
TUGboat, Volume 39 (2018), No. 1 21

The DuckBoat—News from TEX.SE:
The Morse code of TikZ

Herr Professor Paulinho van Duck

Abstract

For this installment, Prof. van Duck would like to
tell you how the duck mania began and infected
many TEX.SE users. In the second Quack Guide, you
will find a beginner’s approach to TikZ, a powerful
package to draw your graphics directly in LATEX.

1 Here I am, again!

Hi, (LA)TEX friends!
If you missed the last issue, I am Prof. van Duck,

and I enjoy helping beginners like me!
First of all, let me celebrate a very significant

date, and thank our Jedi Master Prof. Knuth for
creating the best typesetting system in the world!

Happy Birthday, Prof. DEK!

TEX.SE

80 TEX

Secondly, I would like to thank all the TEX.SE

friends who warmly appreciated the first DuckBoat.
Some of them also used a link to it in their comments,
to explain to new users how to ask.

Peter Wilson himself wrote to me suggesting
a new topic (something like: How to add code and
images to TEX.SE posts?), which will be treated in
one of the next Quack Guides.

Prof. Enrico Gregorio was so kind to take me
with him on stage during his talk at last October’s
conference of the Italian TEX User Group, the annual
guItmeeting (I thank him also for his editing and
suggestions about this article).

By the way:

\begin{advertising}

Are you an Italian (LA)TEX user?

Join the guIt!
http://www.guitex.org

\end{advertising}

I am very proud of all that, quack!

Start

Input

N

Is N a
nonnegative
integer?

Error

Message

I = 1

F = 1

I ≥ N?

Print

N ! = F
I = I + 1

F = F ∗ I
Stop

Yes

No

Yes No

Figure 1: Case study: a flowchart to compute the fac-
torial of a number.

Last time I talked about the just-do-it-for-me
questions. Since a lot of them refer to TikZ, learning
some tips and tricks could be useful.

I will show you some of them drawing the flow-
chart in Figure 1. I chose it because I often see
questions about similar diagrams on TEX.SE.

Of course, as always in LATEX, there are many
ways to skin a duck, er, to make such a diagram.
Some of them are even more efficient and fun than
the one I will show here, for example with a matrix
or a chain (how many topics I do have for the next
issues, quack!). But I would like to proceed one step
at a time. I also will not be very rigorous, I hope
the experts will forgive me.

Anyway, I thank all the users whose answers
helped me to build the example. They are too many
to list them all here, quack!

2 Origin and evolution of the duck mania

I would like to tell you a story which is both moving
and funny; it concerns the origin of the duck mania.
The protagonist is, of course, Paulo Cereda. I will

The DuckBoat — News from TEX.SE: The Morse code of TikZ

22 TUGboat, Volume 39 (2018), No. 1

just report (more or less exactly) what he said in
chat about it.

It happened that, one day, he was in a conference
and saw a lone girl in the corner of the auditorium.
He decided at once to talk to her (he never loses an
opportunity to make new friends). But when he said
“Hi!”, she did not reply; she seemed not even to notice
his presence. When he came near her, she looked
at him, saying no words, and wrote in a piece of
paper that she was hearing impaired. Of course, this
was not a problem for Paulo, who promptly used his
notebook to write sentences which she could read.

To impress her, he mentioned that he studied
ASL (American Sign Language), even if he remem-
bered almost nothing. When she asked him to try a
sentence for her, he got stuck because the only words
he could remember were: I love you and, of course,
duck.

Since saying “I love you” to a girl you have
known for just a few minutes is not very appropri-
ate, he chose — in his own words — the second best
sentence ever known to mankind: “I love ducks”.

Eventually, after much gesticulation, the girl,
obviously, started laughing a lot!

This good memory is the reason why Paulo
began spreading the duck mania all over the world.

One way to infect other people was to offer a
hand puppet duck as a prize in a TEX.SE (Meta)
contest. I moved to Milan, to my friend Carla’s, on
that occasion (she won the contest).

Images or words related to ducks have been
used in TEX.SE posts for years; some users have a
duck as their avatar. The peak of the infection was
reached with the creation of tikzducks,1 and since
the package is growing bigger and bigger, the duck
joke will last for many years to come.

3 Quack Guide No. 2
The Morse code of TikZ

At first sight, TikZ may scare newbies due to its
huge package documentation [1], but its usage is not
so difficult as it may seem.

Its logic is simple: like the Morse code uses dots
and dashes to translate any text, TikZ uses nodes
and paths to draw any picture!

