{document}

Test {\itshape háčků}

\end{document}

Because of a known error in processing the DVI

file with the tex4ht command, each accented char-
acter in the generated HTML file will be placed in a
separate element:

<!--l. 4--><p class="noindent" >Test

h<span

class="rm-lmri-10">á<span

class="rm-lmri-10">čk<span

class="rm-lmri-10">ů </p>

The following build file removes this by using the
built-in joincharacters DOM filter. In addition, it

4 ctan.org/pkg/make4ht
5 ctan.org/pkg/luaxml

Michal Hoftich

TUGboat, Volume 40 (2019), No. 1 79

changes the value of the class attribute for all <p>
elements to mypar, just to show how to work with
the DOM interface:

local domfilter = require("make4ht-domfilter")

local function domsample(dom)

-- the following code will process

-- all <p> elements

for _, par in

ipairs(dom:query_selector("p")) do

-- set the "class" attribute

par:set_attribute("class", "mypar")

end

return dom

end

local process = domfilter({

"joincharacters",

domsample

})

Make:match("html$", process)

The script uses the standard Lua require func-
tion to load the make4ht-domfilter library. This
creates a domfilter function that takes a list of
DOM filters to execute as a parameter.

Each call to the domfilter function creates
another function with a chain of filters specified in
a table. Parameters in the fields can be either the
name of an existing DOM filter, or a function defined
in the file.

The filter chain can then be used in the function
Make:match. This takes a filename pattern to match
files for which the filters should be executed, and the
filter chain.

The process function will run on each file whose
filename ends with html in this case.

The resulting HTML file does not contain the
extra elements and the <p> element has a
class attribute value of mypar:

<!-- l. 3 --><p class=’mypar’>

Test háčků

</p>

Here is another example, of a more complex
build file with external command execution and con-
figuration of image generation:

Make:add("biber", "biber ${input}")

Make:htlatex {}

Make:biber {}

Make:htlatex {}

Make:image("png$",

"dvipng -bg Transparent -T tight "

.. "-o ${output} -pp ${page} ${source}")

Make:match("html$",

"tidy -m -utf8 -asxhtml -q -i ${filename}")

The Make:add function defines a new usable
command, biber in this case. The second parameter
is a formatting string, which may contain ${...}

variable templates, which are in turn replaced by
parameters set by make4ht. Here, the ${input} will
be replaced with the input file name.

The newly added command can then be used
as Make:〈command〉, like the built-in commands.
Additional variables may be set in the table passed
as the argument.

The Make:htlatex command is built in and
requires one execution of LATEX with TEX4ht active.

The Make:image command configures the im-
age conversion. Three variables are available: page
contains the page number of the image in the DVI

file, output is the name of the output image, and
source is the name of the .idv file.

The use of the Make:match command was shown
in the previous example, but it may also contain
a string with the command to be executed. The
filename variable contains the name of the gener-
ated file currently being processed.

4 TEX4ht configuration

Output format tags embedded in a document are
fully configurable via several mechanisms. The easi-
est way is to use the tex4ht.sty package options, a
more advanced choice is to use a custom configuration
file, and the most powerful option is to use .4ht files.

When a TEX file is compiled using make4ht or
another TEX4ht script, the tex4ht.sty package is
loaded before the document itself. Package options
are obtained from the compilation script arguments.
As a result, it is not necessary to explicitly load the
tex4ht.sty package in the document.

The TEX file loading mechanism is modified to
register each loaded file with TEX4ht. For some
packages, TEX4ht has code to simply stop it from be-
ing loaded, or to immediately override some macros.
This is necessary for packages that are incompatible
with TEX4ht, such as fontspec.

After execution of the document preamble, the
configuration files for the packages detected during
processing are loaded. These files are named as the
base filename of the configured package, extended
with .4ht. Their main function is to insert con-
figurable macros, called hooks, into the commands
provided by the package. In general, it is better
not to redefine macros, only to patch them with the
commands TEX4ht provides for this purpose. This
is enough in most cases.

Output format configuration files are loaded
after the package configuration files are processed.
These define the contents of the hooks. Besides

TEX4ht: LATEX to Web publishing

80 TUGboat, Volume 40 (2019), No. 1

inserting output format tags, the hooks can contain
any valid TEX commands.

4.1 tex4ht.sty options

Many configurations are conditional, that is, exe-
cuted only in the presence of a particular option
being given for tex4ht.sty. Each output format
configuration file can test any option, which means
that there is no restriction on the list of possible
options; each output format can support a different
set of options.

As mentioned above, it is neither necessary nor
desirable to load tex4ht.sty directly in the docu-
ment, so it is possible to pass the options in other
ways. The easiest way is to use the compilation script
argument. This is always the argument following the
document name. For example, here we specify the
two options mathml and mathjax.

make4ht file.tex "mathml,mathjax"

Another way to pass options is to use \Preamble
command in the private configuration file. We’ll show
this in the next section.

As mentioned above, the list of options is open-
ended, but let’s now look at some current options
regarding mathematical outputs in HTML. The de-
fault configuration for mathematical environments
produces a blend of rich text and images for more
complex math, if it cannot be easily created with
HTML elements. Often this output doesn’t look
good. As an alternative, it is possible to use images
for all math content. This can be achieved by us-
ing the pic-m options for inline mathematics and
pic-〈environment〉 for mathematical environments.
For example, the pic-align option will make images
for all align environments.

By default, images are created in the PNG bit-
map format. Higher quality can be achieved using
the SVG vector format. This can be specified with
the svg option.

The TEX4ht documentation is unfortunately
somewhat spartan. With the info option, much
useful information about the available configurations
can be found in the .log file after the compilation
of a document.

