
TUGboat, Volume 34 (2013), No. 3 297

Redistributing TEX and friends
Norbert Preining

Abstract
Nowadays most TEX installations are based on TEX
Live. TUG provides a platform-independent installer
which can be used on many different platforms. But
operating system distributors, such as Debian and
Red Hat normally integrate TEX Live into their own
packaging infrastructure.

Based on years of experience in packaging TEX
Live for Debian, as well as upstream development,
we give here a short introduction to the TEX Live
ecosystem, list important files in need of special care
when redistributing TEX Live, and give advice and
warnings.

1 Introduction
The TEX environment has grown slowly but steadily
into a huge collection of programs, fonts, macros,
documentation, and more. TEX Live currently ships
over 3GB in more than 2500 different TEX Live
“packages”, most of which are installed into TEX
Live from CTAN [1]. Since teTEX development and
support stopped several years ago, TEX Live has
become the main TEX distribution on Unix, including
MacOS X (MacTEX is exactly TEX Live plus a few
Mac-specific additions); it is also gaining on Windows
(where MiKTEX is still strong).

Integrating TEX Live into any full operating sys-
tem distribution is a non-trivial task due to the large
number of post-installation tasks that have to be
performed. Although over the last years the quality
of packages has improved, the TEX Live develop-
ment list still often gets bug reports that stem from
incorrect packaging.

In the following we will give an overview of the
structure of TEX Live and a list of important and
special configuration files. Furthermore, based on
the experience of packaging TEX Live over many
years, we will give some advice and examples of best
practices. Although the author maintains TEX Live
for Debian, the information in this article is not tar-
geted specifically for Debian, but at any distribution
that redistributes TEX Live in one way or another.

The layout of the article is as follows: We will
first give an overview of the structure of the TEX
Live ecosystem. After that we discuss stacked versus
non-stacked configuration files, followed by a discus-
sion of the most important configuration files that
need special handling. Finally, we collect some ideas
concerning approaches to packaging TEX Live found
in distributions.

2 Structure of TEX Live
TEX Live currently ships something like 130,000 files.
To make this vast amount of material easier to handle
we have introduced a hierarchical organization.
Schemes form the topmost level, with a dozen or so

schemes defined. The default is scheme-full,
which installs everything; at the other extreme is
scheme-minimal, which installs only enough to
run plain TEX. Schemes contain overlapping con-
tent; e.g., clearly everything in scheme-minimal
is also contained in scheme-full.

Collections form the middle layer, with currently
45 collections. Each collection contains related
(to some degree) packages. An example here is
collection-latex. In contrast to the schemes,
the collections form a mathematical partition
of the content, that is, non-overlapping: every
package is in exactly one collection.

Packages form the bottom layer, with currently
around 2500 packages. As mentioned, most
packages relate to an item available through
CTAN. Examples are pdftex and beamer. A
given file is in exactly one package.

2.1 TEX Live database
The TEX Live database, in short tlpdb, is a file
usually located under the main installation’s root in
tlpg/texlive.tlpdb. It is a simple text file where
information is line based, and blocks (stanzas) are
separated by blank lines. The structure is very simi-
lar to a Debian Packages file. Each stanza describes
a package:

name beamer
...

name pdftex
...

Each non-empty line is either a key value pair or a
file name, as we will see.

2.2 Package description
Each package contains various information: its name,
a revision number, dependencies (depends), special
things to be done when the package is installed
(execute), and lists of files in three categories: run-
time files (runfiles), binary (executable) files in-
cluding scripts (binfiles), and documentation files
(docfiles). The package description is also enriched
with information obtained from the TEX Catalogue.
A more or less complete example for a package stanza
can be found in fig. 1.