If you look at Figure 1, you will see some geomet-
ric shapes, connected by lines (in this case arrows):
the former are nodes, the latter are paths. Are you
looking forward to learning how to draw them? Just
load the tikz package, add a tikzpicture environ-
ment to your document, and start!

1 https://ctan.org/pkg/tikzducks.

3.1 Nodes

The syntax of the node command is more or less:

\node[〈options〉] (〈name〉) at (〈coord〉) {〈text〉};
Only {〈text〉}, i.e., the text within the node, is

mandatory, although it can be empty: {}.
〈name〉 is the identifier by which the node will

be referenced in your tikzpicture; it can also be
set with the option name=〈name〉.

The coordinates where it will be located are
(〈coord〉), they can be Cartesian, polar or spherical;
the default is (0,0).

As for 〈options〉, you can play around setting
dimensions, aspect, positioning, labels, you name it.
Of course, I cannot list all of them in these few pages,
I will only highlight the ones who surprised me when
I first met them, quack!

Figure 2 shows the options for setting the node
dimensions. All of these are followed by the actual
desired value, e.g., inner sep=〈dimension〉 and they
are not mandatory; if not explicitly set, they assume
a default value.

For instance, the default value for text width
is the natural width of your node text; let us call the
latter w, for convenience. If your node does not have
an explicit text width, it is set to w, as in the first
node of the following example. If a text width less
than w is indicated, your text will be broken onto
more than one line, as in the second node. If it is
greater than w, the remaining space will be filled
with spaces, as in the third node.

\begin{tikzpicture}[every node/.style={draw}]

\node {We love ducks};

\node[text width=4em] at (3,0)

{We love ducks};

\node[text width=10em] at (1.5,-1)

{We love ducks};

\end{tikzpicture}

pvd
inner sep

inner ysep

text height

text dept

text width inner sep

inner xsep

minimum width

minimum

height

Figure 2: Node dimensions. The dotted line is the base-
line; the text has a gray background to better highlight its
dimensions. For the border style see Figure 5. (The first
one who guesses what pvd means wins a rubber duck.)

Herr Professor Paulinho van Duck

https://ctan.org/pkg/tikzducks

TUGboat, Volume 39 (2018), No. 1 23

We love ducks
We love
ducks

We love ducks

The first strangeness you might notice in Fig-
ure 2 is that there are minimum width/height but
not the corresponding maximum. Indeed, if you
consider a node border with no thickness, the node
width is the sum of the text width and the double
of the inner xsep, whereas the node height is the
sum of text height, text depth and the double
of the inner ysep. Hence, for instance, you will
usually act on the text width to set a maximum
width.

The text height is the piece of text above the
baseline; the text depth is the one below.

The inner sep is the gap between the text and
the node border. You can set the horizontal/vertical
value separately with inner xsep/inner ysep.

If the border has a thickness, half of its thick-
ness will be inside the shape and half outside, so to
compute precisely the total node width/height you
should also add the line width of the border.

Have you got a headache yet? Don’t worry,
quack! Let me show you an example:

\begin{tikzpicture}[

every node/.style={draw, font=\ttfamily}

]

\node {1};

\node[inner xsep=0em] at (1,0) {2};

\node[inner ysep=0em] at (2,0) {3};

\node[inner sep=0em] at (3,0) {4};

\node at (0,-.5) {};

\node[inner xsep=0pt] at (1,-.5) {};

\node[inner ysep=0pt] at (2,-.5) {};

\node[inner sep=0pt] at (3,-.5) {};

\end{tikzpicture}

1 2 3 4

The nodes in the first column have the standard
inner sep dimension (which is .3333em), with and
without text. As you can see, even if there is no
text, the node has a width and a height, due to the
inner sep. In the second and third columns, there are
nodes respectively with no horizontal and no vertical
gaps between the text and the border, whereas, in
the last column, there are no gaps at all. To have a
point with no dimensions, you have to nullify also
the inner sep, as in the last node (if you only need
an actual geometric point, you can use \coordinate,
but I will not talk about it this time).

Did you notice the options of the tikzpicture

environment? draw means that you want the node

borders visible, and you can set the font used for the
node text with font=〈font commands〉.

Imagine that you have a picture with a lot of
nodes — writing these options for every node could
be boring! But LATEX is fun; it is made to avoid
code repetition, quack! The TikZ way to do this is
to create a style. You can make the style valid for
all the nodes, as in the previous example, or only for
some of them, giving your own name to the style. In
our case study, for instance, we will create a style for
the terminal blocks, one for the instructions, another
for the tests, and so on.

