
34 TUGboat, Volume 40 (2019), No. 1

ConTEXt LMTX

Hans Hagen

1 Introduction

More than decade after introducing the ConTEXt
version for LuaTEX, flagged MkIV (the version known
as MkII ran under more traditional TEX engines),
it is time for something new. As MkVI, MkIX and
MkXI are already taken for special variants of MkIV
files a new acronym was coined: LMTX. Such a
sequence of letters must sound somewhat fancy but
it actually has a meaning, or better: it has several.
One is that it stands for LuaMetaTEX, an indication
of an engine to be used. But one can also think of
the components that make up ConTEXt code: Lua,
MetaPost, TEX, and XML. But once it is clear to a
user what (s)he is dealing with, it can also indicate
a “Lean and Mean TEX eXperience”. But, as with
MkIV, eventually it will become just a tag.

So, with this out of the way, the next question
is, what do we mean by LuaMetaTEX? The term
MetaTEX first surfaced at a ConTEXt meeting but
it is actually a variant of what Taco and I always
thought of when we discussed LuaTEX: an engine
that hosts not only TEX but also MetaPost, which
we all like quite a lot. But, as Lua is now an integral
part of this adventure, it has been glued to more
than just the engine name.

In the next sections it will be clear what we’re
actually talking about and how this relates to Con-
TEXt LMTX. But let me first stress that after a
decade of usage, I’m convinced that the three main
components fit nicely together: TEX has a good
track record of usability and stability; MetaPost is a
nice graphical description language, efficient and very
precise, and Lua is, in my opinion, the nicest scripting
language around, minimal, rooted in academia and
developed in a steady and careful way. It makes
for a hard to beat combination of languages and
functionality.

2 Using ConTEXt

The average ConTEXt user (MkIV) needs only the
LuaTEX engine, a bunch of macros, fonts and hy-
phenation patterns. One can install ConTEXt from
the TEX Live distribution (or via a distribution’s soft-
ware package) or directly from the ConTEXt garden.
The first ships the yearly, so-called ‘current’ release;
the second also provides intermediate ‘beta’ releases.
In both cases the number of installed bytes is rea-
sonable, especially when one compares it to many
programs or packages. In fact, relative to many pro-
grams that come with a computer ecosystem these

days, a TEX installation is no longer that large.
Most users will use ConTEXt from within a text

editor, normally by hitting a key to process; others
might run it on the command line. Then there are
those who run it as part of a complex workflow where
no one sees it being run at all. When you run Lua-
TEX with ConTEXt, there is the usual log data flying
to a console as well as some short delay time involved
to get the result. But that is the game so there is
nothing to worry about: edit, run, wait and watch.

On a multi-core machine, only one CPU core
will be taken and, depending on the document, a
reasonable amount of memory. As ConTEXt evolves
we try to limit its use of resources. If we take almost
any browser as benchmark then TEX is cheap: its
memory consumption doesn’t slowly grow to persis-
tent gigabytes, there is no excessive (unnoticed but
not neglectable) writing to disk, and when one is just
editing a document it will not suddenly take CPU

cycles. We try not to turn the ConTEXt+LuaTEX
combination into bloatware.

If you listen to what is discussed between the
lines at the ConTEXt meeting you will notice that
some use this rendering system as a sort of appliance:
it does the job without the end user of the document
ever realizing what is involved. Using some virtual
machine in this case is quite normal. When ConTEXt
is running on a server or background system we need
to keep in mind that performance is not required
to improve that much and that low power solutions
are considered more often. This also means that we
must try to lower the memory footprint as well as
the need for CPU cycles.

There are many cases where the system is used
to generate (few) page documents as part of a larger
workflow (or program). One example is creating a
PDF file from a MetaPost graphic (with TEX) that
gets converted to SVG and then ends up in a web
page (part of a status/input screen). It’s hard to beat
MetaPost in terms of quality and cost effectiveness.
For this a lean and mean and well contained setup is
needed. But, in order to be permitted to use such a
subsystem one could be asked to prove that what’s
underneath is not some complex, hard to maintain
component. It being open source is not enough.

Users find it hard to convince employers to use
a TEX system. It is seen as large, is considered old,
doesn’t always fit in. Therefore, contrary to what
one expects, expensive, less robust and less future
safe solutions are chosen. How we can help users
addressing this problem was also a topic discussed
at the last ConTEXt meeting.