Redistributing TEX and friends



298 TUGboat, Volume 34 (2013), No. 3

name ascii-font
category Package
revision 29989
shortdesc Use the ASCII "font" in LaTeX.
longdesc The package provides glyph and font ...
longdesc ... and R.W.D. Nickalls.
execute addMap ascii.map
containersize 48984
containermd5 8e922125b755694d21b45e9644265611
doccontainersize 552
doccontainermd5 7b0c7918dadaca7665f8d1bd61677254
docfiles size=1
texmf-dist/doc/fonts/ascii-font/README.TEXLIVE

srccontainersize 4444
srccontainermd5 82f12b5dbe4107bada602b7f0dcb5561
srcfiles size=5
texmf-dist/source/fonts/ascii-font/ascii.dtx
texmf-dist/source/fonts/ascii-font/ascii.ins

runfiles size=17
texmf-dist/fonts/map/dvips/ascii-font/ascii.map
texmf-dist/fonts/tfm/public/ascii-font/ASCII.tfm
texmf-dist/fonts/type1/public/ascii-font/ASCII.pfb
texmf-dist/tex/latex/ascii-font/ascii.sty

catalogue-ctan /fonts/ascii
catalogue-date 2013-04-15 01:42:14 +0200
catalogue-license lppl
catalogue-version 2.0

Figure 1: Stanza for the ascii-font package

We will come back to this example later, after
discussing the various configuration files.

3 Types of configuration files
Most of the files in a TEX system are normal input
files. These files are searched for using the well-known
Kpathsea library. Normally, only the first-found file
is read (details of the file search algorithm are in the
Kpathsea manual [3]). This is the normal case, and
we will refer to it henceforth as the non-stacked case.

In contrast, a few configuration files are read in
a stacked manner, where all files found by Kpathsea
are read and evaluated, not just the first.

The difference can be seen in a TEX Live in-
stallation by comparing the kpsewhich updmap.cfg
output to that of kpsewhich -all updmap.cfg. On
my system (which is installed in /tl/2013 and is a
bit unusual with respect to texmf-local) I get:

$ kpsewhich updmap.cfg
/tl/2013/texmf-config/web2c/updmap.cfg
$ kpsewhich -all updmap.cfg
/tl/2013/texmf-config/web2c/updmap.cfg
/usr/local/share/texmf/web2c/updmap.cfg
/tl/2013/texmf-dist/web2c/updmap.cfg

In the non-stacked case only the first file would be
read; in the stacked case, all of them.

Not many files are treated in a stacked way. In
the next section we will discuss the most important

configuration files and mention for each whether it
is read in a stacked or non-stacked way.

4 Important configuration files
The TEX Live configuration files discussed here are
the most important, especially for distributors, as
they need special attention. Other configuration files
(there are plenty more) can be treated transparently,
as they should generally work without any changes.

The configuration files we will discuss are:
texmf.cnf Central configuration file for path search-

ing and parameters of the engines.
updmap.cfg Configuration file for font embedding

from which configurations for driver programs
are produced.

fmtutil.cnf TEX formats (and METAFONT bases).
language.dat Several files controlling the inclusion

of hyphenation patterns in format dumps.
For each of these we give advice on what distributors
can (should?) change and how they can be handled.

4.1 texmf.cnf

The texmf.cnf file defines the available trees, among
many other things. It has always been treated as a
stacked configuration file—all the texmf.cnf files
found are evaluated. This feature is used in the native
install-tl to adjust settings via a file texmf.cnf
at the root of the TEX Live installation.

By default the following trees are defined and
used, where R is the root of the installation:
TEXMFDIST files from TEX Live R/texmf-dist
TEXMFHOME user tree ~/texmf
TEXMFLOCAL site-wide additions R/../texmf-local
TEXMFSYSVAR cached data R/texmf-var
TEXMFSYSCONFIG config. data R/texmf-config
TEXMFVAR per-user cached data

~/.texlive2013/texmf-var
TEXMFCONFIG per-user modified configuration data

~/.texlive2013/texmf-config
VARTEXFONTS location of generated fonts

TEXMFVAR/fonts
In recent years, when packaging for Debian I

haven’t needed to change anything outside of these
path definitions. In particular, distributors might
want to change the definition of TEXMFSYSCONFIG. In
Debian, we change that to /etc/texmf in accordance
with our policies.

Another possible adjustment is adding an addi-
tional tree. In Debian, we ship TEX Live in /usr/
share/texlive and add a tree called TEXMFDEBIAN
in /usr/share/texmf, searched before TEXMFDIST.