If you specify them, like in the previous example,
as options of your tikzpicture environment, you
can use them only locally. To make them valid for all
the pictures of our document, you can use \tikzset,
and write them in our preamble or anywhere before
using them:

\tikzset{〈style name〉/.style={〈options〉},...}
Another example is a handy application of text

height and text depth: alignment of texts in dif-
ferent nodes.

Look at this code snippet and its output (for
now, do not worry about the \draw commands, I
will explain them in Section 3.2):

\begin{tikzpicture}[

mylabel/.style={font=\small, align=center},

mynode/.style={draw, font=\large,

minimum height=4.5ex},

mynodeok/.style={draw, font=\large,

text height=1.75ex,

text depth=.5ex,

minimum height=4.5ex}]

\node[mynode] (p) {p};

\node[mynode] (vd) at (1,0) {vd};

\draw[dashed] (p.base) +(-1,0)

node[mylabel, left] {‘‘p’’ \\ baseline}

-- +(1.5,0);

\draw[dashed] (vd.base) +(-1.5,0) -- +(1,0)

node[mylabel, right] {‘‘vd’’ \\ baseline};

\node[mynodeok] (pok) at (0,-1) {p};

\node[mynodeok] at (1,-1) {vd};

\draw[dashed] (pok.base) +(-1,0)

node[mylabel, left] {same \\ baseline}

-- +(2,0);

\end{tikzpicture}

p vd“p”
baseline

“vd”
baseline

p vdsame
baseline

It is evident that the nodes of the first row have
different baselines, but adding the appropriate text
height and depth, you get two nodes with a perfectly
aligned text (second row).

The DuckBoat — News from TEX.SE: The Morse code of TikZ

24 TUGboat, Volume 39 (2018), No. 1

Node A
right=2pt

of A

below=4pt

of A

left=2pt

of A

above=4pt

of A

below right=4pt

and 2pt of A

below left=4pt

and 2pt of A

above right=4pt

and 2pt of A

above left=4pt

and 2pt of A

Figure 3: Node locating with TikZ library positioning.
See Section 17.5 of [1].

The option align=〈alignment option〉, which I
used for the side descriptions, sets up the alignment
for multi-line text inside a node.

So far I have explicitly set the coordinates to
locate the nodes. With a complex picture, it could
be not only dull, but you may also be obliged to
recalculate the coordinates of many nodes for a small
change to your image, even if their relative positions,
with respect to other nodes, remain the same.

In such cases, the TikZ library positioning

could be your friend!
What is a TikZ library? You know that TikZ is

a huge package, but usually you do not need all its
possible features; a TikZ library allows you to load
some specific additional ones. Just add

\usetikzlibrary{〈list of libraries〉}
after loading TikZ to use them.

Figure 3 shows some options you can use with
positioning. The locating options (above/below,
right/left and their combinations) are followed
by a 〈shifting part〉 and an 〈of-part〉, and they are
both optional. Please note that the equal sign must
be located before the 〈of-part〉, even if the 〈shifting
part〉 is not present.

In the 〈shifting part〉, you can indicate, for in-
stance, a 〈dimension〉, which represents the distance
between the borders of the nodes you would like to
set. For the options like above left, you can also
differentiate between the vertical and horizontal dis-
tances, writing 〈vdimension〉 and 〈hdimension〉. If
they are the same for all your nodes, you could add
a single option to your environment:

node distance=〈shifting part〉
In the 〈of-part〉, you can tell TikZ with respect

to which node or coordinate your node should be
placed.

To tell the truth, you could use above & Co. also
without any library, and you can also use anchors
(see below) to locate nodes. However, I still advise

quack!
north

south

eastwest

south east

north east

south west

north west

basetext
center

Figure 4: The main anchors of a rectangular node. For
further details and other shapes see Section 67 of [1].

using positioning because it is simpler and has
more features.

Figure 4 shows the main anchors of a rectangular
shape. Other shapes may have other, possibly non-
intuitive, anchors. Anchors could be used for node
positioning (see the following example). In our case
study, I will use one also as a starting point of a
path. Indeed, anchors are genuine coordinates; you
can refer to them with 〈node name〉.〈anchor〉.
\usetikzlibrary{positioning}

...

\begin{tikzpicture}[node distance=2pt,

every node/.style={draw,

align=center, font=\scriptsize}]

\node (a) {Quack!};

\node[right=of a] {default\\ anchoring};

\node[right=7em of a] (b) {Quack!};

\node[right=of b, font=\scriptsize\ttfamily,

anchor=north west] {anchor=\\ north west};

\node[right=of b, font=\scriptsize\ttfamily,

anchor=south west] {anchor=\\ south west};

\end{tikzpicture}

Quack!
default

anchoring
Quack!

anchor=
north west

anchor=
south west

With positioning, the default anchor for a node
positioned to the right of another one is west (see the
left side of the above picture), but you can change
this behavior, setting an anchor option explicitly (as
on the right side).

