
158 TUGboat, Volume 33 (2012), No. 2

TEX and music: An update on TEXmuse

Federico Garcia

1 Introduction

For some years I’ve been working on a professional
music typesetting system using TEX and METAFONT,
called TEXmuse. This article has some background
and examples of the main idea of the TEXmuse sys-
tem which, as will be seen, is entirely inspired by the
TEX ‘spirit’. This touches on the potentially disas-
trous problems of WYSIWYM for music typesetting,
and on what similarly oriented systems have done
(and not). Some achievements of TEXmuse could
potentially change the life of any composer.

2 A sample of the current prototype

2.1 The user’s input and the first scan

In the main input file of a TEXmuse document the
user defines a series of instruments (more accurately
‘staves’), and then requests TEXmuse to assemble a
score out of a subset of them (possibly all of them):

\newstaff[\trebleclef\AMajor]

{righthnd}{MztAMj.txm}

\newstaff[\bassclef\AMajor]

{lefthnd}{MztAMj.txm}

\score: {righthnd,lefthnd}.

This convention makes it possible for the same doc-
ument to produce both a general score (which in-
cludes all the instruments) and the individual in-
strumental parts; it also allows changing the order
of the staves, replacing one by another, reusing the
same music in several different documents, etc.—
while keeping the actual musical content indepen-
dent.

The \score command is (planned to be) flex-
ible enough to allow several kinds of groupings be-
tween the staves. Piano music is typically type-
set as two staves joined by a brace at the left of
each musical line, and that is what the braces in
{righthnd,lefthnd}mean. But a construction like
[oboe,clarinet]would instead join the staves by a
bracket, and the simple flute, violin would sim-
ply include the staves in the score without any par-
ticular grouping or joining shape.

The \newstaff command defines the staves,
and instructs TEXmuse where to look for the ac-
tual musical content of each staff. The actual musi-
cal content is typically collected in txm files, in the
form of a series of staff environments, each named
as the staves themselves. The file may contain staff
environments even if they are not used in the doc-

ument, in which case the program would simply ig-
nore them.

In this case—an excerpt from Mozart’s Sonata
in A—the music for both staves is collected in the
auxiliary file MztAMj.txm. The following is the en-
vironment for the staff ‘righthnd’ as it appears in
that file (the output appears in section 2.5):

\begin{righthnd} \rangefrom{g4}\meter68

4c.3d4c 5e4e 4b.3c4b 5d4d 5a4a 5b4b

5c\split{3ed5c4b\\4b 5a4g} 4c.3d4c 5e4e

4b.3c4b 5d4d

5a4b 5c\split{4<bd>5<ac>4<bg>5<ae,>\\

\,4f5e4d5c}

4r

\end{righthnd}

This kind of input is not too different from the
model used in commercial music software: numbers
tell the program what rhythmic value to expect for
the coming note(s): quarter notes are indicated by
‘5’, eighth notes (smaller by one than the quarter
note) by ‘4’, sixteenths by ‘3’, and so on.

Rests are issued with an ‘r’, the characters ’

and , are used to shift between octaves, and . adds
a dot to the previous note. Multi-note entries (i.e.,
individual notes that have several noteheads on the
same stem—pitches sounding at the same time) are
indicated by < and >, although there are many util-
ities and shorthands for different multi-note situa-
tions.1

The \split operation tells TEXmuse that the
music in the staff is to be split into two voices, one
of which will be typeset above the other (but on
the same staff). The user does not need to indicate
which note on the upper voice corresponds to (i.e.,
goes on the same vertical axis as) which in the lower:
TEXmuse scans both voices and pairs them up as
expected, according to their rhythmic durations.

In fact, this ability of TEXmuse to align voices
by rhythm is true not only of \split, but is in-
deed the mechanism that allows the user to input
staff by staff. Apart from the convenience of keep-
ing each staff independent of the others, horizon-
tal input (i.e., staff by staff) is the natural way the
musician thinks of the music. The opposite— re-
quiring the user to figure out in advance the rhyth-
mic/vertical correspondences— is as unnatural as
it would be to typeset a paragraph word by word,
starting with the first word on the top line, contin-
uing with the word that would be below it on the

1 For example, after \dyads it won’t be necessary to wrap
every set of two notes with < and >; \coll will make TEX add
a note at the specified interval (like in \coll8b, which adds
the lower octave); and so on.