To effect such changes, distributors can either
patch the main texmf.cnf in texmf-dist/web2c

Norbert Preining



TUGboat, Volume 34 (2013), No. 3 299

or add another texmf.cnf in one of the searchable
trees. Of course, one cannot change the location
of, say, TEXMFSYSCONFIG to a different path in a
texmf.cnf file within the new location. So in Debian
we patch the main configuration file to adjust only
TEXMFSYSCONFIG, and add all other changes to /etc/
texmf/web2c/texmf.cnf.

4.2 updmap.cfg

The updmap.cfg file has probably caused the most
grief, so we will go to great length in the explanations.

Many of the fonts shipped in TEX Live are Post-
Script Type 1 fonts. TEX itself does not know any-
thing about these fonts, and only uses the metrics
(.tfm). Output drivers, on the other hand, need to
know how the metrics are mapped to external fonts.
Some notable output drivers:
pdftex The TEX engine with PDF output. Since

producing PDF clearly needs the actual fonts,
pdftex is also an output driver.

dvips A classic output driver converting .dvi (De-
Vice Independent) files to PostScript. Again,
the fonts have to be embedded.

(x)dvipdfm(x) The family of dvi-to-pdf converters.
These programs support direct translation from
DVI to PDF. X ETEX uses one of these in the
background. Japanese users often use dvipdfmx,
since it has good support for Japanese fonts.

(p)xdvi Display programs, of course need access to
the fonts. pxdvi is xdvi patched for Japanese
support.
Unfortunately, different drivers need the font

mapping in different formats. Here is where updmap
comes into play: It reads a list of specifications and
creates configuration files for the above programs, in
the necessary formats.

4.2.1 Different layers of configuration
The files generated by updmap have a long chain of
provenance:
• A “font map definition” maps a .tfm file name to
an external font with optional transformations.
• A “font map file” collects font map definitions;

normally there is one font map file per package,
collecting all fonts in that package.
• An “updmap config file” lists options and font
map files.
• The “output driver configuration files” are read
by the output drivers; these files are generated
by updmap.

4.2.2 Configuration of fonts in updmap.cfg

updmap’s central configuration file is updmap.cfg. In
former times, only the first one found by Kpathsea

was used, but now all of them are read (see be-
low). Each updmap.cfg file can contain either empty
lines, comment lines starting with the comment char
#, or one of the following settings, in the format
key value:
dvipsPreferOutline true or false; whether

dvips uses bitmaps or outlines, where possible.
dvipsDownloadBase35 true or false; whether

dvips embeds the standard 35 PostScript fonts.
pdftexDownloadBase14 true or false; whether

pdftex embeds the standard 14 PDF fonts.
pxdviUse true or false; whether updmap controls

pxdvi’s maps.
kanjiEmbed,kanjiVariant arbitrary strings,

controlling kanji font embedding
LW35 URWkb, URW, ADOBEkb, ADOBE; file naming

scheme assumed for the base PostScript fonts.
map directives One of Map foo.map,

MixedMap bar.map, or KanjiMap baz.map.
Map is used for fonts that are available only in
PostScript format; MixedMap for fonts where
Metafont and PostScript variants are present,
and KanjiMap for special kanji support (see [5]).

4.2.3 Operation mode
As of TEX Live 2013, updmap reads all updmap.cfg
files found, i.e., all the files given by kpsewhich -all
updmap.cfg, in contrast to the former method of only
reading the first one found.

We made this change for several reasons. First,
it supports having the font map configuration in the
same tree as the fonts themselves. Before, the activa-
tion of a map file did not survive when (re)installing
a new release of TEX Live. Now, if for example
TEXMFLOCAL contains local fonts, and they are listed
in TEXMFLOCAL/web2c/updmap.cfg, they will auto-
matically be picked up. A second reason is to support
users without write permission to the system installa-
tion. This way, they can manage their fonts without
needing a copy of the system’s updmap.cfg.

More specifics, such as enabling and disabling
of maps, can be found in the manual page of updmap
and a blog post [2].