TikZ offers countless node shapes; rectangular
is the default one. To draw our flowchart you also
need a circle, which does not require any addi-
tional library, a rounded rectangle, for which you
need shapes.misc, and, lastly, a diamond and a
trapezium of shapes.geometric.

Some shapes may have additional options. For
example, in our case study, we will modify the stan-
dard trapezium side angles; for the diamond, we will
change the ratio between its width and height with
aspect=〈number〉 (if the option is not present, it is
set to 1).

Herr Professor Paulinho van Duck

TUGboat, Volume 39 (2018), No. 1 25

Let us see some options to color our nodes:
text=〈color〉 colors the text, draw=〈color〉 colors the
borders, simply 〈color〉 colors both, whereas for the
background there is fill=〈color〉.

In the following example I am using lightgray

for editorial reasons, but, of course, you can use any
color you prefer.

\begin{tikzpicture}[every node/.style={draw,

font=\scriptsize}]

\node[text=lightgray] (a) {Quack!};

\node[right=of a, draw=lightgray](b){Quack!};

\node[right=of b, lightgray] (c) {Quack!};

\node[right=of c, fill=lightgray] {Quack!};

\end{tikzpicture}

Quack! Quack! Quack! Quack!

3.2 Paths

Having created and located our nodes, let us learn
the command to link them:

\path[〈option〉] 〈path specification〉;
Since almost all paths are drawn, there is also the
abbreviation \draw for \path[draw].

For 〈option〉, again, you can put whatever you
like for changing the aspect of the line. There are
also a lot of path specifications. Here I will show
only the ones used in our case study.

The simplest one is:

\draw (〈starting point〉) -- (〈target〉);
which produces a straight line; the 〈starting point〉
and the 〈target〉 could be nodes or coordinates, and
it is also possible to add other points to the path.

If you use |- or -|, instead of a straight line you
will have a line with a 90° angle, respectively starting
vertically and going on horizontally, or vice-versa;
see the following example:

\begin{tikzpicture}[every node/.style=draw,

node distance=4pt]

\node (a) {A};

\node[below left=of a] (b) {B};

\node[below right=of a] (c) {C};

\draw (a) -| (b) -- (c) |- (a);

\end{tikzpicture}

A

B C

The line thickness and its pattern can be cus-
tomized extensively; you will find some examples in
Figure 5. If your desired thickness is not among the
predefined ones, you can set it to any value you like
with line width=〈dimension〉.

A useful feature is the possibility of indicating a
coordinate of the path relative to another point, with

ultra thin solid (default)
very thin dashed

thin (default) dotted

thick densely dotted

very thick loosely dotted

ultra thick dash dot

rounded corners

Figure 5: Examples of path thicknesses and patterns.
The same options are valid for node borders. See Sec-
tion 15.3 of [1] for more details.

-> -Latex

-Triangle -{Latex[open]}
-Kite -Stealth

-Straight Barb -{Stealth[round]}

Figure 6: Arrow tips, see Section 16.5 of [1] for a com-
plete list and options.

+(〈shift〉) and ++(〈shift〉). The difference between
the two notations is that ++ updates the current
point while + does not. The current point is the one
from which the 〈shift〉 will be applied; of course, it
could be either positive or negative, and any kind of
dimension or coordinates can be used. Let us look
at an example:

\begin{tikzpicture}

\draw (0,0) -- ++(1,-2) -- +(2,1);

\draw[dashed] (0,0) -- +(1,-2) -- +(2,1);

\end{tikzpicture}

The first segments coincide because the second vertex
is (0,0)+(1,-2)=(1,-2) for both the solid and the
dashed paths; whereas the second segments differ:
indeed, the last vertex is (1,-2)+(2,1)=(3,-1) for
the solid path whereas (0,0)+(2,1)=(2,1) for the
dashed one.

In our case study, however, there are not sim-
ple lines but arrows. The TikZ library arrow.meta

provides many different arrow tips, which are then
further customizable.

In our flowchart, I used a triangular tip with a
smaller width: -{Triangle[width=5pt]}. You will
find some other examples in Figure 6. To create an
arrow path it is enough to put the kind of arrow tip
you like in one of these ways: -〈arrow tip〉, 〈arrow
tip〉-, or 〈arrow tip〉-〈arrow tip〉, depending on if
you need the tip at the beginning of your path, at
the end of it or both.