Federico Garcia



TUGboat, Volume 33 (2012), No. 2 159

second line, then the first word on the third line,
and so on. It is this unfriendly requirement that
makes MusiXTEX (the remarkably complete system
developed in the 1990s under the leadership of the
late Daniel Taupin) hopelessly useless for the type-
setting of music beyond small snippets; it has in fact
prompted the implementation over the years of sev-
eral ‘pre-processors’, non-TEX utilities that trans-
late horizontal input into the vertical arrays required
by MusiXTEX.

TEXmuse achieves this because its code, so to
speak, teaches music to TEX, so that it is able to
interpret the music of each staff and deduce their
mutual rhythmic relationship (and therefore their
vertical alignment). It will be seen in the coming
sections where exactly this deduction happens. But
this discussion introduces a more general and rel-
evant issue concerning the use of TEX for typeset-
ting music: beyond the question of pure ability to
produce the score itself, what concessions would any
such program require from the user? How far can we
go in preventing the author/composer from having
to stop thinking of music to help TEX with typo-
graphical decisions? This is an important question,
because by its very nature TEX can very well fail at
this; but it will be shown that it is here too that
it can succeed and surpass the alternatives. This
discussion is the main topic of section 3 below.

2.2 From txm to tm

After scanning the user’s input in the txm file(s),
TEXmuse’s first step is to translate it into internal
functions that govern the appearance of each note.

In the previous section we saw that the user
typed ‘4c.’ for the very first note of the righthnd

staff. After TEXmuse’s internal translation, this first
note looks (to TEX, privately) much more involved:

\@nntr\@nhd1{c5}\@invbl2{c5}\@agdt\@stem

\add@bm1\end@{432}\relax

To paraphrase:

\@nntr For this coming new entry,
\@nhd1 a notehead of kind 1 (the familiar filled-

in ellipse)
{c5} on the fifth c on the keyboard,

\@invbl2 with a kind-2 invisible accidental (a ♯)
{c5} on that same c,

\@agdt with an augmentation dot,
\@stem a stem,

\add@bm1 added to a beam of index 1,
\end@ and ending at position 432.

The idea of ‘a dotted eighth note on c5’ (which is
what the user requested with ‘4c.’) has been made

fully explicit into discrete commands that order the
actual notehead, the stem, etc. But not only that,
in the process TEX has done a couple of other things
as well:

• After \end@432, TEX knows that the current
staff won’t have a note until position 432 is
reached by all other staves. If, say, the sec-
ond staff has a note that ends at 288, then that
staff will have its second note starting at 288,
but the first staff (which already spans up to
432) will have nothing on that note. The pro-
cess is a ‘quantization’ of the rhythmic space,
in which the 256th-note (a note with six flags)
contains 9 units. The first note in our sample
is a dotted eighth-note: 288 (32 times a 256th-
note) +144 (a dotted note is increased by half)
= 432.

• TEXmuse also deduced that this note should be
part of a beam.2 It has looked ahead for the
coming notes and has realized that since those
notes are also beamable rhythmic values and
they are part of the same beat in the current
meter, they should be beamed together.

• The note also has an invisible sharp sign. By
‘invisible’ TEXmuse means that it doesn’t have
to be actually drawn, and the question might
arise then why to include it at all. This is part
of TEXmuse’s ‘spelling’ mechanism, a compo-
nent of its ability to interpret the musician’s
intentions and to render it correctly onto the
typeset score. This mechanism and its impor-
tance will be addressed in more detail later (sec-
tion 3.3).

For this note, TEXmuse has deduced that the
user meant c♯ (since we’re in A major), but it
also realizes that there is no need to explicitly
give the sharp in the actual score. In addition
to ‘invisible’, accidentals can be ‘rigid’ (when
they must technically be added to mean the cor-
rect note) and ‘courtesy’ (sometimes also called
‘cautionary’, when the context makes it desir-
able to add the clarification).

In this way, notes in the user’s input have been con-
verted into sequences of internal commands like the
line listed above. These ‘entries’ are written, staff
by staff, on auxiliary files named 〈staffname〉.tm (in
this case, the entry listed above is the first entry in
righthnd.tm). Those files will be read by TEXmuse

in the next step of the run, to gather the notes and
write METAFONT programs to draw them.