4.2.4 Recommendations for distributors
Distributors must be aware that changing the set
of available fonts requires a change to one of the
updmap.cfg files, followed by running updmap-sys.
Otherwise, the fonts will not be available to users,
even though they are present in the system. Also,
distributors should not ship the updmap.cfg file in-
cluded in TEX Live, since it is only valid for a full
installation of TEX Live. (The TEX Live installer

Redistributing TEX and friends



300 TUGboat, Volume 34 (2013), No. 3

itself does not install this file, but generates it from
the set of installed packages.)

Since updmap.cfg is read in a stacked manner,
changes can be localized to the tree where fonts
are installed. In Debian we have one updmap.cfg
for the TEX Live packages in /usr/share/texlive/
texmf-dist/web2c/updmap.cfg, and one for addi-
tional font packages with files in TEXMFDEBIAN.

4.3 fmtutil.cnf

The configuration files discussed so far have been
read in a stacked way; the following files are all non-
stacked. To repeat that important difference, only
one instance of the following files will be used, namely
the one that is returned by a normal kpsewhich call.

fmtutil.cnf is the main configuration file for
the fmtutil program, which generates format dumps
for the various engines. Thus, a change in available
formats needs to change fmtutil.cnf, and then call
fmtutil-sys.

Fortunately, it is rare that a user wants to create
his own format dumps (and such users can take care
of themselves); so distributors need only make sure
that the configuration file stays properly updated.

4.4 language.dat family
The last group of configuration files relates to the
definition of hyphenation patterns. Many engines
load hyphenation patterns for different languages at
format dump time (see above), and proper hyphen-
ation is possible with only those languages. These
files are:
language.dat for LATEX-based formats
language.def for ε-TEX-based plain formats
language.dat.lua for LuaTEX-based formats
The first two files are loaded at format dump time,
thus a change in the available hyphenation patterns
needs to (again) trigger a call to fmtutil-sys, best
in combination with the --byhyphen command line
option to specify explicitly the location of the hy-
phenation file.

The last of the three is easier, since LuaTEX
loads the patterns at runtime. So no action on the
side of the distributors is necessary.

5 Gluing it together
5.1 Execute statements
Many times above I have written ‘change in availabil-
ity’. But how can a distributor detect such a change?
The answer lies in the execute statements in the
package stanzas, as shown in fig. 1. There are three
different execute actions: one for font maps, one for
formats, and one for hyphenation patterns.

5.1.1 Font map execute action
Activating a font can happen in three different ways,
trivially corresponding to the three different map
types in updmap.cfg:
execute addMap 〈mapname〉

Add a line ‘Map 〈mapname〉’.
execute addMixedMap 〈mapname〉

Add a line ‘MixedMap 〈mapname〉’.
execute addKanjiMap 〈mapname〉

Add a line ‘KanjiMap 〈mapname〉’.
For distributors, this means that part of creating
the TEX packages for distribution is determining the
maps to be activated from the tlpdb, and adding
the respective lines to the appropriate updmap.cfg
file. The semantic differences between the three invo-
cations are explained in the updmap documentation.

5.1.2 Format execute action
The information involved in defining a format is a
bit more complex than for font maps. Each execute
statement contains again a list of key=value pairs,
all on the same line in the tlpdb. The possible
keys are name, engine, patterns, and options. A
typical line (breaks are due to TUGboat):
execute AddFormat name=pdflatex engine=pdftex
patterns=language.dat
options="-translate-file=cp227.tcx *pdflatex.ini"

The value of options often contains spaces and
thus needs to be quoted.

The meaning of the above line is that a line
name engine patterns options
with the respective values should be added to the
fmtutil.cnf file (without any quotes). In the above
case, that would be:
pdflatex pdftex language.dat
-translate-file=cp227.tcx *pdflatex.ini

5.1.3 Hyphenation execute action
The most complicated execute statement regards the
activation of hyphenation patterns. As in the previ-
ous case, it is a line of key=value pairs. The possible
keys this time are name, synonyms, lefthyphenmin,
righthyphenmin, file, file_patterns, and file_
exceptions. How to generate the three language
definition files (.dat, .def, .dat.lua) from this in-
formation is beyond the scope of this article; there are
functions available in the Perl modules distributed
with TEX Live (in tlpkg/TeXLive).

