
32 TUGboat, Volume 30 (2009), No. 1

A closer look at TrueType fonts and pdfTEX

Hàn Thé̂ Thành

Abstract

Explanations and examples of using TrueType fonts
directly with pdfTEX, especially the complications
regarding encodings and glyph names.

1 Glyph identity in Type 1 vs. TrueType

The most common outline font format for TEX is
Type 1. The TrueType format is rather different
from Type 1, and getting it right requires some extra
work. In particular, it is important to understand
how TrueType handles encoding and glyph names
(or more precisely, glyph identity).

We start with Type 1, since most TEX users are
more familiar with it. In the Type 1 format glyphs
are referred to by names (such as ‘/A’, ‘/comma’, and
so on). Each glyph is identified by its name; so,
given a glyph name, it is easy to tell whether or not
a Type 1 font contains that glyph. Encoding with
Type 1 is therefore simple: for each number n in the
range 0 to 255, an encoding tells us the name of the
glyph that should be used to render (or display) the
charcode n.

With TrueType the situation is not that sim-
ple. TrueType does not use names to refer to glyphs,
but rather so-called “indices”: each glyph is iden-
tified by an index, not a name. These indices are
simply numbers that differ from font to font. The
TrueType format handles encodings by a mechanism
called “cmap”, which (roughly) consists of tables
mapping from character codes to glyph indices. A
TrueType font can contain one or more such tables,
each corresponding to an encoding.

2 Glyph names vs. Unicode in TrueType

Because glyph names are not strictly necessary for
TrueType, they are not always available inside a
TrueType font. Given a TrueType font, one of the
following cases may arise.

• The font contains correct names for all glyphs.
This is the ideal situation and is indeed often
the case for high-quality Latin fonts.

• The font contains wrong names for all or most
of its glyphs. This is the worst situation that
often happens with poor-quality fonts, or fonts
converted from other formats.

• The font contains no glyph names at all. Newer
versions of Palatino fonts by Linotype (v1.40,
coming with Windows XP) are examples of this.

• the font contains correct names for most glyphs,
and no names or wrong names for a few glyphs.
This happens from time to time.
One may wonder how the situation can be so

complex with glyph names in TrueType and still
get anything typeset correctly. The reason is that
Type 1 fonts rely on correct names to work properly.
Thus, if a glyph has a wrong name, it gets noticed
immediately. In contrast, as mentioned before, True-
Type does not use names for encoding. So, if glyph
names in a TrueType font are wrong or missing, it is
usually not a big deal and can easily go unnoticed.

The potential problem with using TrueType in
pdfTEX is that we TEX users are accustomed to the
Type 1 encoding convention, which relies on correct
glyph names. Furthermore, most font tools rely on
this convention and all encoding files (.enc files) use
glyph names. But, as explained above, glyph names
in TrueType are not reliable. If we encounter a font
that does not have correct names for its glyphs, we
need to do some more work.

If glyph names are not correct, we need another
way to refer to a glyph in TrueType fonts. The
most reliable way seems to be via Unicode: usable
TrueType fonts must provide a correct mapping from
Unicode value to glyph index.

Since version 1.21a pdfTEX has supported the
naming convention ‘uniXXXX’ in encoding (.enc)
files. This makes sense only with TrueType fonts.
When pdfTEX sees for example ‘/uni12AB’, it
• reads the 〈unicode〉→〈glyph-index〉 table from

the font, and
• looks up the value ‘12AB’ in the table, and if

found then uses the relevant glyph index.
The ttf2afm utility does the same lookup when

it sees names like ‘uni12AB’.

3 Using TrueType in pdfTEX

Let’s review the minimal steps to get a TrueType
font working with pdfTEX:
• Generate an afm from the TrueType font using

ttf2afm. Example:
ttf2afm -e 8r.enc -o times.afm times.ttf

• Convert afm to tfm using any suitable tool —
afm2tfm, fontinst, afm2pl, etc. Example:
afm2tfm times.afm -T 8r.enc

• Define the needed map entry for the font. Ex-
ample:
\pdfmapline{%

+times TimesRoman <8r.enc <times.ttf}

\font\f=times

\f Hello this is Times.

Hàn Thé̂ Thành



TUGboat, Volume 30 (2009), No. 1 33

(The font name ‘TimesRoman’ used in the map line
is declared inside the times.ttf file.)

The above deals with the easiest case: when
glyph names are correct.

Now let us consider a font where we cannot rely
on glyph names: Palatino version 1.40 from Linotype,
for example. Let us assume that we want to use the
T1 encoding with this font. So we put pala.ttf and
ec.enc in the current directory before proceeding
further.

First attempt:
ttf2afm -e ec.enc -o pala.afm pala.ttf

However, since the names in ec.enc are not
available in pala.ttf— in fact there are no names
inside this font — we get a bunch of warnings:
Warning: ttf2afm (file pala.ttf): no names

available in ‘post’ table ...

Warning: ttf2afm (file pala.ttf): glyph ‘grave’

not found

...

and the output pala.afm will contain no names at
all, but instead weird entries like ‘index123’. Fur-
thermore, glyphs are not encoded:
C -1 ; WX 832 ; N index10 ; B 24 -3 807 689 ;

We try again, this time without any encoding:
ttf2afm -o pala.afm pala.ttf

Since this time we did not ask ttf2afm to re-
encode the output afm, we get only the first warning:
Warning: ttf2afm (file pala.ttf): no names ...

but the afm output is the same as in the previous
attempt. This is not useful, since there is little we
can do with names like ‘index123’.