2 The beam is the familiar thick line that joins the stems of
several notes when they are small rhythmic values (an eighth-
note or smaller).

TEX and music: An update on TEXmuse



160 TUGboat, Volume 33 (2012), No. 2

2.3 From TEX to METAFONT

With the information in the tm files, TEX can now
proceed to write programs in METAFONT that will
draw the notes into a font. The following is the
program that TEX writes for the first note in our
sample:

newchar(1);

staff_1;

notehead(1,C5);

openbeam(1);

augm_dot;

stem;

staff_2;

upper;

notehead(1,E4);

stem;

lower;

notehead(1,H3);

openbeam(1);

augm_dot;

stem;

endcharat(432-0);

The first thing to note here is that this listing con-
tains information about both staves. In fact, it is
the tm→mf stage that gathers the notes, from all
the staves, to make the composite ‘characters’ that
include any note that belongs in each vertical axis
across the score.

In this first note, the right hand (staff_1 for
METAFONT) is simple enough; but the left hand
contains two noteheads, which are in addition sepa-
rated as ‘upper’ and ‘lower’ sub-notes. This comes
from a \split in the original user’s input for the left
hand (not shown above), and illustrates what a split
ends up looking like in the METAFONT program.

The \add@bm (‘add to a beam’) command has
generated an openbeam in the METAFONT program.
Since this is the first note, there are no beams cur-
rently open, so \add@bm is interpreted as opening
one. Future notes with \add@bm will be given an
addtobeam instead, until a \close@bm is found and
the beam closed.3 On the other hand, the ‘432’ is
retained and it still signals the end of the entry in
endcharat(432-0)—METAFONT will do the math
and find 432. TEX had used the ending positions
of the notes to figure out the relationships between
staves; but now the same information (which ulti-
mately encodes the rhythmic profile of the piece)

3 The reason for this two-step conversion is that the rests,
that can also be included under a beam, behave differently. In
other words, \add@bm is not exactly equivalent to openbeam or
addtobeam, and \close@bm is not directly closebeam; in this
particular case the difference is innocuous because no rests
are involved.

will be used by METAFONT for the spacing of the
music. (In music, the longer the rhythmic value the
more space there is after a note; the space after each
note is later stretched proportionally, if necessary, to
reach the right margin.)

TEXmuse now enters the drawing stage, read-
ing the character programs with the music-drawing
functions defined in its code. The user (or a batch
file) runs mf on these METAFONT programs gener-
ated by TEX, and out of this a new font is created
(or many, if there are more than 256 characters in
the piece). TEX will then use the font to typeset the
music—which, for TEX, is just regular text.

2.4 From METAFONT to TEX

But the new font does not contain every single sym-
bol in the music. METAFONT does not really draw
some pre-formed symbols that are part of a musi-
cal score; for example, any lettering or any numbers
will be inserted by TEX (retaining user control on
their font and appearance), as well as some musical
symbols like the clefs that don’t really change from
instance to instance and would be inefficient to draw
on the fly. TEX will insert those symbols at the ap-
propriate positions in the score, but for that it needs
METAFONT to tell it where those positions are.

This information is passed to TEX in the log file
of the METAFONT run. This is an excerpt from it:

Line at measure 3

Next break after measure 6

\fi\leavevmode\iffalse

\fi\rlap{\hbox{\raise 7.0pt\hbox

{\mae ?}\kern2.2pt

\raise-3.5pt\hbox

{\mse \char 146}}}\iffalse

\fi\rlap{\raise38.5pt\hbox{\mae \&\kern2.2pt

{\mse \char 146}}}\iffalse

[1]

\fi{\tmfont\char1}\iffalse 3.9 [2]

\fi{\tmfont\char2}\iffalse 1.5 [3]

This is pretty low-level plain TEX, but you can still
spot the \char commands that request particular
symbols. \mse is TEXmuse’s base musical symbols
font (‘muse’), in which character 146 is the key sig-
nature of A major. The clefs, at the time of writing,
come from the TrueType font ‘Maestro’ (the default
font for Finale, a mainstream commercial music pro-
gram): ? in that font is the bass clef, and & is the
treble clef.4

4 Eventually, Maestro will be entirely replaced by TEX-
muse’s own fonts. It has so far been used to permit imple-
mentation of the prototype even in the absence of a complete
native font, and also to test TEXmuse’s ability to use and
interact with user-selected fonts.