All these aspects (of usage) have led to what I
present now as ConTEXt LMTX, which started mid-

Hans Hagen



TUGboat, Volume 40 (2019), No. 1 35

2018 and is expected to be stable mid-2019, after a
year of intense experimenting and development. This
is in time for the 2019 ConTEXt meeting where we
can pick up discussions about how to make sure TEX
is a valid candidate for rendering (so far as that is
still needed in the browser dominated arena).

3 Packaging ConTEXt

We have now arrived at a brief summary of what Con-
TEXt LMTX actually is, but let’s stress that for the
average user it is what they already have: ConTEXt
MkIV using LuaTEX. In fact, we will continue to
ship what has been there for years alongside LMTX

so that users can test and we can fix bugs. Some
parts of the code base already have LMTX specific
branches but so far (most) users never enter these.

We use a lean and mean engine: LuaMetaTEX
identifying itself as LuaTEX 2.0 (we count from there).
The binary is some mere 3MB which is much smaller
than stock LuaTEX.1 The size matters because the
engine is also a Lua processor and used as such.

The LuaMetaTEX code base is also relatively
small and is now part of the ConTEXt distribution.
This means that when one downloads the archive or
installs ConTEXt, the source is included! One gets the
whole package. The 12MB source tree compresses to
around 2MB.2

If needed the user can compile the program.
The build is relatively simple with essentially no
dependencies, very few requirements, and all files
that are needed are included. The average user will
not compile but it adds to the idea that the user
is independent and that, when ConTEXt is used as
a component, all batteries are included.3 With the
sources in the distribution, users on non-standard
systems can easily bootstrap a working system.

Where LuaTEX depends on a few external li-
braries, LuaMetaTEX goes with the absolute mini-
mum as it is what the name says: a core TEX engine,
the MetaPost machinery, and Lua.4 The few libraries
that we ship are part of the source tree and their
interfaces are unlikely to change.

There is just one program: LuaMetaTEX. We
use Lua 5.4 and no longer need LuaJIT as it lags
behind and has no real significant performance ad-

1 Of course we still pay attention to LuaTEX, but there
we have more or less frozen the feature set in order to make
it a future-safe engine.

2 This will be at the formal release at the 2019 meeting.
3 For now, I directly handle the Windows and Linux bi-

naries and Alan Braslau takes care of the OSX and FreeBSD

binaries. We have decided on providing 64 bit binaries on
these systems that we actively use and in the future they will
be generated on the compile farm.

4 The only shared libraries that are referenced are libc,
libm, and libdl.

vantages. There are no extra binaries needed, as
this one program also serves as a stub. The first
experiences have demonstrated that Lua 5.4 is some-
what faster than its predecessors. We plan to use the
more efficient generational garbage collector once it
becomes stable.

When it comes to installing ConTEXt, the engine
is also the installer. Instead of using rsync we use
http. An initial install can take a little time, but
updates much less. Once the installer is unzipped
there are no dependencies on any other programs.
The small size of the binary facilitates such usage.

The installation only has the files needed for
MkIV. Of course there is still the archive with every-
thing, but there is no need to install MkII files and
resources when only LuaMetaTEX is used. At some
point the installer will allow the installation of both
MkII and MkIV.

The MkIV codebase is aware of the engine and
triggers LMTX mode accordingly. It will use (a few)
different files when it runs on top of LuaTEX or
LuaMetaTEX. There might be a point in time when
we make a more rigorous split.

4 Fundamental changes

A user now thinking “So what?” deserves some more
explanation about what has been changed under the
hood. Part of the answer relates to the shrunken
binary. How that happened is discussed in a docu-
ment that kept track of the process and decisions
but probably is only of interest for a few. A short
summary follows.

At some point last year I realized that I was
coming up with solutions where LuaTEX was actually
working a bit against me. One reason for that is that
we had to become stable at some point and could not
change it fundamentally any longer. The main reason
for that was that other macro packages are also using
it: even a trivial change (say in the log) can spam
your mailbox with complaints. At the same time it
started annoying me that we had to carry around
quite a bit of code that ConTEXt doesn’t need or use
at all. In addition to that, there were some depen-
dencies on foreign code that resulted in occasional
(enforced) updates of the rather complex source tree
and build structure. The switch to a new PDF intro-
spection library had demonstrated that dependencies
could simply be made much less troublesome. But,
as TEX is basically just juggling bytes I wondered if
it could be done even better (hint: in Lua).