So we try to go with Unicode:
ttf2afm -u -o pala.afm pala.ttf

This time we get different warnings, such as:
Warning: ttf2afm (file pala.ttf): glyph 108 has

multiple encodings (the first one being used):

uni0162 uni021A

At first sight it is hard to understand what
ttf2afm is telling us with this message. So let us
recap the connection between glyph name, glyph
index and Unicode value:
• TrueType glyphs are identified internally by an

index, not a name.
• 〈glyph-name〉→〈glyph-index〉 is optional, and the

information may be wrong, if present. Likewise
〈glyph-index〉→〈glyph-name〉.
• 〈unicode〉→〈glyph-index〉, on the other hand, is

(almost) always present and reliable.
• 〈glyph-index〉→〈unicode〉 is not always reliable,

and need not even be a mapping, since there

can be more than one Unicode value mapping
to a given glyph index. That is, given a glyph
index, there may be no corresponding Unicode
value, or there may be more than one. If there
is none, the glyph index will be used (‘index123’,
for example). Now suppose that there are more
than one, as in the example above, where 0162
and 021A are both mapped to glyph index 108

In sum, we have asked ttf2afm to print glyphs
by Unicode, and ttf2afm cannot know for sure
which value to use. Hence it outputs the first
Unicode value and issues the warning.
If all we want to do is to use pala.ttf with the

T1 encoding, probably the easiest way is to create a
new enc file ec-uni.enc from ec.enc, with all glyph
names replaced by Unicode values. (This simple ap-
proach does not handle ligatures; see below.) This
can be done easily enough by a script that reads the
AGL (Adobe Glyph List, http://www.adobe.com/
devnet/opentype/archives/glyphlist.txt) and
converts all glyph names to Unicode.

Assuming that we have such a ec-uni.enc, the
steps needed to create the tfm are as follows:
ttf2afm -u -e ec-uni.enc -o pala-t1.afm pala.ttf

afm2pl pala-t1.afm pltotf pala-t1.pl

pltotf pala-t1.pl

We could then use the font in pdfTEX as follows:
\pdfmapline{+pala-t1 <ec-uni.enc <pala.ttf}

\font\f=pala-t1

\f This is Palatino in the T1 encoding.

4 General solutions for fontinst et al.

If we want to do more than just using pala.ttf
with T1 encoding, for example processing the afm
output with fontinst for a more complex font setup,
then we must proceed slightly differently. Having an
afm file where all glyph names are converted to the
‘uniXXXX’ form, as we have done above, is not very
useful for fontinst. Instead, we need an afm file with
AGL names, do our processing, and then convert
back to ‘uniXXXX’. We can do this as follows.
• Generate the afm with ‘uniXXXX’ glyph names:

ttf2afm -u -o pala.afm pala.ttf

• Convert that pala.afm to pala-agl.afm, so
that pala-agl.afm contains only AGL names.
A script similar to the one mentioned above can
do this.
• Process pala-agl.afm with fontinst or what-

ever else is desired.
• In the final stage, when we have the tfm’s from

fontinst (et al.), plus the map entries (from
fontinst or created manually), we need to re-
place the encoding by its counterpart with the

A closer look at TrueType fonts and pdfTEX



34 TUGboat, Volume 30 (2009), No. 1

‘uniXXXX’ names, since that is what the actual
TrueType font requires. For example, if fontinst
tells us to add a line saying
pala-agl-8r <8r.enc <pala.ttf

to our map file, we need to change that line to
pala-agl-8r <8r-uni.enc <pala.ttf

where 8r-uni.enc is derived from 8r.enc by
converting all glyph names to the ‘uniXXXX’
form.
The encoding files distributed with the TEX

Gyre fonts cover just about everything a typical TEX
user needs. Those encodings have been converted to
the ‘uniXXXX’ form for your convenience and are
available at http://tug.org/fontname, with names
such as q-ec-uni.enc.

5 Disappearing glyphs and final tips

Another problem that happens from time to time is
being sure that a glyph exists inside a font but we
don’t get that glyph in the pdfTEX output.

The likely cause is the glyph being referenced
by different names at the various stages the process
of creating support for the font, e.g., the tfm, vf,
enc and map files. For example, the names ‘dcroat’,
‘dbar’, ‘dslash’ and ‘dmacron’ can all refer to the same
glyph in a TrueType font. In general, the origin of a

glyph name can come from several sources:
• the individual font itself;
• a predefined scheme called “the standard Mac-

intosh ordering of glyphs” (unfortunately the
TrueType specifications by various companies
(Apple, Microsoft and Adobe) are not consistent
in this scheme and there are small differences,
for example ‘dmacron’ vs. ‘dslash’);
• the result of the 〈unicode〉→〈glyph-name〉 con-

version, according to the AGL.
In such situations, probably the easiest and most

reliable way to get the glyph we want is to use a font
editor like FontForge (http://fontforge.sf.net),
look into the font to discover the specified Unicode
for the glyph and then use the ‘uniXXXX’ form to
instruct ttf2afm and pdfTEX to pick up that glyph.

Finally, another way to get a problematic True-
Type font to work with pdfTEX is to forget all of the
above and simply convert the font to Type 1 format
using FontForge. While it sounds like a quick hack,
there is nothing necessarily wrong with this; it can
be a simple and effective workaround.

� Hàn Thé̂ Thành
River Valley Technologies
thanh (at) river-valley dot org

Hàn Thé̂ Thành