The options listed in the example above, mathml
and mathjax, provide the best quality output for
mathematical content. The MathML markup lan-
guage, requested by the first option, encodes the
mathematical information, but its support in Web
browsers is poor. The second option requests the
MathJax library, which can render the MathML out-
put in all browsers with JavaScript support.

The mathjax option used without mathml com-
pletely turns off compilation of math by TEX4ht;

all math content remains in the HTML document
as raw LATEX macros. MathJax then processes the
document and renders the math in the correct way.
The disadvantage of this method is that MathJax
does not support all packages and user commands; it
needs special configuration in these cases. Emulation
of some complex macros may not even be possible.

4.2 Private configuration file

The private configuration file can be used to insert
custom content into the configuration hooks. This
file has a special structure:

〈preamble definitions〉 ...

\Preamble{〈tex4ht.sty options〉}
... 〈normal configurations〉 ...

\begin{document}

... 〈configuration for HTML head〉
\EndPreamble

The three commands shown here must be al-
ways included in this configuration file: \Preamble,
\begin{document} and \EndPreamble. The config-
uration file name can be passed to make4ht using
the switch --config (or -c), like this:

make4ht -c myconfig.cfg file.tex

The full path to the configuration file must be
used if it is not placed in the current directory.

There are several configuration commands. The
most important are \Configure for common config-
urations, \ConfigureEnv for configuration of LATEX
environments, and \ConfigureList for the configu-
ration of the list environments.

The \HCode command is used for insertion of
the output format tags. The \Hnewline command
inserts a newline in the output document. And the
\Css command writes content to the CSS file.

The following example configures the hooks for
the \textit command to insert the element.

\Configure{textit}

{\HCode{}\NoFonts}

{\EndNoFonts\HCode{}}

The \Configure command takes a variable num-
ber of arguments. It depends on the hooks’ definition
how many arguments are needed. The first argument
is always the name of the configuration; following
arguments then put the code in the hooks. Typically,
a configuration requires two hooks: the first places
code before the start of the command, the second
after it is done. This is the case for the textit ex-
ample above. The configuration name may match
the name of the configured command, but this is not
always the case. The package .4ht file may choose
the configuration names arbitrarily.

Michal Hoftich

TUGboat, Volume 40 (2019), No. 1 81

The \NoFonts command used above disables
inserting formatting elements for fonts when process-
ing a DVI file. TEX4ht automatically creates basic
formatting for font changes. This makes it possible
to create a document with basic formatting even
for unsupported commands, but it is not desirable
when the command is configured using custom HTML

elements.
Correct paragraph handling is difficult, and

TEX4ht sometimes puts paragraph tags in undesired
places. This applies primarily to environment config-
urations that can contain several paragraphs and yet
enclose their entire content in one element. It may
happen that the starting paragraph mark is placed
before the beginning of this element, but it should be
placed right after that. The \IgnorePar command
can prevent the insertion of a tag for the next para-
graph. \EndP inserts a closing tag for the previous
paragraph. There are more commands to work with
paragraphs, but these are the most important.

To illustrate this issue, the following example
uses the hypothetical rightaligned environment:

\ConfigureEnv{rightaligned}

{\HCode{<section class="right">}}

{\HCode{</section>}}

{}

{}

The \ConfigureEnv command expects five pa-
rameters. The first is name of the environment to
configure. The contents of the second parameter are
inserted at the beginning of the environment, and the
contents of the third at the end of the environment.
The other two parameters are used only if the con-
figured environment is based on a list. In most cases
they may be left blank. The HTML code created by
the configuration above will look something like the
following:

<p class="indent" ><section class="right">

...

</p><p class="indent></section>

As described above, this code is invalid. The
terminating tag for the <p> element is placed at the
wrong nesting level. The invalid code can cause the
DOM filters and other post-processing tools expecting
well-formed XML files to fail, so this situation must
be avoided.

The correct configuration is somewhat more
complicated:

\ConfigureEnv{rightaligned}

{\ifvmode\IgnorePar\fi\EndP

\HCode{<section class="right">}\par}

{\ifvmode\IgnorePar\fi\EndP

\HCode{</section>}}

{}

{}

In this case the insertion of tags for paragraphs
is controlled, resulting in a correctly nested structure:

<section class="right">

<!--l. 9--><p class="indent" >

...

</p></section>

Another feature is the conversion of part of a
document to an image. This can be requested using
the commands \Picture* or \Picture+. The dif-
ference between these is that the first processes its
content as a vertical box, and the second does not.
The content between any of these commands and the
closing \EndPicture is converted to an image.

The following example creates an image for the
text contained in the topicture environment:

\documentclass{article}

\newenvironment{topicture}{\bfseries}{}

\begin{document}

\begin{topicture}

Contents of this environment

will be converted as an image.

\end{topicture}

\end{document}

The TEX4ht configuration for the topicture

environment uses \Picture*:

\ConfigureEnv{topicture}

{\Picture*{}}

{\EndPicture}

{}

{}

The resulting document will contain an image
of the text contained in the topicture environment
as it was typeset in the DVI file.

5 Conclusion

The TEX4ht configuration options are extensive. We
have touched only the basics in this article, but it
should be enough to solve many basic issues that
users might face. We omitted examples of how to
add configurations for a new LATEX package; we hope
to address this topic in a future article.

The system is easier and more efficient to use
than in the past, thanks to the make4ht build system.

The new documentation for TEX4ht is being
developed with financial support by CSTUG. It will
describe the most useful user configurations, as well
as technical details of the system.

� Michal Hoftich
Charles University, Faculty of Education
michal.hoftich (at) pedf dot cuni dot cz

https://www.kodymirus.cz

TEX4ht: LATEX to Web publishing