Eventually, it may be useful to put some nodes
along the path; see, for instance, the “Yes” and
“No” exits of the tests of our flowchart. It can be
done easily by putting a node (without the backslash

The DuckBoat — News from TEX.SE: The Morse code of TikZ

26 TUGboat, Volume 39 (2018), No. 1

because it is not a macro but a path option) in an
appropriate position. Note also where the semicolon
is positioned in the following example:

\begin{tikzpicture}[

every node/.style={font=\scriptsize\ttfamily}

]

\draw (0,0) -- +(5.5,0)

node[at start, left] {at start}

node[near start, below] {near start}

node[midway, above] {midway}

node[near end, below] {near end}

node[at end, right] {at end};

\end{tikzpicture}

at start
near start

midway

near end
at end

3.3 Let us put them together

Now you have all the tools needed to understand the
complete code of our case study.

\documentclass[tikz]{standalone}

\usetikzlibrary{positioning,

shapes.geometric, shapes.misc, arrows.meta}

\begin{document}

\begin{tikzpicture}[

every path/.style={gray, very thick,

rounded corners,-{Triangle[width=5pt]}},

basenode/.style={draw, sharp corners,

text=black},

terminator/.style={basenode,font=\LARGE,

rounded rectangle,minimum height=6ex,

text width=5em,text height=2.25ex,

text depth=.25ex,

fill=lightgray!30,align=center,},

inout/.style={basenode,font=\LARGE,

text width=5.8em,minimum height=11ex,

align=center,trapezium,trapezium stretches,

trapezium left angle=60,

trapezium right angle=120,},

block/.style={basenode,font=\LARGE,

text width=9em,minimum height=9ex,

rounded corners,inner sep=0pt,

align=center,},

decision/.style={basenode,diamond,

align=flush center,aspect=2,font=\LARGE,

minimum height=15ex,minimum width=30ex,

inner sep=0pt,},

joining/.style={basenode,circle,

inner sep=2pt,},

yesno/.style={font=\Large,near start,black},

]

% nodes

\node[terminator](start) {Start};

\node[inout, below=of start](input)

{Input\\ N};

\node[decision, below=of input,

font=\Large](dqtest)

{Is N a\\ nonnegative \\ integer?};

\node[inout, left=4.5em of dqtest](error)

{Error Message};

\node[block, below=of dqtest,

minimum height=11ex](setvar)

{$I = 1$\\$F = 1$};

\node[joining, below=of setvar](join1){};

\node[decision, below=of join1](looptest)

{$I \ge N$?};

\node[inout,

below left=10ex and 7em of looptest,

anchor=center](output){Print\\ $N! = F$};

\node[block,

below right= 10ex and 7em of looptest,

anchor=center](increase){$I = I + 1$};

\node[joining, below=of output](join2){};

\node[block, below=of increase](multiply)

{$F = F \ast I$};

\node[terminator, below=of join2](stop)

{Stop};

% paths

\draw (start) -- (input) -- (dqtest);

\draw (dqtest) -- node[yesno, right] {Yes}

(setvar);

\draw (dqtest) -- node[yesno, above] {No}

(error);

\draw (setvar) -- (join1) -- (looptest);

\draw (looptest) -| node[yesno, above] {Yes}

(output);

\draw (looptest) -| node[yesno, above] {No}

(increase);

\draw (output) -- (join2) -- (stop);

\draw (error) |- (join2);

\draw (increase) -- (multiply);

\draw (multiply.east) -- +(.5,0) |- (join1);

\end{tikzpicture}

\end{document}

4 Conclusions

I hope you liked my explanation, and if you have
trouble in using TikZ, remember:

A duck makes you laugh!

References

[1] Till Tantau. The TikZ and PGF packages.
http://mirrors.ctan.org/graphics/pgf/

base/doc/pgfmanual.pdf. Package page:
https://ctan.org/pkg/pgf.

� Herr Professor Paulinho van Duck
Quack University Campus
Sempione Park Pond, Milano
Italy
paulinho dot vanduck (at) gmail

dot com

Herr Professor Paulinho van Duck

http://mirrors.ctan.org/graphics/pgf/base/doc/pgfmanual.pdf
http://mirrors.ctan.org/graphics/pgf/base/doc/pgfmanual.pdf
https://ctan.org/pkg/pgf

	Here I am, again!
	Origin and evolution of the duck mania
	Quack Guide No. 2 The Morse code of TikZ
	Nodes
	Paths
	Let us put them together

	Conclusions