Already a while ago ConTEXt started using its
own OpenType font loader, written in Lua instead of
the one derived from FontForge. But actually that
built-in loader code was the last to go as bits and

ConTEXt LMTX



36 TUGboat, Volume 40 (2019), No. 1

pieces were still hooked into the different parts of
the code base, for instance in the PDF backend.5

So, the first thing to get rid of was image inclu-
sion library code. Much of the inclusion was already
under strict ConTEXt control anyway. Of course we
still can include images but ConTEXt does it entirely
under Lua.6

Next to go was font embedding. In ConTEXt we
already did most of that in Lua, so this kick-out was
not that dramatic. As a natural followup, generating
the page stream was also delegated to Lua. For the
record: in all these stages I had a hybrid code base,
meaning that I could continue to do the same in
LuaTEX. Only at some point the diversion was too
large for comfort, and I switched to dedicated code
for each engine. Also, the regular ConTEXt code had
to keep working so every (even temporary) change
had to be done very carefully.

Once the built-in backend was reduced that way,
I decided to ship out the whole page via Lua. Keep in
mind that in ConTEXt MkIV we always only needed
part of the backend: we never depended on any
of the extensions supported by the engine and did
most PDF-specific features differently already. But
for macros using these extensions, it’s one of the
components that for sure will suffer in performance
from being written in Lua instead of C code.

We now no longer had any need for the code
in the built-in font loader: we didn’t use the load-
ing code but the backend still had used some of its
magic for inclusion. So, out went the loader. When
I realized that TEX needs only a little information to
support what we call base mode, I decided that we
could also replace the TFM loader by a Lua loader.
We already had to deal with virtual fonts in the new
backend code anyway. So, basically most font related
code is now gone: only a little is passed to the engine
now, that which is needed to do the typesetting.

With the backend reduced to a minimum, it was
then a small step to removing it altogether. I didn’t
feel too guilty about this because officially TEX has
no backend: it’s an extension. So, the img and pdf

libraries are also gone. With the whole PDF file now
generated directly by ConTEXt it was time to deal
with extensions. Stepwise these were removed too.
In the end we only had a generic so-called ‘whatsit’
left. The impact on the ConTEXt code is actually not
that large: the biggest complication is that we need

5 Already some time ago I have made sure that this part
is not ever used by ConTEXt, which made me confident that
at some point the entire library could be removed.

6 We still keep the PDF introspection library available as
it has some advantages over using Lua, but I have developed
a somewhat limited Lua alternative to play with; maybe a
possible future variant.

to support both stock LuaTEX and LuaMetaTEX, so
figuring out a way to do that (stepwise as we had
a transition) took a while. When doing something
like this one should not be afraid to write temporary
code and later take it out.7

I used these opportunities to improve the read-
ability of the uncompressed PDF output a bit (some
was already done in LuaTEX). It must be noted
that the final virtual font handling happens in the
backend (TEX only cares about dimensions) so this
can open up a whole new world of possibilities. In
principle the produced code can be made a bit more
efficient. I must admit that I always treated much of
the font code in the backend as a black box. Reverse
engineering such code is not my forte (and no fun
either) so I tend to just figure it out myself using the
formal specifications. That is also more fun.

I didn’t mention yet that parallel to this process
some more cleanup happened. All code files were
touched; where possible, header files were introduced.
And every (even small) step was tested by processing
documents. In some places the code could be made
more efficient because we had less interwoven code
as a side effect of removing the backend font and
image related code. I also cleaned up a bit of the
Lua interface and more might happen there. Some
libraries lost features due to the conceptual changes.
Also, libraries like slunicode were removed as we
never truly needed them. In ConTEXt we already
used adapted and optimized socket interfaces so we
also no longer preload the old ones that come with
the socket libraries. There are lots of such details,
which is why it took many months to reach this state.

There are fewer command line options and the
startup is somewhat streamlined. As in ConTEXt we
already are (mostly) kpse compatible but entirely in
Lua, as that library was removed too. This affected
quite a bit of code, however, because the backend is
outsourced, also a lot of file handling! Basically only
TEX and Lua files are now seen by the frontend. And
dealing with system calls was already done in Lua.
We don’t need much on top of what we accumulated
in Lua for over a decade.

One can wonder if we’re still talking TEX and
the answer (at least for me) is yes we are. Original
TEX has only a DVI backend and DVI is nothing more
than a simple page description (I can cook up one if I
need to). One needs an external program to produce
something useful from DVI. Sure, pdfTEX grew to
add a PDF backend but that again is an extension,
and although LuaTEX separates the code better than

7 At some point I will add a DVI backend, just for good
old times.

Hans Hagen



TUGboat, Volume 40 (2019), No. 1 37

its ancestor, initializations for instance still mess
up the code. The only place where extensions and
built-in standard functionality, reflected in primitives,
overlap is in writing to files. Clearly we do need to
support that. However, along with some other (Lua-
TEX) primitives, the backend-related ones are gone.
But . . . we can simply implement them using Lua
so that a macro package still sees these primitives.
Nowhere is it mandated that a ‘primitive’ should be
hardcoded in the engine.

