
TUGboat, Volume 34 (2013), No. 2 123

MetaPost: PNG output

Taco Hoekwater

Abstract

The latest version of MetaPost (1.80x) has a third
output backend: it is now possible to generate PNG

bitmaps from directly within MetaPost.

1 Introduction

For one of my presentations at EuroTEX 2012 in
Breskens, I wanted to create an animation in order
to demonstrate a MetaPost macro that uses timer
variables to progress through a scene.

While working on that presentation, it quickly
became obvious that the ‘traditional’ method of cre-
ating an animation with MetaPost by using Image-
Magick’s convert to turn EPS images into PNG

images was very time-consuming. So much so that I
managed to write a new backend for MetaPost while
waiting for ImageMagick to complete the conversion.

2 Simple usage

MetaPost will create a PNG image (instead of EPS

or SVG) by setting outputformat to the string png:

outputformat := "png";

outputtemplate := "%j-%c.%o";

beginfig(1);

fill fullcircle scaled 100 withcolor red;

endfig; end.

This input generates a bitmap file with dimen-
sions 100 x 100 pixels, with 8-bit RGBA color. It
shows a red dot on a transparent background.

3 Adjusting the bitmap size

In the simple example given above, MetaPost has
used the default conversion ratio where one point
equals one pixel. This is not always desired, and it
is tedious to have to scale the picture whenever a
different output size is required.

To allow easy modification of the bitmap size
independent of the actual graphic, two new inter-
nal parameters have been added: hppp and vppp

(the names come from Metafont, but the meaning is
specific to MetaPost).

In MetaPost, ‘hppp’ stands for ‘horizontal points
per pixel’; similarly for ‘vppp’. Adding ‘hppp:=2.0;’
to the example above changes the bitmap to be
50 x 100 pixels. Specifying values less than 1.0 (but
above zero!) makes the bitmap larger.

4 Adjusting the output options

MetaPost creates a 32-bit RGBA bitmap image, un-
less the user alters the value of another new internal
parameter: outputformatoptions.

The syntax for outputformatoptions is a space-
separated list of settings. Individual settings use
〈keyword〉=〈value〉 syntax. Currently supported are:

format=[rgba|rgb|graya|gray]

antialias=[none|fast|good|best]

No spaces are allowed on either side of the equals
sign inside a setting.

The compiled-in default could be given as:

outputformatoptions

:= "format=rgba antialias=fast";

However, the outputformatoptions variable
value itself is initially the empty string, because that
makes it easier to test whether a user-driven change
has already been made.

Some notes on the different PNG output formats:

• The rgb and gray subformats have a white back-
ground. The rgba and graya subformats have
a transparent background.

• The bit depth is always 8 bits per pixel compo-
nent.

• In all cases, the current picture is initially cre-
ated in 8-bit RGB mode. For the gray and
graya subformats, the RGB colors are reduced
just before the actual PNG file is written, using
a standard rule:

gray = 0.2126 ∗ r + 0.7152 ∗ g + 0.0722 ∗ b
• CMYK colors are always converted to RGB dur-

ing generation of the output image using:

r = 1− (c + k > 1 ? 1 : c + k)

g = 1− (m + k > 1 ? 1 : m + k)

b = 1− (y + k > 1 ? 1 : y + k)

If you care about color conversion, you should do
a within 〈pic〉 loop inside extra_endfig. The
built-in conversions are intended as a fallback.

5 What you should also know

MetaPost uses Cairo (http://cairographics.org)
to do the bitmap creation, and then uses libpng
(http://www.libpng.org) to create the actual file.

Any prologues setting is always ignored: the
internal equivalent of the glyph of operator is used
to draw characters onto the bitmap directly.

If there are points in the current picture with
negative coordinates, then the whole picture is shifted
upwards to prevent things from falling outside the
generated bitmap.

� Taco Hoekwater
http://tug.org/metapost

MetaPost: PNG output