Federico Garcia



TUGboat, Volume 33 (2012), No. 2 161

\tmfont is the command that stands for the
actual font that METAFONT has just drawn, and so
{\tmfont\char1} is the exact point where META-
FONT tells TEX to print the very first note of the
piece. The log file continues requesting what goes
in the score— the characters that it just drew or
insertions from other fonts—and simply by reading
the file TEX gets to typeset the music.

2.5 Sample output

�

�

��

�

�

�

�

���

*

��

*

)

)

���	

*


�

*

)

)

�Æ

*

)

*

��

*

)

)

��

�

�

��

��

)

)

���

*

)

����

*

��

*

)

)

�� !

*

"#

*

)

)

$%

�

�

��

&'

*

)

)

()

)

*

)

*+, *

*

)

-.

³

³

/0

TEXmuse is still very incomplete. Apart from the
fact that it doesn’t yet connect the barlines across
the two staves of the piano, much less join the staves
with a brace on the left sides, the ‘

�

�

’ (which as of now
can’t be scaled down. . . ) appears slightly misplaced

to the left, and the ‘
�

’ is misdrawn (it should give
c♯, not b♯!).

But the skeleton is in place, and many of the
missing features are more or less simply analogous
to features already working in the current prototype.
TEX can indeed interpret intuitive user input, and
it can program METAFONT virtually without help
from the user. The system is promising in terms of
flexibility and programmability.

3 TEX and music: Why and why not

There are legitimate reasons, however, to be skepti-
cal about music typesetting in TEX—or in fact in
any system like TEX, with plain-text input, a com-
pile phase, and fixed output.

3.1 Music, tables, and TEX

As mentioned, TEXmuse (like the pre-processors for
MusiXTEX) goes to a lot of trouble to make out the

vertical correspondences implied by the user’s hor-
izontal output. The analogy above (typing a para-
graph in vertical fashion) can be complemented by
the realization that music, from the typographical
point of view, is more like a table than it is like run-
ning text: vertical alignment by rhythm is as im-
portant, detailed, and meaningful as the horizontal
dimension where a melody is presented.

In a way what the system does is hide the table
from the user, in order to spare him the need to think
of it explicitly. But this doesn’t change the fact
that the music is still a table. . . and tables are one
context where the shortcomings of a TEX-like system
are acute.5 As any LATEX user knows, maintaining
a table (editing it, updating it, correcting it) is not
the most straight-forward intuitive process for us.
In Excel, or even in a table in Word, you can simply
click on a cell and start typing or deleting; in LATEX
you have to count \hline’s and &’s even to find the
cell. Searching is impeded, selecting a portion of the
table for copying or pasting is impossible, . . . TEX
is simply not a natural environment for tables the
way Excel is.6

There is therefore a big built-in inconvenience
in the use of TEX, or any such system, for mu-
sic typesetting. For me, a conclusion has emerged,
as work on TEXmuse has progressed, that the ad-
vantages that do come naturally with TEX—pro-
grammability, for example, or precisely targeted con-
trol where user decisions are documented, visible,
and accessible as part of the input—are, by them-
selves, not nearly enough to compensate for that in-
convenience. In other words, that TEXmuse, if it was
only a matter of those advantages, would unfortu-
nately not be the best choice for a musician’s music
typesetting needs. Much more than that is needed
for a system based on plain-text input to compete
with WYSIWYGs, no matter how deficient the latter
are. . . (and they are).

3.2 WYSIWYM in music?

The reference in the previous paragraph is to the
needs of a musician, as distinct from the needs or
concerns of an engraver proper. A musician does not
need to know, for example, the rules for position-
ing beams, any more than a mathematician needs

5 As Frank Mittelbach pointed out in another talk at this
conference, (LA)TEX has severe limitations in this area (for
example, there’s no way to make a cell span several cells both
horizontally and vertically at the same time). The problem
referred to here is even more immediate and pressing.

6 Of course the problem is not only TEX’s: the same is
true of HTML, for example, or any system that takes what
is inevitably one-dimensional input to manipulate what is in-
evitably two-dimensional output.