In fact, one reason for going this route is that
it is a way to come closer to the original, even as
we have a few more primitives (ε-TEX as well as
LuaTEX). But what about directions, those coming
from Aleph (Omega)? It is a fact that in spite of
attempts to deal with all these directions, only a
few made sense, and LuaTEX ended up with only
four. Of these four, only left-to-right and right-to-
left ever worked well. I cannot imagine someone
using the vertical ones as they are hard to control.
Therefore, as soon as the backend was gone, I decided
to keep only the two horizontal directions. Yet, in
order to still support vertical rendering boxes got
official offsets and orientations, at the TEX level. Of
course the backend is free to interpret this. This
might find its way back to stock LuaTEX but only
after I’m satisfied for some time. So, more about
this in another article. I kept only the new numeric
direction specifiers.

With all this done, simplifying the binary build
was on the agenda. This was not trivial. In retro-
spect I should just have started new, but because of
all those dependencies it made more sense to step-
wise strip the process to get an idea of what was
happening and why. In the end, when it was deter-
mined to be sort of impossible to go much smaller,
I decided to quit that and just write a bunch of
CMake files. The retrospect relates to the fact that
this took me a day to figure out for Windows, Linux,
OSX and ARM. A nice side effect was that the Lu-
aMetaTEX engine compiles in about 30 seconds on
my about eight-year-old laptop, which suddenly got
an extended lifetime (and about 15 seconds for Alan
on an almost four-year-old Macbook with an SSD).

5 The roadmap

The roadmap is as follows. Core development took
place in Fall 2018 and Spring 2019. On April 1
there was a version (2.00) suitable for use so users
could start playing with this variant. At that time,
a prototype of the new installer was also ready and
tested by some other developers. After this first
release I can start optimizing components in ConTEXt
that are currently sort-of hybrid due to the fact that

code has to run on both engines, but that code was
not yet distributed. Around the ConTEXt meeting
in Fall 2019 documentation should be available at
which time the LuaMetaTEX source code will also
become part of the distribution. Hopefully binaries
will then be generated using the compile farm. After
that the ConTEXt code base will become more and
more tuned for LMTX. This all has to happen in such
a way that no matter what engine is used, ConTEXt
works as expected. In the process we need to make
sure that users who (for some reason) use obsolete
low level libraries are served by proper replacements.

6 Summary

So what we have now is a lean and mean engine.
What are the consequences for users? They get a
smaller but all-inclusive package. The lack of single
backend and dependencies is also more future proof.
Although a native backend performs slightly better
for simple text-only documents, any more complex
document is processed as fast or faster, and we can
hope to gain a bit more over time. For instance,
processing a LuaTEX manual with current LuaTEX
and LMTX code takes 13.0 seconds, while using the
native backend takes 12.6. But LuaMetaTEX with
LMTX currently needs 11.7 seconds, so while we lost
some on employing more Lua we gained a bit in the
engine. The manual still can be processed a bit faster
using LuaJITTEX, but for other documents the new
setup can actually beat that variant by a wide margin.
I will not go into details of how this happens because
it is probably rather ConTEXt specific. At any rate,
I always try to make sure that whatever I change
deep down in ConTEXt, performance is not hit.

I’m quite satisfied that we now have a clean
code base, fast compilation, a bit more Knuthian
(less loaded) engine, and that we can distribute all in
one package without an increase in size. Combined
with the new installer this is quite a step forward in
ConTEXt development, at least for me.

For me, furthermore, the main effect is that I
have more freedom for experimenting and prototyp-
ing features that could be fed back into LuaTEX.
I also hope that eventually this machinery is well
suited for low power computers (and servers) with
limited memory. I will probably report more on all
this at another time.

I’d like to thank Alan Braslau for his support
in this project, his patient testing, and belief in the
future. He also made this article a bit more readable.
We love these three languages and have lots of plans!

� Hans Hagen
http://pragma-ade.com

ConTEXt LMTX


	Introduction
	Using ConTeXt
	Packaging ConTeXt
	Fundamental changes
	The roadmap
	Summary