5.2 Distribution paradigms
When it comes to distributing such a huge piece of
software, several options have been used. The first

Norbert Preining



TUGboat, Volume 34 (2013), No. 3 301

question is perhaps if and how to split the full TEX
Live before repackaging it for a distribution. This
gives rise to choosing one of the following paradigms:
all-or-nothing all of TEX Live is distributed as

one distribution package
collection-splitting one distribution package

per TEX Live collection
package-splitting one distribution package

per TEX Live package
mixed-mode overlapping/ad hoc splitting

The all-or-nothing approach has the advantage
that, in principle, no changes to the various config
files are needed. Just ship them as they should be
and that’s it. Unfortunately, this is no longer the
case as soon as there are fonts shipped independently
from TEX Live in the distribution. Even worse, down-
loading a few Gb for any update will not make the
users of your distribution happy. I don’t know of any
distribution using this method.

The collection-splitting approach converts TEX
Live collections into distribution packages. This ap-
proach has many advantages: first, since the content
of collections do not overlap, there will be no file
conflict (double inclusion) which is a basic require-
ment for package managers. Furthermore, TEX Live
collections try to group related packages together,
so users can potentially eliminate collections not of
interest. Finally, the number of distribution pack-
ages is not too big. On the negative side, splitting by
collection requires a bit more work on the packaging
side. Debian and its derivatives (such as Ubuntu)
use this approach.

The package-splitting approach converts each
TEX Live package to one distribution package. While
this is conceptually the cleanest approach, and allows
for fine-grained installations, it requires a near-fully
automatic packaging system due to the huge num-
ber of packages. Having thousands of distribution
packages itself might be regarded as a disadvantage.
Furthermore, since we do not track inter-package
dependencies in TEX Live, dependencies between dis-
tribution packages will be incomplete. Distributions
using this paradigm include Fedora and SuSE.

Finally, as I understand it, the mixed-mode par-
adigm is used in some BSD packaging, but I don’t
know the details and so cannot comment on advan-
tages or disadvantages.

6 Closing
I want to close with some warnings and common
pitfalls.

� I’ve never used TEX Live and I don’t know what
TEX does, but I package it! —it sounds crazy, but we
have heard from people who want to package TEX
without the slightest knowledge. Just say no.

� Improper configuration file handling—by far
the biggest problem, and the reason I wrote this
article. A common error is shipping the TEX Live
updmap.cfg instead of generating its content based
on the fonts actually installed.

� What is upstream?—since TEX Live has (ap-
proximately) one release per year and daily updates,
it is rather a moving target. Build scripts that re-
quire a stable target (such as some BSD ports) need
to take extra care.

� Binaries and sources—we almost never update
compiled binaries after a release, but our develop-
ment sources are changing continually. Thus, it’s a
mistake to base distribution binaries on them.

� Shipping tlmgr—distributions have their own
package manager, thus subsuming the most impor-
tant part of tlmgr functionality. Even if users are
crying for it, tlmgr should not be used to update
packages (also not by root). The only reasonable
approach is to ship tlmgr working in user mode only,
where it manages TEXMFHOME.

In addition to the above, I highly recommend
creating a working installation of TEX Live and ac-
tually use it yourself; and to learn Perl, since most
of the functionality of our installer and tlmgr are
implemented in Perl modules and available in the
TEX Live distribution; and finally, to contact us—
we have a designated mailing list for distributors [4].

References
[1] CTAN (Comprehensive TEX Archive Network).

http://ctan.org.
[2] Internals of TEX Live 2: multi-updmap.

http://www.preining.info/blog/2013/07/
internals-of-tex-live-2-multi-updmap/.

[3] Kpathsea manual. http://tug.org/kpathsea.
[4] TEX Live distributors mailing list.

http://lists.tug.org/tldistro.
[5] Updmap and Kanji embedding in TEX Live.

http://tug.org/texlive/updmap-kanji.html.

� Norbert Preining
Japan Advanced Institute of

Science and Technology
Nomi, Ishikawa, Japan
norbert (at) preining dot info
http://tug.org/texlive

Redistributing TEX and friends