TEX and music: An update on TEXmuse



162 TUGboat, Volume 33 (2012), No. 2

to know about the rules governing the positioning
of superscripts. The real test for TEXmuse, or any
system that aspires to being a good choice for musi-
cians (composers, analysts, etc.), is whether or not
it assists the musical mind without imposing con-
cerns that are more typographical, or, even worse,
syntactical, than musical.

For example: when we are in, say, c minor, ev-
ery e is flat by default—that’s part of what ‘being
in c minor’ means. So, in c minor, the musician will
write a scale simply as c-d-e-f-g, even though the e is
actually e♭. Requiring the musician to explicitly re-
quest e♭ is forcing the mind to step outside a purely
musical train of thought: think of a mathematician
having to request explicitly the italics for the let-
ters in the equations. From the typographical point
of view, this is correct: the copyist or engraver, in
music or in math, does indeed go through the extra
step. But from the ‘semantic’ point of view, so to
speak, of someone who is writing down a thought,
this gets in the way. In a sense, those kinds of extra
steps, foreign to the train of thought, are the whole
point of using a computer— rule-based, mechanical,
in principle automatic: isn’t that what the computer
exists for?

It is a priority that the input the user is required
to learn and apply when typing music be as intuitive
as possible: as close as possible to the actual steps
and motions of writing the music by hand. In the
c minor example, e♭ should be simply typed as e
(just as you would write it on paper), the flat being
silently deduced by the engine. It’s not a matter
of ‘what you see is what you mean’, because we do
mean e♭ although we don’t write it out (or see it) in
full. Rather than WYSIWYM, the paradigm is more
one of ‘what you see is what you’d write’.

Or even more to the point: it’s a ‘dear com-

puter, you know what I mean!’ kind of thing. Say
there’s a passage where every entry will consist of
two notes—well, the user should be able to say
\dyads and not worry about grouping every pair
of notes with whatever syntax; if an entry will be
repeated the same way (which happens quite often
in music), shouldn’t we have a shortcut, like using
%,7 so that we can type ‘<ceg>%%%’ and obtain the
same result as if typing ‘<ceg><ceg><ceg><ceg>’?
Not that we want the %-like symbol to be output—
we want to do less typing, and our meaning should
be clear to the computer.

TEXmuse’s command \coll, similarly, permits
constructions like \coll8b{cdef}, meaning to add

7 A sign resembling the % is widely used informally for
musical repetitions.

a lower octave (‘8va bassa’) to each note—a trick
composers have used in their manuscripts for the
copyists to add the extra note.8

And so on. These are very simple tools to pro-
gram, and they follow naturally from admitting that
horizontal input is, well, a necessary evil, that needs
to be alleviated as much as possible.

The point, however, is that even with a suc-
cessful syntax—one that helps rather than infuri-
ates the user—even then it is legitimate to fear
that TEXmuse, or any system like it, is not a real
alternative for use by musicians. . . the successful
syntax just means that entering the music won’t be
more annoying than entering it in a WYSIWYG; but
there’s still a long way to go in order to overcome
the structural inconvenience pointed out above, of
not having direct, mouse-click access to each note
in the score.

3.3 Tipping the balance

Consider the following snippet:

�

�

�

�

�

�

)

�

L

�

A

���

The three ‘accidentals’ in this example (the sharp ♯,
the natural ♮, and the flat ♭) are all necessary parts of
the pitch specifications; in particular, the second one
cancels the effect of the first one (since in principle
accidentals carry through full measures and there-
fore the original sharp on the a would apply to the
second a as well).

Next, let’s observe that the note with the ♯ and
the one with the ♭ are in fact the same pitch (i.e.,
the same key on the piano). The musical spelling in
the example (the particular choice of a♯ for the first
one and b♭ for the second) is the correct one mu-
sically: since sharps are generally ‘felt’ to point up
while flats tend to point down, the chosen spelling
makes the notes actually reflect graphically the con-
tour of the melody—a fact that, apart from looking
better, is important semantically as well. Context
matters, however: if the note following the b♭ was
another b (natural), then the b♭ should be spelled as
a♯ (a better way of leading to b); but if the last note
was c, then b♭ would again be the preferred spelling
(even though that flat would lead upwards in that
particular case).

Most music typesetting programs today allow
for ‘MIDI input’, meaning that they can take pitches
in as keystrokes on a musical keyboard plugged into

8 Italian coll is an archaic contraction of con il, which
was used since early times in instructions like “coll violino I”
(“with the first violin”). The engraver would then copy the
same music that was in the first violin. “Coll” was later
generalized to other shorthand uses.

Federico Garcia



TUGboat, Volume 33 (2012), No. 2 163

the computer. But they don’t have a dynamic inter-
preter that would spell the notes correctly. You can
(with more or less work) set each particular key on
the piano to be spelled one way or another, but that
isn’t good enough: in our example, the two occur-
rences of a♯ /b ♭ would be spelled both as either b♭
or as a♯, and then you’d have to go back and correct
them.

This is actually only a minor inconvenience, in
part because it’s only one small side of a much big-
ger annoyance. The ‘dynamic pitch interpreter’ that
is lacking here would not only be able to make musi-
cal sense of pitch keystrokes, but, much more impor-
tantly, it would free the user from making spelling
decisions for each context. It’s not simply that the
second-to-last note in the example should be spelled
differently according to what note follows—the pas-
sage can change context in innumerable ways that
would affect spelling:

• Say a different instrument will join the melody
only starting in the middle: then it doesn’t need
the ♮, since there’s no ♯ to cancel. A copy-paste
operation in many a program today would in-
correctly include the ♮.

• Say the composer decided to split the one mea-
sure into two (changing the time signature):
then the ♮ is not technically needed, since a
new measure cancels any previous accidentals.
But in most cases it is a good idea, for clarity’s
sake, to put in the accidental anyway (the so-
called ‘courtesy’ accidental). Many programs
today would simply remove the accidental al-
together, following the technical rule, and once
the composer requests that the accidental be
shown anyway, that decision will apply in any
further use of the music, regardless of whether
the new context requires it or not; and ten the
courtesy accidental will create more, not less
confusion. . .

• Say this line is for clarinet, and since the clar-
inet is a transposing instrument, you’ll have to
transpose it up a whole-tone for the clarinetist
to read. In programs today, you’ll get:

�

�

�

�

�

�

)

�

�

L

�

L

���

which is completely unacceptable: b♯–c♯ should
have been spelled c–d♭.9

9 The problem arises from the fact that the correct b♭
transposition is not necessarily always a ‘major second,’ but
may actually have to be a ‘diminished third’ in some por-
tions; the two things are equivalent in terms of pitch—key
on the piano—but not in terms of note on the staff. The

Because of all these potential problems, experi-
enced music typesetters know that the process of set-
ting a score includes a special step dedicated solely
to proof-read the spelling. Even so, this is the area
of music typesetting that is by far responsible for
most typographical errors found in scores, new or
old.10

This is a huge issue indeed—the kind of is-
sue that, if solved, would make a program so use-
ful above and beyond WYSIWYGs that it may well
start to compensate for the inconveniences of plain-
text input. TEXmuse has a prototype of a spelling
mechanism that does just this. (And has prompted
several colleagues of mine to ask me regularly, but
especially after struggling to meet deadlines, how
close I am to completing the program so that they
can use it!)

Less ground-breaking but similarly welcome is
TEXmuse’s system of beaming automation that also
takes context in mind. This is not as significant in
terms of a score’s correctness, but it does separate
amateur from professional musical engraving.11

And another important advantage of TEXmuse:
by deciding on line-breaking and page-layout— this
latter not fully implemented yet—once again ac-
cording to context and without user intervention,
TEXmuse will simplify the handling of the multiple
looks a score takes. Any piece for more than one
instrument consists not only of the general score
(with every instrument in it), but also of the in-
dividual parts (the flutist gets the flute music only,
the oboist the oboe music only, and so on). If, as
in commercial software today, user intervention is
needed to lay the pages out, then that means that
the user will be helping out not with one document,
but with a multitude of them. Spelling creates the
most typos in scores, but it is this process, ‘part ex-
traction’, that consumes most of a composer’s time
these days.

You could say that WYSIWYGs could just add these
functionalities to their engines, and that is true to a
certain extent. But the fact is that these utilities are
actually more at home in an input-compile-output
model than in a GUI. They all depend heavily on

program’s downfall is again the lack of a dynamic, context-
sensitive pitch-to-note interpreter.

10 I saw an exercise in a recent conducting class where
students were given one page from a score by Debussy where
they had to find five typos (five!). All the errors (in a score
that is close to 100 years old) were spelling mistakes.

11 The paradigmatic case is a 3/4 time signature, where
beams span across the three beats if there are only eighth-
notes, but should break into beats in the presence of
sixteenth-notes or smaller rhythms.

TEX and music: An update on TEXmuse



164 TUGboat, Volume 33 (2012), No. 2

context, and on the context of the whole piece at
that. With a GUI, automation would mean that
editing (by the user) would create on-the-fly changes
(by the program) that could easily get the user lost.
A spelling mechanism would make notes dance from
spelling to spelling after each new note was input;
every copy-paste would necessitate the computer go-
ing over the full score; every new bar would poten-
tially make you jump to a new line or even a new
page (have you seen Word trying to deal with or-
phans and widows?). TEX, on the other hand, is a
parsing, transformation language that operates on
an input stream: exactly the right environment to
implement the spelling of a melody and the beaming
of a rhythm.

To sum up: by (a) keeping the inconveniences of
plain-text input as minor as possible, and (b) imple-
menting automation and interpretation mechanisms
far beyond present applications, TEXmuse is indeed
promising as a real alternative for high-quality, so-
phisticated, and musical music typesetting.

4 Future directions

The presentation of the current state of TEXmuse

and of music typesetting in general at the 2012 TUG

meeting generated excellent comments. Two major
areas of feedback are particularly significant, and I
would like to mention them as future lines of work.

4.1 TEXmuse and LilyPond

An existing program has been conspicuously absent
from the foregoing—the music typesetting system
LilyPond. Also plain-text-compile-fixed-output, it
stemmed from work on a preprocessor for MusiX-
TEX, MP

P, whose author (Jan Nieuwenhuizen) was
concerned not only about providing horizontal in-
put capabilities, but also about the relatively poor
quality of MusiXTEX’s output. In the latter part of
the 1990s, Jan and Han-Wen Nienhuys abandoned
MP

P and started work on LilyPond—now a non-
TEX application, but based on TEX (and LATEX) for
inspiration and approach.

LilyPond today is a complete working system,
well known, with excellent output and an active
community of both users and developers. With a
much more reasonable input system than MusiX-
TEX’s, it still fails in meeting the need for input that
is intuitive to a musician—section 3.2 above makes
in fact constant if veiled reference to LilyPond’s in-
put model, attempting an explanation to the ob-
served fact that most musicians who try it find it un-
satisfactory. (Mentioning LilyPond directly would

have been unfair, since on the one hand the points
are of general scope, and on the other these ‘com-
plaints’ are not all there is to LilyPond or all I think
of it.12)

The fact is that LilyPond has essentially solved
the problem of graphically realizing a musical score
that has been encoded in some kind of plain-text
syntax. If, on the other hand, TEXmuse is able to
interpret intuitive input—with a syntax tailored to
composers and allegedly amenable to them—and
from it write METAFONT programs to draw the mu-
sic, could it not write LilyPond programs instead?
That way we don’t have to build METAFONT’s mu-
sical engine from the ground up.

This is an excellent point and working on this
is the most reasonable path to getting TEXmuse to
any degree of completeness in a reasonably short
time. Even if the METAFONT macros will eventu-
ally be fully developed (so we keep the whole pro-
cess within the TEX installation), a ‘lilytex’ package
where TEXmuse uses LilyPond (instead of META-
FONT) is certainly high on the agenda of TEXmuse’s
development.

4.2 LATEX3

Some of the modules of TEXmuse, including the sig-
nature automation capabilities, are general-purpose
computer programming, and in developing them in
TEX some of the well-known ‘features’ of TEX have
made their presence felt. \expandafter must be
among the top five command names in occurrence in
TEXmuse’s code. With the ‘coming of age’ of LATEX3
and the update about it at TUG 2012 (by Frank Mit-
telbach and Will Robertson), a new line for future
work on TEXmuse suggests itself: the conversion to
LATEX3’s programming environment expl3. Individ-
ual, self-contained modules (the spelling mechanism,
for example) will be translated into the new lan-
guage, as a way to test the algorithms, have a taste
of expl3, and make TEXmuse an active part of the
most current developments in the TEX world.

⋄ Federico Garcia

Artistic Director

Alia Musica Pittsburgh

federook (at) gmail dot com

http://www.fedegarcia.net

12 In particular, LilyPond has full beaming automation
(see note 11).

Federico Garcia


